Abstract:
A system and method for multicomponent noise attenuation of a seismic wavefield is provided. Embodiments may include receiving, at one or more computing devices, seismic data associated with a seismic wavefield over at least one channel of a plurality of channels from one or more seismic sensor stations. Embodiments may further include identifying a noise component on the at least one channel of the plurality of channels and attenuating the noise component on the at least one channel of the plurality of channels based upon, at least in part, the seismic data received from the one or more seismic sensor stations.
Abstract:
The present disclosure describes methods and systems, including computer-implemented methods, computer program products, and computer systems, for processing geophysical data. One computer-implemented method includes obtaining a set of raw geophysical data, wherein the raw geophysical data include 3-Dimensional (3D) coordinates; grouping, by a data processing apparatus, the set of the raw geophysical data into a plurality of subsets; and processing, by the data processing apparatus, each subset of the raw geophysical data using a 3D norm zero objective energy function to generate a subset of smoothed geophysical data, wherein the smoothed geophysical data is used to build a subsurface model.
Abstract:
A system and method for determining a 4D difference from 4D seismic data including receiving a baseline seismic dataset and a monitor seismic dataset; identifying a 4D signal present in the monitor seismic dataset to create a 4D monitor dataset and a signal in the baseline seismic dataset which matches the monitor seismic dataset to create a baseline matching signal dataset; differencing the baseline matching signal dataset and the baseline seismic dataset to create a 4D baseline dataset; and differencing the 4D baseline dataset and the 4D monitor dataset to create a 4D difference dataset. In an embodiment, a multi-scale, multi-directional transform is used to identify the 4D signal present in the monitor seismic dataset and the signal in the baseline seismic dataset which matches the monitor seismic dataset.
Abstract:
The present invention relates to a method of processing seismic signals comprising: receiving a set of seismic signals, applying a wavelet transformation to the set of signal and generating transformed signals across a plurality of scales. Then for each scale determining coherence information indicative of the transformed signals arid generating a comparison matrix comparing the transformed signals, then outputting seismic attribute information based on combined coherence information.
Abstract:
The present disclosure describes methods and systems, including computer-implemented methods, computer program products, and computer systems, for generating a velocity model for a subsurface structure. One computer-implemented method for determining velocity model for a subsurface structure includes generating, by at least one hardware processor, a first velocity model for the subsurface structure by performing a refraction traveltime tomography procedure based on an initial velocity model; and generating, by the at least one hardware processor, a first refined velocity model based on the first velocity model and a structure skeleton model, wherein the structure skeleton model is determined based on reflection seismic data of the subsurface structure.
Abstract:
The invention pertains to a method for enhancing a physical parameter map in a zone of a seismic image. The dip of points of the image is obtained. For one of these points, called second point, a correction factor of a physical parameter is obtained with a residual move-out algorithm from a common image gather. A first point is selected on a line substantially perpendicular to the dip at the second point. The selection involves at least one parameter among whether the difference between the dip at the second point and the dip at the first point is below a first preset value; and the spacing between the first and the second point is below a second preset value. An inversion algorithm gives a corrected interval value of the physical parameter to update the physical parameter map.
Abstract:
The present invention meets the above needs and overcomes one or more deficiencies in the prior art by providing systems and methods for the conversion of stacked, or preferably, time migrated 3D seismic data and associated seismic attributes from a time domain to a depth domain. In one embodiment, the present invention includes a method for convening threedimensional seismic data from a time domain to a depth domain.
Abstract:
Seismic data are processed to reduce or eliminate aliasing due, for example to sparse or irregular sampling. An iterative method includes an inhibiting function used in conjunction with a function evaluating a magnitude of Fourier coefficients that together act to reduce the effects of aliased energies and preferentially select true energies. Computational steps are conducted primarily in k-space, without returning to x-space, thereby reducing computational costs.
Abstract:
A process that assists with the identification of potential hydrocarbon deposits that includes performing a structural interpretation of a three-dimensional seismic volume, transforming the three-dimensional seismic volume into a stratal-slice volume, performing a stratigraphic interpretation of the stratal-slice volume which includes the extracting of bounding surfaces and faults and transforming the stratal-slice volume into the spatial domain. As illustrated in Figs. 24a, b and c, an exemplary seismic volume before Domain Transformation is presented in Fig. 24a, interpreted horizons and faults used in the transformation are presented in Fig. 24b, and the Domain Transformed stratal-slice volume is presented in Fig. 24c. The input seismic volume in Fig. 24a has deformations associated with syn- and post-depositional faulting. The output Domain Transformed volume (Fig. 24c) is substantially free of deformations.
Abstract:
The present invention is directed generally toward a method of processing seismic data to provide improved quantification and visualization of subtle seismic thin bed tuning effects and other sorts of lateral rock discontinuities. A reflection from a thin bed has a characteristic expression in the frequency domain that is indicative of the thickness of the bed: the reflection has a periodic sequence of notches in its amplitude spectrum, with the notches being spaced a distance apart that is inversely proportional to the temporal thickness of the thin bed. Further, this characteristic expression may be used to track thin bed reflections through a 3-D volume and estimate their thicknesses and lateral extent. The usefulness of this invention is enhanced by a novel method of frequency domain whitening that emphasizes the geologic information present within the spectrum. Although the present invention is preferentially applied to a 3-D seismic volume, it is alternatively applied to any collection of spatially related seismic traces.