Abstract:
A gas sample chamber (10) for use in a gas analyzer consists of an elongated hollow tube (21) having an inwardly-facing specularly-reflective surface (22) that permits the tube to function also as a light pipe for conducting radiation from a source (20) to a detector (16) through the sample gas. A number of apertures (24) in the wall of the elongated hollow tube permit the sample gas to enter and exit. Particles of smoke and dust of a size greater than 0.1 micron are kept out of the chamber by use of a semi-permeable membrane (28) that spans the apertures in the hollow tube. Condensation of the sample gas components is prevented by heating the sample chamber electrically to a temperature above the dew point of the component of concern.
Abstract:
Die Erfindung betrifft einen optischen Sensor (1) zur Bestimmung von Partikel- und / oder Farbstoffkonzentrationen in flüssigen oder gasförmigen Medien und ein Verfahren zu dessen Betrieb. Der optische Sensor (1) weist wenigstens einen Messkopf auf. Der Messkopf besteht aus einer Sendereinheit (2) mit einein sichtbare Sendelichtstrahlen (8) emittierenden Halbleiter-Sendeelement (9) und einer Empfängereinheit (3) mit einem Halbleiter-Empfangselement (10). Auf das Empfangselement (10) ist der eine Absorptionsstrecke mit flüssigem oder gasförmigem Medium durchsetzende Teil der Sendelichtstrahlen (8) geführt. An den Messkopf ist über elektrische Zuleitungen (4, 4`) eine Auswerteeinheit (6) gekoppelt, in welcher die am Ausgang des Halbleiter Empfangselement (10) anstehenden Empfangssignale zur Ermittlung der Partikel- bzw. Farbstoffkonzentration ausgewertet werden.
Abstract:
The invention relates to an optical sensor (1) for determining particle and/or dye concentrations in liquid or gaseous media and to a method for operating the same. The optical sensor (1) comprises at least one measuring head. The measuring head consists of an emitter unit (2) with a semiconductor emitting element (9), which emits visible emission light beams (8), and with a receiver unit (3) with a semiconductor receiving element (10). The portion of the emission light beams (8), which pass through an absorption section containing liquid or gaseous medium, is guided onto the receiving element (10). An evaluating unit (6) is coupled to the measuring head via electric leads (4, 4'), and the received signals, which are present at the output of the semiconductor receiving element (10), are evaluated inside said evaluating unit in order to determine the particle or die concentration.
Abstract:
The improved sample chamber includes an elongated hollow tube (12) closed at one end (14) and having specularly-reflective inwardly facing surfaces (16). A source (26) of radiation and a detector (28) of radiation are mounted side by side in the open end of the hollow tube, both facing the closed end. A plurality of filtering apertures (20) are formed in the tube (12), and each aperture is covered by a sheet (22) of a semipermeable membrane that serves to prevent airborne particles larger than a predetermined size from entering the chamber while not interfering with the free diffusion of the gas to be measured into and out of the chamber. The use of an elongated hollow tube that is closed at one end results in no loss in the efficiency with which the radiation is conducted from the source to the detector while decreasing the external length of the chamber by 50 percent.
Abstract:
A fluorescence analysis system may include a sensor head that has a light source configured to emit light into a flow of fluid, a detector configured to detect fluorescent emissions from the flow of fluid, and a temperature sensor. The system may also include a flow chamber that includes a housing defining a cavity into which the sensor head can be inserted. In some examples, the housing is configured such that, when a flow of fluid enters the housing, the flow of fluid divides into at least a major stream passing adjacent the light source and the detector and a minor stream passing adjacent the temperature sensor. Such a flow chamber may direct fluid past different sensors components while inhibiting a build-up of solids particles, the generation of air locks, or other flow issues attendant with continuous or semi-continuous online operation.
