Abstract:
In described examples, an interface device (300) includes an NPN structure (Ql) along a horizontal surface of a p-doped substrate (204). The NPN structure (300) has a first n-doped region (242) coupled to an output terminal (106), a p-doped region (232, 243, 245) surrounding the first n-doped region (242) and coupled to the output terminal (107), and a second n-doped region (244) separated from the first n-doped region (242) by the p-doped region (243). The interface device (300) also includes a PNP structure (230) along a vertical depth of the p-doped substrate (204). The PNP structure (230) includes the p-doped region (243), an n-doped layer (234) under the p-doped region (243), and the p-doped substrate (204). Advantageously, the interface device (300) can withstand high voltage swing (both positive and negative), prevent sinking and sourcing large load current, and avoid entering into a low resistance mode during power down operations.
Abstract:
A medium voltage controllable fuse that provides fast activation in response to both low current and high current faults, and at load currents in response to an external condition detected by an external sensing device. The controllable fuse includes a high-current fault interrupting section, a low-current fault interrupting section, and a trigger element responsive to a fuse controller.
Abstract:
A low cost, water resistant, rugged and enclosed portable digital data storage device is provided. A two piece enclosure includes a monolithic housing and a cover, both preferably metallic. A passageway is formed in a side wall of the enclosure for plugging an external power and data line into an internal connector which extends into or adjacent the passageway. A liquid water resistant epoxy is applied over the internal connector and adjacent the passageway prior to applying the cover. The result is a low cost, water resistant enclosure with water resistant passageway for power and data lines that remains water resistant whether the external power and data lines are connected to the digital data storage device or not. A fire resistant docking station is also provided, into which the portable data storage device may be easily connected to a primary computer for transferring data.
Abstract:
The invention relates to an overvoltage arrester for an electrical drive, especially a drive for a motor vehicle. The overvoltage arrester is designed to be connected to an on-board power supply system of a motor vehicle. The overvoltage arrester is designed to reduce any overvoltage produced in the on-board power supply system when a load is switched off. According to the invention, the overvoltage arrester is connected to a control unit for an electronically commutated electrical machine. The overvoltage arrester has an input for an on-board power supply system and is designed to detect when a pre-determined voltage value is exceeded and to produce an overvoltage signal depending on whether the voltage value is exceeded. The control unit is designed to transfer the electrical machine from an operating mode in which the machine generates power to an at least partial power-loss mode or to a mode in which it operates as a motor.
Abstract:
A self-powered multiple phase circuit protection device including a plurality of current transformers connected in parallel with each other and associated with one phase of a multiple phase load for providing signals representative of the current flowing in an associated phase. A switch can be actuated to interrupt power to the multiple phase load, and a fault determining circuit is connected to the circuit transformers and to the switch for actuating the switch during at least one predetermined condition of the current signals. The fault determining circuit has digital pulse extender circuitry for converting the current signals into DC signals, and a digital timer for delaying actuation of the switch.
Abstract:
Disclosed herein is an electric motor control circuit, a printing device, and a method of overvoltage protection for an electric motor. The electric motor control circuit comprises a controller, a voltage converter to generate a supply voltage of the controller from a voltage at terminals of the electric motor and a switchable braking circuit connected to the motor terminals. The controller is to activate the braking circuit if the voltage at the motor terminals exceeds a threshold voltage while the controller is in an off-state.