Abstract:
Artificially selected strains of insects from the genus Spodoptera exhibiting resistance to a Bacillus thuringiensis derived Vip3A protein are described. Methods for various uses of these strains are also described.
Abstract:
Disclosed are double stranded RNA molecules that are toxic to coleopteran insects. In particular, interfering RNA molecules that capable of interfering with pest histone genes and that are toxic to the target pest are provided. Further, methods of making and using the interfering RNA, for example in transgenic plants to confer protection from insect damage are disclosed.
Abstract:
Transgenic plants expressing a Vip3 protein have been found to be efficacious against plant-infesting nematodes. Disclosed are methods of controlling nematode populations using transgenic plants expressing Vip3 protein.
Abstract:
This invention provides polypeptides that were identified as interacting with Vip3 toxin. This invention also provides a method of identifying agents that bind to Vip3 interacting polypeptides, which agents may act as insecticidal agent, cytotoxic agents and/or modulate the activity of Vip3 interacting polypeptides.
Abstract:
Disclosed are double stranded RNA molecules that are toxic to coleopteran insects. In particular, dsRNA molecules that capable of interfering with pest IAP genes and that are toxic to the target pest are provided. Further, methods of making and using the interfering RNA, for example in transgenic plants to confer protection from insect damage are disclosed.