Abstract:
An apparatus (21) is described for facilitating emulated current-mode control of a resonant converter (1). The apparatus (21) comprises: an input (21) a for a first signal suitable for use in determining a phase of a resonant current, wherein the resonant current corresponds to a current in a resonant network (3) of the converter (1); an input (21b) for a second signal suitable for use in determining a target phase difference between the resonant current and a driving voltage, wherein the driving voltage corresponds to a voltage provided by a switch network (2) of the converter (1) to the resonant network (3); one or more outputs (21c, 21d) for one or more control signals for controlling operation of the switch network (2); and circuitry (21e-i). The circuitry (21e-i) is configured to: use the first signal in determining a first value, wherein the first value is related to a phase difference between the resonant current and the driving voltage; use the second signal in determining a second value, wherein the second value is related to the target phase difference; and set the one or more control signals based at least in part on a comparison of the first and second values, wherein the one or more control signals are for causing the phase difference to track the target phase difference.
Abstract:
Die Erfindung bezieht sich auf eine elektronische Schaltung mit zugehöriger Steuerung für effiziente leistungselektronische Stromversorgungen, elektrische Umrichter, elektrische Wechselrichter, Energieübertragungssysteme, batterieintegrierte Umrichter sowie Batteriesysteme mit der Möglichkeit des Wechsels der elektrischen Verschaltung von Batterieuntereinheiten, beispielsweise zueinander in Serie oder parallel, und vergleichbaren leistungselektronischen Systemen. Insbesondere bezieht sich die Erfindung auf leistungselektronische Schaltungen, die mehrere elektrische Schalter und/oder mehrere elektrische Energiespeicher und/oder mehrere Module, die jeweils mindestens einen elektrischen Schalter und mindestens einen elektrischen Energiespeicher umfassen, enthalten. Die Erfindung beschreibt eine elektronische Schaltung zur Umformung elektrischer Energie und eine zugehörige Steuerung, die eine vorteilhafte Einsparung von Steuerungsdaten, Übertragungsgeschwindigkeit sowie Signalleitungen und eine Verringerung der Fehleranfälligkeit und von elektromagnetischen Interferenzen ermöglicht.
Abstract:
A digitally compensated hysteretic power supply with enhanced resolution is provided. Such a power supply includes a comparator that is used to compare a load current sense signal with an internal signal generated from a digital-to-analog converter (DAC). A compensation circuit at a DAC input operates to improve current accuracy beyond the given DAC resolution. The current sense signal is converted to its digital equivalent, which is fed to a proportional-integral (PI) compensation loop, which in turn generates a relatively precise high resolution DAC input value. The DAC uses the higher part of the DAC value. The lower part of the DAC value is treated as a duty cycle number, and the DAC output is toggled between two levels at this duty cycle. This toggling generates a current output signal having a value that is the average of the two toggled values.
Abstract:
Endnode (30) for a distributed modulation system for power electronic applications, comprising: - at least a transceiver for receiving control data from a control master (10) via at least one data transmission channel (201) embedding a reference clock signal (RefCLK) and comprising at least one set of modulation parameters, - at least one a clock recovery module, arranged for recovering a recovered clock signal (rCLK) from the data transmission channel, - a modulator (302) arranged for generating modulation signals (401) based on the set of modulation parameters and on at least one periodic carrier generated by using the recovered clock signal (rCLK), - a supervisory module configured for mastering and adjusting an initial phase difference between the periodic carrier(s) and an interrupt signal based on the reference clock signal. The present invention concerns also a distributed modulation system for power electronic applications comprising this endnode and a relative method.
