Abstract:
An interrogation system includes a light signal switch and a reflection signal switch. The light signal switch may be communicatively coupled to an optical light source. The light signal switch may route a light signal generated by the light source downhole in a wellbore through a single-mode optical fiber cable or a multi-mode optical fiber cable. The reflection signal switch may be communicatively coupled to the single-mode optical fiber cable and the multi-mode optical fiber cable. The reflection signal switch may route a reflection of the light signal from the signal-mode optical fiber cable or the multi-mode optical fiber cable to an optical detector.
Abstract:
An illustrative monitoring system for a hydraulic fracturing operation includes: a data acquisition module collecting microseismic signals from a subterranean formation undergoing a hydraulic fracturing operation; a processing module implementing a monitoring method; and a visualization module that displays an estimate or prediction of fracture extent. The monitoring method implemented by the processing module includes: deriving microseismic event locations and times from the microseismic signals; fitting at least one fracture plane to the microseismic event locations; projecting each microseismic event location onto at least one fracture plane; determining a time-dependent distribution of the projected microseismic event locations; calculating one or more envelope parameters from the time-dependent distribution; and generating an estimate or prediction of fracture extent using the one or more envelope parameters. The envelope parameters may include an exponent of a time -power law, and said generating may include re-fitting the fracture plane if the exponent isn't approximately one-half.
Abstract:
Observed data responsive to a seismic event in a target structure is received. Moment tensor inversion is applied on the observed data. Residual statics of survey receivers are determined based on the moment tensor inversion.
Abstract:
Microseismic behavior in a multi-stage stimulation process in respect of a geological formation is predicted by identifying a primary factor contributing to a type and pattern of observed microseismicity associated with a stimulation stage. The identification involves postulating a candidate factor contributing to the type and pattern of the observed microseismicity associated with the stimulation stage. The identification also includes determining whether the candidate factor contributes to the type and pattern of the observed microseismicity using a physical analysis technique, thereby testing the candidacy of the candidate factor.
Abstract:
Uncertainty in microseismic monitoring sensor data can be reduced. A computing device can receive information about at least one sensor that is monitoring a subterranean formation, including a location, after a fracturing fluid is introduced into the formation. The computing device can also receive information about a microseismic event and determine a seismic ray bath between a location of the event and the at least one sensor, and an uncertainty value of the location based on information about the formation and the information about the event. The computing device can determine a total uncertainty value associated with the locations of a plurality of microseismic events, including the microseismic event. The computing device can determine a solution to an objective function based on the total uncertainty value and a number of sensors. The computing device can determine a new location of the at least one sensor based on the solution.
Abstract:
Some aspects of what is described here relate to seismic profiling techniques. A seismic excitation is generated in a first directional section of a first wellbore in a subterranean region. Seismic responses associated with the seismic excitation are detected in directional sections of a plurality of other wellbores in the subterranean region. A fracture treatment of the subterranean region is analyzed based on the seismic responses. In some instances, a multi-dimensional seismic velocity model of the subterranean region is generated based on the seismic responses.
Abstract:
The present invention relates to tracer and/or chemical-release materials in the form of particles comprising: a) a partial outer coating comprising at least one resilient material; b) a matrix within said outer coating, said matrix comprising at least one polymeric material; c) at least one porous material encapsulated within said matrix; d) at least one tracer or chemical contained within said porous material. The invention further relates to methods for the use of such materials including methods for assessing the flow of fluids within a subterranean reservoir utilising one or more of such materials. Uses of the material in corresponding methods and also methods of production are further provided.
Abstract:
A system and method to obtain acoustic information from a borehole penetrating the earth are described. The system includes a light source to provide a continuous output beam and a modulator to modulate the continuous output beam with a modulation signal to provide a frequency modulated continuous wave (FMCW) to be sent out on an optical fiber disposed along the borehole, the optical fiber including a plurality of reflectors at known locations along the optical fiber. The system also includes a processor to process a light reflection signal from the optical fiber to determine the acoustic information.
Abstract:
The methods described are for determining distribution, orientation and dimensions of networks of hydraulically-induced fractures within a subterranean formation containing fluids. Detectable signals are generated by particles introduced into the fractures. In an exemplary method proppant-like particles are positioned in the formation during fracturing and allowed to generate a signal during or after fracturing activity. The detectable signals generated by the proppant-like particles are used to map fracture space.