Abstract:
According to the invention, the four signals L1CA, L1P, L2P and L2C transmitted by a GPS satellite are received and the carrier phases φLCA and φL2C are estimated from L1CA and L2C in the manner known in the art. In addition, the cross-correlation P between the downconverted signals L1P and L2P is determined, taking into account the delay between said signals. According to the invention, the sign of P is used in a novel way that enables the direct determination of the half-cycle ambiguity AL1CA of the L1CA signal. According to a first embodiment, this is done by downconverting the L2P signal by a replica having a phase derived from φL2C, instead of determining the phase of the L2P replica by a tracking loop as in the prior art. This new approach enables determining AL1CA directly from the sign of P. According to a second embodiment, the phase φL2P of the L2P replica is determined by a tracking loop as in the prior art, and the half-cycle ambiguity AL1CA is determined on the basis of the sign of P and on the basis of the difference between the carrier phases φL2P and φL2C. The invention is equally related to a GPS receiver comprising at least one channel configured for executing the method according to the first or second embodiment.
Abstract:
A method and system for determining a receiver position comprising receiving satellite observations from a set of satellites, determining differenced observations based on the satellite observations, determining an all-in-view position of the receiver based on the differenced observations, determining a set of fault modes each associated with a subset of the differenced observations, for a fault mode of the set of fault modes, determining a fault-tolerant position of the receiver using the subset of differenced observations associated with the fault mode, when the all-in-view position and the fault tolerant position of the receiver for each fault mode are within a solution separation threshold, calculating a protection level associated with the all-in-view position of the receiver.
Abstract:
A Time of Flight (ToF) system, includes one or more optical elements configured to emit optical signals at two or more measurement frequencies and at least one disambiguation frequency, a detector array comprising a plurality of detectors that are configured to output respective detection signals responsive to light provided thereto, and a circuit configured to control the detector array to obtain a first subset of the detection signals at a first plurality of phase offsets corresponding to the two or more measurement frequencies and to obtain a second subset of the detection signals at a second plurality of phase offsets corresponding to the at least one disambiguation frequency, wherein the second plurality comprises fewer phase offsets than the first plurality.
Abstract:
A method performed by a wireless device (110, 210, 410, 1200) is disclosed. The method comprises sending (801), to a network node (120, 115, 215, 220, 225, 460), a request for reference station transfer information. The method comprises obtaining (802) the reference station transfer information for at least one pair of satellites (235, 240). The method comprises determining (803) an integer ambiguity solution associated with a new reference station (230B) based on the obtained reference station transfer information and an integer ambiguity solution associated with a current reference station (230A).
Abstract:
A GNSS receiver has a first antenna and a reference antenna. From the measurement of a carrier phase (I) of GNSS signals at the first antenna and a reference carrier phase (II) at the reference antenna, a single difference (III) is obtained, whereby calculating a double difference (III) = (IV) - (V) between a k-th GNSS satellite and a reference satellite (k=0). The double difference (III) is also predicted using known satellite position information as a function of a differencing vector e k0 between a unit line-of-sight direction vector e k of the k-th satellite and that of the reference satellite e 0 and a base line vector Δ with a second integer bias (VI) - A real time kinetic (RTK) positioning solution is calculated with ambiguity resolution based on the predicted value of (III) and the calculated value of (III). A spoofing is detected if the RTK positioning solution yields Δ=0.
Abstract:
A satellite corrections generation system receives reference receiver measurement information from a plurality of reference receivers at established locations. In accordance with the received reference receiver measurement information, and established locations of the reference receivers, the system determines wide-lane navigation solutions for the plurality of reference receivers. The system also determines clusters of single difference (SD) wide-lane ambiguity values, each cluster comprising pairs of SD wide-lane floating ambiguities for respective pairs of satellites. A satellite wide-lane bias value for each satellite of a plurality of satellites is initially determined in accordance with fractional portions of the SD wide-lane floating ambiguities in the clusters, and then periodically updated by applying SD wide-lane integer constraints in a Kalman filter. A set of navigation satellite corrections for each satellite, including the satellite wide-lane bias value for each satellite, is generated and transmitted to navigation receivers for use in determining locations of the navigation receivers.
Abstract:
The invention discloses a receiver and a method to process navigation signals from one or more GNSS constellation, wherein an observation model and a measurement model allow a direct calculation of the carrier phase ambiguities. More specifically, in a triple frequency implementation, the receiver calculates in turn the extrawidelane, widelane and narrowlane ambiguities. The code and carrier phase biases can also be directly calculated. Thanks to the invention a quicker acquisition and tracking of a precise position, which will also be less noisy than a prior art solution, especially in some embodiments of the invention using a RAIM and/or a gap-bridging function. Also, code smoothing using the Doppler and low latency clock synchronization allow to decrease the noise levels of the precise point navigation solutions.