US08564890B2
It has conventionally been difficult to reduce the size of a fast lens system having an F number of about 1.4 to 2.4. In a lens system of the present invention, a positive lens element is disposed closest to an object side. A diaphragm is disposed in a widest air space in the lens system. The lens system of the present invention satisfies the following conditions: 0.05
US08564885B2
A lens device includes a substrate having a channel and a first fluid flow path and a second fluid flow path. The first and second fluid flow paths at least partially in communication with the channel. A light emitting device is positioned adjacent to the channel. At least one first fluid source is in communication with the first fluid path such that a first fluid is moveable along the first fluid path and at least one second fluid source in communication with the second fluid path such that a second fluid is moveable along the second fluid path. The fluid paths are configured so the first fluid and second fluid move through the channel to define an adjustable liquid gradient refractive index distribution in the channel. Adjustment of the liquid gradient refractive index distribution permits a change of liquid lens focal distance or an angular adjustment of light.
US08564884B2
A non-oscillating liquid lens and imaging system and method employing the lens are provided. The liquid lens includes a substrate with a channel opening extending through the substrate. A liquid lens drop is held within the channel and is sized with a first droplet portion, including a first capillary surface, protruding away from a first substrate surface, and a second droplet portion, including a second capillary surface, protruding away from a second substrate surface. The liquid lens further includes an enclosure at least partially surrounding the substrate, and which includes a chamber. The liquid lens drop resides within the chamber, and the liquid lens includes a second liquid disposed within the chamber in direct or indirect contact with the liquid lens drop, and an actuator which facilitates adjusting configuration of the liquid lens drop within the channel, and thus, a focal distance of the liquid lens.
US08564875B2
A terahertz wave generating apparatus 2 includes an excitation light source 10, a transmission-type diffraction grating 32, a variable imaging optical system 61, and a nonlinear optical crystal 70. The transmission-type diffraction grating 32 inputs pulsed excitation light output from the excitation light source 10, and diffracts and outputs the pulsed excitation light. In the transmission-type diffraction grating 32, its orientation is variable with a straight central axis, that is parallel to the grooves and passing through an incident position of a principal ray of the pulsed excitation light. The variable imaging optical system 61 is configured to input the pulsed excitation light diffracted to be output by the transmission-type diffraction grating 32, to form an image of the pulsed excitation light by the transmission-type diffraction grating 32, and its imaging magnification is variable. The nonlinear optical crystal 70 is disposed at a position at which the pulsed excitation light is formed as the image by the variable imaging optical system 61, and inputs the pulsed excitation light via the variable imaging optical system 61, and generates a terahertz wave T. Thereby, a terahertz wave generating apparatus, in which it is easy to adjust a phase matching condition, can be realized.
US08564871B2
An electrochromic apparatus comprises a first electrode layer and a second electrode layer spaced from and disposed substantially parallel to the first electrode. An electrochromic layer is disposed between the first and second electrode layers. An electrolyte layer is disposed between the electrochromic layer and one of the electrode layers. The electrochromic layer comprises the dehydration reaction product of a hydrolyzed aromatic component. An electrochromic composition comprises an aromatic component having an aromatic core and at least two silicon-based groups pending from the aromatic core. The silicon-based groups have a silicon-bonded group selected from the group of hydrolyzable groups, hydrolyzates of hydrolyzable groups, and combinations thereof. The thickness of the electrochromic layer may be minimized while achieving desirable electrochromic properties that are typically characteristic of thicker electrochromic layers, thereby imparting the electrochromic apparatus with excellent versatility and flexibility.
US08564870B2
There is disclosed a method for manufacturing a display device arrangement, which includes a plurality of electrochromic pixel devices arranged in a matrix. First a plastic insulating layer is provided comprising passages for electrical conductors. Thereafter, in optional order, electrical conductors are provided in the passages, pixel layers are printed on one side of the insulating layer, and control layers are printed on the other side of the insulating layer. By this method the manufacturing of a printed electrochromic pixel device is improved.
US08564867B2
Various embodiments of the present invention are directed to arbitration systems and methods. In one embodiment, an arbitration system comprises a loop-shaped arbitration waveguide (602), a loop-shaped hungry waveguide (603), and a loop-shaped broadcast waveguide (604). The arbitration, hungry, and broadcast waveguides optically coupled to a home node and a number of requesting nodes. The arbitration waveguide transmits tokens injected by the home node. A token extracted by a requesting node grants the node access to a resource for the duration or length of the token. The hungry waveguide transmits light injected by the home node. A requesting node in a hungry state extracts the light from the hungry waveguide. The broadcast waveguide transmits light injected by the home node such that the light indicates to requesting nodes not in the hungry state to stop extracting tokens from the arbitration waveguide.
US08564863B2
An image processor includes: an edge determination unit that determines an edge in an image; and a color estimation unit that estimates an original color of the image which is not affected by an another image read together as a non-target image, according to a result of the edge determination performed by the edge determination unit.
US08564859B2
An image reading apparatus comprises: an image reading unit that includes a platen glass and a color contact image sensor configured by a line image sensor for reading red, a line image sensor for reading green, and a line image sensor for reading blue, the line image sensors being disposed in a sub-scanning direction of an original; and an automatic original feeder. In the image reading apparatus, the line image sensor for reading red and the line image sensor for reading green are disposed so that a line gap therebetween is two lines, and in a monochrome mode in which a color original is read and output as a monochrome image, the color original is read using the line image sensor for reading red and the line image sensor for reading green.
US08564853B2
An image-reading apparatus and method for controlling the image-reading apparatus including a document plate where an original document is placed, a line image sensor that reads an image on the document plate by scanning to obtain image data, a reference-setting image that is placed outside a region of the document plate at a position where the line image sensor is able to read the reference-setting image, and a control unit configured to set a reference position when the image sensor reads the image, wherein the control unit detects the reference-setting image from the image data and, depending on a power-on state of the image-reading apparatus, selects the manner in which the reference position is set based on the reference-setting image.
US08564847B2
A graphic that indicates a switch is formed on a panel at a location corresponding to a first light guide element. A character to be displayed via the panel is formed on a second light guide element. The first light guide element is supported on a substrate, in close contact with an electrode, via a sheet-like shaped attaching member, and the second light guide element is supported by a base material without being supported on the substrate.
US08564841B2
A switching controller system and method for improving graininess in an image during a profile construction. A switching control strategy can be employed to construct an ICC destination profile by switching between a first controller (e.g., a 3-input 4-output controller) and a second controller (e.g., a 3-input 3-output controller) based on a color space region that requires a graininess minimization. The first controller dynamically modifies the CMYK values until reaching a subset of LAB values contained in the ICC profile. The second controller varies three colorants and holds a remaining colorant of the CMYK values until reaching the remaining LAB values in the ICC profile. Such an approach reduces the graininess and provides an improved smoothness with respect to the image during the ICC profile construction.
US08564838B2
An image processing apparatus quantizes multi-level image data of n colors, where n≧2, by performing an error diffusion processing. The image processing apparatus includes: a dot arrangement determining unit that determines either one of an essential dot count and an essential recording material amount when the multi-level image data of n colors is converted into multi-level image data of m colors, where n>m≧1, by the error diffusion processing; and a color arrangement determining unit that performs the error diffusion processing on each color component of the multi-level image data of n colors, calculates either one of a dot count and a recording material amount for each color component, and determines an arrangement of either one of the dot count and the recording material amount for each color component within a range of a corresponding one of the essential dot count and the essential recording material amount determined by the dot arrangement determining unit.
US08564829B2
An image processing apparatus characterized by including; an area sensor unit that reads from an original document image a plurality of frames of image data having a shift of less than one pixel, an output resolution acquisition unit that obtains an output image resolution at which resolution the original document image read by the area sensor unit is output, an acquisition frame number control unit that controls a number of frames read by the area sensor unit according to a result of the output resolution acquisition unit, a correction unit that corrects an inclination of the frames of image data controlled by the acquisition frame number control unit, and a high resolution conversion unit that performs an interpolation processing using the plurality of frames of image data whose inclination is corrected by the correction unit to obtain image data in a resolution higher than a resolution during reading.
US08564827B2
A control device for a printer includes a master controller and a slave controller, and the constituent elements of the master controller and the slave controllers are configured symmetrically. The master controller includes a virtual mechanical controller.
US08564826B2
To shift an image in order to prevent the image from overlapping with a finishing position, the amount of shift for preventing the overlap may be increased and a desired result of layout may not be obtained. In addition, if the image is not shifted in order to obtain the desired result of layout, the image may overlap with the finishing position and toner or the like may come off. When it is determined that a position where the finishing process is to be executed overlaps with a content data placement area, an avoidance area where printing is not performed is placed at a position in which the position where the finishing process is to be executed overlaps with the content data placement area without changing the position and size of the content data placement area.
US08564820B2
According to the present invention, an apparatus that communicates with a data management system sets a condition for acquiring data from the data management system, collects data of an image forming device, adds a key matching the set condition to the collected data, and transmits the data to which the key is added, to the data management system.
US08564819B2
There are provided an image printing system and an image processing method which can perform printing control for a unit pixel without losing a positional relationship between a dot arrangement pattern and a mask pattern even when index processing and mask processing are executed independently from each other. For this purpose, an index start position command (901) is transmitted, and the mask pattern is arranged such that the top of the mask pattern matches a top raster of a received index processing start position when the mask processing is executed. Thereby, it becomes possible to securely execute the printing control for a unit pixel without losing the positional relationship between the dot arrangement pattern and the mask pattern which are generated in association with each other.
US08564814B2
An image-reading system includes an image-reading device that includes: a first creating unit that creates, if a control device requests creation of a content of a settings screen, a content of a first settings screen for setting a scan condition supported by the available function of an image-reading unit expressed by stored function information; a generating unit that generates, when a scan condition is set on the first settings screen whose content is created by the first creating unit, first instruction data to read an image in accordance with the set scan condition; and a reading controller that controls the image-reading unit based on the generated first instruction data, so that the image-reading unit reads an image in accordance with the set scan condition.
US08564811B2
A method, apparatus, and system for outputting a locked print job by a printing device connected to a client terminal over a network. The method includes receiving a request to distribute the locked print job to one or more users. The locked print job is generated in response to the request, and the locked print job and information identifying the one or more users is transmitted to the printing device over the network. The printing device receives the locked print job and the information identifying the one or more users transmitted by the client terminal, and stores the locked print job, the information identifying the one or more users, and authentication information. The authentication information is transmitted to the one or more users. The printing device outputs the locked print job, when the authentication information is entered into the printing device.
US08564801B2
In one embodiment, a network system according to the present invention is a network system in which a plurality of image forming apparatuses are communicably connected via a network, and an electronic device capable of independent operation is communicably connected to each of the plurality of image forming apparatuses. The electronic device includes a data input/output unit that sends/receives control data of the electronic device to/from the image forming apparatus to which the electronic device is connected, and the image forming apparatus includes a data communications unit that sends/receives the control data to/from the electronic device connected to the image forming apparatus, and a network communications unit that sends/receives the control data to/from another image forming apparatus via the network. Furthermore, the data communications unit and the network communications unit of each image forming apparatus send the control data of the electronic device to each of the other electronic devices via the network, the data input/output unit of each of the other electronic devices receives the control data, and each of the other electronic devices operates based on the received control data.
US08564799B2
A method and apparatus capture bitmapped images of pages of a print job that have been raster image processed while being printed by a printing device and collect electronic image data from at least one predetermined area of the bitmapped images of the pages using a computerized device. In addition, the method and apparatus capture at least one scanned image from the predetermined area of sheets of media printed by the printing device according to the print job, using an optical imaging device operatively connected to the computerized device and compare the scanned image to the electronic image data to validate whether the print job printed correctly.
US08564798B2
A method and apparatus capture bitmapped images of pages of a print job that have been raster image processed by a digital front end of a printing device (while they are being printed by the printing device). The bitmapped images are captured from the printing device's buffer using a computerized device potentially positioned within the printing device. The computerized device collects image data from at least one predetermined area of the bitmapped images of the pages and performs optical character processing on the image data to identify characters and numbers within the bitmapped images. The computerized device processes the characters and numbers into accumulated data for the pages of the print job. Then the computerized device compares the accumulated data to expected data to validate whether the print job printed correctly.
US08564797B2
A setting changing device includes a display controller, a receiver, and a changing section. The display controller displays a designation screen for at least one of a first designation that designates a first item and an initial value of the first item; a second designation that designates a second item that prohibits changing via the setting screen by a user; or a third designation that designates a third item that prohibits displaying on the setting screen for users. The changing section, on the basis of the at least one of the first designation, second designation and third designation, (a) changes respective settings of the target device drivers, or, (b) generates for each of changeable setting items of the target device drivers, setting data that is referenced by device drivers when the setting screen is displayed.
US08564790B2
An apparatus for optically detecting an object position includes: position detection light sources irradiating light onto the object; a light guide plate receiving the light and emitting it onto a detection area to form an intensity distribution in the detection area; a light detector having light receiving portions receiving the light reflected by the object; and a signal processing portion detecting the object position based on the intensity distribution, wherein light incident portions receiving the light and side portions except for the light incident portions are provided on outer periphery side portions of the light guide plate, a light emission surface emitting the light incident from the light incident portions toward the detection area is provided on a plane portion of the light guide plate, and at least a portion of the side portions is an anti-reflection surface.
US08564766B2
The invention relates to a sorting device and a method for sorting products (1) that are moved in a flow of products (2) through an inspection zone (3), wherein a light beam (6) is moved over the flow of products such that substantially all products (1) are hit by the light beam (6) in said inspection zone (3), whereby the light of this light beam (6) is, on the one hand, directly reflected as of the point of impact of the light beam on the products, and is, on the other hand, reflected in a scattered manner as of a zone round the point of impact following the diffusion of the light beam's light in the products, whereby the directly reflected light as well as the light which is reflected in a scattered manner is at least partly directed to a sensor element (19) of a detector (15), whereby this sensor element (19) has at least two detection areas, wherein for each detection area a detection signal is generated corresponding to the intensity of the reflected light (14) that impinges upon this detection area.
US08564764B2
This blood examination apparatus examines cancer cells mixed in an examination object which is flowing blood, and includes: a flow cell through which the examination object is made to flow; an imaging optical system which light output from the examination object in an examination region in the flow cell enters, the imaging optical system forming an image of the light on a first image plane; a first Fourier transformation optical system which optically two-dimensionally Fourier-transforms the image formed on the first image plane by the imaging optical system to form the Fourier-transformed image on a second image plane; a spatial light filter which selectively allows a portion in a certain range around an optical axis of the first Fourier transformation optical system of the image formed on the second image plane by the first Fourier transformation optical system to pass through; and a second Fourier transformation optical system which optically two-dimensionally Fourier-transforms the portion which has passed through the spatial light filter of the image formed on the second image plane by the first Fourier transformation optical system to form the Fourier-transformed image on a third image plane.
US08564758B2
The present invention provides an exposure apparatus including a map obtaining unit configured to obtain a pupil aberration map representing saturation values of fluctuations in each of optical characteristics generated in a plurality of regions, which are obtained by dividing a pupil plane of a projection optical system, upon irradiating the plurality of regions with a unit amount of light, a distribution obtaining unit configured to obtain a light intensity distribution formed on the pupil plane of the projection optical system upon illuminating a pattern of an arbitrary reticle in an arbitrary illumination mode, and a calculation unit configured to calculate a saturation value of a fluctuation in each of the optical characteristics generated in the projection optical system upon illuminating the pattern of the arbitrary reticle in the arbitrary illumination mode, based on the obtained pupil aberration map and the obtained light intensity distribution.
US08564743B2
A reflective polymer dispersed liquid crystal (PDLC) display device may include a plurality of first and second electrodes on the first and second substrates, the first and second substrates separate from each other, a polymer dispersed liquid crystal (PDLC) layer between the plurality of first and second electrodes, the PDLC layer including polymer, liquid crystal, and a chain transfer reagent, and a specular reflection plate on the first substrate.
US08564731B2
A display device is disclosed. The display device includes a display panel, a frame disposed in the rear of the display panel, a backlight unit disposed between the display panel and the frame, a driver attached to a back surface of the frame, and a back cover that is disposed in the rear of the driver and is connected to the back surface of the frame. At least one of the frame and the back cover includes a heat dissipation member.
US08564730B2
Provided is a display device. The display device comprises a receiving unit, a liquid crystal panel, and a backlight assembly. The receiving unit comprises a sidewall, a first support bent or curved to extend from the sidewall, a second support bent or curved to extend from the first support. The second support faces the sidewall. At least one of the liquid crystal panel and the backlight assembly is received in the receiving unit. The liquid crystal panel and the backlight assembly can be doubly protected by the sidewall and the second support, and a display device with improved mechanical strength can be realized.
US08564725B2
A video data processing apparatus includes: a contrast correction calculating section correcting the contrast of input luminance data by performing a calculation using a contrast correction value; an error diffusion section performing an error diffusion process on the luminance data whose contrast has been corrected; an error diffusion setting section setting whether to perform the error diffusion process at the error diffusion section; a correction value setting section detecting black and white peak values of an input luminance signal and setting the contrast correction value using the detected black and white peak values; and a correction amount adjusting section adjusting the contrast correction value set by the correction value setting section depending on whether the error diffusion process is performed at the error diffusion section according to an instruction from the error diffusion setting section and supplying the adjusted contrast correction value to the contrast correction calculating section.
US08564723B2
A communication system may includes a source device to output video contents and a sink device to input the video contents, connected to the source device using a control transmission channel and a video transmission channel through which data is transmitted. The source device may include a first control data I/O unit, a first video data output unit, a video data retention unit, a contents list retention unit, an index image data retention unit and a first control unit. The sink device may include a second control data I/O unit, a second video data input unit, a video processing unit, and a second control unit.
US08564712B2
An apparatus and method for rapidly and accurately determining blur differences between captured images. Blur change is modeled as a point spread function from a first position to a second position, which is approximated in response to performing a series of convolutions using at least two different blur kernels having different variance. The kernel with a larger variance is used first to speed processing, after which a kernel having a smaller variance is utilized to attain desired accuracy. Any number of kernels can be utilized with decreasing variance to achieve any desired level of accuracy. The apparatus and method can be utilized within a wide range of image capture and/or processing devices, and can be utilized within camera focus mechanisms to increase focusing speed and accuracy.
US08564709B2
Selection candidates for number of imaging pixels and for an image compression rate are displayed in a two-dimensional arrangement on a setting screen for setting an image quality, and combinations of selectable number of image pixels and a compression rate can be presented to a user. An instruction for moving a cursor which displays a selected position on the screen is received, and a setting can be changed to a number of pixels and a compression rate which are pointed by the cursor after a position of the cursor is designated. More specifically, numbers of pixels to be selected are 2400×1800, 1280×960, and 640×480, and compression rates to be selected are Fine, Normal, and Basic. When the user selects the number of pixels, candidates of the selectable compression rate for the number of pixels are displayed. A number of photographable images and remaining time for recording a moving image which are calculated from a capacity of a storage medium are preferably displayed in combination in accordance with combinations of the number of pixels and the compression rate.
US08564707B2
A Charge-Coupled Device (CCD) image sensor includes a linear array of photodetectors. The photodetectors in the linear array are arranged into distinct sub-arrays with each sub-array including two or more photodetectors. An output channel is connected to each sub-array of photodetectors. Each output channel includes a horizontal CCD shift register and an output structure connected to an end of the horizontal CCD shift register in a linear arrangement with respect to each other. Each successive output channel is disposed on an alternate side of the linear array. Every other output channel is disposed on an alternate side of the linear array. One or more dark reference pixels can be connected to one or more additional shift register elements in the horizontal CCD shift registers.
US08564703B2
An image sensor for electronic cameras includes a plurality of pixels arranged in rows and columns, wherein at least one common column is associated with a plurality of pixels of a column. Each pixel includes a light-sensitive detector element to produce an electric charge from incident light, a selection device to connect the detector element directly or indirectly to the associated column line and at least one switching device. The image sensor furthermore has a control device for controlling the selection device and the at least one switching device of the respective pixel. The control device is designed such that the selection device of a first pixel is activated within a time period in which the at least one switching device is activated in a second pixel with which the same column line is associated.
