Abstract:
Objeto desta solicitação, consiste essencialmente de uma aeronave de asa fixa composta de uma fuselagem (02) em formato de aerofólio com quatro asas (10) formatadas pelo mesmo aerofólio com comportamento aerodinâmico de asa contribuindo na sustentação e minimizando o arrasto da aeronave, que lhe permite maior carga útil e maior autonomia de voo.
Abstract:
Unmanned aircraft have aligned forward and aft propulsion systems possessing different performance and/or noise characteristics. According to some embodiments, unmanned aircraft have a forward engine and a forward tractor propeller and an aft engine and an aft pusher propeller. Selected ones of forward and aft propulsion systems will thus be provided to have greater and lesser operational flight performance characteristics and greater and lesser noise signature characteristics, respectively, as compared to the other. For example, the forward propulsion system may be provided with the greater operational flight performance and/or noise signature characteristics as compared to the aft propulsion system, while conversely the aft propulsion system may be provided with a lesser flight performance and/or noise signature characteristics as compared to the forward propulsion system.
Abstract:
L'invention concerne une turbomachine aéronautique comprenant au moins une hélice rotative non carénée munie d'une pluralité de paies (6), chaque pale (6) comprenant : un corps de paie (8) en matériau composite ayant un renfort fibreux densifié par une matrice, te renfort fibreux du corps de pale (8) présentent un tissage tridimensionnel, ledit corps s'étendant entre un bord d'attaque (12) et un bord de fuite (14),- et un élément rapporté (16) de protection du bord d'attaque (12) en matériau composite ayant un renfort fibreux densifié par une matrice, ledit élément rapporté (16) étant collé sur le bord d'attaque (12) du corps de pale (8), ledit élément rapporte (16) étant formé à partir d'une préforme fibreuse sèche moulée par Injection d'une résine de densification, et un film de poiyuréthane (20) de protection contre l'érosion recouvrant le corps de pale (8) et l'élément rapporté (16). L'invention concerne aussi un procédé de fabrication associé.
Abstract:
A Pulsed Locomotor (120), for propelling media, fluids and crafts, in fluids and on land, comprising a blade (124) securely connected to a drive shaft (122). Upon reciprocation, the ambient medium is forced towards the trailing edge of the blade (124) thereby causing a reactive locomotion of the apparatus, substantially along the plane of the blade. Apparatus is secured to motor M by fastening through aperture (130). The apparatus can be operated directly by motor M, and indirectly by the reaction momentum imparted to a supporting platform P. Thrust is directed by steering handle (128) about a bearing (126), rotatably coupling to platform P and base C. Lubricant L is supplied to outlets (134) via conduit (136) and inlet (132), to coat the apparatus with a lubricant cavity, for drag reduction. The blade (124) planes along a figure 8 reciprocation path s1e1s2e2s1. Crafts are embodied.
Abstract:
A curved body (830), for propelling fluids, crafts and harvesting fluid power, comprises a convex outer leading surface securely connected to a concave inner trailing surface to define an open vessel. Upon oscillation, ambient fluids are accelerated and ejected from the vessel to propel the vessel and the ambient fluids in opposite directions. Apparatus is secured to a motive power source directly or via actuating member (832), by fastening through aperture (834). The oscillating propulsor can be operated directly by a reciprocating motive power source, and indirectly by the reaction momentum imparted to a supporting base. Thrust may be vectored by rotation of the curved body (830) about the supporting base. Drag reduction using fluid dynamic shapes, intake openings, a fore fin (844), an aft fin (846), and a lubricant cavity, are embodied. Enhanced propulsion using multistage oscillating propulsors is embodied.
Abstract:
A variable stiffness liquid inertia vibration isolation device includes a liquid inertia vibration elimination isolator and a variable stiffness spring operably associated with the liquid inertia vibration elimination isolator for varying the stiffness of the liquid inertia vibration isolator. The variable stiffness spring may include an elastomeric pad exhibiting a first stiffness along a first axis and a second stiffness, significantly greater than the first stiffness, along a second axis that is perpendicular to the first axis.
Abstract:
A payload or cargo is delivered from a cargo hold of an aircraft during flight, by orienting the fuselage into a nose-up and tail-down position of at least 30 degrees off horizontal, and lowering the cargo from a cargo hold in the fuselage by means of one or more lines. Preferred vertical takeoff and landing (VTOL) aircraft include tilt-rotor or tilt-wing aircraft, and especially preferred aircraft are capable of generating control moments with their rotors to assist in orientating the fuselage of the aircraft into a nose-up and tail-down position.
Abstract:
Aircraft air scoop icing protection systems and methods include an air duct having air inlet and outlet openings and a fairing which covers the air duct and defines an interior fairing space in which at least a forward portion of the air duct is positioned. The fairing has a forward end which surrounds the air inlet of the air duct. At least one tube is provided having an inlet end in communication with a heated air chamber associated with an airframe structure of the aircraft, and an outlet end in communication with the interior fairing space. Heated air in the heated chamber is directed through the tube to the interior fairing space so as to provide icing protection to the air duct. The air scoop icing protection systems may advantageously be employed so as to provide icing protection to air scoops associated with an aircraft engine nacelle using the residual heat from the nacelle's inlet lip primary bleed air system.
Abstract:
A system and method for assembling and operating a solar powered aircraft, composed of one or more modular constituent wing panels. Each wing panel includes at least one hinge interface that is configured to rotationally interface with a complementary hinge interface on another wing panel. When a first and second wing panel are coupled together via the rotational interface, they can rotate with respect to each other within a predetermined angular range. The aircraft further comprises a control system that is configured to acquire aircraft operating information and atmospheric information and use the same alter the angle between the wing panels, even if there are multiple wing panels. One or more of the wing panels can include photovoltaic cells and/or solar thermal cells to convert sol radiation energy or solar heat energy into electricity, that can be used to power electric motors.