Abstract:
An acetabular cup assembly (10) can include a cup portion and a bearing. The cup portion can include a porous metal outer layer having a first thickness and a solid titanium inner layer having a second thickness. A mating feature can be formed between the cup portion and the bearing. The bearing can be adapted to be selectively secured to the titanium inner layer. In one example, the bearing is formed of cobalt.
Abstract:
An apparatus and method for hardware protection of a virtual machine monitor (VMM) runtime integrity watcher is described. A set of one or more hardware range registers that protect a contiguous memory space that is to store the VMM runtime integrity watcher. The set of hardware range registers are to protect the VMM runtime integrity watcher from being modified when loaded into the contiguous memory space. The VMM runtime integrity watcher, when executed, performs an integrity check on a VMM during runtime of the VMM.
Abstract:
Systems, devices, and methods are provided for orthopedic implants. The implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, or any other suitable orthopedic attachment. An implant component may be expandable to allow for adjustment and custom fitting during implantation. An expandable implant may have a first portion and a second portion separated by a slit. An expansion member can be disposed between the first and second portions and can be actuated to displace the two portions relative to each other, increasing the size of the implant. Any number of slits and expandable sections can be included in the implant to provided more flexibility in the expansion of the implant.
Abstract:
Systems, devices, and methods are provided for orthopedic implants. The implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, or any other suitable orthopedic attachment. A cup member that fits within an implantable shell and has mounting members that anchor an implant to a patient's bone or soft tissue may be provided. The cup member may fit within the shell and have an exterior surface configured to mate with a corresponding interior surface of the shell to couple the cup member to the shell. The mounting members may be integral with the cup member, or may be adjustable to provide flexibility to accommodate a specific implant or patient anatomy.
Abstract:
Systems, devices, and methods are provided for orthopedic implants. The implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, or any other suitable orthopedic attachment. An augment provided for an acetabular implant may be adjustably positionable around the implant. An implant may have one or more slots that mate with connections on the augment and allow the augment to move within the slot. An augment may be translated, rotated, or moved in any other way to achieve a desired orientation prior to locking the augment in place relative to the implant. The augment may be locked by a screw or other locking mechanism that holds the augment in place. The locking mechanism may be releasable to allow for repositioning of the augment.
Abstract:
Systems, devices, and methods are provided for orthopedic implants. The implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, or any other suitable orthopedic attachment. An implant may include a base member that has at least two projections with a gap between the projections. The gap between the projections allows the implant to be implanted around another implanted component, such as around a bone screw of an acetabular shell. The implant may include a fixation element, such as a screw or a cement trough, on one or more projections to couple the implant to an implanted acetabular shell. The implant may also include timing marks to facilitate alignment with corresponding marks on another implanted component.
Abstract:
Systems, devices, and methods are provided for orthopedic implants. The implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, or any other suitable orthopedic attachment. A mounting member may be used to attach to an implant and anchor the implant to a patient's bone or soft tissue. The mounting member may be integral with the implant or may be provided as a separate component. A mounting member may be adjustably positionable around the implant to provide flexibility and allow the mounting member to meet needs of a particular patient and implant.
Abstract:
This invention relates to a joint prosthesis component (10) having a body (12) defining an operatively outer bone contacting surface (20) and an operatively inner bearing surface (22), for articulating with either a natural or prosthetic counter-component of a joint, the operatively inner bearing surface (22) having a geometry which corresponds to the anatomy of a natural joint component for which the component (10) provides a prosthesis. The invention extends to an acetabulum hip prosthesis component and to a joint prosthesis assembly.
Abstract:
The present invention relates to universal liner assemblies for use during hip joint replacement surgeries, kits providing a plurality of universal liners, and methods of manufacturing and implanting the universal liners. The universal liners allow the surgeon a greater degree of selection of liners and shells, without being tied to typical liner/shell connections based on material connection constraints.
Abstract:
Systems, devices, and methods are provided for orthopedic implants. The implants may include a base member, such as an acetabular shell or an augment, that is configured to couple with an augment, flange cup, mounting member, or any other suitable orthopedic attachment. An implant component may be expandable to allow for adjustment and custom fitting during implantation. An expandable implant may have a first portion and a second portion separated by a slit. An expansion member can be disposed between the first and second portions and can be actuated to displace the two portions relative to each other, increasing the size of the implant. Any number of slits and expandable sections can be included in the implant to provided more flexibility in the expansion of the implant.