Abstract:
Die Erfindung betrifft ein Verfahren zur rechnergestützten Parametrierung eines Umrichters in einem Stromnetz. In einem Schritt a) erfolgt ein Modellieren eines Ausgangsstroms (I grid ) des Umrichters, der in ein Wechselstromteilnetz (GR) des Stromnetzes abgegeben wird, in Abhängigkeit von einem vorgegebenen Referenzstrom (I ref ) und einer eingespeisten Störspannung (V dist ) basierend auf einem Modell, das den Betrieb des Umrichters beschreibt und eine Anzahl von Parametern (k) des Umrichters umfasst. In einem Schritt b) erfolgt ein Modellieren eines vorgegebenen Folgeverhaltens (RT) des Ausgangsstroms (I grid ) des Umrichters, wobei das vorgegebene Folgeverhalten (RT) wiedergibt, wie der Ausgangsstrom (I grid ) dem Referenzstrom (I ref ) folgt, und wobei in einem ersten Frequenzintervall in der Umgebung einer vorgegebenen Nennfrequenz (NF) des Wechselstromteilnetzes (GR) das Folgeverhalten (RT) derart festgelegt, dass der Ausgangsstrom (I grid ) dem Referenzstrom (I ref ) entspricht. In einem Schritt c) erfolgt ein Modellieren einer vorgegebenen Störunterdrückung (DR), welche die Unterdrückung der eingespeisten Störspannung (V dist ) beschreibt, wobei die Störunterdrückung (DR) derart ausgestaltet ist, dass der Einfluss der Störspannung (V dist ) auf den Ausgangsstrom (I grid ) in einem zweiten Frequenzintervall, das über der Nennfrequenz (NF) liegt, kleiner als eine vorgegebene Schwelle ist. Schließlich erfolgt in einem Schritt d) ein Bestimmen von Werten für die Anzahl der Parameter (k) des Umrichters durch Lösen eines Optimierungsproblems basierend auf einem Optimierungsziel, welches dem Erreichen des Folgeverhaltens (RT) und der Störunterdrückung (DR) entspricht.
Abstract:
A method for operating an electrical converter (12) comprises: determining an optimized pulse pattern (I) from a fundamental voltage reference (II) for the electrical converter (12), wherein the optimized pulse pattern (I) is determined from a first lookup table (30) and comprises discrete voltage amplitude values changing at predefined switching instants (24); determining a harmonic content reference (III) from the fundamental voltage reference (II) based on a second lookup table (34), wherein the harmonic content reference is a harmonic current reference (IV) determined from the frequency spectrum of a current of the electrical converter (12) or the harmonic content reference is a filtered voltage reference (V) determined by applying a first order frequency filter to a voltage, which current or voltage is generated, when the optimized pulse pattern is applied to the electrical converter (12); determining a harmonic content error (VI) from the harmonic content reference (III) by subtracting an estimated output voltage ( ψ(t) ) and/or estimated output current ( i(t) ) of the electrical converter (12) from the harmonic content reference (III); modifying the optimized pulse pattern (I) by timeshifting switching instants (24) such that the fundamental voltage reference (II) is tracked and the harmonic content error (VI) is corrected by the timeshifted switching instants (24); applying the modified optimized pulse pattern ( v(t) ) to semiconductor switches of the electrical converter (12).
Abstract:
A switch controller includes a primary side including signal transmission circuitry to transmit signals representative of desired transitions of a switch. A signal transformer galvanically isolates the primary side from a secondary side but inductively couples signal transmission circuitry to signal reception circuitry. A switch is coupled to switch a low impedance onto a primary side winding of the signal transformer during pauses between transmissions of the signals representative of the desired transition of the switch. The secondary side includes signal reception circuitry, a drive signal generator to generate a drive signal in response to valid signals received by the signal reception circuitry, and a validation circuit that includes a first comparator, a timer, and a second comparator to compare a timed duration with a threshold duration, and to output to the drive signal generator signals indicative of the validity of particular signals received by the signal reception circuitry.
Abstract:
In described examples, a switching mode power supply (100) includes an output filter (116), a driver (114), a pulse width modulator (104), and pulse adaptation circuitry (112). The output filter (116) is configured to provide output of the switching mode power supply (100). The driver (114) is coupled to the output filter (116) and is configured to switch current to the output filter (116). The pulse width modulator (104) is configured to generate pulses that control switching of current by the driver (114). The pulse width modulator (104) includes spread spectrum logic configured to randomize timing of the pulses generated by the pulse width modulator (104). The pulse adaptation circuitry (112) is configured to identify an instantaneous excursion of the output of the switching mode power supply (100) beyond a predetermined threshold, and to modify the randomized timing of the pulses produced by the pulse width modulator (104) based on the identified instantaneous excursion.