US08564700B2
An image processing apparatus according to the present invention includes a single-chip color image capture element that has a color mosaic filter 201 and a patterned polarizer 202 in which a number of polarizer units, having polarization transmission planes defining at least three different angles, are provided for multiple pixels of the same color (G) in the color mosaic filter 201. This apparatus includes not only a color and polarization obtaining section 101 including such a single-chip color image capture element but also a polarization information processing section 103 for approximating, as a sinusoidal function, a relation between the intensities of light rays that have been transmitted through the polarizer units for the G pixels and the angles of the polarization transmission planes of the polarizer units and a color mosaic interpolation section 102 for generating a color intensity image by performing a color intensity interpolation and getting a color intensity that cannot be obtained at a pixel of interest.
US08564698B2
An image correcting apparatus and method are disclosed to correct a smear vertical line on an image captured by a camera. The method for correcting an image comprising: detecting image data corresponding to a vertical line of a specific image and having hue values greater than a hue reference value; and correcting the detected image data.
US08564694B2
There is provided an image pickup device capable of reducing noises, e.g., smears outputted from a CCD without using a special light amount adjusting device regardless of pixel defects. The image-pickup device includes a CCD having an image-pickup area and a storage area; a control unit for vertical-transferring signals of a line number having no pixel signal from a vertical-transfer register of the storage area and vertical-transferring more lines than the line number of a vertical-transfer register of the image-pickup area by the line number to the vertical-transfer register of the storage area during a period; an image signal obtaining unit for obtaining first image signals outputted from predetermined pixels of the CCD; an obtaining unit for obtaining the second image signals of the line number having no pixel signal of the storage area; and a correction unit for subtracting the second image signal from the first image signals.
US08564691B2
The digital camera includes: a storage unit that stores a plurality of images captured by an image sensor when a multiple exposure photographic mode is set; a gain impartation unit that imparts, to the plurality of captured images, gains based upon the number of shots of multiple exposure photography and determined so that their sum equals unity; and a combination unit that creates a multiple exposure photographic image by combining the plurality of images, after the gains have been imparted by the gain impartation unit.
US08564688B2
Methods, systems and apparatuses for white balance calibration. A calibration correction matrix is specifically calibrated for each individual imager, thereby providing improved automatic white balance performance. The individual imager calibration corrects for variation of the spectral response among different imagers. The calibration correction matrix is placed before the gray checker module, which analyzes the chromaticity of the image pixels and supplies resulting statistics to the automatic white balance decision engine for use in automatic white balance operations. The calibration correction matrix may be implemented as a 3×3 matrix.
US08564686B2
An imaging apparatus body on which a lens unit including an imaging optical system and an identification information storage unit that stores specific identification information can be removably mounted, comprising a shading correction unit that corrects, when the determination unit determines that the correction table corresponding to the identification information of the mounted lens unit is stored in the correction table storage unit, the shading in the set of viewpoint images according to the correction table, corresponding to the identification information of the mounted lens unit, stored in the correction table storage unit.
US08564681B2
A method includes detecting a start and an end of a first sound that satisfies a present standard, obtaining image data in response to detection of the start and end of the first sound, storing the obtained image data, and determining the image data to be data that is to be stored, in accordance with a content of the first sound.
US08564680B1
Systems and methods for synthesizing color data. The method includes calculating gradients at a plurality of angles with respect to a generation point in a matrix of color data, performing a first-level edge test by comparing each of the gradients to a noise threshold, selecting an interpolation technique in response to the comparisons, and synthesizing missing color data at said generation point using the selected interpolation technique.
US08564676B2
A semiconductor device with an anti-shake function includes a logic chip having a digital circuit which obtains a value for vibration of an apparatus based on a vibration detection signal supplied from a vibration detection element to generate a correction signal. The logic chip includes a correction signal processing unit which generates the correction signal, and a control signal output unit which outputs a vibration control signal in accordance with the correction signal to a vibration correction control unit which executes vibration correction control for an optical component in accordance with vibration. The correction signal processing unit includes a vibration computing unit which is capable of executing a plurality of stages of signal processing operations, by dedicated circuits, respectively, and which generates the correction signal from the vibration detection signal, and a central processing unit capable of executing desired computation processing to be performed by the vibration computing unit, and a signal obtained by executing all or a part of the computation processing to be performed by the dedicated circuits by the central processing unit is supplied as the correction signal to the control signal output unit.
US08564674B2
In an initial stage, using a global motion vector, a rough degree of image shaking is determined. After the image shaking is determined to have converged to some measure, using the difference values between frames, the finer degree of the image shaking is determined. And if it is determined to be free of image shaking, the recording photography is made to be done. Thereby, with certainty in the timing of no hand shaking and no image shaking, the photographing can be done.
US08564672B2
A method of selecting an image capturing device in communication with an information handling system (IHS) is disclosed wherein the method includes executing an imaging software application and loading first data corresponding to an image capturing device compatible with the imaging software application, wherein the image capturing device is in communication with the IHS. The method further includes automatically executing a compatible image capturing device corresponding to the imaging software application. An information handling system (IHS) is further disclosed including a storage medium operable to store an imaging software application. The system further includes memory coupled to a processor, wherein the processor is configured to execute the imaging software application. The system may further include a virtual driver installed on the storage medium, the virtual driver configured to automatically select a preferred image capturing device corresponding to the imaging software application and wherein the preferred image capturing device is in communication with the IHS.
US08564666B2
An image pickup device, a visibility support apparatus, a night vision device, a navigation support apparatus, and a monitoring device are provided in which noise and dark current are suppressed to thereby provide clear images regardless of whether it is day or night. The device includes a light-receiving layer 3 having a multi-quantum well structure and a diffusion concentration distribution control layer 4 disposed on the light-receiving layer so as to be opposite an InP substrate 1, wherein the light-receiving layer has a band gap wavelength of 1.65 to 3 μm, the diffusion concentration distribution control layer has a lower band gap energy than InP, a pn junction is formed for each light-receiving element by selective diffusion of an impurity element, and the impurity selectively diffused in the light-receiving layer has a concentration of 5×1016/cm3 or less. A diffusion concentration distribution control layer has an n-type impurity concentration of 2×1015/cm3 or less before the diffusion, the diffusion concentration distribution control layer having a portion adjacent to the light-receiving layer, the portion having a low impurity concentration. The concentration of the impurity element selectively diffused in the diffusion concentration distribution control layer is decreased to be 5×1016/cm3 or less toward the light-receiving layer.
US08564657B2
The invention proposes a method for detecting dynamic objects in the scene in a driver assistance system of a vehicle, comprising the steps of: feeding signals from sensors (internal sensors, 3D sensors, cameras) of the vehicle to the driver assistance system, generation of a surrounding model using 3D world positions based on the sensor signals and, combination of 3D Warping-based approaches and optical flow based approaches, whose gained novel key points are: a) Restriction of the search space of an optical flow method based on the computation results of the 3D warping method, b) Additionally, to a) also an optimal parameterization of the optical flow approach in terms of search direction, amplitude, etc., c) Refinement and verification of the detection results of one of the methods based on the computation results of the other method (if both approaches are running in parallel), storing the detected dynamic objects and their measured motion parameters for their use in, e.g. a collision avoidance or path planning system.
US08564656B2
The invention relates to a method for recognizing surface characteristics of metallurgical products, especially continuously cast products and rolled products. According to said method, a defined section of the product surface (12, 12′) is irradiated by at least two radiation sources of different wavelengths, from different directions, and the irradiated surface section is optoelectronically detected. Three light sources (21, 22, 23) are oriented towards the product surface (12, 12′), as radiation sources, under the same angle (a), the positions thereof being in three planes (E1, E2, E3) forming a 120 DEG angle and being perpendicular to the product surface (12, 12′). In this way, instructive information about metallurgical products can be determined and stored in a very short space of time such that the products can be determined in a perfectly identified manner for the reprocessing, in terms of the surface quality or surface structure thereof.
US08564647B2
Color correction of an autostereoscopic color display capable of displaying multiple views of one scene. Multiple viewing regions of the autostereoscopic color display are identified. The multiple viewing regions together comprise the whole of an operating viewing zone for the autostereoscopic color display. A respective plurality of color correction LUTs are constructed. At least one color correction LUT is constructed for each different viewing region. Color correction LUTs corresponding to current viewing regions are selected based on information regarding viewer location. The selected color correction LUTs are applied to the autostereoscopic color display.
US08564633B2
A thermal printer includes a thermal printhead, a head cover configured to partially cover the thermal printhead, a paper container configured to house a paper, and a damper disposed on a paper feeding path between the thermal printhead and the paper container and configured to press the paper fed on the paper feeding path. The damper is combined with the head cover.
US08564616B1
One embodiment of the invention sets forth a mechanism for compiling a vertex shader program into two portions, a culling portion and a shading portion. The culling portion of the compiled vertex shader program specifies vertex attributes and instructions of the vertex shader program needed to determine whether early vertex culling operations should be performed on a batch of vertices associated with one or more primitives of a graphics scene. The shading portion of the compiled vertex shader program specifies the remaining vertex attributes and instructions of the vertex shader program for performing vertex lighting and performing other operations on the vertices in the batch of vertices. When the compiled vertex shader program is executed by graphics processing hardware, the shading portion of the compiled vertex shader is executed only when early vertex culling operations are not performed on the batch of vertices.
US08564615B2
Editing an image file is disclosed. Editing includes generating a plurality of machine generated changes to the image file, individually displaying each of the plurality of machine generated changes, and selectively implementing at least one of the plurality of machine generated changes.
US08564612B2
In a pixel imaging method and system, pixel information is stored into backing stores in system memory of a computer. A graphics processing unit (GPU) composites the pixel information into a first assembly buffer that has a first color depth of at least greater than 8-bits per color component. The GPU dithers and filters the pixel information in the first assembly buffer into a second assembly buffer. The second assembly buffer has a second color depth that is different from the first color depth of the first assembly but is the same as the color depth of the computer's frame buffer. The GPU copies the pixel information from the second assembly buffer into the frame buffer (optionally modifying them such as, by filtering), and scan-out hardware outputs the pixel information in the frame buffer to a display of the computer.
US08564611B2
The present invention generates a color template design to format a presentation. According to one aspect, a plurality of template designs are provided on a visual display. A selection of one of the plurality of template designs is received from a user. A plurality of source images that are separate from the plurality of template designs are provided on the visual display. A selection of a color from one of the plurality of source images is received from the user. Colors of the selected template design are automatically adjusted to match the selected the color from the source image. The selected template design may include framing, mat, background, and foreground portions, at least one of which is adjusted. After automatically adjusting the colors, the selected template design may be displayed and/or stored for use as a template.
US08564610B2
An in-vehicle device for displaying a meter image in real time, wherein the processing load is reduced without deterioration of the appearance of the meter image. The in-vehicle device stores therein a plurality of basic images which can indicate a first measured value and a second measured value both of which are measured values relating to the vehicle. According to the acquired first and second measured values, the in-vehicle device selects a predetermined basic image out of the plurality of basic images, transmits a partial area of the selected basic image, and synthesizes these basic images, to thereby generate a meter image to be displayed.
US08564604B2
Systems and methods for improving throughput of a graphics processing unit are disclosed. In one embodiment, a system includes a multithreaded execution unit capable of processing requests to access a constant cache, a vertex attribute cache, at least one common register file, and an execution unit data path substantially simultaneously.
US08564596B2
Techniques in a data processor for drawing a density surface on a map in a manner that more accurately accounts for projection distortion in the map. According to one embodiment, data is maintained that represents a geotagged event. A map plane is divided into a plurality of cells and an origin cell corresponding to the geotagged event is identified. Density values are allocated to cells surrounding the origin cell based on geodetic distances between geographic coordinates corresponding to surrounding cells and the geographic coordinate of the geotagged event. A density surface based on the cell allocations is then displayed on a map. By allocating density values to cells based on geodetic distances, the resulting density surface displayed on the map more accurately accounts for projection distortions in the area of the map on which density surface is displayed.
US08564581B2
A display includes: a panel in which a plurality of pixels emitting light in response to a video signal are arranged; a light-receiving sensor outputting a light-reception signal in accordance with the light-emission of each pixel; calculation means for calculating correction data on the basis of the light-receiving signal; and drive control means for correcting the video signal on the basis of the correction data, wherein the light-receiving sensor is adhered to an outermost substrate constituting the panel by using a material with a refractive index which is equal to or smaller than that of the substrate.
US08564579B2
An ambient light sensing circuit includes a photodiode that flows a current in proportion to ambient light, a first storage capacitor that is electrically coupled with the photodiode and is discharged after being charged with a voltage of a first power supply, a second storage capacitor that is electrically coupled with the first storage capacitor and provides a coupling voltage, and a transistor that outputs a current from the first power supply corresponding to the coupling voltage of the first storage capacitor and the second storage capacitor after being electrically coupled with the second storage capacitor.
US08564567B2
The present disclosure relates to a touch-type electrophoretic display device using a photo sensor, and the construction thereof may be configured by including a display substrate including a switching element connected to a gate line and a data line intersected with the gate line, a pixel electrode electrically connected to the switching element, and a first and a second photo sensor elements having a different channel width and length, the first and the second photo sensor elements being connected to the gate line and the data line for sensing an amount of light; and an electrophoretic film including charged particles, the electrophoretic film being coupled to the display substrate.
US08564563B2
The present disclosure includes, among other things, systems, methods and program products for content chapter access and license renewal.
US08564550B2
A display device having X electrodes and Y electrodes formed on an electrostatic capacitive type touch panel. Either one of the X electrodes and the Y electrodes is divided corresponding to a ratio between the number of X electrodes and the number of Y electrodes, and a floating electrode is formed in gaps formed along with the reduction of area of the electrode thus adjusting the area of the electrode. A first signal line and second signal lines are branched on a flexible printed circuit board so that both ends of a respective X electrode are supplied with a signal from the branched first signal line and both ends of a respective Y electrode are supplied with a signal from the branched second signal line.
US08564549B2
A mobile terminal includes a display configured to display content, a projector configured to project at least a portion of the content onto a display surface which is externally located relative to the mobile terminal, and a control unit configured to detect user input to the mobile terminal, the user input causing the projector to project a cursor onto the display surface along with the projected content.
US08564546B1
An apparatus for and method of resolving multiple centroids from data received from a multi-touch sensor device are described.
US08564537B2
A wheel module for an input device includes a circuit board, a wheel swinging member, and a wheel. A plurality of switch elements are installed on the circuit board. These switch elements are arranged between the circuit board and the wheel swinging member. The wheel is disposed on the wheel swinging member. When the wheel is moved downwardly relative to the wheel swinging member by a specified distance, an operating mode of the wheel module is switched from a rotating mode to a swinging mode. When the wheel module is operated in the rotating mode, the wheel is rotatable relative to the wheel swinging member. When the wheel module is operated in the swinging mode and the wheel is tilted in a specified direction, the wheel swinging member is synchronously swung relative to the circuit board to trigger a corresponding switch element.
US08564535B2
A gesture recognition system for recognizing gestures on a mobile device receives sensor data in response to a sensed gesture on the mobile device. The sensor data includes a force or impulse. The force or impulse is applied to the simulated physical object and the state of the simulated physical object is then observed. Input is provided to an application based at least on the observed state of the simulated physical object.
US08564529B2
Image quality of a field-sequential liquid crystal display device is improved by increasing the frequency of input of an image signal. Among pixels arranged in matrix, image signals are concurrently supplied to pixels provided in a plurality of rows. Thus, the frequency of input of an image signal to each of the pixels of the liquid crystal display device can be increased. As a result, in the liquid crystal display device, display deterioration such as color break which is caused in a field-sequential liquid crystal display device can be suppressed and image quality can be improved.
US08564520B2
A method for driving a display panel, the display panel including a plurality of pixels, each of the plurality of pixels including a cholesteric liquid crystal capacitor, includes; applying a common voltage to the display panel, displaying a video on the display panel by applying a data voltage to at least one of the plurality of pixels, the data voltage having a phase which is one of inverted to and substantially the same as a phase of the common voltage with respect to a reference voltage.
US08564509B2
A display device includes a light emitting element, a first driving transistor coupled to the light emitting element and supplied with a first driving voltage, and a second driving transistor coupled to the light emitting element and the first driving transistor and supplied with a second driving voltage having a magnitude different from the first driving voltage at least for a time. A method of driving the display device is also provided.
US08564507B2
A display apparatus includes a backlight unit which emits a light, and a display panel which receives the light to display an image. The backlight unit includes a driving circuit which outputs a driving voltage and a reference voltage; and p light source blocks connected to the driving circuit, p being a natural number greater than or equal to 2, where each light source block of the p light source blocks receives the driving voltage through a first terminal thereof and the reference voltage through a second terminal thereof to generate the light, and the p light source blocks are divided into a plurality of groups, each group including at least two light source blocks. The driving circuit includes a first switching section which applies the driving voltage to first terminals of the p light source blocks, and a second switching section which applies the reference voltage to the second terminal of at least one of the p light source blocks.
US08564504B2
A pixel array including scan lines, data lines and pixels is provided. Scan lines extend along a row direction and include first and second scan lines. The first and second scan lines are arranged alternately along a column direction. Data lines extend along the column direction in a zigzag manner and include a first data line, a second data line connected to the first data line, a third data line disposed between the first and second data lines, and a fourth data line connected to the third data line. The pixels connect with corresponding scan lines and data lines. Pixels connected with the same data line are not aligned in the column direction; pixels connected with the same data line are only arranged at the same side of the data line. Pixels of any two adjacent rows are separated by a first scan line and a second scan line.
US08564499B2
An apparatus and system are disclosed for a double gimbal stabilization platform. The apparatus, in one embodiment, includes a base and a first pivot joint connected to the base. The apparatus also includes a bent gimbal structure connected to the first pivot joint. The first pivot joint may rotate the bent gimbal structure about a first axis of rotation. The apparatus includes a second pivot joint connected to the bent gimbal structure. The apparatus includes a platform connected to the second pivot joint. The second pivot joint may rotate the platform around a second axis of rotation and the second axis of rotation may be orthogonal to the first axis of rotation. Furthermore, a center of mass for a combination of the bent gimbal structure and the platform may be between the base and the first axis of rotation.
US08564498B2
Mounting systems and apparatus are provided for attaching a mast to a structure at a desired orientation. The mounting apparatus includes a base support and a ball mount. The base support can be rigidly attached to a portion of the structure. The ball mount receives a ball associated with the mast to thereby allow the mast to be positioned and maintained at the desired orientation. The mounting apparatus may be used, for example, for attaching a digital broadcast satellite (DBS) antenna to a fascia or other portion of a home or other structure.
US08564493B2
A method of making Y-type hexagonal ferrite and an antenna using the same are provided. Y-type hexagonal ferrite includes a base ferrite composed of iron oxide, barium carbonate and cobalt oxide, and silicate glass ranging from 0.5 to 5 weight percent added to 100 weight percent of base ferrite. An antenna apparatus includes a magnetic carrier and an antenna pattern formed thereon. The magnetic carrier is formed of such Y-type hexagonal ferrite, and the antenna pattern resonates in a specific frequency band when electric power is supplied. To fabricate the Y-type hexagonal ferrite, a calcination process is performed in which iron oxide, barium carbonate and cobalt oxide are combined into base ferrite at a given calcination temperature after being mixed. A sintering process is performed to sinter the base ferrite and the silicate glass at a given sintering temperature which is lower than the calcination temperature after adding the silicate glass to the base ferrite.
US08564490B2
The disclosure provides an antenna device, which includes a waveguide antenna having wall surfaces and for emitting a radio wave in a direction substantially perpendicular to an emission face that is one of wall surfaces of the waveguide antenna extending in an elongated direction of the waveguide antenna, a plate-shape two-dimensional opening slots for beam formation formed in the waveguide antenna on the emission face side, a power feed waveguide module arranged in the rear face of the waveguide antenna opposite from the emission face and for supplying electric power to the waveguide antenna, and a cylindrical radome having a substantially circular cross-section of a diameter that is substantially equal to a length of the emission face in a direction perpendicular to the long-side direction so that the waveguide antenna is contained in the radome so as to be arranged at substantially the center of the radome.