Abstract:
The present invention relates to a gas cell (1) for optical measurements of gas content and/or concentration comprising a cavity (1a), at least one aperture (11) for gas exchange, at least one first socket (12) for light emitting means (2) and at least one second socket (13) for light detecting means (3). The length of an optical measuring path (A) through the cavity (1a) is defined by a direct or indirect distance between a light emitting means (2) in the first socket (12) and a light detecting means (3) in the second socket (13). The present invention teaches that an epoxy mold compound is used to form at least the parts of the gas cell (1) that define the optical measuring path (A).
Abstract:
A gas sample chamber (10) for use in a gas analyzer consists of an elongated hollow tube (21) having an inwardly-facing specularly-reflective surface (22) that permits the tube to function also as a light pipe for conducting radiation from a source (12) to a detector (14) through the sample gas. A number of apertures (24) in the wall of the elongated hollow tube permit the sample gas to enter and exit. Particles of smoke and dust of a size greater than 0.1 micron are kept out of the chamber by use of a semi-permeable membrane (28) that spans the apertures in the hollow tube. Condensation of the sample gas components is prevented by heating the sample chamber electrically to a temperature above the dew point of the component of concern. In one embodiment, more than one detector (40, 42, 44) are spaced around the periphery of the elongated hollow tube adjacent one end of it. In another embodiment, more than one detector (56, 58, 60) are spaced along the length of the elongated hollow tube.
Abstract:
Es wird eine Detektionsanordnung (1) angegeben, umfassend: - einen Emitter (2) zur Erzeugung einer Strahlung mit einer Peak-Wellenlänge im infraroten Spektralbereich; - einen Detektor (3) zum Empfangen der Strahlung; - eine Montagefläche (10), an der zumindest eine erste Kontaktfläche (51) und eine zweite Kontaktfläche (52) für die externe elektrische Kontaktierung der Detektionsanordnung ausgebildet sind; - einen Formkörper (4), der zumindest stellenweise an den Emitter und an den Detektor angrenzt; und - eine Umlenkoptik (6), auf die im Betrieb der Detektionsanordnung von dem Emitter emittierte Strahlung trifft, wobei mittels der Umlenkoptik ein optischer Pfad (9) zwischen dem Emitter und dem Detektor gebildet ist. Weiterhin wird ein Verfahren zur Herstellung von Detektionsanordnungen angegeben.
Abstract:
Die Erfindung betrifft eine Durchflussmesszellenvorrichtung und ein Verfahren zur Messung von zumindest einem Fluidparameter, wie bspw. einen Blutparameter, wobei eine Anregungsstrahlung erzeugt und auf eine Fluoreszenzquelle (103) gerichtet wird. Die Fluoreszenzquelle (103) ist in der Weise angeordnet, dass zumindest ein Teil der bei einer Anregung der Fluoreszenzquelle (103) von dieser abgegebenen Fluoreszenzstrahlung eine Durchflussmesszelle (102) durchströmt. Zumindest ein Teil der abgegebenen Fluoreszenzstrahlung oder der zugeführten Anregungsstrahlung wird zum Beispiel mittels einer Strahlungsumlenkeinrichtung (105, 106) in der Weise umgelenkt, dass die Fluoreszenzstrahlung nach dem Durchströmen der Durchflussmesszelle (103) auf einer Seite der Durchflussmesszelle (102) erfassbar ist, auf der auch die Anregungsstrahlung zugeführt wird.
Abstract:
The invention provides for an optical measuring instrument and measuring device. The optical measuring instrument for investigating a specimen contained in a sample comprises at least one source for providing at least one electromagnetic beam intended to irradiate the sample and to interact with the specimen within the sample, at least one sensor for detecting an output of the interaction between the specimen and the electromagnetic beam, an integrally formed mechanical bench for the optical and electronic components, a sample holder for holding the sample, wherein the at least one source, the at least one sensor, and the mechanical bench are integrated in one monolithic optoelectronic module and the sample holder can be connected to this module.