Abstract:
A fully pipelined VLSI circuit structure for implementing the JPEG baseline image compression standard. The circuit structure exploits the principles of pipelining and parallelism to the maximum extent in order to obtain high speed and throughput. The entire structure is designed to be implemented on a single VLSI chip to yield a clock rate of about 100 MHz which would allow an input rate of 30 frames per second for 1024 x 1024 color images.
Abstract:
An efficient design methodology in accordance with the present invention is described for reducing the leakage power in CMOS circuits. The method and apparatus in accordance with the present invention yields better leakage reduction as the threshold voltage decreases and hence aids in further reduction of supply voltage and minimization of transistor sizes. Unlike other leakage control techniques, the technique of the present invention does not need any control circuitry to monitor the states of the circuit. Hence, avoiding the sacrifice of obtained leakage power reduction in the form of dynamic power consumed by the additional circuitry to control the overall circuit states.
Abstract:
Various examples of methods and systems are provided for an attack detection system that can detect attacks in big data systems. The attack detection system can include security modules coupled to data nodes of the big data system. The attack detection system can identify a process executing on the respective data node. A process signature can be generated for the process executing on the data node. A determination of whether a big data system is being attacked can be based at least in part on a comparison of the process signature with at least one other process signature for the same process executing on another security module. The other process signatures are received via secure communication from the other security module.