US08564489B2
A glass antenna for a vehicle that has a first element elongated in a first direction, a second element elongated in a second direction, a third element including first, second and third partial elements that are each elongated in specific directions, and a fourth element elongated in the second direction but detours the second element in the second direction.
US08564477B2
A high-frequency module according to the present embodiment includes a substrate, a circuit board, and a waveguide. The substrate has an input-output portion for high-frequency signals on one surface thereof. The circuit board has a dielectric waveguide line with its end face exposed, and is placed on the one surface of the substrate such that a virtual plane extending beyond the end face is intersected by the one surface of the substrate. The waveguide has openings at ends thereof, in which one of the openings is connected to the end face of the dielectric waveguide line, and the other opening is connected to the input-output portion of the substrate.
US08564466B2
To increase the number of analog inputs at low cost, an analog input system includes: one or more analog slave units each connected to a bus to which a CPU unit is connected, and each including an A/D-conversion device converting an analog value outputted by an external device into a first digital value, a buffer memory buffering a second digital value to be transferred to the CPU unit, and a nonvolatile storage device containing specific information of its own unit; and an analog master unit connected to the bus and including an operation section performing operation processing based on the specific information stored in the storage device with the first digital value being used as an input, to calculate the second digital value, the master unit performing on each of the slave input units the operation processing and processing of transferring the calculated second digital value to the buffer memory.
US08564465B2
An analog to digital conversion includes a multiplexor circuit for receiving analog input signals and, responsive to a select input, an analog to digital converter circuit to convert a selected analog signal into a digital signal, a conversion starting device to send a conversion start signal on the basis of a trigger event, the conversion starting device being responsive to a select input, a sequencer to control the analog to digital converter circuitry to execute one sequence conversion on the basis of one conversion sequence instruction, and a FIFO register block to receive conversion sequence instructions and being able to queue each new received conversion sequence instruction if an actual conversion sequence is in progress and to control the sequencer to execute a new sequence conversion instruction after the conversion sequence is executed.
US08564461B2
A handheld device includes a plurality of input members, a first set of which each have a Roman character assigned thereto, a least some of which have a first non-Roman, second non-Roman character, and third non-Roman characters assigned thereto. The device is switchable between first and second modes. In the first mode, each Roman character may be input in response to actuation of the input member to which it is assigned, and in the second mode, each first non-Roman character may be input in response to a first type of actuation of the input member to which it is assigned, each second non-Roman character may input in response to a second type of actuation of the input member to which it is assigned, and each third non-Roman character may be input in response to a third type of actuation of the input member to which it is assigned.
US08564459B2
Automated notification systems and related methods are disclosed. One representative system (1) engages in a first one or more data transfers with a first party so that delivery or pickup information in connection with a good or service can be communicated; (2) during the first one or more data transfers, enables the first party to input or select at least (a) an identification of the good or service, (b) a quantity of the good or service, (c) a stop location for a delivery or pickup of the good or service, and (d) a communication method defining how to contact the first party; (3) analyzes timing information pertaining to when a mobile thing (MT) is to deliver or pickup the good or service at the stop location; (4) engages in a second one or more data transfers with the first party based upon the timing information; (5) during the second one or more data transfers, provides purchase order information to the first party, the purchase order information indicating at least one of the foregoing (a), (b), (c), or (d); (6) during the second one or more data transfers, enables the first party to change at least one of foregoing (a), (b), (c), or (d) of the purchase order information; (7) during the second one or more data transfers, produces a modified purchase order information reflecting the change made by the first party; and (8) during the second one or more data transfers, communicates the modified purchase order information to the first party.
US08564452B2
A system and method for alerting operators of mobile equipment to the presence of people in monitored areas around the periphery of the mobile equipment they are operating is provided. The system includes an RFID detection system which is installed on the mobile equipment and alerts the operator to the presence of people wearing Personal Protection Equipment containing RFID safety tags. The system also includes a tag programming system which allows RFID safety tags to be created. The system also includes a tag testing system which allows a person to test the functionality of the RFID safety tags contained in the personal safety equipment they are wearing. The system also includes RFID personal safety equipment such as 3D safety vests and RFID hardhats which contains RFID safety tags. The 3D safety vests also include enhanced 3D visual markings.
US08564451B2
A sensor pad (105) is adapted to be worn and operated by a user (100) to control a separate wireless communication terminal (103) carried by the user. The sensor pad includes a plurality of discrete sensors each operable to produce an indication signal indicating proximity of a user's finger to the sensor and a controller, responsive to receipt of indication signals from a plurality of the sensors, to produce a control signal for delivery to the wireless communication terminal to produce selection of a functional operation of the wireless communication terminal. Also described is a terminal for use with the sensor pad and also equipment and a method of operation.
US08564448B2
A portable computer system including a battery, a power switch and a computer unit is provided. The battery provides a supply signal to the power switch. The computer unit includes an embedded controller (EC), a driver and a user interface device. The EC determines whether the battery satisfies a low power condition according to the supply signal. If so, the EC provides a driving supply signal. The driver determines whether the supply signal satisfies a low voltage condition according to the driving supply signal. If so, the driver triggers an alert event. The user interface device triggers a user notification event according to the alert event. The power switch is further turned on/off in response to an operation event for respectively providing the supply signal to power the computer unit and put the computer unit in a power cut-off state.
US08564446B2
A system for creating a coaching session comprises one or more processors and one or more memories. The one or more processors are in communication with the event detector and configured to: receive data of a driving event from an event detector associated with a vehicle; analyze the driving event data to identify risky driving behavior; and create a coaching session in order to reduce the identified risky driving behavior. The coaching session incorporates at least a portion of the data of the driving event. The one or more memories are coupled to the one or more processors and configured to provide the one or more processors instructions.
US08564445B2
Systems and methods for monitoring the performance of a caregiver are disclosed. The systems may be configured to monitor the movement of each subject in a network of subjects. One such system includes a plurality of strips adhered in spaced-apart relation on a mattress pad, upon which a subject is positioned. One or more transmitter is provided coupled to the plurality of strips. A processor is connected to the one or more transmitter. The processor is provided with operating software to record and report caregiver activity or both caregiver activity and subject activity.
US08564444B2
A mobile sanitizing device may include a sanitizer solution dispenser module, a motorized wheel assembly, and a controller module. The sanitizer solution dispenser module may be operable to dispense the sanitizer solution. The motorized wheel includes at least one wheel and is coupled to the sanitizer solution dispenser module. The controller module includes a microcontroller and a memory, and is programmed to log a sanitization record into a sanitization history of at least one user, compare the sanitization history of the user with a sanitization standard, and control the motorized wheel assembly to cause the mobile sanitizing device to approach the user to dispense sanitizing solution to the user when the sanitization history does not meet the sanitization standard.
US08564441B2
Methods and apparatus to visualize locations of radio frequency identification (RFID) tagged items are described. One example method includes receiving a request from a portable electronic device to access product information associated with an individual radio frequency identification (RFID) tagged item, determining a location of the product information in a database, transmitting the located product information to the portable electronic device for display thereon, receiving modified product information associated with the individual RFID tagged item from the portable electronic device, and storing the modified product information to the location of the product information in the database.
US08564440B2
When an RFID is attached to an object to assist testing operations, the following problems are encountered; (1) the RFID of write type tends to cause a failure and is troublesome due to the necessity of rewrite each time the situation is changed, (2) the incorporation of the reader function in a terminal block increases the cost, and (3) the known techniques are targeted for only the connecting operation and are not adapted for a sequence test that takes the most expense in time and effort. The operations are aided by using an RFID reader and a terminal having the function for accessing a database of circuit information, RFID information, and test procedure information.
US08564437B2
A system for providing security for an electronic device comprising an embeddable security device and a remote portable device. In operation, when the embeddable security device and the remote portable device are proximate to each other, the embeddable security component will not trigger an external alarm system. However, when the two devices are not proximate, the embeddable security device is configured to emit a signal that activates the external alarm system.
US08564436B2
A wallet includes semi-rigid first and second portions each having outer and inner sides, the second portion being hingedly coupled to the first portion whereby the second portion is movable relative to the first portion to define open and closed configurations. The first portion inner side includes a pocket. A foldable changing pad is operatively coupled to at least one of the first portion and the second portion. A flexible container is positioned proximate one of the first portion and the second portion, the container having a bottom and at least one wall extending upwardly from the bottom that are movable between collapsed and expanded configurations defining a reservoir for holding a liquid therein, the at least one wall defining an outlet. A lid is removably coupled to the container outlet. A liquid delivery member is coupled to the lid for selectively transferring the liquid through the lid.
US08564431B2
A monitoring and communication system for sanitizer compliance monitoring, comprises a plurality of sanitizer monitoring sensors for collecting sanitize compliance data at a respective plurality of sanitizer stations, each sensor located to monitor whether a person passing through a portal has undergone a sanitization procedure, at least one hub which wirelessly receives sanitizer compliance data transmitted from said plurality of sanitizer monitoring stations, a gateway which wirelessly receives sanitizer compliance data transmitted from the hub, and a wireless cellular telephone link for transmitting the sanitizer compliance data from the gateway to a central monitoring station.
US08564426B2
A system for evaluating risk in driving comprises a processor and a memory. The processor is configured to determine whether a spacial motion data does not fall within the vehicle profile and, in the event that the spacial motion data does not fall within the vehicle profile, to change class/type assignment associated with the vehicle and to modify a trigger threshold associated with an event detector that monitors the spacial motion data. The memory is coupled to the processor and is configured to provide the processor with instructions.
US08564422B2
A vehicle safety system that provides an improved line of sight for oncoming traffic as the vehicle is backed out of a parking space. A set of rear side looking cameras input video information to a display used by the vehicle driver. The cameras are positioned on the rear side portion of the vehicle and are directed generally to traffic coming from the rear left or right side of the vehicle. The camera is automatically activated when the transmission is placed in reverse. The camera video is input to a driver display that allows the driver to view oncoming traffic before the vehicle backs into the traffic lane. The system can also be used to monitor blind spots when a turn signal is activated prior to a lane change.
US08564403B2
A method, system, and apparatus for distributing electricity to electric vehicles, monitoring the distribution thereof, and/or controlling the distribution thereof, provides various components to vehicle operators and station owners to track and control energy usage. Plug outlet devices are associated with a station. A coordinator element is configured to receive vehicle information and information about the station from one or more electric vehicles. The information is verified, stored, and/or aggregated for later display. In addition, the information can be used to determine whether or not to deny electrical charging service to a vehicle using a switch component.
US08564402B2
A lock system that unlocks a lock with an unlock signal, prevents malfunction of locking or unlocking, and reduces power consumption of a receiving unit side that receives the unlock signal. The lock system avoids radio wave interference of the unlock signal and prevents malfunction of locking or unlocking by providing irregularity in a transmission timing of the unlock signal to a device that unlocks a lock with the unlock signal. In regard to a reception of the unlock signal, the lock system sets a receiving window by setting a reception-ON time and a reception-OFF time, and by stopping an operation of the receiving unit except during the reception-ON time, reduction of power consumption can be achieved.
US08564378B2
A voltage-controlled oscillating circuit includes a differential amplifying circuit connected to a resonant element such as a quartz crystal element. The differential amplifying circuit includes first and second input terminals connected to the resonant element and also connected respectively to first and second voltage-controlled capacitors. The differential output terminals of the differential amplifying circuit are connected respectively to first and second emitter follower circuits. The output signal of the first emitter follower circuit is fed back to the second input terminal through a third capacitor and a third voltage-controlled capacitor, and the output signal of the second emitter follower circuit is fed back to the second input terminal through a fourth capacitor and a fourth voltage-controlled capacitor. A control voltage is applied to each of the voltage-controlled capacitors.
US08564377B2
A piezoresistive MEMS oscillator uses an output circuit to control the voltage across the resonator body. This results in a DC bias of the resonator. A current path is provided between the output of the output circuit and the resonator body, such that changes in current through or voltage across the resonator body, resulting from changes in resistance of the resonator body, are coupled to the output. This arrangement uses the bias current flowing through the resonator to derive the output. In this way, the same DC current is used to provide the required DC resonator bias and to drive the output circuit to its DC operating point.
US08564370B2
An error amplifier and a LED circuit comprising the same are provided. The LED circuit comprises an inductor, a group of LEDs and a power MOS connected to the inductor, an error amplifier and a pulse width modulator controlling the gate of the power MOS according to an error amplifier output. The error amplifier comprises a differential input stage, an output stage having a NMOS, a PMOS and an adjusting current source connected to the gate of the PMOS. During a first operation mode, a control voltage makes the adjusting current source turn on, and during a second operation mode, the control voltage makes the adjusting current source turn off.
US08564368B1
The present invention provides a method an apparatus for predistorting an input signal to compensate for non-linearities in an electronic device that operates on the input signal. The invention may be used, for example, to digitally predistort an input signal for a power amplifier in a wireless communication device. The predistorter uses a polynomial approach based on the well-known Volterra series to model the distortion function. A dynamic deviation reduction technique is used to reduce the number of terms in the distortion model and to facilitate implementation. The approach described herein eliminates square functions present in prior art designs and can be implemented using CORDIC circuits.
US08564362B2
A filter circuit includes two parallel digital filters, a DAC, and an LPF. The DAC includes two parallel decoders, a parallel-to-serial converter, a switch driver, and a switch. A PLL circuit supplies a reference clock to the DAC. A frequency divider provided in the DAC divides the frequency of the reference clock by two, and supplies the half frequency clock to a parallel processing section (the two decoders and the parallel-to-serial converter) of the DAC and the two digital filters. This makes it easy to secure a timing margin, permitting use in high-speed communication on the order of several GHz.
US08564359B2
A method and system for limiting the slew rate of the output voltage of one or more high side (HS) NMOS power switches is disclosed. A circuit arrangement configured to control a first NMOS switch is described. The arrangement comprises voltage provisioning means configured to supply a gate voltage to a gate terminal of the first NMOS switch; current provisioning means configured to provide a current; a first control stage configured to provide and/or remove a connection between the gate terminal of the first NMOS switch and the voltage provisioning means, thereby switching the first NMOS switch to an on-state and/or an off-state, respectively; and a first feedback control link between an output terminal of the first NMOS switch and the current provisioning means configured to control the slew-rate of a voltage at the first output terminal.
US08564350B2
A hysteresis device produces an output signal in accordance with hysteresis characteristics that changes at a plurality of thresholds with respect to an input signal. The hysteresis apparatus includes an input signal adjusting section that outputs an adjustment signal in which an offset level corresponding to each of the plurality of thresholds is added to the input signal, a comparator that outputs a first signal based on the adjustment signal, the first signal being binarized, and a determining section that controls the input signal adjusting section to switch the offset level for each of the plurality of thresholds, that acquires the first signal for each switching of the offset level, and that produces a present output signal based on a previous output signal and the first signal corresponding to the threshold relating to a range to which the input signal is belonged.
US08564346B2
Techniques for generating precise non-overlap time and clock phase delay time across a desired frequency range are provided. A non-overlapping clock generation circuit comprises a delay lock loop (DLL) circuit that generates a control voltage to a clock generator circuit coupled thereto. The control voltage operates to maintain precise timing relationship of non-overlapping delayed clock signals generated by the clock generator circuit. In one aspect, the DLL circuit receives an input clock with a known duty cycle and derives an output control voltage to fix the unit delay to a certain portion of the input clock cycle. The clock generator circuit may also include voltage-controlled delay cells that generate sets of clock signals delayed from one another by a non-overlapping time (tnlp).
US08564342B2
In one embodiment, a method includes determining a phase difference between a reference clock and a feedback clock in even and odd cycles for a phase lock loop (PLL). The even and odd cycles are alternating clock periods. A delta value based on the phase difference is determined. The method then adjusts a division value used by a divider to generate the feedback clock during the even cycle based on the delta value where the delta value is of a first polarity. Also, the method adjusts the division value used by the divider to generate the feedback clock during the odd cycle based on the delta value where the delta value is of a second polarity.
US08564341B2
A delayed lock loop (DLL) circuit includes: a phase conversion control unit configured to latch and drive a phase comparison signal in response to the input of a delay enable signal, and output the driven signal as a phase conversion control signal. A phase converting unit configured to control the phase of a delay clock on the basis of the phase conversion control signal, and transmit the controlled delay clock to a delay compensating unit.
US08564335B1
Aspects of the disclosure provide an integrated circuit (IC) chip. The IC chip includes core circuits having an operational mode and a power saving mode, and at least a pad module. The pad module includes a pad, a switchable pull-up module configured to pull up a voltage on the pad when the switchable pull-up module is switched on, a switchable pull-down module configured to pull down the voltage on the pad when the switchable pull-down module is switched on, and a control module configured to control the switchable pull-up module and the switchable pull-down module according to a detection of the voltage on the pad when the core circuits enter the power saving mode.
US08564329B2
It is an object of the invention to provide a digital circuit which can operate normally regardless of binary potentials of an input signal. A semiconductor device having a correcting unit and a logic unit wherein the correcting unit includes a capacitor, first and second switches, wherein the first electrode of the capacitor is connected to the input terminal and the second electrode of the capacitor is connected to the gate of the transistor in the logic circuit, wherein the first switch controls the connection between a gate and drain of the transistor and the second switch controls the potential to be supplied to the drain of the transistor is provided.
US08564328B2
A high-speed signaling system with adaptive transmit pre-emphasis. A transmit circuit has a plurality of output drivers to output a first signal onto a signal path. A receive circuit is coupled to receive the first signal via the signal path and configured to generate an indication of whether the first signal exceeds a threshold level. A first threshold control circuit is coupled to receive the indication from the receive circuit and configured to adjust the threshold level according to whether the first signal exceeds the threshold level. A drive strength control circuit is coupled to receive the indication from the receive circuit and configured to adjust a drive strength of at least one output driver of the plurality of output drivers according to whether the first signal exceeds the threshold level.
US08564323B2
A circuit arrangement (10) for testing a reset circuit (11) comprises the reset circuit (11) and a changeover switch (14). The reset circuit comprises a voltage input (12) for feeding an input voltage (VDD) and an output (13) for providing a reset signal (POR) as a function of the input voltage (VDD). The changeover switch (14) comprises a first input (15) for feeding a test voltage (VTM), a second input (16) for feeding a supply voltage (VBAT), a control input (17) for changing over between the first and the second input (15, 16) as a function of the test signal (TM), and an output (18) that is coupled to the voltage input (12) of the reset circuit (11).
US08564320B2
A connection device for connecting charge-coupled device (CCD) modules to test apparatuses to test the CCD modules includes a connection unit and a test unit. The connection unit includes a plurality of connection pins. The unit under test is electrically connected to the connection unit and the test apparatuses. When the connection pins are in contact with the CCD modules, the CCD modules are electrically connected to the test apparatuses through the connection unit and the test unit, such that the test apparatus receives electric signals generated by the CCD modules to enable quality testing of the CCD modules.
US08564314B2
A capacitive sensor includes at least one substrate, a capacitive touch position sensor, and a capacitive fingerprint sensor. The capacitive touch position sensor is included on the at least one substrate and in a touch sensing area. The capacitive touch position sensor includes electrodes configured to enable detection of presence and position of a touch in the touch sensing area. The capacitive fingerprint sensor is included on the at least one substrate and in as fingerprint sensing area. The capacitive fingerprint sensor includes electrodes configured to enable identification of the fingerprint of a finger placed in the fingerprint sensing area.
US08564305B2
A 3D-IC detector for each layer of a stacked device with N layer, includes a dividing-two circuit coupled to a (N−1) signal; a first comparator is coupled to the dividing-two circuit, wherein an input A is coupled to an initial layer number signal, an input B of the first comparator is coupled to an output of the dividing-two circuit; a second comparator is coupled to the initial layer number by an input A of the second comparator, and a num is coupled to an input B of the second comparator; a first Add/sub circuit is coupled to the num via an input A of the first Add/sub circuit, and coupled to the first comparator via an input B of the first Add/sub circuit, to the second comparator via an input +/− signal of the first Add/sub circuit; and a second Add/sub circuit coupled to the first comparator via an input A of the second Add/sub circuit, to the num via an input B of the second Add/sub circuit.
