Abstract:
In some implementations, a programmable power adapter includes a first set of switches, a resonant circuit, a transformer, and a second set of switches. The power adapter includes control circuitry configured to provide control signals that change the voltage conversion ratios of the first set of switches and the second set of switches. The control circuitry can provide control signals causing the first set of switches to operate in one of multiple operating modes that each correspond to a different voltage conversion ratio, and the control circuitry can provide control signals causing the second set of switches to operate in one of multiple operating modes that each correspond to a different voltage conversion ratio.
Abstract:
An apparatus 7900 includes a voltage regulation module 7902 that controls output voltage VOUT of a bidirectional DC-to-DC converter to an output voltage reference VSET over an output current range between a positive power reference PSET and a negative power reference - PSET. A positive power regulation module 7904 controls output power POUT to the positive power reference PSET over a positive constant power range between the output voltage reference VSET and a positive output current reference ISET. A negative power regulation module 7906 controls output power POUT of the converter to the negative power reference -PSET over a constant power range between the output voltage reference VSET and a maximum negative power 10 limit, and a constant current module 7908 limits output current to a positive output current reference ISET in a range between a minimum output voltage and output power of the converter reaching the positive power reference PSET.
Abstract:
The present invention relates to a bi-directional DC-DC converter (100) comprising: a first terminal (101),a second terminal (103),a transformer circuit (105),a first high voltage side (107) coupled to said first terminal (101), and a second low voltage side (109) coupled to said second terminal (103); wherein said first high voltage side (107) and said second low voltage side (109) are coupled to each other by means of said transformer circuit (105), and said first high voltage side (107) comprises a resonant tank circuit (111) coupled between a first bridge circuit (113) of said first high voltage side (107) and a high voltage side of said transformer circuit (105).Furthermore, the invention also relates to a system comprising at least two such bi-directional DC-DC converters.
Abstract:
Soft switching power converters are described. In one example, a grid tie solar power converter includes an input (201,202,203)for receiving a direct current (DC) power input, an h-bridge coupled to the input, and an output (114,208,210) coupled to the h-bridge. The h- bridge includes a plurality of power switches (Q1, Q2, Q5, Q6). The output includes a first output node and a second output node (208, 210). The converter also includes a first output inductor (L2) coupled between the h-bridge and the first output node (208), a second out¬ put inductor (L4) coupled between the h-bridge and the second output node (210), and a soft switching circuit (212) coupled to the first out¬ put inductor and the second output inductor (L2, L3). The soft switching circuit is configured to facilitate zero voltage switching of the plurality of switches of the h-bridge.
Abstract:
Eine Schaltungsanordnung (1) für einen mehrphasigen Mehrpunktwechselrichter weist einen Eingangsanschluss für einen positiven Pol und einen Eingangsanschluss für einen negativen Pol einer Eingangsgleichspannung ( U in ), einen Mittelabgriff (3) für einen Spannungsmittelpunkt der Eingangsgleichspannung ( U in ) und für jede Phase einen Ausgangsanschluss (4) zum Ausgeben eines Ausgangswechselstroms ( i load2 , i load2 , i load3 ), zwei äußere Leistungsschalter (13, 23), von denen jeweils einer mit einem der beiden Eingangsanschlüsse (11, 21) verbunden ist, zwei innere Leistungsschalter (14, 24), die jeweils einerseits direkt oder über eine Diode (5) mit dem Mittelabgriff (3) und andererseits direkt oder über eine Diode (5) mit dem Ausgangsanschluss (4) verbunden sind, und ein Entlastungsnetzwerk auf, das zwei Kondensatoren (15, 25) und vier unidirektionale Schaltelemente (17, 18, 27, 28) umfasst. Für jeden der beiden Kondensatoren (15, 25) des Entlastungsnetzwerks für jede Phase verläuft ein Aufladepfad zwischen dem Ausgangsanschluss (4) und dem Mittelabgriff (3), wobei der jeweilige Kondensator (15, 25) in dem Aufladepfad mit einem der Schaltelemente (17, 27) und einer Drossel (16, 26) in Reihe geschaltet ist. Zwischen dem Ausgangsanschluss für jede Phase und jedem der Eingangsanschlüsse (11, 21) verläuft ein Entladepfad (20, 30) für jeweils einen der beiden Kondensatoren (15, 25) jeder Phase, wobei der Entladepfad (20, 30) von dem Ausgangsanschluss aus gesehen hinter dem jeweiligen Kondensator (15, 25) und vor der Drossel (16, 26) in einer Abzweigung (35) von dem jeweiligen Aufladepfad (19, 29) abzweigt und wobei ein weiteres der Schaltelemente (18, 28) zwischen der Abzweigung (35) und dem Eingangsanschluss (21, 11) in dem Entladepfad (20, 30) angeordnet ist. Zumindest die Aufladepfade (19, 29) für alle Kondensatoren (15, 25), die zur Schaltentlastung für diejenigen der Leistungsschalter (13, 23) vorgesehen sind, die mit demselben der beiden Eingangsanschlüsse (11, 21) verbunden sind, führen zusammen über eine gemeinsame Drossel (16, 26), die direkt mit dem Mittelabgriff (3) verbunden ist.
