Abstract:
A magnetic refrigeration apparatus according to the present disclosure includes a magnetic-field source and two or more bed rings. The bed rings can be arranged in pairs with shared cold and hot fluid plenums. A flow of heat transfer fluid may pass at least partially radially through the shared fluid plenum or through a connection between the fluid plenum and one or more flow tubes. The MR apparatus and systems of the present disclosure may further include one or more circumferential flux returns with radial through-hole passageways to accommodate flow tubing. For apparatus configurations with an even number of bed rings, the axial dimension of the passageways may be smaller than the circumferential dimension of the passageways.
Abstract:
Une machine thermique à matériau magnétocalorique comporte un arbre central (4), un rotor (6) monté rotatif sur l'arbre central (4), le rotor (6) comportant un lit actif (60) comprenant du matériau magnétocalorique, le lit actif (60) étant conformé pour guider un fluide caloporteur, un distributeur chaud (7c) et un distributeur froid (7f) placés respectivement en regard d'extrémités chaude et froide (600c, 600f) pour fournir ou recevoir le fluide caloporteur circulant dans le lit actif (60). Le rotor (6) comporte un flasque chaud (61 c) et un flasque froid (61 f) montés rotatifs sur l'arbre central (4) et supportant le lit actif (60) de matériau magnétocalorique. La machine (1 ) comporte des premiers moyens d'étanchéité (16) tournants entre le flasque (61 ) et l'arbre central (4), et des deuxièmes moyens d'étanchéité (17) tournants entre le flasque (61 ) et le distributeur (7) adjacent au-delà de l'anneau de raccord.
Abstract:
A magnetic cooling apparatus may include a fixing module and a rotation module rotatably provided at the fixing module. The fixing module includes a plurality of magnetic regenerators and a thermal fluid supply apparatus allowing thermal fluid to exchange with the plurality of magnetic regenerators, and the thermal fluid supplying apparatus is configured to operate by the rotation module without an additional configuration, which enables the magnetic cooling apparatus to have a similar configuration.
Abstract:
A magnetocaloric regenerator unit comprising (A) at least one magnetocaloric material unit having a higher temperature hot side and a lower temperature cold side during operation, wherein the magnetocaloric material unit contains at least one magnetocaloric material, (B) at least one magnetic unit for producing a magnetic field over the magnetocaloric material contained in the magnetocaloric material unit, (C) at least one magnetic shielding comprising at least one window wherein the at least one magnetic shielding is mounted flexible to allow movement of the magnetic shielding between at least one first position and at least on second position thereby insulating the magnetocaloric material contained in the magnetocaloric material unit from the magnetic field when the magnetic shielding is in a first position and allowing the magnetic field to act on the magnetocaloric material through the at least one window when the magnetic shielding is in a second position.
Abstract:
A method and mechanism for eliminating one of the magnetic circuits in a conventional two motor Stirling cryocooler. The inventive cooler is a Stirling cycle cryogenic cooler with a magnetic circuit for generating a field of magnetic flux in two separate magnetic gaps; a first coil disposed in the flux field of one gap; and a second coil disposed in the flux field of the second gap. The second coil is mounted for independent movement relative to the first coil. In a specific embodiment, the first coil is a compressor coil and the second coil is a displacer coil. The coils are energized with first and second variable sources of electrical energy in response to signals from a controller.
Abstract:
Es wird eine Kryo-Detektorvorrichtung mit einer mechanischen Kühleinrichtung und einer Temperaturstabilisierung angegeben, bei der die bei mechanischen Kühleinrichtungen auftretenden Temperaturschwankungen wesentlich reduziert werden. Mittels einer Entmagnetisierungsstufe (EM-Stufe) können die durch eine mechanische Kühleinrichtung auftretenden Temperaturschwankungen kompensiert werden. Die EM-Stufe ist hierbei thermisch mit der Sensoreinrichtung und/oder dem Kaltkopf gekoppelt. Bei einer EM-Stufe werden durch Anlegen eines Magnetfeldes die magnetischen Momente eines paramagnetischen Materials, z.B. eines paramagnetischen Salzes, zumindest teilweise ausgerichtet. Bei dieser Magnetisierung wird Wärme frei, die üblicherweise durch eine Vorkühlstufe abgeführt wird. Wird nun das Magnetfeld abgesenkt, wird die Ausrichtung der magnetischen Momente wieder aufgehoben. Die hierzu notwendige Energie wird dem Material entzogen, das Material kühlt sich ab. Bei der vorliegenden Erfindung kann nun sowohl die üblicherweise genutzte Kühlwirkung einer EM-Stufe als auch deren,,Heizwirkung" beim Hochfahren des Magnetfeldes genutzt werden. Durch Hochfahren des Magnetfeldes wirkt die EM-Stufe als,,Heizeinrichtung" und durch Absenken des Magnetfeldes wirkt die EM-Stufe als Kühleinrichtung.
Abstract:
A magnetic refrigeration apparatus includes one or more beds of magnetocaloric material, each having a hot side and a cold side. The apparatus also includes a magnet to apply a time-varying magnetic field to the one or more beds of magnetocaloric material, a heat transfer fluid, a means to circulate the heat transfer fluid, a hot side heat exchanger (HHEX), a cold side heat exchanger (CHEX).
Abstract:
L'invention concerne un générateur thermique magnétocalorique (10) comportant un circuit primaire (P 10 ) reliant fluidiquement deux étages (E 1 , E 2 ) d'éléments magnétocaloriques (M 11 , M 12 , M 21 , M 22 ) par un fluide caloporteur appelé fluide primaire circulant selon un mouvement alternatif de va-et-vient, lesdits étages (E 1 , E 2 ) étant soumis au champ magnétique variable d'un système magnétique (2), et le circuit primaire comportant un côté froid (F) et un côté chaud (C) au niveau desquels les éléments magnétocaloriques (M 11 , M 12 , M 21 , M 22 ) desdits étages (E 1 , E 2 ) sont reliés fluidiquement. Au moins le côté froid (F) du circuit primaire comporte un point de sortie (S 1 ) relié à un autre point du circuit primaire, appelé point d'injection (I 1 ), du côté chaud (C) par l'intermédiaire d'une conduite de dérivation (D 1 ) autorisant le déplacement de fluide primaire uniquement du point de sortie (S 1 ) vers le point d'injection (I 1 ). Elle a également pour objet un procédé de refroidissement dudit d'un fluide secondaire par ledit générateur thermique magnétocalorique.
Abstract:
A magnetic cooling apparatus including a plurality of magnetic regenerators including a plurality of magnetocaloric materials to emit heat when magnetized and to absorb heat when demagnetized. The magnetic regenerators are rotatably disposed on a circumference having a predetermined radius, at least one coil is disposed on the circumference and coupled to the magnetic regenerators, and a plurality of permanent magnets is provided inside and outside the circumference to generate a magnetic field to magnetize or demagnetize the magnetic regenerators. The at least one coil interacts with the magnetic field generated by the permanent magnets to rotate the magnetic regenerators. The coil interacting with the magnetic field to magnetize or demagnetize the magnetic regenerators is coupled to the magnetic regenerators such that the magnetic regenerators reciprocate or rotate, thereby minimizing a size of the magnetic cooling apparatus, relative to the use of a motor. In addition, a member to switch a channel of a heat transfer fluid directly performs heat transfer between the heat transfer fluid and an external fluid, thereby minimizing heat loss.