US08564290B2
A magnetic resonance imaging apparatus for acquiring k-space data from a deformable imaging region of a subject and generating image data of the imaging region at the time of being deformed to a predetermined state, based on the acquired k-space data, includes a gradient coil for applying a gradient magnetic field in a phase encoding direction, and an image data calculation device for calculating a numeric value for defining a relationship between the imaging region at the time of being deformed to the predetermined state and the imaging region at an nth phase encoding and calculating image data of the imaging region at the time of being deformed to the predetermined state, based on the calculated numeric value and the k-space data acquired from the imaging region.
US08564285B2
A magnetic field sensor includes a Hall element configured to generate a Hall element output signal in response to a magnetic field, the Hall element output signal comprising a magnetic field signal component and an offset signal component. The magnetic field sensor also includes a Hall element modulation circuit coupled to receive the Hall element output signal and configured to generate a modulation circuit output signal. The Hall element modulation circuit is modulated with a modulation signal having a changing modulation frequency that changes between a minimum frequency and a maximum frequency.
US08564270B2
An improved discontinuous current mode (DCM) switching power converter that compensates for the effect of dead time. The dead time of the switching power converter is measured during a switching cycle and a baseline on-time for a switch of the switching power converter is determined. The dead time and baseline on-time are used in calculating the desired on-time of the switch during a subsequent switching cycle of the power converter. The desired switch on-time regulates the output voltage to a desired voltage level. The desired switch on-time also maintains the average input current to the power converter in proportion to the input voltage, thereby improving the power factor of the switching power.
US08564251B2
A switch embedded integrated circuit for battery protection includes a first pin to be connected with one terminal of a battery, a second pin to be connected with a load or charger, a third pin to be connected with another terminal of the battery, a MOSFET having a body diode thereof and connected between the first and second pins, a control logic circuit and a detection circuit. The detection circuit monitors the voltage between the first pin and the third pin to determine a detection signal for the control logic circuit to turn on or off the MOSFET and switch the direction of the body diode, thereby providing an over charging and an over discharging protection functions.
US08564250B2
Disclosed is a current sensor including magnetic sensors disposed on a conductor having at least two separated current-carrying areas with different current magnitudes and detecting a magnetic field generated according to currents flowing through the conductor and a controller controlling outputs of the magnetic sensors, wherein the magnetic sensors are disposed in at least two respective areas having different current magnitudes and the controller switches outputs of the magnetic sensors.
US08564246B2
A battery charging system and method, includes a high voltage charger for charging a group or string of series connected battery cells, and a group of individual cell chargers for charging individual ones of the cells. The charging technique includes detecting at least one cell being charged to a predetermined voltage, and then inhibiting the high voltage charger from further charging any of the cells. The individual cell chargers charge individual ones of the cells, except the at least one cell charged to the predetermined voltage.
US08564236B2
A technique for providing a user with effective information in performing an operation is provided in a power tool having a speed change mechanism. A power tool has a speed change mechanism that switches a tool bit 113 from first drive mode in which the tool bit is driven at high speed and low torque to second drive mode in which the tool bit is driven at low speed and high torque, according to load on the tool bit 113. The power tool includes detecting and indicating device 161, 163, 167 that detect a predetermined status condition of the first drive mode and indicate switching from the first drive mode to the second drive mode before switching to the second drive mode.
US08564235B2
A self-adjusting door closer is disclosed. The door closer is self powered and includes a control unit to intelligently control a valve within the door closer to vary the operating characteristics of the door closer as needed. The controller includes a position sensor to determine a position of the door, and at least one input switch to enable user selection of at least one door closer parameter for an installed door closer. The control circuitry is operable to set the valve in response to the user selection of the door closer parameters, and the position of the door, in order to control force exerted by the door closer on the door. A generator can be provided to provide electricity to power the controller and store power to operate the controller.
US08564232B2
A motor drive control device is configured to control driving of a brushless DC motor including a stator having drive coils, a rotor having plural magnetic poles, and plural position detecting units that output position detection signals representing position of the rotor with respect to the stator. The motor drive control device includes a drive voltage generating unit configured to generate and output drive voltages to the motor to drive the motor. An abnormality detecting unit can be used to detect abnormality of the position detection signals. When abnormality of at least one of the position detection signals has been detected by the abnormality detecting unit, the motor drive control device can drive the motor based on at least one of the remaining position detection signals excluding the position detection signal that has been detected as abnormal.
US08564231B2
An electronically commutated motor (ECM) often employs a Hall sensor for reliable operation. Even when a Hall sensor is omitted from a motor having a plurality of stator winding phases (24, 26) and a permanent-magnet rotor (22), one can reliably detect direction of rotation of the rotor by the steps of: (a) differentiating a voltage profile obtained by sampling either (1) induced voltage in a presently currentless phase winding or (2) voltage drop at a transistor, through which current is flowing to a presently energized phase winding, and (b) using such a differentiated signal (du—24″/dt, du—26″/dt) to control current flow in an associated phase winding. In this manner, one obtains reliable commutation, even if the motor is spatially separated from its commutation electronics.
US08564223B2
The invention relates to a light programmable apparatus comprising a light programmable lamp, a setting device and a main structure. The light programmable lamp is selectively electrically connected to the setting device for retrieving a light property setting such as intensity, saturation or color from the setting device. The light programmable lamp comprises: a programmable unit for retrieving and storing the light property setting while the light programmable lamp is selectively electrically connected to the setting device; and a LED module, electrically connected to the programmable unit, for emitting light corresponding to the light property setting.
US08564220B2
A portable lighting device having one or more inputs, at least a first and second output, one or more light sources, an input sensor, an output sensor, an adaptive buck converter, a boost mechanism, an internal power source, and a controller. The input sensor is coupled to the one or more inputs and the output sensor is coupled to the first output. The input and output sensors are coupled to the adaptive buck converter and the boost mechanism and also to the controller. The controller is configured to instruct the adaptive buck converter to condition power inputs at the one or more inputs. The controller is configured to instruct the boost mechanism to boost a stored output from the internal power source.
US08564218B2
An input stage (10) of an apparatus (1) for driving a light-emitting diode (40-42) receives a signal from a power supply (30-32), and an output stage (20) supplies a current to the light-emitting diode (40-42). The peak value divided by the average value of the current forms a ratio. The driving efficiency is improved by providing the input stage (10) with an arrangement (11) for reducing this ratio by manipulation of the signal, without the necessity of using any smoothing capacitors/inductors. The manipulation may comprise an addition of a frequency component to the signal or an adaptation of an amplitude of a frequency component of the signal. This frequency component may be a third and/or fifth and/or seventh harmonic frequency component of a fundamental frequency component of the signal. The arrangement (11) may comprise a resonant tank which may need to be tuned to the frequency component of the signal.
US08564215B2
A light emitting module device includes: a power line through which power is supplied to light emitting modules; and a signal generation circuit which generates a control signal. The power line is shared by a plurality of the light emitting modules, and has switches and switches which turn on or off current conduction to the light emitting modules, through open/close operations. The signal generation circuit individually controls the switches and the switches. The open/close operations include a light-emission period in which the light emitting module emits light; and an extinction period in which the light emitting module is extinguished, and if there is a control signal to be transmitted to the light emitting module, the control signal is superimposed onto supply power. Since a control signal is superimposed onto supply power to each light emitting module, the light emitting modules can be individually controlled. In addition, since the power line can be used also as a communication line, and the power line can be shared by a plurality of the light emitting modules, the number of lines can be decreased.
US08564212B2
Method for managing power of a display and apparatus thereof are provided. The proposed method includes the following steps: calculating a most appropriating voltage value and a most appropriating current value form a plurality of LEDs; and obtaining a first optimal working point according to the most appropriating voltage value and the most appropriating current value, wherein the first optimal working point is used for arranging the plurality of LEDs.
US08564206B2
An LED lighting device includes a step-up chopper which includes a first switching element and increases an output voltage applied from a DC power supply, a step-down chopper which includes a second switching element and decreases the output voltage from the step-up chopper to apply the decreased output voltage to a light source unit having light emitting diodes, a controller which controls operations of the first and the second switching element, a current limiter which includes a current limiting element and a switch; and a voltage detection unit. The controller stops an operation of the first switching element when the voltage detection unit detects the voltage applied to the light source unit exceeding a predetermined voltage value, and the switch allows a current to flow through the path passing through the current limiting element when the operation of the first switching element is stopped.
US08564200B2
The invention provides a metal halide lamp 1 wherein the concentration of the filling components fulfill a condition according to claim 1. Such a lamp is found to be a good alternative to existing high-pressure discharge lamps (Ceramic Discharge Metal halide lamps) based on rare earth fillings or other metal halide fillings. In addition, such a lamp can be dimmed without a substantial shift of the color point. Such a lamp can also have photometric properties that are substantially independent of the arrangement of the lamp and/or the external temperature.
US08564194B2
An organic light emitting diode device includes a gate electrode of a first transistor on a substrate; a gate insulation film on the gate electrode of the first transistor; a source electrode of a second transistor on the gate insulation film and overlapping with the gate electrode of the first transistor; a contact hole exposing the gate electrode of the first transistor and the source electrode of the second transistor; a conductive wiring in the contact hole, for electrically connecting the gate electrode of the first transistor and the source electrode of the second transistor.
US08564187B2
A color display device that increases the efficiency of use of white light emitted from an organic light-emitting diode (OLED) in producing an improved color display. The device includes a plurality of color OLED display pixels, which include an OLED, a color filter layer, and a color conversion matrix sandwiched between the OLED and the color filter layer. The color filter layer has a plurality of color filter elements including a red, green and blue color filter element. The array of subpixels comprised in the color conversion matrix is composed of semiconductor nanocrystals uniformly dispersed in an organic binding material, which may be employed in either down-emitting or up-emitting color OLED display devices.
US08564186B2
Provided is a light source apparatus having a phosphor layer which is subjected to a light beam of a predefined wavelength emitted from a solid light source element as an excitation light beam and which generates fluorescent beam by being excited by the incident excitation light beam and emits the fluorescence beam to outside, and a metal layer which is joined to a predefined surface among outer surfaces of the phosphor layer except an incident surface of the excitation light beam and an outgoing surface of the fluorescence beam for converting excitons excited from a section of the phosphor layer close to the predefined surface into a light beam via surface plasmon polaritons. The light beam converted from the excitons via the surface plasmon polaritons is emitted out of the outgoing surface of the phosphor layer together with the fluorescence beam.
US08564184B2
A spark plug that is equipped with an insulator that has a stem portion on a front end side, a center electrode, and a main metal member that retains the insulator at an engaging projection portion, wherein an inner diameter DIN of the engaging projection portion, the maximum outer diameter dOUT of the stem portion, which faces an inner circumferential surface of the engaging projection portion, its inner diameter dIN, and dielectric constant ∈ of the insulator satisfy the condition of “(DIN−dOUT)/2≦0.40 (mm)”, “(dOUT−dIN)/2≦1.65 (mm)”, and “∈≧9.4”.
US08564182B2
A lamp comprising electric contact members (9,10) at the outside of the lamp for making contact with corresponding electric contact elements (21,22) in a lamp holder surrounding the lamp. The light radiation of the lamp is emitted from the front side (2) of the lamp, which front side (2) is substantially located in a plane perpendicular to the longitudinal direction of the lamp. The contact members (9,10) are located near the circumferential edge of said front side of the lamp.
US08564181B2
A multilayered electroactive polymer (EAP) device and a method of manufacturing the same is provided. The multilayered EAP device includes a plurality of unit layers. Each unit layer includes an EAP layer formed of an electroactive polymer (EAP), a protecting layer configured to prevent a material from penetrating into the EAP layer, and an active electrode formed using a conductive material. The protecting layer may be formed below the active layer or above the active layer. The active electrode may be interposed between two protecting layers.
US08564178B2
A micro electric generator is disclosed, which comprises: at least one electrically conductive fiber, and at least one piezoelectric ceramic layer covering on the surface of that at least one electrically conductive fiber. When a mechanical force is applied to deform the electrically conductive fiber covered with the piezoelectric ceramic layer, electric energy is generated. Also, a method of fabricating the said micro electric generator and an electric generating device are disclosed.
US08564174B2
The present invention is directed to monolithic integrated circuits incorporating an oscillator element that is particularly suited for use in timing applications. The oscillator element includes a resonator element having a piezoelectric material disposed between a pair of electrodes. The oscillator element also includes an acoustic confinement structure that may be disposed on either side of the resonator element. The acoustic confinement element includes alternating sets of low and high acoustic impedance materials. A temperature compensation layer may be disposed between the piezoelectric material and at least one of the electrodes. The oscillator element is monolithically integrated with an integrated circuit element through an interconnection. The oscillator element and the integrated circuit element may be fabricated sequentially or concurrently.
US08564171B2
An acoustic wave element includes a piezoelectric substrate, an IDT electrode, a sidewall, a lid, and an adhesive layer. The IDT electrode is provided on the piezoelectric substrate. The sidewall is provided around the IDT electrode above the piezoelectric substrate. The lid is provided above the sidewall so as to cover a space above the IDT electrode. The adhesive layer is made of an adhesive provided between the lid and the sidewall. The top surface of the sidewall has a groove. The groove is filled with an adhesive, which reduces the protrusion amount of the adhesive.
US08564170B2
A power generator comprises a first substrate 102, a second substrate 103 opposed to the first substrate, first electrodes 104L and 104R and a first electrode 106 which are formed on the first substrate, second electrodes 105L and 105R and a second electrode 107 which are formed on the second substrate, wherein electric charge of the same polarity is held by the first electrode and the second electrode, and the first substrate vibrates such that an angle formed between a segment connecting a centroid of the first electrode 104L (104R) and a centroid of the second electrode 105L (105R), and a half line extending from the centroid of the second electrode 105L (105R) toward the first electrode 104L (104R) in a stationary state in parallel to the main surface of the second substrate does not exceed 55 degrees while the first substrate 102 is stationary and vibrates.
US08564166B2
A motor structure including a stator assembly having a stator core and a winding and a rotor assembly embedded therein having a rotor core and a permanent magnet. The stator core includes a yoke and a plurality of teeth protruding inwards from the yoke. Two adjacent teeth form a wire embedding slot and the winding is placed inside the wire embedding slot and winds around the teeth. The rotor core includes an annular ring having a central axial pore and a plurality of magnetic induction blocks protruding outwards from an outer side of the annular ring. Two adjacent magnetic induction blocks form a radial recess for mounting the permanent magnet. The section of an outer side surface of the magnetic induction blocks is a circular-arc line. The outer side surface employs a point with a distance deviating from the center of the central axial pore as a center of circle.
US08564164B2
A motor includes a rotating member including a first magnet, and a fixed member supporting the rotating member and including a second magnet configuring a magnetic bearing part together with the first magnet. A gap between the first and second magnets is larger than at least one of a contact prevention gap between the rotating member and the fixed member and a clearance between a shaft and a sleeve supporting the shaft.
US08564159B2
Inrush current suppression apparatus for suppressing a transformer inrush current including a transformer side voltage measurement unit which measures a voltage at a side of a transformer, a residual magnetic flux calculation unit which calculates three line-to-line residual magnetic fluxes, a power supply side voltage measurement unit which measures a voltage at a side of a power supply, a stable-state magnetic flux calculation unit which calculates three line-to-line stable-state magnetic fluxes, based on the voltage at the side of the power supply, a phase determination unit which determines a phase in which phases of the three line-to-line stable-state magnetic fluxes are respectively the same in polarity as phases of the three line-to-line residual magnetic fluxes, and a closing unit which closes the circuit breaker in the phase determined by the phase determination unit.
US08564152B1
This invention is an apparatus and method for harnessing water wave energy by transforming it into a continuous flow of water to be converted into mechanical work by means of a water turbine which in turn actuates a generator that transforms the work in to electrical energy. The wave energy device connects distanced water waves in a novel manner that allows them to power one another rather than only themselves alone. By interposing a turbine in the communicating flow of water that transmits power from each wave to the others energy can be siphoned from them and stored for human use.
US08564151B1
A system and method for generating electric power includes a barge with a frame mounted thereon. A paddlewheel is rotationally mounted on one end of the barge to provide rotational torque to a first transmission. The first transmission drives a hydraulic pump for pumping hydraulic fluid to a hydraulic motor. The hydraulic motor drives a second transmission which is operable to drive an electric generator for generating electricity. During operation, the force of naturally flowing water turns the paddlewheel. This in turn provides rotational power to drive the transmissions, hydraulic pump and hydraulic motor. The frame may further be divided into two hingedly connected portions. One portion of the frame may be rotated out of the water to control the turning of the paddlewheel as well as perform maintenance on the paddlewheel.
US08564141B2
A chip unit includes: a first semiconductor chip and a second semiconductor chip disposed such that their surfaces for forming first bonding pads and second bonding pads face each other; first and second connection members disposed on the surfaces of the first and second semiconductor chips for forming the first and second bonding pads, and having redistribution lines which have one ends connected with the first and second bonding pads and the other ends projecting beyond one edges of the first and second semiconductor chips and films; an adhesive member interposed between the first connection members and the second connection members; and via patterns passing through the adhesive member and connecting projecting portions of the redistribution lines of the first and second connection members with each other.
US08564137B2
The present disclosure provides a system and method for relieving stress and providing improved heat management in a 3D chip stack of a multichip package. A stress relief apparatus is provided to allow the chip stack to adjust in response to pressure, thereby relieving stress applied to the chip stack. Additionally, improved heat management is provided such that the chip stack adjusts in response to thermal energy generated within the chip stack to remove heat from between chips of the stack, thereby allowing the chips to operate as desired without compromising the performance of the chip stack. The chip stack also includes an array of flexible conductors disposed between two chips, thereby providing an electrical connection between the two chips.
US08564135B2
Disclosed is a backside illuminated image sensor including a light receiving element formed in a first substrate, an interlayer insulation layer formed on the first substrate including the light receiving element, a via hole formed through the interlayer insulation layer and the first substrate while being spaced apart from the light receiving element, a spacer formed on an inner sidewall of the via hole, an alignment key to fill the via hole, interconnection layers formed on the interlayer insulation layer in a multilayer structure in which a backside of a lowermost layer of the interconnection layers is connected to the alignment key, a passivation layer covering the interconnection layers, a pad locally formed on a backside of the first substrate and connected to a backside of the alignment key, and a color filter and a microlens formed on the backside of the first substrate corresponding to the light receiving element.
US08564134B2
The present invention provides a method of manufacturing a gallium nitride (GaN) substrate on a heterogeneous substrate at low cost while realizing performance improvement and long operational lifespan of semiconductor devices, such as LEDs or laser diodes, which are manufactured using the GaN substrate. The semiconductor substrate includes a substrate, a first semiconductor layer arranged on the substrate, a mask arranged on a first region of the first semiconductor layer, a metallic material layer arranged on the first semiconductor layer and the mask, the metallic material layer being arranged in a direction intersecting the mask, a second semiconductor layer arranged on the first semiconductor layer and the metallic material layer, and a cavity in the first semiconductor layer and arranged under the metallic material layer.
US08564132B2
A local interconnect structure is provided in which a tungsten region, i.e., tungsten stud, that is formed within a middle-of-the-line (MOL) dielectric material is not damaged and/or contaminated during a multiple interconnect patterning process. This is achieved in the present disclosure by forming a self-aligned tungsten nitride passivation layer within a topmost surface and upper sidewalls portions of the tungsten region that extend above a MOL dielectric material which includes a first interconnect pattern formed therein. During the formation of the self-aligned tungsten nitride passivation layer, a nitrogen enriched dielectric surface also forms within exposed surface of the MOL dielectric material. A second interconnect pattern is then formed adjacent to, but not connect with, the first interconnect pattern. Because of the presence of the self-aligned tungsten nitride passivation layer on the tungsten region, no damaging and/or contamination of the tungsten region can occur.