Abstract:
A voltage source converter (30) for use in high voltage DC power transmission and reactive power compensation comprises at least one converter limb (32) including first and second DC terminals (34,36) for connection in use to a DC network, a third DC terminal (40) connected between the first and second DC terminals (34, 36) and an AC terminal (38) for connection in use to an AC network. The or each converter limb (32) defines first and second limb portions (48, 50), each limb portion (48, 50) including at least one switching element (52) connected in series between a respective one of the first and second DC terminals (34,36) and the AC terminal (38). The voltage source converter further comprises a DC side chain-link converter (42) including a plurality of modules (58) connected in series between the third DC terminal (40) and the AC terminal (38), wherein the switching elements (52) of the first and second limb portions (48, 50) are operable to switch the DC side chain-link converter (42) into and out of circuit with each of the limb portions (48, 50) and thereby connect the DC side chain-link converter (42) into and out of circuit with the respective DC terminal (34, 36) to generate a voltage waveform at the AC terminal (38), the DC side chain-link converter (42) being operable to modify the voltage at the AC terminal (38).
Abstract:
A method for providing non-resonant zero-voltage switching in a switching power converter (42, 44). The switching power converter converts power from input power to output power during multiple periodic switching cycles. The switching power converter includes a switch (Qbu, Qbo) and an auxiliary capacitor (Cbu, Cbo) adapted for connecting in parallel with the switch (Qbu, Qbo), and an inductor (206) connectible to the auxiliary capacitor (Cbu, Cbo). The main switch (Q1, Q3) is on. A previously charged (or previously discharged) auxiliary capacitor (Cbu, Cbo) is connected across the main switch (Q1, Q3) with auxiliary switches (Qabu, Qbu, Qabo, Qbo). The main switch (Q1, Q3) is switched off with zero voltage while discharging/charging the auxiliary capacitor (Cbu, Cbo) by providing a current path to the inductor (206). The auxiliary capacitor (Cbu, Cbo) is disconnected from the switch (Q1, Q3). The voltage of the auxiliary capacitor (Cbo, Cbu) is charged and discharged alternatively during subsequent switching cycles. The voltage of the auxiliary capacitor (Cbu, Cbo) stays substantially the same until the subsequent turn off of the main switch (Q1, Q3) during the next switching cycle with substantially no energy loss in the auxiliary capacitor (Cbu, Cbo).
Abstract:
A method for providing non-resonant zero-voltage switching in a switching power converter. The switching power converter converts power from input power to output power during multiple periodic switching cycles. The switching power converter includes a switch and an auxiliary capacitor adapted for connecting in parallel with the switch, and an inductor connectible to the auxiliary capacitor. The main switch is on. A previously charged (or previously discharged) auxiliary capacitor is connected across the main switch with auxiliary switches. The main switch is switched off with zero voltage while discharging (charging) the auxiliary capacitor by providing a current path to the inductor. The auxiliary capacitor is disconnected from the switch. The voltage of the auxiliary capacitor is charged and discharged alternatively during subsequent switching cycles. The voltage of the auxiliary capacitor stays substantially the same until the subsequent turn off of the main switch during the next switching cycle with substantially no energy loss in the auxiliary capacitor.
Abstract:
The invention relates to a converter provided with a resonant circuit (16), which converter comprises a control device (24) adapted, in connection with the effectuation of a commutation process, to send control signals at different instants in a given sequence to the current valves (2, 3) and auxiliary valve (18) that are taking part in the commutation process. According to the invention, the control device (24) is, in connection with the effectuation of a commutation process, adapted to determine the time intervals between said instants on the basis of estimated values of the durations of the partial processes included in the commutation process, said durations being estimated with the aid of a measured value of the phase current (i ph ). The invention also relates to a method for controlling such a converter.