Abstract:
Microfabricated multiemitter electrospray thrusters in accordance with embodiments of the invention are disclosed. In one embodiment, an electrospray thruster for electrospraying at least one liquid propellant is provided, the electrospray thruster comprising: an emitter electrode comprising a backside comprising at least one microfluidic channel, wherein the at least one microfluidic channel provides hydraulic impedance to flow of the at least one liquid propellant, and a front side comprising an emitter array comprising at least one emitter, wherein the at least one emitter comprises an inner channel and an emitter tip; wherein the at least one liquid propellant reaches the emitter tip through the inner channel; and wherein each channel of the at least one microfluidic channel feeds the at least one liquid propellant to the at least one emitter via a hole connecting the at least one microfluidic channel with the inner channel of the at least one emitter.
Abstract:
A method of generating a momentum change in a vehicle by phase changing matter in a closed system is used to change the momentum of the vehicle without the need of a combustion system for propulsion. The method uses the multi-phase dynamics of fluidic matter to create a momentum differential within a closed system that results in a momentum excess that changes the overall momentum of the system. The change of the overall momentum of the system results in a change in motion of the vehicle. The momentum differential is achieved by phase changing the fluidic matter moving through a heat exchanger. The phase change of the fluidic matter is arranged so that the momentum of the fluidic matter is reduced as the fluidic matter leaves the heat exchanger. The reduction in momentum of the fluidic matter results in the momentum differential that changes the overall momentum of the system.
Abstract:
A method in a spacecraft for transporting propellant to be consumed by a thruster includes storing the propellant in the spacecraft in a solid state during at least a portion of a take-off procedure and supplying the propellant to the thruster in a liquid or vaporous state when the spacecraft is in space.
Abstract:
Propulsion systems that generate thrust from pressure generated by thermally decomposing a chemical blowing agent (CBA). In some embodiments, the CBA decomposes exothermically such that once thermal decomposition has been initiated, the thermal decomposition continues without additional energy input. In some embodiments, the CBA is utilized in a digital-microthruster array containing microthrusters that can be individually activated to provide thrust. In some embodiments, a CBA may be stored in one or more CBA-storage chambers that can be individually activated to charge and/or recharge a pressure tank that stores gas from the CBA decomposition under pressure for providing thrust. These and other embodiments are disclosed. Such propulsion systems can be used for any of a variety of spacecraft, including micro- and nano-satellites. Corresponding methods of generating thrust are also disclosed.
Abstract:
Carter (20) de turbopompe d'alimentation en ergol (10) pour moteur-fusée (50), comprenant un circuit de mise en froid (30), dans lequel le circuit de mise en froid est ménagé au moins en partie dans une paroi dudit carter (20).
Abstract:
A flex joint (22) includes a bellows (33) and a liner system (46) disposed in the bellows. The liner system includes two generally cylindrical liner pieces (50,52) that are connected to each other in an articulated joint (54). One of the two generally cylindrical liner pieces defines a ball joint end (56) and the other of the two generally cylindrical liner pieces defines a socket joint end (58). The ball joint end is engaged with the socket joint end to form a ball and socket joint as the articulated joint.
Abstract:
L'invention concerne un dispositif pour isoler thermiquement un équipement (10), comprenant : - un bloc d'isolant (110) thermique comprenant au moins un premier perçage (113), - une enveloppe (120) déformable réalisée dans un matériau étanche aux gaz et entourant le bloc d'isolant (110) de sorte que la paroi dudit premier perçage (113) soit recouverte de ladite enveloppe (120) étanche en laissant ouvertes les extrémités dudit premier perçage, l'enveloppe (120) définissant, au niveau de la deuxième extrémité, une première ouverture (121) qui communique avec le premier perçage (113) et une deuxième ouverture qui communique avec l'espace situé entre le bloc isolant et l'enveloppe, et les première et deuxième ouvertures (121, 122) de l'enveloppe (120) étant fermées de façon étanche avec l'intérieur de l'enveloppe (120) sous vide partiel. Application à l'isolation d'un équipement cryogénique.
Abstract:
L'invention concerne le domaine aérospatial, et en particulier celui des engins propulsés par moteurs-fusées. En particulier, elle concerne un circuit d'alimentation (6) d'un moteur-fusée (2) en au moins un premier ergol liquide, comprenant au moins un premier échangeur de chaleur (18) apte à être connecté à un circuit de refroidissement (17) d'au moins une source de chaleur, afin de refroidir cette source de chaleur grâce au transfert de chaleur vers le premier ergol, et en outre, en aval dudit premier échangeur de chaleur (18), un branchement (21) traversant un deuxième échangeur de chaleur (23).
Abstract:
L'invention concerne le domaine aérospatial, et en particulier celui des engins propulsés par moteurs-fusées. En particulier, elle concerne un circuit d'alimentation (6) d'un moteur-fusée (2) en au moins un premier ergol liquide, comprenant au moins un réservoir-tampon (20) pour ledit premier ergol liquide et un premier échangeur de chaleur (18), intégré dans ledit réservoir-tampon (20) et apte à être connecté à un circuit de refroidissement (17) d'au moins une source de chaleur, afin de refroidir cette source de chaleur grâce au transfert de chaleur vers le premier ergol.
Abstract:
A system can include an emitter structure connected to a reservoir containing a working material, wherein the working material is in electrical communication with a first electrode, an electrode opposing the emitter structure across a gap; and optionally a frame holding the emitter structure and the electrode. The emitter array preferably functions to emit (e.g., eject, release, disperse, etc.) working material. The emitter array preferably includes a plurality of emitters, but can include a single emitter, non-emitting structures, and/or any suitable emitters.