US08564130B2
This invention provides a vertical organic transistor that can realize large current modulation and a reduction in production cost, and a method for manufacturing the vertical organic transistor. The vertical organic transistor comprises an upper electrode, a lower electrode, an organic semiconductor provided between both the electrodes, and an intermediate electrode provided within the organic semiconductor, the intermediate electrode being a layered continuous body comprising a continuous insulating metal compound and particulate metals distributed within the insulating metal compound.
US08564108B2
A BGA type semiconductor device includes: a substrate having wirings and electrodes; a semiconductor element disposed on the substrate, having a rectangular plan shape, and a plurality of electrodes disposed along each side of the semiconductor element; a plurality of wires connecting the electrodes on the semiconductor element with the electrodes on the substrate; a heat dissipation member disposed on the substrate, covering the semiconductor element, and having openings formed in areas facing apex portions of the plurality of wires connected to the electrodes formed along each side of the semiconductor element; and a sealing resin member for covering and sealing the semiconductor element and heat dissipation member.
US08564104B2
According to an embodiment of the invention, a passivation layer structure of a semiconductor device disposed on a semiconductor substrate is provided, which includes a passivation layer structure disposed on the semiconductor substrate, wherein the passivation layer structure includes a halogen-doped aluminum oxide layer. According to an embodiment of the invention, a method for forming a passivation structure of a semiconductor device is provided.
US08564102B2
A semiconductor device and a method of fabricating a semiconductor device. The semiconductor device includes an interlayer insulation layer pattern, a metal wire pattern exposed by a passage formed by a via hole formed in the interlayer insulation layer pattern to input and output an electrical signal, and a plated layer pattern directly contacting the metal wire pattern and filling the via hole. The method includes forming an interlayer insulation layer having a metal wire pattern to input and output an electrical signal formed therein, forming a via hole to define a passage that extends through the interlayer insulation layer until at least a part of the metal wire pattern is exposed, and forming a plated layer pattern to fill the via hole and to directly contact the metal wire pattern by using the metal wire pattern exposed through the via hole as a seed metal layer.
US08564098B2
Disclosed is a method for controlling the recombination rate in the base region of a bipolar semiconductor component, and a bipolar semiconductor component.
US08564094B2
Metal-insulator-metal capacitors with a bottom electrode including at least two portions of a metal nitride material. At least one of the portions of the metal nitride material includes a different material than another portion. Interconnects including at least two portions of a metal nitride material are also disclosed, at least one of the portions of the metal nitride material are formed from a different material than another portion of the metal nitride material. Methods for fabricating such MIM capacitors and interconnects are also disclosed, as are semiconductor devices including such MIM capacitors and interconnects.
US08564092B2
In one aspect, the present invention relates generally to integrated circuit (IC) packages and more specific to some embodiments of IC power convertor technologies. In particular, IC packages that have a high degree of scalability to handle high voltage or current levels, good heat dissipation properties, flexible adaptability to generate packages operable at a wide range of current levels and having a wide range of power adaptability, lends itself to rapid inexpensive prototyping, the ability to adapt various substrates and IC devices to one another without extensive retooling or custom designing of components, as well as other advantages.
US08564088B2
In a semiconductor body, a semiconductor device has an active region with a vertical drift section of a first conduction type and a near-surface lateral well of a second, complementary conduction type. An edge region surrounding this active region comprises a variably laterally doped doping material zone (VLD zone). This VLD zone likewise has the second, complementary conduction type and adjoins the well. The concentration of doping material of the VLD zone decreases to the concentration of doping material of the drift section along the VLD zone towards a semiconductor chip edge. Between the lateral well and the VLD zone, a transitional region is provided which contains at least one zone of complementary doping located at a vertically lower point than the well in the semiconductor body.
US08564076B1
A MEMS device is disclosed. The MEMS device comprises a MEMS substrate. The MEMS substrate includes a first semiconductor layer connected to a second semiconductor layer with a dielectric layer in between. MEMS structures are formed from the second semiconductor layer and include a plurality of first conductive pads. The MEMS device further includes a base substrate which includes a plurality of second conductive pads thereon. The second conductive pads are connected to the first conductive pads. Finally, the MEMS device includes a conductive connector formed through the dielectric layer of the MEMS substrate to provide electrical coupling between the first semiconductor layer and the second semiconductor layer. The base substrate is electrically connected to the second semiconductor layer and the first semiconductor layer.
US08564072B2
A semiconductor device includes a blocking structure between a metal layer and at least one underlying layer. The blocking structure has a first layer configured for preventing diffusion of metal from the metal layer into the at least one underlying layer, and a second layer configured for enhancing electrical performance of the semiconductor device.
US08564063B2
A method of manufacturing a semiconductor device having metal gate includes providing a substrate having at least a dummy gate, a sacrificial layer covering sidewalls of the dummy gate and a dielectric layer exposing a top of the dummy gate formed thereon, forming a sacrificial layer covering sidewalls of the dummy gate on the substrate, forming a dielectric layer exposing a top of the dummy gate on the substrate, performing a first etching process to remove a portion of the sacrificial layer surrounding the top of the dummy gate to form at least a first recess, and performing a second etching process to remove the dummy gate to form a second recess. The first recess and the second recess construct a T-shaped gate trench.
US08564060B2
There is no effective method for fabricating a semiconductor power device containing UMOSFET possessing large channel mobility and whose threshold voltage can be lowered with no loss in blocking voltage. A semiconductor device with large blocking voltage is provided utilizing silicon carbide trench MOSFET possessing both narrow regions where the p body concentration is low, and wide regions where the p body concentration is high.
US08564055B2
A semiconductor device includes a substrate, an active gate trench in the substrate, the active gate trench has a first top gate electrode and a first bottom source electrode, and a gate runner trench comprising a second top gate electrode and a second bottom source electrode. The second top gate electrode is narrower than the second bottom source electrode.
US08564052B2
A trench MOSFET comprising a plurality of transistor cells, multiple trenched floating gates in termination area is disclosed. The trenched floating gates have trench depth equal to or deeper than body junction depth of body regions in active area. In some preferred embodiments, the trench MOSFET further comprises a gate metal runner surrounding outside the source metal and extending to the gate metal pad. Furthermore, the termination area further comprises an EPR surrounding outside the trenched floating gates.
US08564050B2
A three dimensional (3D) semiconductor device includes; a vertical channel extending from a lower end proximate a substrate to an upper end and connecting a plurality of memory cells, and a cell array comprising the plurality of cells, wherein the cell array is arranged in a gate stack of layers having a stair-stepped structure disposed on the substrate. The gate stack includes a lower layer including a lower select line coupled to a lower non-memory transistor proximate the lower end, upper layers including conductive lines respectively coupled to an upper non-memory transistor proximate the upper end and connected as a single conductive piece to form an upper select line, and intermediate layers respectively including a word line and coupled to a cell transistor, wherein the intermediate layers are disposed between the lower select line and the upper select line.
US08564046B2
A vertical semiconductor device and a method of making a vertical semiconductor device include a first semiconductor pattern formed on a substrate and a first gate structure formed on a sidewall of the first semiconductor pattern. A second semiconductor pattern is formed on the first semiconductor pattern. A plurality of insulating interlayer patterns is formed on sidewalls of the second semiconductor pattern. The insulating interlayer patterns are spaced apart from each other to define grooves between the insulating interlayer patterns. The plurality of second gate structures is disposed in the grooves, respectively.
US08564044B2
An integrated circuit is disclosed that includes a split gate memory device comprising a select gate is located over a substrate. A charge storage layer includes a layer of discrete storage elements and a layer of high-k dielectric material covering at least one side of the layer of discrete storage elements. At least a portion of a control gate is located over the charge storage layer. The control gate includes a layer of barrier work function material and a layer of gate material located over the layer of barrier work function material.
US08564039B2
Semiconductor devices include a transistor having a gate structure located close to a channel region that comprises a colossal magnetocapacitive material. The gate structure is configured to affect electrical current flow through the channel region between a source and a drain. The colossal magnetocapacitive material optionally may be disposed between two structures, one or both of which may be electrically conductive, magnetic, or both electrically conductive and magnetic. Methods of fabricating semiconductor devices include forming a colossal magnetocapacitive material close to a channel region between a source and a drain of a transistor, and configuring the colossal magnetocapacitive material to exhibit colossal magnetocapacitance for generating an electrical field in the channel region. Methods of affecting current flow through a transistor include causing a colossal magnetocapacitive material to exhibit colossal magnetocapacitance and generate an electrical field in a channel region of a transistor.
US08564035B2
To fabricate an active matrix type display device integrated with an image sensor at a low cost and without complicating process, the image sensor includes a thin film transistor is in a pixel of a plurality of pixels, an insulating layer is over the thin film transistor, a plurality of first electrodes, which is a shielding layer, is over the insulating layer, a photoelectric conversion layer including a semiconductor film is over the plurality of the first electrodes, and a second electrode over the photoelectric conversion layer. The thin film transistor can include polycrystal silicon. The semiconductor film can include amorphous silicon.
US08564034B2
In a solid-state imaging device, a pixel has a first island-shaped semiconductor (P11) formed on a substrate (1) and a drive output circuit has second island-shaped semiconductors (4a to 4c) formed on the substrate at the same height as that of the first island-shaped semiconductor (P11). The first island-shaped semiconductor (P11) has a first gate insulating layer (6b) formed on an outer periphery thereof and a first gate conductor layer (105a) surrounding the first gate insulating layer (6b). The second island-shaped semiconductors (4a to 4c) have a second gate insulating layer (6a) formed on an outer periphery thereof and a second gate conductor layer (7a) surrounding the second gate insulating layer (6a). The first gate conductor layer (105a) and the second gate conductor layer (7a) have bottom portions located on the same plane.
US08564032B2
A photodetector device includes: a first semiconductor region of a first conductivity type electrically connected to a first external electrode: a second semiconductor region of a second conductivity type formed on the first semiconductor region; a third semiconductor region of the first conductivity type formed on the second semiconductor region; and a plurality of fourth semiconductor regions of the second conductivity type formed on the second semiconductor region, each of the plurality of fourth semiconductor regions being surrounded by the third semiconductor region, including a second conductivity type impurity having a concentration higher than a concentration of the second semiconductor region, and electrically connected to a second external electrode.
US08564029B2
The present invention relates to a transistor and the method for forming the same. The transistor of the present invention comprises a semiconductor substrate; a gate dielectric layer formed on the semiconductor substrate; a gate formed on the gate dielectric layer; a channel region under the gate dielectric layer; and a source region and a drain region located in the semiconductor substrate and on respective sides of the channel region, wherein at least one of the source and drain regions comprises a set of dislocations that are adjacent to the channel region and arranged in the direction perpendicular to a top surface of the semiconductor substrate, and the set of dislocations comprises at least two dislocations.
US08564019B2
The invention relates to a process for fabricating a heterostructure. This process is noteworthy in that it comprises the following steps: a) a strained crystalline thin film is deposited on, or transferred onto, an intermediate substrate; b) a strain relaxation layer, made of crystalline material capable of being plastically deformed by a heat treatment at a relaxation temperature at which the material constituting the thin film deforms by elastic deformation is deposited on the thin film; c) the thin film and the relaxation layer are transferred onto a substrate; and d) a thermal budget is applied at at least the relaxation temperature, so as to cause the plastic deformation of the relaxation layer and the at least partial relaxation of the thin film by elastic deformation, and thus to obtain the final heterostructure.
US08564018B2
A structure for an integrated circuit is disclosed. The structure includes a crystalline substrate and four crystalline layers. The first crystalline layer of first lattice constant is positioned on the crystalline substrate. The second crystalline layer has a second lattice constant different from the first lattice constant, and is positioned on said first crystalline layer. The third crystalline layer has a third lattice constant different than said second lattice constant, and is positioned on said second crystalline layer. The strained fourth crystalline layer includes, at least partially, a MOSFET device.
US08564007B2
A semiconductor component comprising an optically active layer and characterized by at least one cooling element and at least one coupling element. Also disclosed is an arrangement comprising a multiplicity of optically active layers and a method for producing a semiconductor component.
US08564002B2
An organic light emitting display device and a method for manufacturing the same are provided. The organic light emitting display device includes a substrate including a capacitor region, a buffer layer disposed on the substrate, a semiconductor layer disposed on the buffer layer of the capacitor region, a gate insulation film formed on the semiconductor layer, and a transparent electrode formed on the gate insulation film of the capacitor region, wherein a cross-sectional width of the transparent electrode is smaller than a width of the semiconductor layer.
US08563995B2
A light emitting device with a template comprising a substrate and a nested superlattice. The superlattice has Al1-x-yInyGaxN wherein 0≦x≦α and 0≦y≦1 with x increasing with distance from said substrate. An ultraviolet light-emitting structure on the template has a first layer with a first conductivity comprising Al1-x-yInyGaxN wherein α≦x; a light emitting quantum well region above the first layer comprising Al1-x-yInyGaxN wherein α≦x≦b; and a second layer over the light emitting quantum well with a second conductivity comprising Al1-x-yInyGaxN wherein b≦x. The light emitting device also has a first electrical contact in electrical connection with the first layer, a second electrical contact in electrical connection with the second layer; and the device emits ultraviolet light.
US08563994B2
A light-emitter including: a transparent first electrode; a charge injection transport layer; a light-emitting layer; and a transparent second electrode, layered in this order. The light-emitting layer is defined by a bank. The charge injection transport layer has a recessed structure including: an inner bottom surface in contact with a bottom surface of the light-emitting layer; and an inner side surface continuous with the inner bottom surface. The inner side surface includes: a lower edge continuous with the inner bottom surface; and an upper edge continuous with the lower edge. The upper edge is aligned with a bottom periphery of the bank, or has contact with a bottom surface of the bank. The charge injection transport layer has contact with a side surface of the light-emitting layer.
US08563993B2
A capacitor unit in a display device includes: a capacitor element having a first capacitor electrode connected to a power line and provided in a GM electrode layer and a second capacitor electrode connected to a line and provided in an SD electrode layer; a backup capacitor element having a first backup capacitor electrode provided in the GM electrode layer and a second backup capacitor electrode connected to the power line and provided in the SD electrode layer; a disconnect-able portion at which a connection between the second capacitor electrode and the line can be disconnected; and a connectable portion at which the first backup capacitor electrode and the line can be connected, and the disconnect-able portion and the connectable portion are arranged at a position in which the disconnect-able portion and the connectable portion overlap in a stacking direction.
US08563979B2
In a liquid crystal display device, a first substrate includes electrical wirings and a semiconductor integrated circuit which has TFTs and is connected electrically to the electrical wirings, and a second substrate includes a transparent conductive film on a surface thereof. A surface of the first substrate that the electrical wirings are formed is opposite to the transparent conductive film on the second substrate. Also, in a liquid crystal display device, a first substrate includes a matrix circuit and a peripheral driver circuit, and a second substrate is opposite to the first substrate. Spacers are provided between the first and second substrates. A seal material is formed outside the matrix circuits and the peripheral driver circuits in the first and second substrates. A protective film is formed on the peripheral driver circuit has substantially a thickness equivalent to an interval between the substrates which is formed by the spacers.
US08563978B2
A display device includes a substrate, a first conductive film pattern including a gate electrode and a first capacitor electrode on the substrate, a gate insulating layer pattern on the first conductive film pattern, a polycrystalline silicon film pattern including an active layer and a second capacitor electrode on the gate insulating layer pattern, an interlayer insulating layer on the polycrystalline silicon film pattern, a plurality of first contact holes through the gate insulating layer pattern and the interlayer insulating layer to expose a portion of the first conductive film pattern, a plurality of second contact holes through the interlayer insulating layer to expose a portion of the polycrystalline silicon film pattern, and a second conductive film pattern including a source electrode, a drain electrode, and a pixel electrode on the interlayer insulating layer.
US08563975B2
A hetero pn junction semiconductor constituted of an electrically conductive polymer as a p-type semiconductor and an inorganic oxide as an n-type semiconductor, which is characterized in that the electrically conductive polymer is filled among nanoparticles of the inorganic oxide so as to satisfy the following Equation 1: Vp/Vn=X×σn/σp(0.1≦X≦10) Vp=Volume of the electrically conductive polymer as a p-type semiconductor σp=Electrical conductivity of the electrically conductive polymer as a p-type semiconductor Vn=Volume of the inorganic oxide nanoparticles as an n-type semiconductor σn=Electrical conductivity of the inorganic oxide nanoparticles as an n-type semiconductor The hetero junction semiconductor is produced by mixing and dispersing nanoparticles of the inorganic oxide in a monomer of the electrically conductive polymer; and thereafter, irradiating light upon which the nanoparticles generate holes and simultaneously applying a constant current by controlling at least one of a current density and a current application time, thereby polymerizing the monomer through a photo electrochemical reaction to form an electrically conductive polymer.
US08563972B2
There is provided an electroactive material having Formula I wherein: Q is the same or different at each occurrence and can be O, S, Se, Te, NR, SO, SO2, or SiR3; R is the same or different at each occurrence and can be hydrogen, alkyl, aryl, alkenyl, or alkynyl; R1 through R8 are the same or different and can be hydrogen, alkyl, aryl, halogen, hydroxyl, aryloxy, alkoxy, alkenyl, alkynyl, amino, alkylthio, phosphino, silyl, —COR, —COOR, —PO3R2, —OPO3R2, or CN.
US08563971B2
A light emitting device includes: a first electrode, a conductor film, an organic layer having a light emitting layer made of an organic light emitting material provided therein, a semi-transmissive reflective film, a resistive layer, and a second electrode, all of which are laminated successively, wherein the conductor film transmits a part of light from the light emitting layer therethrough, the first electrode reflects the light having been transmitted through the conductor film, the second electrode transmits the light having been transmitted through the semi-transmissive reflective film therethrough, an average film thickness of the conductor film on the first electrode is from 1 nm to 6 nm, and an average film thickness of the semi-transmissive reflective film on the organic layer is from 1 nm to 6 nm.
US08563967B2
An organic functional device (1; 40; 50) comprising a substrate (2) having a first electrode layer (3) and at least a first substrate shunt structure (6), at least a first organic functional layer (7) provided on top of the first electrode layer (3), a second, transparent electrode layer (8) arranged on top of the first organic functional layer (7). The organic functional device further comprises a plurality of mutually spaced apart second electrode shunting structures (9a-d) which are each in electrical contact with the second electrode layer (8) and with the first substrate shunt structure (6).
US08563961B2
Disclosed are a semiconductor storage device and a method for manufacturing the semiconductor storage device, whereby the bit cost of memory using a variable resistance material is reduced. The semiconductor storage device has: a substrate; a first word line (2) which is provided above the substrate; a first laminated body, which is disposed above the first word line (2), and which has the N+1 (N≧1) number of first inter-gate insulating layers (11-15) and the N number of first semiconductor layers (21p-24p) alternately laminated in the height direction of the substrate; a first bit line (3), which extends in the direction that intersects the first word line (2), and which is disposed above the laminated body; a first gate insulating layer (9) which is provided on the side surface of the N+1 number of the first inter-gate insulating layers (11-15) and those of the N number of the first semiconductor layers (21p-24p); a first channel layer (8p) which is provided on the side surface of the first gate insulating layer (9); and a first variable resistance material layer (7) which is provided on the side surface of the first channel layer. The first variable material layer (7) is in a region where the first word line (2) and the first bit line (3) intersect each other. Furthermore, a polysilicon diode (PD) is used as a selection element.
US08563951B2
Exposure systems include a beam generator, which is configured to irradiate source beams in a direction of an object to be exposed by the source beams, along with first and second beam shapers. The first beam shaper, which is disposed proximate the beam generator, has a first aperture therein positioned to pass through the source beams received from the beam generator. The second beam shaper is disposed proximate the first beam shaper. The second beam shaper includes a plate having a second aperture therein, which is positioned to receive the source beams that are passed through the first aperture of the first beam shaper. The second beam shaper further includes a first actuator and a first shift screen mechanically coupled to the first actuator.
