Abstract:
Ladders, ladder components and related methods are provided including embodiments of a hinge that may be used in a combination ladder. In one embodiment, a hinge mechanism includes a first hinge assembly and a second hinge assembly. The first and second hinge assemblies are coupled together for relative rotation about a defined axis. An adjustment mechanism enables the two hinge assemblies to be selectively locked or unlocked to prohibit or permit relative rotation, respectively. In one embodiment, the adjustment mechanism includes a lock plate displaceable along a first axis and a retainer displaceable along a second axis. The retainer is configured to hold the lock plate in a disengaged state until a release structure displaces the retainer away from the lock plate. The release structure may be configured to be actuated and displace the retainer upon relative rotation of the hinge assemblies to (or through) a predetermined angular configuration.
Abstract:
Ladders, ladder components and related methods are provided. In some embodiments, adjustable stepladders are provided which include locking mechanisms that enable height adjustment of the ladder through application of a force towards the rails of the ladder. The locking mechanism may include a base or bracket, a handle or lever pivotally coupled with the bracket, an engagement pin coupled with the lever, a biasing member to bias the handle towards a first position relative to the bracket, and a detent mechanism for retaining the lever in at least a second position relative to the bracket.
Abstract:
A step ladder includes a first assembly having a first pair of spaced apart rails, a second assembly having at least one rail, and a top cap coupled with the first assembly and the second assembly. At least one of the first and second assemblies may be pivotally coupled with the top cap. The first assembly includes a plurality of rungs coupled with the rails and may exhibit a vertical spacing of a first distance between adjacent rungs, a vertical spacing equal to the first distance between the lowermost rung and a supporting surface (e.g., the ground), and a vertical spacing between the uppermost rung and the top cap that is greater than the first distance. In one particular embodiment, the vertical spacing between the uppermost rung and the top cap is twice the distance of the first distance.