Abstract:
The present invention relates to a constant-power brushless DC motor and a generator using the same, and in particular, to a constant-power brushless DC motor and a generator using the same, which stably generates power upon load fluctuation. Since the stator is wound in parallel by phases and poles, the motor is realized to generate high power with low voltage and since the stator's winding is performed without interconnection, automatic production is realized to reduce costs and enable mass production. Accordingly, a generator constituted by using the above-described motor supplies high efficient power.
Abstract:
An energy generation system includes a turbine (102), an electric generator (100), a step-up transformer (106), and a converter (104). The turbine (102) is operable to extract energy from a fluid flow and convert the extracted energy into mechanical energy. The electric generator (100) is operable to convert the mechanical energy from the turbine (102) into AC electrical energy. The step-up transformer (106) is operable to transfer the AC electrical energy at a lower voltage from the electric generator (100) to a higher voltage. The converter (104) is operable to convert the AC electrical energy at the higher voltage to DC electrical energy. The converter (104) includes a converter leg (110) for a phase of the AC electrical energy. The converter leg (110) has an upper arm with a first plurality of sub-modules (112) and a lower arm with a second plurality of sub-modules (114). Each sub-module (112, 114) is operable to function as a controlled voltage source.
Abstract:
A solar power generation apparatus includes a stationary horizontal base. A stator is housed in the base, and a vertical column extends upward from the base. A conical- shaped rotor is rotatingly coupled at its apex to the column, while its base is near the stator. The rotor comprises an array of photovoltaic cells positioned on a surface of the rotor, wherein each cell converts light energy received from a light source to a direct current voltage, and an array of magnets positioned at a perimeter of the base of the rotor, wherein the magnets are electrically coupled to and receive direct current voltage from a respective cell. The rotating of the rotor past the stator converts the direct current voltage present at the array of magnets into an alternating current voltage.