US08563947B2
A method of determining the radiation type and energy distribution of a radiation source that outputs radiation. The method including providing a plurality of detector materials and exposing the plurality of detector materials to the radiation. Each of the plurality of detector materials stores a signal in response to being exposed to the radiation. The signals are representative of the radiation. The plurality of detector materials is stimulated to output the signals as measured signals. These measured signals are used to determine the radiation type and energy distribution of the radiation.
US08563936B2
Bidimensional dosimetric detector, comprising: a monolithic base-matrix (1) made of homoepitaxial silicon with a surface for exposition to the radiation, a plurality of radiation-sensible junction diodes (2) for producing a plurality of electrical signals in response to the radiation, electrical terminals (3) connected to said diodes for feeding said produced electrical signals to an acquisition and processing unit (5), wherein the perimeter of one or more said diodes is defined by a boundary region of the electrical field of same diode.
US08563932B2
A device and method for diffusion optical tomography are disclosed. The device includes a sensing circuit with a plurality of light sources and sensors and an optical tomography element having a control unit, a computation unit and an image reconstruction unit. First, the computation unit constructs an image model of an object using optical parameters of the object, and performs decomposition on the image model. Then, the control unit instructs the light sources to emit light to the object, and receives a plurality of optical signals generated by the object in response to the light. Finally, the image reconstruction unit combines the optical signals and the decomposed image model and reconstructs an image of the object based on the combination of the optical signals and the decomposed image model.
US08563925B2
In order to enable the mass spectroscope to reduce the operation load of the adjustment of the amplitude difference, and to reduce the increase in power consumption caused by the difference between the resonance frequency and the drive frequency, the resonance circuit unit of the ion trap section is configured to control the amplitude difference adjustment section of the resonance circuit unit to adjust that the amplitude difference between the high-voltage RF signals decreases, and controls the frequency synchronizing section of the resonance circuit unit to adjust that the resonance frequency of the resonance circuit is aligned with the drive frequency of the RF signal source, on the basis of the information about the amplitude difference between the high-voltage RF signals and the resonance frequency of the resonance circuit unit, which have been measured by a resonance frequency/amplitude difference measuring unit.
US08563923B2
An orthogonal acceleration time-of-flight mass spectrometer has: an ion source for ionizing a sample; a conductive box into which the ions are introduced; ion acceleration device causing the ions to be accelerated in a pulsed manner in synchronism with a signal giving a starting point of measurement; and ion detector for detecting the ions in synchronism with the acceleration of the ions. The conductive box is provided with an ion injection port and an ion exit port. A lift voltage is applied to the conductive box. This voltage is switched in synchronism with the signal giving the starting point of the measurement.
US08563912B2
The invention relates to a microscope having a stage for supporting a sample to be examined, a recording sensor, an imaging optic for imaging the sample onto the recording sensor, a moving unit by means of which the distance between the stage and the imaging optic can be changed, a control unit for controlling an image recording of the sample and a focus-holding unit for maintaining a prescribed focal position for image recording of the sample at temporal intervals, wherein the focus-holding device comprises at least one hardware element and one software module, wherein the focus-holding unit is fully integrated in the control unit, on both the hardware and software sides.
US08563911B2
A device for opening and locking a tail unit is provided. The tail unit includes a body and at least one fin, pivotable relative to the body along a first axis, that has a projection that forms an element. The device comprises a control ring, slidable relative to the body along a second axis, that includes a component, forming an element, that bears against the projection to deploy the fin, the second axis being non-parallel and non-secant to the first axis. A means for shaping one of the elements during translation along the second axis of the control ring towards the projection of the fin is provided on the other element. The body includes a bearing surface to support the fin during shaping, in which the support of the fin on the bearing surface corresponds to the deployed position of the fin.
US08563910B2
A projectile's payload is oriented (independently or by orientation of the projectile itself) toward a target just prior to firing (e.g., detonation of the payload), e.g., for munitions providing an increased kill and casualty area and a fire “in defilade” (left, right, backwards or at any angle) capability.
US08563895B2
The invention relates to a method for processing a movable substrate by means of laser, wherein the processing results in the release of material separated from the substrate, wherein during processing of the substrate a higher pressure prevails on the side of the substrate where the substrate is impinged by the laser beam than on the other side of the substrate, and to a device for performing such a processing, wherein the device comprises guide means for guiding the substrate and laser processing means adapted to cast onto the substrate a laser spot which processes the substrate in a laser processing zone, and comprises means for generating a higher pressure on the side of the substrate where the substrate is impinged by the laser beam than on the other side of the substrate.
US08563894B2
A combined machine for punching and laser cutting of a flat sheet metal includes a fixed base, a fixed punching head, a laser cutting head and a manipulator for the movement of the sheet metal on a Cartesian plane. The laser cutting head is carried by a variable-aperture compass structure, which is mobile along a linear guide.
US08563883B1
A transfer switch for interconnection in a power supply system for an electrical load, such as a traffic signal, for selectively switching between primary and alternate power sources. The transfer switch includes a housing having a cover that is movable between open and closed positions for selectively providing access to an interior. An input receptacle is configured to engage an electrical connector of the alternate power source. The input receptacle is movable between a first position for facilitating engagement of the connector with the receptacle when the cover is open, and a second position when the cover closed. A selector switch is contained within the interior and interconnected with the load and the primary and alternate power sources. The selector switch selectively connects the primary power source and the alternate power source to the load, and the cover prevents access to the selector switch when the cover is closed.
US08563879B2
A low tare weight filter system is disclosed. The low weight makes the system especially advantageous for use in inertial microbalance instrumentation where small variations in mass must be accounted for to deliver accurate results. Moreover, the assembly is constructed to permit the filter collector to flex and stretch over a complimentary body incorporated in a filter support base and securely fasten to the same. Such use offers further advantages for instrument performance. It insures consistent apposition and long-term stability in the contact between the filter media and its reference surface.
US08563874B2
An electromagnetic interference shielding arrangement comprises a first and a second electro-conductive components that are arranged to be joined. The first electro-conductive component includes a first electro-conductive contact surface. The second electro-conductive component includes a second electro-conductive contact surface and a shielding member extending from the second electro conductive component at a location adjacent the second electro-conductive surface. The arrangement is such that, in the joined configuration of the first and the second electro-conductive components the first and the second electro-conductive surfaces abut to create an electro conductive engagement region that is adjacent the shielding member.
US08563869B2
A circuit board and a semiconductor module with high endurance against thermal cycles, and which is hard to be broken under thermal cycles, even if thick metal circuit board and thick metal heat sink are used, corresponding to high power operation of a semiconductor chip are provided. This circuit board includes, an insulating-ceramic substrate, a metal circuit plate bonded to one face of the insulating-ceramic substrate, a metal heat sink bonded to another face of the insulating-ceramic substrate, wherein (t12−t22)/tc2/K<1.5, where, a thickness of the insulating ceramics substrate is tc, a thickness of the metal circuit plate is t1, a thickness of the metal heat sink is t2, and an internal fracture toughness value of the insulating ceramics substrate is K.
US08563866B2
This invention is to provide a protector capable of discharging water into an outside and a wire harness including the protector.A drainage hole is formed as a portion so as to discharge water collecting in an electrical wire receiving portion into an outside. The drainage hole is formed so as to penetrate through the electrical wire receiving portion and toward the rear of a vehicle. Further, the drainage hole is formed so as to gradually slope from the electrical wire receiving portion toward the ground surface. The drainage hole is a through hole which is formed at a position near an end portion of a protection member for the vehicle interior. The drainage hole is formed and located in a portion of the wire harness which is the closest to the ground surface.
US08563853B2
A solar cell device is provided, including a transparent substrate, a transparent conductive layer disposed over the transparent substrate, a photovoltaic element formed over the composite transparent conductive layer, and an electrode layer disposed over the photovoltaic element. In one embodiment, the transparent conductive layer includes lithium and fluorine-co-doped tin oxides, and the lithium and fluorine-co-doped tin oxides includes a plurality of polyhedron grains, and the polyhedron grains have a polyhedron grain distribution density of 60-95%.
US08563849B2
Arrangements of diodes and heat spreaders for solar modules are described. For example, a solar module may include a backsheet with a low profile, surface-mount diode disposed above the backsheet. A pair of ribbon interconnects is coupled to the low profile, surface-mount diode and may penetrate the backsheet.
US08563842B2
A method and apparatus for separating and extracting main sound sources from a mixed musical sound signal are provided. A musical sound source separation apparatus may include an prior information signal compressor to compress an prior information signal including a characteristic of a predetermined sound source, a mixed signal divider to divide a mixed signal including a plurality of sound sources into a plurality of segments, a Nonnegative Matrix Partial Co-Factorization (NMPCF) analyzer to acquire common information shared by the plurality of segments, by applying an NMPCF algorithm to the prior information signal, and a target musical instrument signal separator to separate a target musical instrument signal corresponding to the predetermined sound source from the mixed signal, based on the common information.
US08563836B1
A novel maize variety designated PH1CJ6 and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH1CJ6 with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH1CJ6 through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH1CJ6 or a locus conversion of PH1CJ6 with another maize variety.
US08563835B1
A novel maize variety designated PH10MS and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH10MS with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH10MS through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH10MS or a locus conversion of PH10MS with another maize variety.
US08563831B1
A novel maize variety designated PH17AN and seed, plants and plant parts thereof. Methods for producing a maize plant that comprise crossing maize variety PH17AN with another maize plant. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into PH17AN through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. Hybrid maize seed, plant or plant part produced by crossing the variety PH17AN or a locus conversion of PH17AN with another maize variety.
US08563819B1
The present invention is in the field of soybean variety NE0810220 breeding and development. The present invention particularly relates to the soybean variety NE0810220 and its progeny, and methods of making NE0810220.
US08563813B2
A novel soybean variety, designated XB009K11 is provided. Also provided are the seeds of soybean variety XB009K11, cells from soybean variety XB009K11, plants of soybean XB009K11, and plant parts of soybean variety XB009K11. Methods provided include producing a soybean plant by crossing soybean variety XB009K11 with another soybean plant, methods for introgressing a transgenic trait, a mutant trait, and/or a native trait into soybean variety XB009K11, methods for producing other soybean varieties or plant parts derived from soybean variety XB009K11, and methods of characterizing soybean variety XB009K11. Soybean seed, cells, plants, germplasm, breeding lines, varieties, and plant parts produced by these methods and/or derived from soybean variety XB009K11 are further provided.
US08563810B2
The present invention relates to a new and distinctive canola cultivar, designated DN040244A. Also included are seeds of canola cultivar DN040244A, to the plants, or plant parts, of canola DN040244A and to methods for producing a canola plant produced by crossing the canola DN040244A with itself or another canola cultivar, and the creation of variants by mutagenesis or transformation of canola DN040244A.
US08563799B2
A wound-covering hydrogel material which has excellent stretchability and absorbs exudates from wounds. It can maintain over long a wet environment which is suitable for accelerating the healing of wounds. There is no fear of causing pain or damaging the regenerated skin when the wound-covering hydrogel material is replaced with a fresh one. The wound-covering hydrogel material prepared by spreading a hydrogel comprising a water-soluble semi-synthetic polymer, glycerol and water, on a laminated two-layer film composed of a polyurethane film and hydrophobic fibers. The covering material has a moisture permeability as measured by the cup method in accordance with JIS Z0208 of 500-2,000 (g/m2/24 h).
US08563787B2
Process for preparing homoallyl alcohols by catalyzed reaction of alkenes with aldehydes or ketones, wherein the reaction is carried out in the gas phase in the presence of noncovalently supported ionic liquid phase catalysts.
US08563780B2
Allyl and propargyl ethers of the formula X—C(R1)(R2)—O—C(CH3)(R3)—OCH3 (I), wherein X is an ethynyl or vinyl group, R1 is methyl or ethyl, R2 is a saturated or unsaturated linear or cyclic aliphatic hydrocarbon residue and R3 is methyl or ethyl, a method for their preparation and their use in the manufacture of β-ketoallenes, α,β-unsaturated carbonyl compounds and γ,δ-unsaturated ketones.
US08563772B2
Methanol carbonylation with improved aldehyde removal includes: (a) scrubbing light ends and aldehyde impurity from vent gas with an absorber solvent; (b) stripping absorbed light ends and aldehyde impurity from the absorber solvent to provide a vent-recovered light ends stream; (c) purifying the vent-recovered light ends stream to remove aldehyde impurity; and (d) recycling purified light ends from the vent-recovered light ends stream to the production system.
US08563769B2
A fluorine-containing compound exhibiting excellent surface tension-reducing ability despite the absence of perfluoroalkyl group having a chain length of 8 or more which had been the cause of the PFOS and PFOA problems and use of a fluorine material with low environmental load is provided. Also provided are a fluorine-containing surfactant and a composition thereof, an aqueous resin emulsion and a floor polish composition containing such surfactant. The fluorine-containing compound is represented by the following formula (1): Rf1—CpH2p—CH(OH)—CqH2q—NR—CrH2r—(O)n—SO3M (1) wherein Rf1 is a C1-6 perfluoroalkyl group, p, q, and r are independently an integer of 1 to 6, M is a cationic atom or atomic group, n is 0 or 1, R is hydrogen atom, a C1-12 alkyl group, or a group represented by the following formula (2): Rf2—CsH2s—CH(OH)—CtH2t— (2) wherein Rf2 is a C1-6 perfluoroalkyl group, and s and t are independently an integer of 1 to 6.
US08563768B2
An isocyanate is produced by reacting an amine with a stoichiometric excess of phosgene in the gas phase. This reaction is carried out at a temperature above the amine's boiling point to obtain a liquid stream containing the isocyanate and a gas stream containing hydrogen chloride and phosgene. The gas stream containing hydrogen chloride and phosgene thus produced is separated into a gas stream containing hydrogen chloride and a liquid stream containing phosgene. At least part of the liquid stream containing phosgene is then converted to a gas stream containing phosgene which gas stream is then recycled. The gaseous phosgene stream is maintained at a higher pressure than the liquid phosgene stream.
US08563767B2
An isocyanate is produced by continuously reacting an amine with phosgene in the presence of an inert substance in the gas phase. In this process, a phosgene-containing stream and a stream containing both the amine and the inert substance are fed into a reactor. The molar ratio of the inert substance to the amino groups in the stream is greater than 0 but less than 45 mol %. This molar ratio changes by no more than 99% during a 20 minute period.
US08563766B2
A compound of Formula (4), wherein each X is independently fluorine or chlorine; n is 1 or 2; R1 is C3-C8 alkyl, phenyl or benzyl; and R2 is C1-C6 alkyl; and its production and use.
US08563747B2
The invention provides a process for the preparation of a compound of formula (I) in particular, wherein a compound of formula (II) is reacted with a dialkylsulphate. R1 is C1-C4haloalkyl; R2 is optionally substituted alkyl, optionally substituted aryl or optionally substituted heteroaryl; and R3 is methyl or ethyl.
US08563746B2
Novel compounds of the structural formula (I) are activators of AMP-protein kinase and are useful in the treatment, prevention and suppression of diseases mediated by the AMPK-activated protein kinase. The compounds of the present invention are useful in the treatment of Type 2 diabetes, hyperglycemia, metabolic syndrome, obesity, hypercholesterolemia, and hypertension.
US08563745B2
A process for producing 3,4-dichloro-5-cyanoisothiazole represented by a general formula (3): the process comprising: reacting a nitrile compound represented by a general formula (1): (wherein “n” denotes an integer of 0 to 2), with sulfur chloride represented by a general formula (2): SmCl2 (2) (wherein “m” represents an integer of 1 to 2), or a mixture thereof in an aprotic polar solvent. There is provided a process for producing 3,4-dichloro-5-cyanoisothiazole, which is capable of suppressing by-production of a waste, without using a raw material having a strong toxicity; and is capable of providing a product having a higher purity in a high yield and efficiency in an industrial scale, in a simple manner.
US08563743B2
Provided is a novel compound having an effective anti-cancer activity.The novel compound according to the present invention includes a compound represented by formula (I): [wherein R1 represents an alkoxyalkyl group having 2 to 6 carbon atoms] or a pharmaceutically acceptable salt thereof.
US08563734B2
2-[(1-cyanopropyl)carbamoyl]-5-chloromethyl nicotinic acids of formula (I) where Z is hydrogen or halogen; Z1 is hydrogen, halogen, cyano or nitro; R1 is C1-C4 alkyl; R2 is C1-C4 alkyl, C3-C6 cycloalkyl or R1 and R2, when taken together with the atom to which they are attached, represent a C3-C6 cycloalkyl group optionally substituted with methyl, and R3 is hydrogen or a cation preferably selected from the group consisting of alkali metals, alkaline earth metals, manganese, copper, iron, zinc, cobalt, lead, silver, nickel, ammonium and organic ammonium; are useful intermediates for the synthesis of herbicidal imidazolinones.
US08563731B2
The present disclosure relates to a mesylate salt of 5-(2-{[6-(2,2-difluoro-2-phenylethoxy)hexyl]amino}-1-hydroxyethyl)-8-hydroxyquinolin-2(1H)-one as well as pharmaceutical compositions comprising them, and their use in therapy as agonists of the β2 receptor.
US08563730B2
Compounds are provided for use with glucokinase that comprise the formula: wherein the variables are as defined herein. Also provided are pharmaceutical compositions, kits and articles of manufacture comprising such compounds; methods and intermediates useful for making the compounds; and methods of using said compounds.
US08563723B2
This invention concerns arylsulfonyl pyrazoline carboxamidine derivatives as antagonists of 5-ht6 receptors, to methods for the preparation of these compounds and to novel intermediates useful for their synthesis. The invention also relates to the uses of such compounds and compositions, particularly their use in administering them to patients to achieve a therapeutic effect in parkinson's disease, huntington's chorea, schizophrenia, anxiety, depression, manic depression, psychoses, epilepsy, obsessive compulsive disorders, mood disorders, migraine, alzheimer's disease, age related cognitive decline, mild cognitive impairment, sleep disorders, eating disorders, anorexia, bulimia, binge eating disorders, panic attacks, akathisia, attention deficit hyperactivity disorder, attention deficit disorder, withdrawal from abuse of cocaine, ethanol, nicotine or benzodiazepines, pain, disorders associated with spinal trauma or head injury, hydrocephalus, functional bowel disorder, irritable bowel syndrome, obesity and type-2 diabetes. The compounds have the general formula (1) wherein the symbols have the meanings given in the description.
US08563718B2
The present invention relates to a synthetic intermediate of the formula: and its use in a synthetic process to make compounds of the formula
US08563712B2
A method for treatment of cancer by inhibiting the activity of histone deacetylase, comprising administering to a human in need of such treatment a composition containing a therapeutically effective amount of a gold(III) complex having the structural formula of or a pharmaceutically acceptable salt thereof, wherein: —R is selected from the group consisting of —OH, —CH2OH, C2H4OH, —C3H6OH or —C4H8OH; and X is independently a pharmaceutically acceptable counter-ion.
US08563706B2
The present inventors developed hepatitis C virus 1a/2a and 1b/2a intergenotypic recombinants in which the JFH1 structural genes (Core, E1 and E2), p7 and NS2 were replaced by the corresponding genes of the genotype Ia reference strain H77C or TN or the corresponding genes of the genotype Ib reference strain J4. Sequence analysis of recovered 1a/2a and 1b/2a recombinants from 2 serial passages and subsequent reverse genetic studies revealed adaptive mutations in e.g. p7, NS2 and/or NS3. In addition, the inventors demonstrate the possibility of using adaptive mutations identified for one HCV isolate in generating efficient cell culture systems for other isolates by transfer of mutations across isolates, subtypes or major genotypes. Furthermore neutralization studies showed that viruses of e.g. genotype 1 were efficiently neutralized by genotype Ia, 4a and 5a serum, an effect that could be utilized e.g. in vaccine development and immunological prophylaxis. The inventors in addition demonstrate the use of the developed systems for screening of antiviral substances in vitro and functional studies of the virus, e.g. identification of receptors required for HCV entry.
US08563692B2
Novel chimeric moieties that show significant efficacy against cancers are provided. In certain embodiments the chimeric moieties comprise a targeting moiety attached to an interferon. In certain embodiments, the chimeric moieties comprise fusion proteins where an antibody that specifically binds to a cancer marker is fused to interferon alpha (IFN-α) or interferon beta (IFN-β).
