Abstract:
Heavy hydrocarbon feedstocks including crude oil are upgraded under relatively low pressure conditions in an ebullated-bed hydroprocessing zone to remove the heteroatom containing hydrocarbons. Catalyst particles are regenerated/rejuvenated and recycled back to the ebullated-bed hydroprocessing reaction zone, The regeneration/rejuvenation is effective to restore catalytic activity while minimizing leaching of the active components(s).
Abstract:
A processing facility is provided that includes a feedstock separation system configured to separate a feed stream into a lights stream and a heavies stream, a hydrogen production system configured to produce hydrogen and carbon dioxide from the lights stream, and a carbon dioxide conversion system configured to produce synthetic hydrocarbons from the carbon dioxide. The processing facility includes a hydroprocessing system configured to process the heavies stream.
Abstract:
Provided is a method for upgrading a bio-based material, the method comprising the steps of pre-treating bio-renewable oil(s) and/or fat(s) to provide a bio- based fresh feed material, hydrotreating the bio-based fresh feed material, followed by separation, to provide a bio-propane composition.
Abstract:
A process for selective removal of hydroxyl groups from phenolic compounds is disclosed. The process uses a combination of catalytic hydrodeoxygenation and catalytic direct deoxygenation to convert alkylphenols into alkylbenzenes.
Abstract:
In some examples, a vapor phase product and a liquid phase product can be separated from a heated mixture that includes steam and a hydrocarbon. The vapor phase product can be steam cracked to produce a steam cracker effluent. The steam cracker effluent can be contacted with a quench fluid to produce a cooled steam cracker effluent. The steam cracker effluent can be at a temperature of > 300°C when initially contacted with the quench fluid. A tar product and a process gas that can include ethylene and propylene can be separated from the cooled steam cracker effluent. The tar product can be hydroprocessed to produce a first hydroprocessed product. A hydroprocessor heavy product and a utility fluid product can be separated from the first hydroprocessed product. The quench fluid can be or include at least a portion of the utility fluid product.
Abstract:
A process and apparatus for hydrocracking a hydrocarbon stream and with heat integration between two stripping columns. Both stripping columns use a reboiler for heat input to avoid steam recovery and dew point issues in the overhead. A hot stripped stream can provide heat to the cold stripping column by heat exchange. Additionally, as few as two heaters that rely on external utilities may be required for reboiling fractionator column bottoms.
Abstract:
The invention provides processes for the production of hydrocarbons from a biorenewable feedstock blended with a mineral feedstock comprises hydrotreating to remove heteroatoms and saturate olefins. The carbon monoxide is not fed to the downstream hydroisomerization reactor but supplanted with a hydrogen gas with a low concentration of carbon monoxide so as not to poison the hydroisomerization catalyst to improve the cold flow properties for a diesel fuel.
Abstract:
Methods and apparatuses are disclosed for upgrading a hydrocarbon feedstream comprising passing the hydrocarbon feedstream to a first hydroprocessing reactor in a reaction vessel to produce a first hydroprocessed effluent stream. The first hydroprocessed effluent stream is separated in a hot separator to produce a vapor stream and a liquid hydrocarbon stream. At least a portion of the liquid hydrocarbon stream is passed to a second hydroprocessing reactor disposed in the reaction vessel above the first hydroprocessing reactor, to produce a second hydroprocessed effluent stream. A liquid product stream is separated from the second hydroprocessing effluent stream. The vapor stream from the hot separator is mixed with the liquid product stream to provide a combined stream.
Abstract:
Utilization of at least three strippers is proposed for a slurry hydrocracking unit to reduce heater duty for a product fractionation column. A stripping column for stripping a hydrocracked stream from a wash oil stripper is proposed in addition to a cold stripper for a cold hydrocracked stream and a warm stripper for a warm hydrocracked stream. The arrangement enables omission of heating a hot hydrocracked stream from a hot separator in a fired heater before product fractionation.
Abstract:
An improved vortex-type mixing device for a down-flow hydroprocessing reactor is described. The device provides improved overall mixing efficiency of an existing mixing volume in the mixing of gas and liquid phases in two-phase systems while reducing the pressure drop through the device, as compared with prior art devices. Typical hydroprocessing applications include hydrotreating, hydrofinishing, hydrocracking and hydrodewaxing.