Abstract:
A turbopump machine includes a housing, a shaft rotatably supported in the housing on a set of bearings, an axial pump coupled with the shaft, a circumferential discharge volute fluidly coupled with the axial pump, and a turbine coupled with the shaft. The turbine includes a blade row disposed in an axial turbine flowpath that has an axial turbine flowpath discharge that is fluidly coupled with the circumferential discharge volute. A cooling passage is disposed between the housing and the shaft about the set of bearings. The cooling passage has a cooling passage discharge that is fluidly coupled with the circumferential discharge volute. The cooling passage discharge is adjacent the axial turbine flowpath discharge. A seal isolates the cooling passage discharge from the axial turbine flowpath discharge.
Abstract:
Aspects of the invention generally provide a heat engine system and a method for activating a turbopump within the heat engine system during a start-up process. The heat engine system utilizes a working fluid circulated within a working fluid circuit for capturing thermal energy. In one exemplary aspect, a start-up process for a turbopump in the heat engine system is provided such that the turbopump achieves self-sustained operation in a supercritical Rankine cycle. Bypass and check valves of a start pump and the turbopump, a drive turbine throttle valve, and other valves, lines, or pumps within the working fluid circuit are controlled during the turbopump start-up process. A process control system may utilize advanced control techniques of the control sequence to provide a successful start-up process of the turbopump without over pressurizing the working fluid circuit or damaging the turbopump via low bearing pressure.
Abstract:
The invention relates to a device for supplying fuel for a rocket propulsion unit, comprising a first (6a) and at least a second (7a) fuel circuit, wherein each fuel is brought to an high energy level by a pump (12, 29) and is supplied for combustion by means of injection elements (33), wherein the first fuel is heated in cooling channels (16) extending in a propulsion chamber wall (17) before the fuel is supplied for combustion and wherein the first fuel is subsequently fed to at least the turbines assigned to the pumps (12, 29), wherein a heat exchanger (100) is provided in which the fuel coming from the turbines (24, 28) establishes heat exchange with the fuel coming from a pump (12, 29). The invention also relates to a heat exchanger for utilization in said device for fuel supply.
Abstract:
L'invention se rapporte à un ensemble propulsif (1) pour fusée comprenant un réservoir (2) conçu pour contenir un ergol, un moteur comprenant une chambre de combustion (3) configurée pour faire subir à l'ergol une combustion générant des gaz d'échappement, un circuit d'alimentation (4) disposé entre le réservoir (2) d'ergol et la chambre de combustion (3) configuré pour alimenter la chambre de combustion (3) en ergol et un circuit de gaz d'échappement (8) disposée entre la chambre de combustion (3) et le réservoir (2) d'ergol configuré pour acheminer au moins une partie des gaz d'échappement depuis la chambre de combustion (3) vers le réservoir (2) d'ergol en vue d'en assurer sa pressurisation.
Abstract:
본 발명은 전기모터로 구동되는 부스터 펌프를 사용하는 액체로켓엔진에 관한 것으로, 보다 상세하게는 추진제 탱크와 추진제 펌프 사이에 부스터 펌프를 설치함으로써, 추진제 탱크의 내부 압력을 낮춘 상태에서도 추진제 펌프에서 요구하는 입구압력을 충족시킬 수 있어 추진제의 양 및 추진제 탱크의 중량을 줄일 수 있으며, 부스터 펌프를 구동하는 전기모터를 산화제 및 냉각라인 등을 통해 효율적으로 냉각시킬 수 있는 전기모터로 구동되는 부스터 펌프를 사용하는 액체로켓엔진에 관한 것이다.
Abstract:
A rocket engine has a rotor assembly (10) with an ultracentrifugal liquid pump (28) arranged around a combustion chamber (52) so as to provide both forced convective and Coriolis-effect and centripetal-acceleration enhanced free convective regenerative cooling to the combustion chamber while pressurizing the liquid propellant. The combustion chamber may be structured to rotate together with the pump to provide Coriolis effect and centripetal acceleration enhanced combustion. The rotor assembly is driven directly by a tangential component of the primary thrust vector by means of tilted nozzles (16) or by vanes, fluted, or other reaction surfaces.
Abstract:
Devices and methods of rocket propulsion are disclosed. In one aspect, a staged combustion liquid rocket engine with prebumer and turbopump unit (TPU) integrated into the structure of the combustion chamber is described. An initial propellant mixture is combusted in a preburner combustion chamber formed as an annulus around a main combustion chamber, the combustion products from the preburner driving the turbine of the TPU and subsequently injected into the main combustion chamber for secondary combustion along with additional propellants, generating thrust through a supersonic nozzle. The preburner inner cylindrical wall is shared with the outer cylindrical wall of the engine's main combustion chamber and the turbine is axially aligned with the main combustion chamber. Liquid propellants supplied to the engine are utilized for regenerative cooling of the combustion chamber and preburner, where the liquid propellants are gasified in cooling manifolds before injection into the preburner and main combustion chamber.
Abstract:
Carter (20) de turbopompe d'alimentation en ergol (10) pour moteur-fusée (50), comprenant un circuit de mise en froid (30), dans lequel le circuit de mise en froid est ménagé au moins en partie dans une paroi dudit carter (20).
Abstract:
A liquid propellant rocket engine includes a combustion chamber that has a throat. A nozzle diverges from the throat. The nozzle includes an afterburner combustor section that has a fuel injector orifice. A gas generator includes an exhaust duct and there is at least one turbine that has a turbine inlet and a turbine outlet. The turbine inlet is fluidly coupled with the exhaust duct, and a turbine outlet is fluidly coupled with the fuel injector orifice.
Abstract:
L'invention concerne une turbopompe (10), comportant une turbine (12) alimentée en gaz chauds (20), une pompe (14) entraînée par la turbine (12) et alimentée en fluide liquide (22), et une conduite d'évacuation des gaz chauds (16) située en aval de la turbine (12). La turbopompe (10) selon l'invention comprend un circuit de prélèvement- injection qui comprend des moyens pour prélever du fluide liquide (21) en sortie de la pompe (14), des moyens pour réchauffer ce fluide liquide (34) ainsi prélevé de manière à le transformer en fluide gazeux et des moyens pour injecter ce fluide gazeux dans une région d'interface de la turbopompe située entre la pompe (14) et la turbine (12), de manière à optimiser les conditions de débit et de température du fluide entrant dans la cavité turbine, afin de supprimer les phénomènes vibratoires résultant de l'interaction entre ce fluide et le disque turbine.