US08563690B2
Methods and compositions for inhibition of platelet cell aggregation are described. In particular, compositions comprising cell permeant RGT peptides, such as RGT bound to a lipid moiety are provided. Compositions may be used in the treatment and prevention of clot related diseases such as stroke and myocardial infarction.
US08563687B2
A new approach in the field of plant gums is described which presents a new solution to the production of hydroxyproline(Hyp)-rich glycoproteins (HRGPs), repetitive proline-rich proteins (RPRPs) and arabino-galactan proteins (AGPs). The expression of synthetic genes designed from repetitive peptide sequences of such glycoproteins, including the peptide sequences of gum arabic glycoprotein (GAGP), is taught in host cells, including plant host cells.
US08563678B2
Photovoltaic cells with thiazole-containing polymers, as well as related components, systems, and methods, are disclosed.
US08563677B2
A stable catalyst solution suitable for catalyzing the polycondensation of reactants to make polyester polymers comprising: (i) M, wherein M is represented by an alkaline earth metal or alkali metal and (ii) aluminum metal and (iii) a polyhydroxyl solvent having at least 3 carbon atoms and at least two primary hydroxyl groups, the longest carbon chain being a hydrocarbon; such as 1,3-propane diol, 1,4-butane diol, 1,5-pentane diol, or combinations thereof, wherein the molar ratio of M:Al ranges from 0.75:1 to less than 1.5:1. The catalyst solution is desirably a solution which does not precipitate upon standing over a period of at least one week at room temperature (25° C.-40° C.), even at molar ratios of M:Al approaching 1:1. There is also provided a method for the manufacture of the solution, its feed to and use in the manufacture of a polyester polymer, and polyester polymers obtained by combining certain ingredients or containing the residues of these ingredients in the composition.
US08563676B2
Polyurethanes made using compounds of formula A: Q-(R6)-M-(R7)-NR3R4 where Q is OH or NR1R2; M is O or NR5 where R5 is R1 or H; R1 is alkyl or an alkylene alcohol of from 1 to 6 carbons, especially CH3, CH2CH3, or CH2CH2OH; R2 is alkyl or an alkylene alcohol of from 1 to 6 carbons, especially CH3, CH2CH3, or —CH2CH2OH; R3 is hydrogen or alkyl of from 1 to 6 carbons, especially H, CH3 or CH2CH3; R4 is hydrogen; where R6 is an alkylene group of from 2 to 5 carbons; and wherein R7 is an alkylene group of from 2 to 5 carbons. Illustrative catalysts of this invention include but are not limited to N,N,N′-trimethylbis(aminoethyl)ether, dimethylaminoethoxypropylamine, and (3-aminopropyl)(2-hydroxyethyl)methylamine.
US08563675B2
The present invention relates to silane-crosslinking curable compositions encompassing a polymer P having at least two terminal groups of the following formulas (I) and (II) -Am-K1—SiR1XY (I), -Am-K2—SiR2XY (II), and/or two polymers P1 and P2, polymer P1 having terminal groups of the following formula (I) -Am-K1—SiR1XY (I), and polymer P2 having terminal groups of the following formula (II) -Am-K2—SiR2XY (II), in which A denotes a divalent bonding group, K1, K2, mutually independently, denote a divalent aliphatic hydrocarbon group that has a main chain of 1 to 6 carbon atoms, the hydrocarbon groups K1, K2 being different, X, Y mutually independently denote a hydroxy group or a hydrolyzable group, R1, R2 mutually independently denote a hydrocarbon residue having 1 to 20 carbon atoms, and m assumes the values 0 or 1.
US08563669B2
An olefin polymerization reactor is provided with a first cylinder extending vertically; a first tapered cylindrical member placed in the first cylinder, having the inner diameter decreasing progressively downward, and having a gas inlet orifice at a bottom end thereof; a first liquid supplying part supplying a liquid so that the liquid may come into contact with an outer surface of the first tapered cylindrical member; and a gas supplying part supplying an olefin-containing gas through the gas inlet orifice into a first reaction region surrounded by an inner surface of the first tapered cylindrical member and an inner surface of the first cylinder above the first tapered cylindrical member, to form a spouted bed in the first reaction region.
US08563664B2
A composition, prepolymer and method to produce a polymer based on biodegradable or essentially renewable crude materials, which can be crosslinked by free radicals. The composition is based on polyesters that are functionalized with unsaturated monomer units, in a way that unsaturated groups can be located along the polymer main chain as well as at the ends of the prepolymer. In connection to the product production, the prepolymer is exposed to free radicals that leads to network formation. The composition of the crosslinked biopolymer can be adjusted from a stiff engineering material to an elastic rubbery material. The new biopolymer can be used in composite materials, dispersions, barrier materials, rubbery materials, biomedical applications, and the like.
US08563659B2
An improved polymerization and work-up process makes it possible to produce specific nitrile rubbers which have a particular ion index which is responsible for an excellent vulcanization rate and leads to vulcanizates having an advantageous property profile.
US08563657B2
The present invention relates to (i) novel fluoroionic compounds capable of dispersing particulate filler compositions into a fluoropolymer; (ii) novel particulate compositions in which particulates are surface-functionalized with a fluoroionic compound; (iii) fluoropolymer composite materials containing the surface-functionalized particulates of (ii) incorporated into a fluoropolymer; (iv) crosslinked versions of (iii); v) methods for producing the crosslinked material of (iv); and (vi) articles of manufacture containing the compositions (iii) and (iv).
US08563656B1
The present invention is directed to a method of increasing the green strength of a rubber composition, comprising the step of combining in the rubber composition, a copolymer comprising: a polymeric backbone chain comprising a diene based elastomer selected from the group consisting of solution polymerized styrene butadiene rubber, emulsion polymerized styrene butadiene rubber, natural polyisoprene rubber, synthetic polyisoprene rubber, and polybutadiene; and polymeric sidechains bonded to the backbone chain, the sidechains comprising a polymer derived from an N-substituted monoalkyl acrylamide.
US08563651B2
The invention provides a method comprising the steps of providing a poly(ethylene glycol) having one terminal hydroxyl group; reacting the terminal hydroxyl group of the poly(ethylene glycol) with di(1-benzotriazolyl)carbonate to form a 1-benzotriazolylcarbonate ester of the poly(ethylene glycol); reacting the 1-benzotriazolylcarbonate ester of the poly(ethylene glycol) with an amino acid to form an amino acid derivative; and reacting the amino acid derivative with a biologically active agent under conditions to form a polymer-active agent conjugate.
US08563646B2
An adhesive composition having good balance in tackiness properties such as tack strength and retentivity, low melt viscosity, high processability, and high stability in melt viscosity under high temperature heating is provided. An adhesive composition containing two hydrogenated block copolymers and a predetermined tackifier is provided, the two hydrogenated block copolymers each having a different structure obtained by controlling the degree of hydrogenation of a block copolymer of a conjugated diene compound and a vinyl aromatic hydrocarbon in a particular range.
US08563643B2
The invention consists of a method for manufacturing a paper coating slip containing a mineral material, using, as an agent for thickening the slip, a water-soluble polymer comprising at least one ethylene-unsaturated anionic monomer, and at least one ethylene-unsaturated oxyalkyl monomer terminating in a branched hydrophobic alkyl, alkaryl, arylalkyl, aryl chain, saturated or unsaturated, with 14 to 21 carbon atoms and two branches each with at least six carbon atoms. The polymer is added to the slip either directly, or during a prior stage when grinding, dispersing, or concentrating the mineral material in water, which may or not be followed by a drying stage. In this way, the water retention of the slip is improved, which contributes to a better printability of the paper coated by the slip.
US08563642B2
The present invention provides a process for dry grinding one or more mineral materials which include at least calcium carbonate. The process includes a) crushing the mineral material or materials in at least one crushing unit until a crushed material is obtained with a d95 of less than 10 cm, and dry grinding the material in at least one grinding unit (i) in the presence of at least one comb-type hydrophilic polymer containing at least polyalkylene oxide function grafted on to at least one unsaturated ethylene monomer, and (ii) in such a manner that the quantity of liquid in the grinding unit is less than 15% by dry weight of the material crushed in the crushing unit, wherein recovered material has a d50 of 0.5 to 500 microns.
US08563637B2
An alkylphenol-free liquid polymeric phosphite is described of general Structure IV illustrated below wherein each R1, R2, R3 and R4 can be the same or different and independently selected from the group consisting of C1-20 alkyl, C3-22 alkenyl, C6-40 cycloalkyl, C7-40 cycloalkylene, C1-20 methoxy alkyl glycol ethers, C1-20 alkyl glycol ethers, and or Y—OH; Y is selected from the group consisting of C2-40 alkylene, C2-40 alkyl lactone, —R7—N(R8)—R9—, wherein R7, R8 and R9 are independently selected from the group previously defined for R1, R2, R3 and R4, now further including H; m is an integral value ranging from 2 to 100 inclusive; and x is an integral value ranging from 1 to 1,000. The alkylphenol-free liquid polymeric phosphite is useful in reducing phosphite migration within polymers.
US08563636B2
The present invention provides an aqueous two-package type clear coating composition comprising: (A) an aqueous dispersion of a hydroxyl group- and acid group-containing acrylic resin having a hydroxyl value of 30 to 200 mg KOH/g, an acid value of 5 to 50 mg KOH/g, a weight average molecular weight of 3,000 to 30,000, and a glass transition temperature of −30 to +40° C. obtained by radical polymerization of 10 to 50 mass % of a secondary hydroxyl group-containing monomer (a) and 50 to 90 mass % of at least one other unsaturated monomer (b); and (B) a polyisocyanate curing agent obtained by mixing (c) a polyisocyanate compound and (d) a compound containing an anionic functional group, a polyoxyethylene group, and a hydrocarbon group, and a process for forming a multilayer topcoat film using the same.
US08563627B2
A process for making a self-emulsifying granule suitable for use in forming latex emulsions includes contacting a resin with a solid or highly concentrated surfactant, a solid neutralization agent and water in the absence of an organic solvent to form a mixture, melt mixing the mixture, and forming self-emulsifying granules of the melt mixed mixture. Self-emulsifying granules are also provided and configured to form a latex emulsion when added to water, which may then be utilized to form a toner.
US08563626B2
The purpose of the present invention is to demonstrate that semiconducting and non-biodegradable implants made with polypyrrole and polyethylenglycol copolymers and iodine-doped and plasma-synthesized pyrrole polymers, have a neuroprotector effect and induce the reconnection of the spinal cord after an injury; this effect was proved in a model involving a complete section of the spinal cord in rats; the results o the functional evaluation demonstrated 5 times greater recovery in animals implanted with the polypyrrole-polyethylenglycol copolymer compared with the control group which only underwent a complete section of the spinal cord; in addition, the functional recovery of the group with iodine-doped polypyrrole was ten times greater compared to the control group; in the histological study various inflammatory and immune cells were identified at the injury site in the three experimental groups with and without implants and the integration of the polymers in the nervous tissue of the spinal cord was also observed; finally, no respiratory, renal or skin infections, adverse effects or rejection of the biomaterials were found in any of the animals.
US08563623B2
A medical prosthesis for use within the body which is formed of radiation treated ultra high molecular weight polyethylene having substantially no detectable free radicals, is described. Preferred prostheses exhibit reduced production of particles from the prosthesis during wear of the prosthesis, and are substantially oxidation resistant. Methods of manufacture of such devices and material used therein are also provided.
US08563621B2
The present invention relates to the preparation and use of a blowing agent in the form of of nanoparticles of an inorganic carbonate, and an acid. The acid is capable of being liquefied by heating to be reactive with the carbonate to release carbon dioxide that is useful as a blowing agent in all types of organic foams. The blowing agent, optionally pelletized in a suitable polymer carrier, is useful as a heat-activated blowing agent additive in polymer compositions.
US08563618B2
Disclosed is an agent for skin external preparation which is hardly reduced in viscosity even when stored for a long period under extreme high temperature storage conditions and is therefore stable. The preparation is in an emulsion form, and comprises (1) an alginic acid polyol ester having an esterification degree ranging from 75 to 95% (e.g., alginic acid propylene glycol ester) and/or a salt thereof; (2) a polyvalent metal ion (e.g., a calcium ion); and (3) a 4-alkylresolcinol (e.g., 4-n-butylresolcinol) and/or a salt thereof.
US08563616B2
Desensitizing drug products, methods of making desensitizing drug products, and methods of using desensitizing drug products including delivery of desensitizing drug products. In one embodiment, the desensitizing drug products are male genital desensitizers that comprise one or anesthetic agents and one or more melting point depressing agents.
US08563605B2
The present invention is intended to provide an agent for treating male infertility which is highly effective to male infertility, and having few side effects. To achieve the object, an agent for treating male infertility comprising δ-amino levulinic acid shown by general formula (1), its derivative or salt thereof: R2R1NCH2COCH2CH2COR3 (1) [wherein R1 and R2 independently represent a hydrogen atom, alkyl group, acyl group, alkoxycarbonyl group, aryl group, or aralkyl group; R3 represents a hydroxy group, alkoxy group, acyloxy group, alkoxycarbonyloxy group, aryloxy group, aralkyloxy group or amino group] can be used.
US08563598B2
The present invention relates to specific beta-lactone compounds and compositions thereof for the treatment of infections, such as, e.g., infections with bacteria or infections with protozoa, in particular infections with Gram-positive and/or Gram-negative bacteria and of infectious diseases caused by or related to Gram-positive and/or Gram-negative bacteria, and to the modulation of virulence of Gram-positive and/or Gram-negative bacteria or of protozoa by specific beta-lactone compounds. The invention further relates to the use of the compounds or compositions for preventing or eliminating biofilms.
US08563597B2
Tricylic ether carbamates that inhibit HIV proteolytic enzymes and processes for preparing the compounds are described. Methods of using the disclosed compounds for treating patients infected with HIV are also described.
US08563596B2
The present invention relates to an enantiomerically pure (+)-trans enantiomer of a compound represented by the following formula (I): wherein R1, R2, R3, R4 and R9 are as defined in the specification; enantiomerically pure intermediates thereof, to processes for the preparation of the enantiomerically pure compound and its intermediates, and to a pharmaceutical composition comprising the enantiomerically pure compound. The compound of formula (I) is useful for the treatment of diseases or disorders mediated by the inhibition of cyclin dependant kinase, such as cancer.
US08563578B2
HIV-protease inhibitors, particularly saquinavir, showed strong anticancer activity but numerous side effects limited its application. In order to overcome its toxicity original compounds were modified by covalent attachment of NO. The efficacy of parental and NO-modified drug was compared in vitro and in vivo. Anticancer activities of NO-modified saquinavir (Saq-NO) was monitored in vitro using assay for cell viability, proliferation, necrotic, autophagic and apoptotic cell death, differentiation, expression of intracellular molecules such as cyclin D3, p53 and Akt. Antitumor properties and toxicity of the compound was estimated in vivo. Saq-NO abrogated the viability of large spectrum of human and rodent tumor cell lines with IC50 significantly lower than parental drug and expressed strong antimelanoma action in vivo. In contrast to saquinavir, there was no detectable toxicity against primary cells in vitro and in vivo. Saq-NO permanently diminished cell proliferation by induction of cell cycle block accompanied with minor presence of tumor cell death. Repressed proliferation was coordinated with strong activation of p53 and differentiation of C6 and B16 cells into oligodendrocytes or “Schwan” like cells, respectively. Oppositely to general characteristic of saquinavir to inhibit Akt signalling, Saq-NO treatment resulted in transient and intensive upregulation of Akt. This antagonism between parental and modified compound could be the crucial for switch of saquinavir from toxic to completely untoxic drug.
US08563576B2
The present invention relates to compounds of tricyclic pyrazolopyridine useful as inhibitors of protein kinase. The invention also provides pharmaceutically acceptable compositions comprising such compounds and methods of using the compositions in the treatment of various disease, conditions, or disorders. The invention also provides processes for preparing compounds of the inventions.
US08563573B2
The present invention relates to modulators of ATP-Binding Cassette (“ABC”) transporters or fragments thereof, including Cystic Fibrosis Transmembrane Conductance Regulator (“CFTR”), compositions thereof, and methods therewith. The present invention also relates to methods of treating ABC transporter mediated diseases using such modulators.
US08563563B2
Disclosed herein are compounds that form covalent bonds with Bruton's tyrosine kinase (Btk). Also described are irreversible inhibitors of Btk. Methods for the preparation of the compounds are disclosed. Also disclosed are pharmaceutical compositions that include the compounds. Methods of using the Btk inhibitors are disclosed, alone or in combination with other therapeutic agents, for the treatment of autoimmune diseases or conditions, heteroimmune diseases or conditions, cancer, including lymphoma, and inflammatory diseases or conditions.
US08563562B2
The present invention provides a compound of formula (I) or a pharmaceutically acceptable derivative, salt or prodrug thereof. The present invention further provides a method of treatment or prophylaxis of a viral infection in a subject comprising administering to said subject an effective amount of a compound of formula (I) or a pharmaceutically acceptable derivative, salt or prodrug thereof. Pharmaceutical compositions comprising a compound of formula (I) are also provided.
US08563555B2
The present invention relates to a pharmaceutical composition comprising crystalline form Y of posaconazole. The pharmaceutical composition can be used to treat or prevent fungal infections.
US08563551B2
A method for preventing or treating a disease related to the glucocorticoid receptor involving administering a pharmacologically effective amount of a 1,2-dihydroquinoline compound or a pharmaceutically acceptable salt thereof.
US08563540B2
Formula I compounds, including stereoisomers, geometric isomers, tautomers, metabolites and pharmaceutically acceptable salts thereof, are useful for inhibiting the delta isoform of PI3K, and for treating disorders mediated by lipid kinases such as inflammation, immunological disorders, and cancer. Methods of using compounds of Formula I for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed.
US08563539B2
Disclosed are compounds, pharmaceutical compositions containing those compounds, and uses of the compounds and compositions as modulators of casein kinase 1 (e.g., CK1γ), casein kinase 2 (CK2), Pim 1, Pim2, Pim3, the TGFβ pathway, the Wnt pathway, the JAK/STAT pathway, and/or the mTOR pathway. Uses are also disclosed for the treatment or prevention of a range of therapeutic indications due at least in part to aberrant physiological activity of casein kinase 1 (e.g., CK1γ), casein kinase 2 (CK2), Pim 1, Pim2, Pim3, the TGFβ pathway, the Wnt pathway, the JAK/STAT pathway, and/or the mTOR pathway.
US08563537B2
Camptothecin-based compounds are useful for treating a neoplasm in mammalian subjects by administering such compound to the subjects in combination with radiotherapy, i.e., the treatment of tumors with radioactive substances or radiation from a source external to the subject. Camptothecin-based compounds are modified by positioning at least one electron-affinic group around the camptothecin structure to enhance their value in combination with radiotherapy. New Camptothecin-based compounds are disclosed that are useful for treating cancer by administering the novel compounds alone or in combination with radiotherapy.
US08563536B2
Compounds of general formula (II) wherein W is chloro or fluoro; R1 is phenyl optionally substituted with one or more substituents, selected from halo, —CN, —C1-C6 alkyl, —SOR3, —SO2R3, —SO2N(R2)2, —N(R2)2, —NR2C(O)R3, —CO2R2, —CONR2R3, —NO2, —OR2, —SR2, —O(CH2)pOR2, or —O(CH2)pO(CH2)qOR2 wherein each R2 is independently hydrogen, —C1-C6 alkyl, —C3-C8 cycloalkyl, aryl or heteroaryl; each R3 is independently, —C1-C6 alkyl, —C3-C8 cycloalkyl, aryl or heteroaryl; p and q are each independently an integer from 1 to 3; and R4 is hydrogen, C1-C6 alkyl, C1-C6 alkyl substituted with aryl, aryl, (CH2)mOC(═O)C1-C6alkyl, ((CH2)mO)nCH2CH2X, (CH2)mN(R5)2 or CH((CH2)mO(C═O)R6)2; m is 1 or 2; n is 1-4; X is OR5 or N(R5)2; R5 is hydrogen or methyl; and R6 is C1-C18 alkyl; and their pharmaceutically acceptable salts, hydrates, solvates, complexes or prodrugs are useful in orally administrable compositions for the treatment of allergic diseases such as asthma, allergic rhinitis and atopic dermatitis.
