Abstract:
A radiation exposure recording device and radiography method are disclosed, where the radiation exposure recording device includes a radiation exposure recording medium, a housing that at least partly surrounds the radiation exposure recording medium, and a first detector that detects a radiation exposure. An output signal produced in response to the detecting of the radiation exposure can be provided, and the detection of and output of a signal in response to the radiation exposure is entirely automatic and independent of any manual processing of the radiation exposure recording device. Further, the radiography method includes providing a first radiation exposure recording medium, providing a first radiation exposure detector, and sensing an exposure of radiation at the first radiation exposure detector. Also disclosed is a circuit that can be retrofitted to existing radiography cassettes for detecting when the cassettes are exposed to radiation.
Abstract:
X-ray compensation masks (51) are prepared by exposing an X-ray target object (43), such as a patient, to a first beam of X-rays. The X-ray fluence from the patient is received by an electronic image receptor (44) which provides an output signal indicating the intensity of the X-rays at all positions in the image field. The image information is converted by an image processor (47) to transformed X-ray intensity values for a plurality of pixels which cover the image field. A mask generating controller (48) determines the minimum transformed intensity value for any pixel, assigns to each pixel an attenuation number which is proportional to the difference between the transformed intensity value for the pixel and the minimum transformed intensity value, and issues control signals to a mask former (49) which deposits on a non-attenuating substrate (50) attenuating masses in a two dimensional array of pixels with the mass thickness in each pixel proportional to the attenuation number. When the mask (51) is inserted into the beam from the X-ray source (41), and a second exposure taken, the X-ray fluence passing through both the attenuating mask (51) and the patient (43) will be substantially equalized across the image field.