Abstract:
A rotary charging device for a shaft furnace comprising: a stationary housing (16) and a suspension rotor (22) that is supported so that it can rotate about a substantially vertical axis (A), a charge distributor (28) being pivotally suspended to the suspension rotor (22). Rotary drive means are provided for rotating the suspension rotor about its axis (A) and tilting drive means for pivoting the charge distributor (28) about a substantially horizontal pivoting axis (B), independently from said rotary drive means. The tilting drive means are mounted onto the suspension rotor (22) and rotate therewith; they comprise: an electric tilting motor (MB) is installed inside the main casing (36) and having a substantially horizontal output shaft (52); a tilting input gear (54) driven by the tilting motor output shaft; and a tilting output gear (56) rotationally integral with a suspension arm (34) of said chute distributor (28), said tilting input gear meshing with said tilting output gear.
Abstract:
The present invention proposes a bustle pipe arrangement (10) of a shaft furnace, in particular for feeding hot gas into the shaft furnace such as e.g. a blast furnace, wherein the bustle pipe arrangement (10) comprises a circumferential bustle pipe (12) arranged along the outer casing (14) of the shaft furnace, the bustle pipe (12) being arranged at a certain distance form the outer casing (14). The arrangement (10) further comprises a plurality of first arms (22) connecting the bustle pipe (12) to the outer casing (14) of the shaft furnace on a first level; and a plurality of second arms (24) connecting the bustle pipe (12) to the outer casing (14) of the shaft furnace on a second level, the first level being different from the second level. First and second blow channels (26, 30) are respectively arranged through the first and second arms (22, 24) for fluidly connecting the bustle pipe (12) to the interior of the shaft furnace.
Abstract:
The present invention proposes a bustle pipe arrangement (10) of a shaft furnace, in particular for feeding hot gas into the shaft furnace such as e.g. a blast furnace, wherein the bustle pipe arrangement (10) comprises a circumferential bustle pipe (12) arranged along the outer casing (14) of the shaft furnace, at a certain distance therefrom. The arrangement (10) further comprises a plurality of first support arms (22) connecting the bustle pipe (12) to the outer casing (14) of the shaft furnace on a first level; and a plurality of second support arms (24) connecting the bustle pipe (12) to the outer casing (14) of the shaft furnace on a second level, the first level being separate from the second level. The first and second support arms (22, 24) are configured to support the circumferential bustle pipe (12). First blow channels (26) are arranged through the first support arms (22) for fluidly connecting the bustle pipe (12) to the interior of the shaft furnace.
Abstract:
A rotary charging device for a shaft furnace comprises a stationary housing (16) for mounting on the throat (12) of the shaft furnace and a suspension rotor (22) supported therein so that it can rotate about a substantially vertical axis (A), said suspension rotor (22) and stationary housing (16) cooperating to delimit an annular chamber forming the main casing (36) of said rotary charging device. A charge distributor (28) is pivotally suspended to the suspension rotor (22). The device further comprises: rotary drive means for rotating the suspension rotor (22) about its axis; independent tilting drive means for pivoting the charge distributor (28) about a substantially horizontal pivoting axis (B) that include: a tilting motor (MB) with horizontal output shaft (52) fixedly mounted relative to the stationary housing (16); a tilting drive shaft (58) in the main housing (36) that is mounted onto the suspension rotor (22), an outward end (60) of the tilting drive shaft (58) being coupled to the tilting motor (MB) by motion transfer means (64) while the opposite inward end (62) of the tilting drive shaft is coupled to the charge distributor (28) to selectively operate its pivoting, the motion transfer means (64) being configured in such a way as to allow transmitting power from the tilting motor (MB) to the tilting drive shaft (58) at any angular position of the suspension rotor (22).
Abstract:
Tuyere stock arrangement (10) of a blast furnace comprising a tuyere (14) having a tuyere body (20) configured for installation in a blast furnace wall (12); the tuyere body (20) having an outer wall (22), a front face (24) and a rear face (26), the tuyere body (20) further having a tuyere channel (28) extending from the rear face (26) to the front face (24), the tuyere channel (28) forming an inner wall (30) in the tuyere body (20). The tuyere stock arrangement (10) further comprises a blowpipe (34) connected between the rear face (26) of the tuyere body (20) and a gas feeding device (38), the blowpipe (34) being configured and arranged so as to feed hot gas, generally hot blast air, from the gas feeding device (38) to the tuyere channel (28) for injection into the blast furnace. The tuyere stock arrangement (10) also comprises an injection lance (40) for feeding a combustible, generally pulverized or granular coal, into the blast furnace at the tuyere level, the injection lance (40) being an coaxial lance comprising an outer pipe and an inner pipe, coaxially arranged within the outer pipe, the outer and inner pipes being arranged for separately conveying oxidizing gas and said combustible, the inner pipe forming a separation wall for separating said combustible from the oxidizing gas. According to an important aspect of the invention, the injection lance (40) is removably arranged in a lance passage (42) formed in the tuyere body (20), the lance passage (42) being arranged between the inner wall (30) and the outer wall (22) of the tuyere body (20) and extending from the rear face (26) to the front face (24), the lance passage (42) opening into a front face (24) of the tuyere body (20).