US08563535B2
An aqueous gel composition of the present invention comprising about 0.1 to 0.3 wt % adapalene and about 2.5 to 5.0 wt % benzoyl peroxide, as active ingredients, wherein both the active ingredients are stabilized in hydrophilic gelling matrix of pH dependent gelling agent comprising crosslinked, acrylic acid-based polymer(s).
US08563531B2
The invention relates to methods for treating and preventing radiation and/or chemotherapy related injury and/or afflictions, such as myelosuppression and decreased macrophage activity, by administering a prophylactically or therapeutically effective amount of particulate, bioavailable β(1,3; 1,6) glucan. The invention also relates to methods in which β(1,3; 1,6) glucan is provided in the form of whole glucan particles, microparticulate β-glucan particles or a combination thereof.
US08563526B2
The present invention relates to novel compounds of formula (A): in the form of a free base or of an addition salt with an acid. The invention also relates to process of preparation of compounds of formula (A), to composition comprising them and to their application in therapeutics and in particular in cancers.
US08563524B2
Pharmaceutical/dermatological compositions useful for the prevention/treatment of disorders of the skin, especially rosacea, contain thus effective amounts of at least one avermectin compound, e.g., ivermectin, and at least one azelaic acid compound or salt or derivative thereof, formulated into a physiologically acceptable medium therefor.
US08563521B2
Increased in vivo and/or in vitro stability is imparted to a biologically active protein by fusing to an amino acid sequence consisting of at least about 100 amino acid residues, which are Alanine, Serine and Proline, which form a random coil conformation. Specific examples are described. Also described are related nucleic acids, vectors and cells encoding such amino acids; compositions of biologically active proteins fused to a random coil domain, and methods of making and using the compounds and compositions of the invention.
US08563513B2
Provided herein are Parathyroid hormone (PTH) peptides and parathyroid hormone-related protein (PTHrP) peptides (e.g., PTH analogs, PTHrP analogs), and related variants, chemical derivatives, fusion polypeptides, multimeric polypeptides, and peptidomimetics, peptoids, the like. Also provided are their use in methods for activating the PTH receptor in a cell (e.g., an osteoblast), methods of treating a subject with bone loss (e.g., by administration of a PTH peptide or PTHrP peptide (e.g., a PTH analog or PTHrP analog)), methods of ameliorating a symptom associated with osteoporosis in a subject, methods of retarding the progression of osteoporosis in a subject, and methods of regenerating bone in a subject.
US08563506B2
Novel peptides that inhibit the release of microparticles from cells are disclosed. The peptide contains at least one VGFPV motif at the N-terminal and has a length of 10-100 amino acids. Also disclosed is polynucleotide encoding the peptide, expression vectors carrying the polynucleotide, and methods for treating AIDS and tumors using the novel peptides.
US08563500B2
Provided is a method of treating a patient having an inflammatory disease by using a compound which inhibits the complex I-mediated ROS production, a medicament containing such compound and methods for screening for such compounds.
US08563488B2
A grease composition containing: (a) the reaction product of: (i) a calcium containing overbased organic acid; and (ii) at least one acid producing compound or derivatives thereof selected from the group consisting of: (1) a non-polymeric hydrocarbyl substituted dicarbonyl derivative selected from the group consisting of an acid, an ester, a salt, an anhydride, ester-acid, acid-salt and mixtures thereof; (2) a copolymer derived from monomers containing (1) an olefin; and (2) an unsaturated dicarboxylic acid anhydride or derivatives thereof; and (3) an inorganic acid containing about 2 or more acidic hydrogens; and (b) an oil of lubricating viscosity, wherein the overbased calcium sulphonate contains colloidally dispersed calcium carbonate is selected from the group consisting of calcite, vaterite and mixtures thereof. The invention further relates to the process to make the composition and its use in greases to increase water resistance.
US08563466B2
The present invention relates to discrete particulate composite additives for superabsorbent polymers and includes a method of making same. The discrete particulate composite additives generally comprise a polysaccharide and an inert inorganic component. Advantageously, these discrete particulate composite additives functionally improve superabsorbent performance. They are suitable for a number of applications, including the use and manufacture of hygiene products.
US08563457B2
3,4-isoprene-based polymer having high isotacticity can be produced by polymerizing an isoprene compound using a complex represented by the general formula (A) and a catalyst activator: wherein R1 and R2 independently represent an alkyl group, a cyclohexyl group, an aryl group or an aralkyl group; R3 represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, an aliphatic, aromatic or cyclic amino group, a phosphino group, a boryl group, an alkylthio or arylthio group, or an alkoxy or aryloxy group; M represents a rare earth element selected from Sc, Y, and La to Lu with promethium (Pm) excluded; Q1 and Q2 independently represent a monoanionic ligand; L represents a neutral Lewis base.
US08563456B2
This invention is directed to hydrodemetallization catalysts and hydrodemetallization processes employing a magnesium aluminosilicate clay. The magnesium aluminosilicate clay has a characteristic 29Si NMR spectrum. The magnesium aluminosilicate clay is the product of a series of specific reaction steps. Briefly, the magnesium aluminosilicate clay employed in the catalyst and process of the invention is made by combining a silicon component, an aluminum component, and a magnesium component, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than about 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay. The resulting magnesium aluminosilicate clay combines high surface area and activity for use in hydrodemetallization catalysts and processes.
US08563455B2
Disclosed is a catalyst distributor and process for mixing spent catalyst and recycled regenerated catalyst in a regenerator vessel. Mixing is conducted in a confined space to which catalyst is delivered from catalyst conduits protruding through the wall of the regenerator.
US08563454B2
A fused and cast refractory product including, in mass percentages on the basis of the oxides and for a total of 100% of the oxides: ZrO2 + Hf2O:balance to 100%; SiO2: 7.0% to 11.0%; Al2O3:0.2% to 0.7%; Na2O + K2O:<0.10%; B2O3:0.3% to 1.5%; CaO + SrO + MgO + ZnO + BaO: <0.4%; P2O5:<0.15%; Fe2O3 + TiO2:<0.55%; Other oxide species: <1.5%; the mass content of a dopant selected from Nb2O5, Ta2O5 and mixtures thereof being of less or equal to 1.0%, and the A/B ratio of the Al2O3/B2O3 mass contents being less than or equal to 2.0.
US08563451B2
The invention provides a novel optical glass which has a refractive index (nd) of 1.78 to 2.2 and an Abbe value (νd) of 16 to less than 40 and is suitable for precision mold press molding by virtue of its having a low glass transition temperature, namely, an optical glass which contains by mole in terms of oxides 25 to 60% B2O3, 2 to 45% (in total) TiO2 and Nb2O5 and 1 to 25% WO3 and has a refractive index (nd) of 1.78 to 2.2 and an Abbe value (νd) of 16 to less than 40. Further, the glass contains 5 to 35% La2O3 and 1 to 40% ZnO and has a glass transition temperature (Tg) of 700° C. or below. The optical glass is excellent in meltability, stability and devitrification resistance and has a high refractive index, high light-dispersive power and excellent precision press moldability.
US08563438B2
A manufacturing method of a semiconductor device of which cost can be suppressed by using a nanoimprinting method is provided. In the invention, a gate insulating film, a conductive film, and a resist are formed in sequence over a semiconductor film and a resist is hardened while pressing a mold formed with a pattern to the resist. Therefore, the pattern is transferred to the resist, the surface of the resist to which the pattern is transferred is ashed until a part of the conductive film is exposed, the resist having the ashed surface is used a mask, and the conductive film is etched.
US08563437B2
The invention discloses a treating method to produce various patterns on the surface by using gases with ability to etch the group III nitride semiconductor in certain conditions. The selective etching makes some specific patterns on group III nitride semiconductor surface, and different forms of the patterns can be controlled by the selective etching conditions.
US08563435B2
Methods for reducing electron beam induced damage on semiconductor substrates employ compositions such as small chain organic solvents and non-neutral pH solutions to reduce or eliminate charge imbalances on semiconductor substrates caused by electron beam inspection of the semiconductor substrates. Damage to semiconductor substrates by electron beam inspection processes may also be reduced by generating or otherwise forming passivation films on a semiconductor substrate following electron beam inspection.
US08563429B2
Methods of forming a metal silicide layer are provided that include exposing polysilicon through just dry etching (JDE) and recessesing an oxide layer through chemical dry etching (CDE). In particular, dry etching is primarily performed to an extent to expose the polysilicon. Then, CDE is secondarily performed to expose the polysilicon. The CDE process includes selecting an etchant source among combinations of NF3 and NH3, HF and NH3, and N2, H2, and NF3, dissociating the etchant source, forming an etchant of NH4F and NH4F.HF through the dissociation, producing solid by-products of (NH4)2SiF6 through the reaction between the etchant and an oxide at a low temperature, and annealing the by-products at a high temperature such that the by-products are sublimated into gas-phase SiF4, NH3, and HF.
US08563410B2
A method for fabricating a semiconductor device is disclosed. The method includes forming at least one material layer over a substrate; performing an end-cut patterning process to form an end-cut pattern overlying the at least one material layer; transferring the end-cut pattern to the at least one material layer; performing a line-cut patterning process after the end-cut patterning process to form a line-cut pattern overlying the at least one material layer; and transferring the line-cut pattern to the at least one material layer.
US08563408B2
A spin-on formulation that is useful in stripping an ion implanted photoresist is provided that includes an aqueous solution of a water soluble polymer containing at least one acidic functional group, and at least one lanthanide metal-containing oxidant. The spin-on formulation is applied to an ion implanted photoresist and baked to form a modified photoresist. The modified photoresist is soluble in aqueous, acid or organic solvents. As such one of the aforementioned solvents can be used to completely strip the ion implanted photoresist as well as any photoresist residue that may be present. A rinse step can follow the stripping of the modified photoresist.
US08563406B2
The present invention provides a semiconductor substrate, which comprises a singlecrystalline Si substrate which includes an active layer having a channel region, a source region, and a drain region, the singlecrystalline Si substrate including at least a part of a device structure not containing a well-structure or a channel stop region; a gate insulating film formed on the singlecrystalline Si substrate; a gate electrode formed on the gate insulating film; a LOCOS oxide film whose thickness is more than a thickness of the gate insulating film, the LOCOS oxide film being formed on the singlecrystalline Si substrate by surrounding the active layer; and an insulating film formed over the gate electrode and the LOCOS oxide film. On this account, on fabricating the semiconductor device having a high-performance integration system by forming the non-singlecrystalline Si semiconductor element and the singlecrystalline Si semiconductor element on the large insulating substrate, the process for making the singlecrystalline Si is simplified. Further, the foregoing arrangement provides a semiconductor substrate and a fabrication method thereof, which ensures device isolation of the minute singlecrystalline Si semiconductor element without highly-accurate photolithography, when the singlecrystalline Si semiconductor element is transferred onto the large insulating substrate.
US08563402B2
A method includes providing a donor substrate comprising single crystal silicon and having a surface region, a cleave region, and a thickness of material to be removed between the surface region and the cleave region. The method also includes introducing through the surface region a plurality of hydrogen particles within a vicinity of the cleave region using a high energy implantation process. The method further includes applying compressional energy to cleave the semiconductor substrate and remove the thickness of material from the donor substrate.
US08563400B2
Methods and structures using laser bonding for stacking semiconductor substrates are described. In one embodiment, a method of forming a semiconductor device includes forming a trench in a first substrate, and a bond pad on a second substrate comprising active circuitry. A top surface of the bond pad includes a first material. The first substrate is aligned over the second substrate to align the trench over the bond pad. An electromagnetic beam is directed into the trench to form a bond between the first material on the bond pad and a second material at a bottom surface of the first substrate.
US08563394B2
Solutions for forming an integrated circuit structure having a substantially planar N-P step height are disclosed. In one embodiment, a method includes: providing a structure having an n-type field effect transistor (NFET) region and a p-type field effect transistor (PFET) region; forming a mask over the PFET region to leave the NFET region exposed; performing dilute hydrogen-flouride (DHF) cleaning on the exposed NFET region to substantially lower an STI profile of the NFET region; and forming a silicon germanium (SiGE) channel in the PFET region after the performing of the DHF.
US08563391B2
A method for forming a metal-insulator-metal capacitor in a multilevel semiconductor device utilizes the copper interconnect levels of the semiconductor device as parts of the capacitor. A lower capacitor plate consists of a copper interconnect level and a first metal layer formed on the copper interconnect level by selective deposition methods. The upper capacitor plate includes the same pattern as the capacitor dielectric, the pattern having an area less than the area of the lower capacitor plate. The upper capacitor plate is formed of a second metal layer. The first and second metal layers may each be formed of cobalt, tungsten, nickel, molybdenum, or a combinations of one of the aforementioned elements with boron and/or phosphorus. Conductive vias provide contact from the upper capacitor plate and lower capacitor plate, to interconnect levels.
US08563389B2
An embodiment of the disclosure includes a method of forming an integrated circuit. A substrate having an active region and a passive region is provided. A plurality of trenches is formed in the passive region. A root mean square of a length and a width of each trench is less than 5 μm. An isolation material is deposited over the substrate to fill the plurality of trenches. The isolation material is planarized to form a plurality of isolation structures. A plurality of silicon gate stacks and at least one silicon resistor stack are formed on the substrate in the active region and on the plurality of isolation structures respectively.
US08563380B2
A nanodevice is disclosed. The nanodevice comprises: a drain region, a source region opposite to the drain region and being separated therefrom at least with a trench, and a gate region, isolated from the drain and the source regions and from the trench. The trench has a height which is between 1 nm and 30 nm.
US08563374B2
Embodiments of a strained semiconductor device are provided, as are embodiments of a method for fabricating such a strained semiconductor device. In one embodiment, the method includes providing a partially-fabricated semiconductor device including a semiconductor substrate having a source side and a drain side, a gate stack formed on the semiconductor substrate, and a channel region formed within the semiconductor substrate beneath the gate stack and extending from the source side to the drain side of the semiconductor substrate. A cavity is produced in only one of the source side and the drain side of the semiconductor substrate, and a strain-inducing material is formed within the cavity to create an asymmetric heterojunction structure within the semiconductor substrate.
US08563372B2
A method of forming a semiconductor device, the method comprising providing a semiconductor layer, and providing a first layer of a first metal on the semiconductor layer. A second layer may be provided on the first layer of the first metal. The second layer may include a layer of silicon and a layer of a second metal, and the first and second metals may be different. The first metal may be titanium and the second metal may be nickel. Related devices, structures, and other methods are also discussed.
US08563371B2
Provided is a method of forming a semiconductor device. The method may include forming a first insulating layer on a semiconductor substrate. A first polycrystalline silicon layer may be formed on the first insulating layer. A second insulating layer may be formed on the first polycrystalline silicon layer. A second polycrystalline silicon layer may be formed on the second insulating layer. A mask pattern may be formed on the second polycrystalline silicon layer. The second polycrystalline silicon layer may be patterned using the mask pattern as an etch mask to form a second polycrystalline silicon pattern exposing a portion of the second insulating layer. A sidewall of the second polycrystalline silicon pattern may include a first amorphous region. The first amorphous region may be crystallized by a first recrystallization process. The exposed portion of the second insulating layer may be removed to form a second insulating pattern exposing a portion of the first polycrystalline silicon layer. The exposed portion of the first polycrystalline silicon layer may be removed to form a first polycrystalline silicon pattern exposing a portion of the first insulating layer. The exposed portion of the first insulating layer may be removed to form a first insulating pattern exposing a portion of the semiconductor substrate.
US08563370B2
A method for fabricating a surrounding-gate silicon nanowire transistor with air sidewalls is provided. The method is compatible with the CMOS process; the introduced air sidewalls can reduce the parasitic capacitance effectively and increase the transient response characteristic of the device, thus being applicable to a high-performance logic circuit.
US08563369B2
A method for fabricating an integrated circuit with at least one p-FinFET device and at least one n-FinFET device. The method includes bonding a first silicon layer having a first crystalline orientation to a second silicon layer having a second crystalline orientation that is different from the first crystalline orientation. A first plurality of fins and a second plurality of fins are created. A spacer is formed around each fin in the first plurality of fins and second plurality of fins. A set of regions of the second layer between each fin in the first plurality of fins and the second plurality of fins are recessed to form a base with exposed sidewalls under each fin in the first plurality of fins and the second plurality of fins. The base under each fin and a set of exposed regions between each fin is oxidized.
US08563362B2
A method for producing a semiconductor chip laminate, which comprises applying an adhesive to a substrate or other semiconductor chip; laminating the semiconductor chip on the substrate or other semiconductor chip via the adhesive; uniformly wetting and spreading the adhesive on an entire region for bonding the semiconductor chip on the substrate or other semiconductor chip; and curing the adhesive. In the application step, an area for applying adhesive is 40% to 90% of the region for bonding the semiconductor chip located on the substrate or other semiconductor chip, immediately after laminating, an area with the adhesive thereon is 60% to less than 100% of the region for bonding the semiconductor chip on the substrate or other semiconductor chip, and in wetting and spreading the adhesive, a viscosity of adhesive between the substrate or other semiconductor chips and the semiconductor chip at 0.5 rpm is 1 Pas to 30 Pas.
US08563356B2
Provided are a thin film transistor in which an oxide semiconductor combined with a nitride containing boron or aluminum is applied to a channel layer and a method of fabricating the same. The thin film transistor in which an oxide semiconductor combined with a nitride containing boron or aluminum is applied to a channel layer exhibits significantly improved mobility and increased stability at a high temperature.
US08563354B1
A novel 2 step solid source deposition (2SSS) method to form an absorber layer in the manufacture for CIGS solar modules. 2-step refers to a first step of deposition of metals followed by second step of selenization of the metal stack. Metals are first deposited and then selenized in an adjacent chamber. Differential pumping is used to control egress of Se vapor into the sputtering region and prevent contamination of the targets. Products made by the method demonstrate comparable quality and performance to those produced by current processing techniques. The 2SSS method provides means for attaining improved uniformity of large area films which improves yield and cost-effectiveness.
US08563347B2
A method for producing a thin-film solar cell with a cell level integrated bypass diode includes forming at least first, second and third series-connected cells on a support, each cell being a laminated structure comprising a junction layer including semiconducting material of a first and second type, a front electrode formed of a transparent conductive oxide resistant to an etchant disposed in electrical contact with the semiconducting material of the first type, and a back electrode in electrical contact with the semiconducting material of the second type. A portion of both the back electrode and the junction layer are separated from a selected parent solar cell. Using the separated portion of the back electrode the semiconducting material of the second type of the separated portion of the junction layer is connected to the semiconducting material of the first type of any one chosen solar cell in the array.
US08563345B2
A method for forming a capacitive micromachined ultrasonic transducer (CMUT) includes forming multiple CMUT elements in a first semiconductor-on-insulator (SOI) structure. Each CMUT element includes multiple CMUT cells. The first SOI structure includes a first handle wafer, a first buried layer, and a first active layer. The method also includes forming a membrane over the CMUT elements and forming electrical contacts through the first handle wafer and the first buried layer. The electrical contacts are in electrical connection with the CMUT elements. The membrane could be formed by bonding a second SOI structure to the first SOI structure, where the second SOI structure includes a second handle wafer, a second buried layer, and a second active layer. The second handle wafer and the second buried layer can be removed, and the membrane includes the second active layer.
US08563337B2
A semiconductor device and methods of manufacturing the same are disclosed. Specifically, methods and devices for manufacturing optocouplers are disclosed. Even more specifically, methods and devices that deposit one or more encapsulant materials on optocouplers are disclosed. The encapsulant material may include silicone and the devices used to deposit the silicone may be configured to simultaneously deposit the silicone on different sides of the optocoupler, thereby reducing manufacturing steps and time.