Abstract:
루테늄산화물과 망간산화물의 복합체로 구성된 1차원의 다결정 튜브 구조를 가지는 리튬 -공기전지용 촉매 및 그 제조방법이 제시된다. 루테늄산화물과 망간산화물의 복합체로 구성된 1차원의 다결정 튜브 구조를 가지는 리튬 -공기전지용 촉매는, 코어 섬유-쉘 껍질 형상의 나노튜브 구조 및 이중 벽 형상의 혼성 이중튜브 구조 증 적어도 하나의 다결정 튜브 구조를 가지는 루테늄산화물 -망간산화물 복합체를 포함하고, 상기 루테늄산화물 -망간산화물 복합체는 공기극이 형성될 수 있다.
Abstract:
A method of fabricating a SSZ/SDC bi-layer electrolyte solid oxide fuel cell, comprising the steps of: fabricating an NiO-YSZ anode substrate from a mixed NiO and yttria-stabilized zirconia by tape casting; sequentially depositing a NiO-SSZ buffer layer, a thin SSZ electrolyte layer and a SDC electrolyte on the NiO-YSZ anode substrate by a particle suspension coating or spraying process, wherein the layers are co-fired at high temperature to densify the electrolyte layers to at least about 96% of their theoretical densities; and painting/spraying a SSC-SDC slurry on the SDC electrolyte to form a porous SSC-SDC cathode. A SSZ/SDC bi-layer electrolyte cell device and a method of using such device are also discussed.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung von Festoxidbrennstoffzellen (SOFC) mit einer metallsubstratgetragenen Kathoden-Elektrolyt-Anoden-Einheit. Aufgabe der Erfindung ist es dabei, Festoxidbrennstoffzellen zur Verfügung zu stellen, die eine erhöhte Festigkeit, verbesserte Temperaturwechselbeständigkeit, eine sichere Haftung von die Kathoden-Elektrolyt-Anoden-Einheit bildenden Schichten erreichen und die verzugsfrei und reproduzierbar herstellbar sind. Bei dem erfindungsgemäßen Verfahren wird zuerst auf eine Oberfläche eines porösen, metallischen Substrats, als Träger der Kathoden-Elektrolyt-Anoden-Einheit, eine die Anode bildende Schicht nasschemisch aufgebracht. Auf diese die Anode bildende Schicht wird dann ein bereits vorab gasdicht gesintertes Element, das den Elektrolyten bildet, flächig aufgelegt oder aufgebracht und bei einer ersten Wärmebehandlung bis zu einer maximalen Temperatur von 1250 °C, werden die in der die Anode bildenden Schicht enthaltenen organischen Komponenten ausgetrieben, diese Schicht gesintert und dabei eine Stoffschlüssige Verbindung zwischen Substrat und Elektrolyt hergestellt. Im Anschluss daran wird auf den Elektrolyten eine weitere die Kathode bildende Schicht nasschemisch aufgebracht und bei einer weiteren Wärmebehandlung bei Temperaturen unterhalb 1000 °C wird gesintert und die Kathode stoffschlüssig mit dem Elektrolyten verbunden.
Abstract:
First, second and third dopes (114, 115 and 116) containing a solid electrolyte are co-cast from a casting die (89) onto a running belt (82). The casting die (89) is provided with a feed block (119). A catalyst that promotes a redox reaction of electrodes in a fuel cell is added to the first dope (114) and the third dope (116). A casting membrane (112) having a three-layer structure is peeled from the belt (82) as a three-layered membrane (62) and sent to a tenter drier (64). In the tenter drier (64), the membrane (62) is dried in a state that both side edges thereof are held by clips, while stretched so as to have a predetermined width. The membrane (62) is then sent to a drying chamber (69) and the drying thereof is proceeded while supported by rollers.
Abstract:
Microfluidic biofuel cells comprising a bioanode and/or a biocathode are formed using microfluidic principles and soft lithography. The enzymes utilized in the redox reactions at the bioanode and/or the biocathode are stabilized in a micellar or inverted micellar structure. The biofuel cell is used to produce high power densities.
Abstract:
A method of making a membrane electrode assembly is provided. The method includes providing a non-porous polymeric substrate which has sufficient structural integrity and elastic deformation such that no significant deformations occur during processing to facilitate reuse. The substrate is optionally formed into a loop for continuous processing. A slurry is formed which includes an ionically conductive material, an electrically conductive material, a catalyst, and a high boiling point solvent. The slurry is applied onto the non-porous polymeric substrate, for example, in a pattern of discrete regions. The slurry is dried to form decals. The decals are bonded to a membrane and then the substrate is peeled from the decal in a substantially undamaged condition so that it may be reused.
Abstract:
A membrane electrode assembly comprising an ionically conductive member and an electrode, wherein the electrode is a smooth, continuous layer that completely covers and supports the ionically conductive member. The electrode further comprises a central region and a peripheral region, wherein a gradient of electrochemically active material exists between the central region and the peripheral region such that a content of the electrochemically active material is greater in the central region than the peripheral region.
Abstract:
The invention concerns a process for the production of a porous lithium cobaltite electrode plate with a large inner surface and low polarization resistance. Lithium carbonate powder and cobalt metal powder are uniformly mixed together and then films are produced from the mixture and plates from the films, which plates are sintered and then placed in an air stream for several hours at a temperature between 400 DEG C and 488 DEG C until the conversion of said plates to lithium cobaltite electrode plates with an extremely large inner surface has taken place.
Abstract:
A method of producing a solid oxide fuel cell comprising tape casting an anode support and spraying layers onto the anode support. The layers that can be sprayed onto the anode support include an anode functional layer, an electrolyte layers, and a cathode functional layer.
Abstract:
A method of producing a solid oxide fuel cell comprising tape casting an anode support and spraying layers onto the anode support. The layers that can be sprayed onto the anode support include an anode functional layer, an electrolyte layers, and a cathode functional layer.