Abstract:
A process of fabricating the waterproof coating may include selecting a textile material substrate, utilizing a sol-gel comprising a silane or silane derivative and metal oxide precursor to coat the substrate, and optionally coating the substrate with a hydrophobic chemical agent and/or other chemical agents to create a surface with nanoscopic or microscopic features. The process may utilize an all solution process or controlled environment for fabricating a fluorine-free waterproof coating that prevent wetting or staining of a substrate, or may utilize a controlled environment. The composition coatings for treating textile materials improve soil-resistance and stain-resistance of the textile materials while the compositions contain no fluorine-based chemicals. In addition, the composite solution may impart additional properties such as physical strength to the textile whilst retaining the original appearance.
Abstract:
A composition and method for fabricating graphitic nanocomposites in solid state matrices is presented. The process for fabricating graphitic nanocomposites in solid state matrices may include selecting one or a mixture of specific graphitic nanomaterials. The graphitic nanomaterial(s) may be functionalizing with a moiety similar to the building blocks of the solid state matrices. The functionalized graphitic nanomaterials are mixed with the building blocks of the solid state matrices. The mixture may be cured, which causes in situ formation of the sol-gel solid state matrices that entraps and/or covalently links with the graphitic nanomaterials during the network growing process. This process allows the nanomaterials to be introduced into the matrices homogeneously without forming large aggregations.
Abstract:
A process of fabricating the composition coating may include selecting a textile material substrate, utilizing a sol-gel comprising a silane or silane derivative and metal oxide precursor to coat the substrate, and optionally coating the substrate with a hydrophobic chemical agent and/or other chemical agents to create a surface with nanoscopic or microscopic features. The process may utilize an all solution process or controlled environment for fabricating a composition coating that prevent wetting or staining of a substrate. The composition coatings for treating textile materials improve soil-resistance and stain-resistance of the textile materials. The composition coatings and their use for treating textile materials can also impart water repellency, oil repellency, ease of cleaning stains and removing particulates. In addition, the composite solution may impart additional properties such as physical strength to the textile whilst retaining the original appearance.
Abstract:
The new methods for treating green wood discuss herein speed up air drying of common green wood, including both softwood and hardwood. This method involves treating and altering the green wood with a base solution, and subjecting the wood to an air drying process. The new methods require less time to dry the green wood to a desired water content. In addition, other additives may be included in the base solution such as miscibility solvent(s), preservative(s), solubilizer(s)/stabilizer(s), chelating agent(s), bonding agent(s), pigment(s), UV protective, anti- oxidant, anti-fungal, anti-microbial and/or anti-insect chemical(s). The base solution may also slow down the wood deterioration caused by physical, chemical and biological sources under ambient conditions.
Abstract:
A process for manufacturing the composition coating may include selecting a wood or masonry material substrate and utilizing a sol-gel comprising a silane or silane derivative and metal oxide precursor to coat the substrate. The process may utilize an all solution process or controlled environment for manufacturing a composition coating that prevent wetting and/or staining of a substrate,. The composition coatings for treating wood or masonry materials improves weather-resistance, microbial resistance, stain-resistance and fungal-resistance of the materials. The reduced permeability of the resulting masonry materials can also delay or inhibit degradation caused by permeation of ions such as chlorides and sulfates. In addition, a stain comprising the composite solution and pigments may impart additional property to wood or masonry materials whilst retaining or improving the original appearance, particularly for the visibility and contrast of the wood grain as seen after the application of the coating.
Abstract:
Compositions and methods for improved materials and material laminates with graphitic or inorganic/organic nanomaterials are presented. Graphitic or inorganic/organic nanomaterials, such as carbon nanotubes, carbon nanofibers, graphenes or graphene oxides, are introduced into an aqueous composition as fillers to provide a graphitic or inorganic/organic nanocomposite. Such composition may be used as laminates to improve adhesion between a film and a layer of material or between layers of materials and to increase not only strength properties, but also to provide other desired properties such as electronic properties, UV absorbing/blocking, optical- limiting, anti-reflective, fire-retardant, conducting, anti-microbial properties or pigmentation to say material. By tailoring the composite formulations with multiple graphitic or organic/inorganic nanomaterials, the resulting materials laminates become multifunctional and can be used for a variety of applications.
Abstract:
An improved graft polymerization method from general graphitic structures with organic based monomers through the mechanism of Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization was developed. Organic hybrid nanomaterials comprising graphitic structures are covalently bonded via chemically reactive groups on the outer walls of the structure. Methods for forming the covalently bonded structures to many organic based monomers and/or polymers may occur through RAFT polymerization utilizing dithioester as a chain transfer agent. The method may also comprise nanocomposite formation of such organic hybrid nanomaterials with common plastic(s) to form graphitic nanocomposite reinforced plastic articles.