Abstract:
Installation (1) de pompage de fluide cryogénique comprenant une enceinte (13) étanche destinée à contenir un bain de fluide cryogénique, l'enceinte (13) abritant une chambre (3) de compression communiquant avec le bain et un piston (5) mobile pour assurer la compression du fluide dans la chambre (3) de compression, le piston (5) étant monté à une première extrémité d'une tige (50), l'appareil (1) comprenant un mécanisme (21) d'entraînement d'une deuxième extrémité de la tige (50) dans un mouvement d'allers-retours selon une direction (A) longitudinale de mouvement, le mécanisme (21) d'entraînement comprenant un moteur (121) muni d'un arbre (211) tournant et un système (212) de transformation mécanique convertissant le mouvement de rotation de l'arbre (211) tournant en un mouvement de translation, en configuration de fonctionnement de l'installation (1), la direction (A) longitudinale de mouvement de la tige (50) du piston étant verticale, le moteur (21) étant fixé rigidement à un bâti (6) supérieur, l'arbre (211) tournant étant accouplé au système (212) de transformation mécanique via un système de liaison tel qu'une liaison rigide ou un cardan, une première extrémité supérieure de l'enceinte (13) étant reliée au système (212) de transformation mécanique, une seconde extrémité inférieure de l'enceinte (13) étant en appui sur un support assurant un maintien et une reprise d'efforts transmis par le moteur (121) via l'arbre
Abstract:
A method of monitoring the performance of a cryopump (5), the circuitry (14) for monitoring the performance and the cryopump (5) are disclosed. The method comprises: following completion of a regeneration cycle controlling said cryopump (5) to perform a predetermined test routine for testing a performance of said cryopump under predetermined conditions; monitoring said cryopump during said predetermined test routine to collect data indicative of said performance of said cryopump (5); storing data collected during said monitoring.
Abstract:
A vacuum system for volume pumping a plurality of vacuum areas is described. The vacuum system includes a first vacuum manifold extending along the plurality of vacuum areas and a second vacuum manifold extending along the plurality of vacuum areas. A first plurality of valves connecting the first vacuum manifold to the plurality of vacuum areas is provided, each valve of the first plurality of valves corresponding to a vacuum area of the plurality of vacuum areas. A second plurality of valves connecting the second vacuum manifold to the plurality of vacuum areas is provided, each valve of the second plurality of valves corresponding to the vacuum area of the plurality of vacuum areas. The vacuum system further includes a first pump stack assembly including one or more first pump stacks connected to the first vacuum manifold with a first connection pipe via a first connection valve and a second pump stack assembly including one or more second pump stacks connected to a second vacuum manifold with the second connection pipe via a second connection valve.
Abstract:
Systems and methods are provided for evacuating a chamber (101). The evacuation system comprises a cooler (320) coupled with the chamber and a controller (350). The controller is configured to determine whether a property of the cooler or the chamber satisfies one or more conditions. Based on the determination that the property satisfies the one or more conditions, the controller is configured to isolate the cooler from the chamber or control the temperature of the cooler to increase at one or more rates. The controller is further configured to control one or more pumps 330,340 to pump the chamber to a base pressure value.
Abstract:
본 발명은 진공식 로스터에 관한 것으로, 본 발명의 실시예에 따른 진공식 로스터는, 챔버; 상기 챔버의 일측에 형성되며 개폐 가능한 도어캡; 상기 챔버의 타측에 형성된 진공캡; 상기 챔버의 내주면으로부터 이격되어 형성되며, 가공 대상물의 투입과 배출을 위해 개폐 가능한 바스켓 도어가 형성된 바스켓; 상기 챔버 내부의 진공 상태를 조절하는 진공 조절수단; 상기 바스켓과 축 연결되어 상기 바스켓을 회전시키는 구동모터; 및, 상기 챔버 내부에 상기 바스켓과 이격되어 형성된 히터를 포함한다.
Abstract:
A bearing arrangement 24 for a wobble plate piston pump 10 includes first, second, third, and fourth bearing assemblies 90, 92, 94, 96. The first and second bearing assemblies 90, 92 support the drive shaft portion 70 for rotation within the housing 16, 18 about the central longitudinal axis 74, while the third and fourth bearing assemblies 94, 96 support the load plate 28 for rotation relative to the offset shaft portion 72 of the shaft 26. The second bearing assembly 92 is distally disposed from the first 90, the third 94 disposed distally to second 92, and the fourth 96 disposed distally to third 94. The fourth bearing assembly 96 is the most distally disposed bearing assembly along the shaft 26.
Abstract:
Die vorliegende Erfindung betrifft eine Verdichtungsmaschine (110), in der ein oszillierender Körper (111) zwischen zwei Umkehrpunkten (U 1 , U 2 ) oszilliert, wobei durch die oszillierende Bewegung (111a) des oszillierenden Körpers (111) ein Fluid (112) zumindest zum Teil abwechselnd entspannt und verdichtet wird, wobei der oszillierende Körper (111) eine Kolbenkraft (F M ) auf das Fluid (112) ausübt, wobei das Fluid (112) eine Fluidkraft (F F ) auf den oszillierenden Körper (111) ausübt und wobei eine resultierende Verdichtungskraft (F*) als eine Differenz der Fluidkraft (F F ) und der Kolbenkraft (F M ) definiert ist. Der oszillierende Körper (111) besitzt eine erste Masse (m 1 ), wobei ein maximaler Wert der resultierenden Verdichtungskraft (F*) bei Verwendung des oszillierenden Körpers (111) mit der ersten Masse (m 1 ) um einen vorgegebenen Faktor F geringer ist als ein maximaler Wert der resultierenden Verdichtungskraft (F*) bei Verwendung eines oszillierenden Referenzkörpers (121) mit einer Referenzmasse (m ref ) in einer Referenzverdichtungsmaschine (120) gleichen Aufbaus und bei Verwendung desselben Fluids (112), wobei die erste Masse (m 1 ) um einen von dem vorgegebenen Faktor abhängigen Prozentsatz größer ist als die Referenzmasse (m ref ) und wobei der maximale Wert der resultierenden Verdichtungskraft (F*) bei Verwendung des oszillierenden Referenzkörpers (121) mittels Reduktion einer wirksamen Querschnittsfläche (A) des oszillierenden Referenzkörpers (121) um eben diesen vorgegebenen Faktor F reduziert würde.