US09648783B1

An enhanced heat dissipation module having multi-layer heat isolation, made of copper, aluminum, iron, or a combination thereof, includes a protection box, used to receive an electric circuit board. On protection box is provided with at least a notch corresponding to high heat generating electronic components on the electric circuit board. A heat dissipater is provided with a large heat dissipation area disposed opposite to protection box, and it includes at least a fix seat disposed in protrusion on the heat dissipater. The fix seat extends into the notch of the protection box, to contact fully surface of the high heat generating electronic components. An elastic contact plate, disposed in front of the fix seat, to press against surface of the high heat generating electronic components. A plurality of heat conduction tubes are pressed onto the heat dissipater, with one end connected to the fix seat.
US09648781B2

The present invention discloses an external thermal conduction interface structure of electrical equipment wherein a fluid jetting device is utilized to jet a thermal conductive fluid for exchanging heat with the external thermal conduction interface structure of electrical equipment via the thermal energy of the jetted thermal conductive fluid, the heat exchange means includes the external thermal conduction interface structure of electrical equipment having relative high temperature being cooled by a fluid have relative lower temperature, and external thermal conduction interface structure of electrical equipment having relative lower temperature being heated by a fluid having relative higher temperature.
US09648780B2

One automated process for evenly applying a thin layer within a device housing includes applying a vacuum hold from a curved surface applicator to the thin layer, pressing the thin layer against the device housing with the applicator, wherein said pressing includes applying pressure from the center of the applicator first and then radially expanding said pressure, and pressing the cylindrical outer housing against an outer region of the thin layer to effect a hard pressed application at the outer surface thereof.
US09648776B2

An electronic module is provided, comprising an electronic chip arranged in the electronic module; at least two contact terminals electrically connected to the electronic chip each extending out of a package of the electronic module, wherein at least one of the at least two contact terminals is a signal contact terminal comprising a distal signal contact area, and at least another one of the at least two contact terminals is a power contact terminal comprising a distal power contact area; wherein the distal power contact area is adapted to be electrically connected to a power circuit external to the electronic module, wherein the external power circuit is oriented in a first plane; and wherein the distal signal contact area is adapted to be electrically connected to a signal circuit external to the electronic module, wherein the external signal circuit is oriented in a second plane extending perpendicular to the first plane.
US09648775B2

A storage device tray has a form factor designed to support a larger storage device, and is configured to secure a small storage device, thereby acting as an adapter between storage device sizes. The storage device tray includes a clip configured with pegs that may couple to screw hole sin the storage device. The clip also exerts a force against the storage device to secure that storage device. At least one advantage of this approach is that a storage device can be coupled to a storage device tray without using screws.
US09648774B2

A frequency converter (10a, 10b, 10c) includes a housing (30), a circuit board (12a) arranged in the housing, and a coupling arrangement (20) arranged externally on the housing (30) for galvanically coupling the circuit board (12a) to an adjacently arranged second frequency converter (10b, 10c), wherein the coupling arrangement (20) either comprises a base portion (22) and a coupling member (26) movable with respect to the base portion (22) along a defined movement path, or is formed as a rigid busbar which is designed for simultaneous attachment to the frequency converter and the second frequency converter, and the coupling arrangement (22) is galvanically coupled to the circuit board (12a). The coupling arrangement (22) is connected to the circuit board (12a) by a spring element (40), wherein this spring element (40) has a fastening portion (44) on the circuit board side and a fastening portion (42) on the coupling arrangement side. The fastening portions are interconnected by a resilient spring portion (46).
US09648745B2

Systems and method for mounting the printed wiring assembly to the header assembly of a pressure sensor are provided. In at least one embodiment, the pressure sensor comprises: a header assembly; a printed wiring assembly having a pressure sensor mounted thereon; and, at least one substantially cylindrical member that mechanically couples the printed wiring assembly to the header assembly. The substantially cylindrical member has a substantially hollow core, a substantially circular first end attached to the header assembly, a substantially circular second end opposite the substantially circular first end, and at least one side extending from the substantially circular first end to the substantially circular second end of the cylindrical member. Furthermore, the substantially circular second end or the at least one side or both are attached to the printed wiring assembly.
US09648739B2

An electronic component mounting structure includes a first land, a second land making a pair with the first land, an electronic component having a chip shape and including a first electrode connected to the first land and a second electrode connected to the second land, a first wiring pattern connected to the first land, and a second wiring pattern connected to the second land and including a first partial pattern overlapping a portion of a body of the electronic component in planar view, the portion being not covered with the pair of electrodes, a second partial pattern formed integral with the first partial pattern and overlapping the first electrode of the electronic component in planar view, and a third partial pattern formed integral with the second partial pattern and parallel to the first wiring pattern.
US09648736B2

The invention relates to a circuit board, particularly for a power-electronic module, comprising an electrically-conductive substrate which consists, at least partially and preferably entirely, of aluminium and/or an aluminium alloy. On at least one surface of the electrically-conductive substrate, at least one conductor surface is arranged in the form of an electrically-conductive layer applied preferably using a printing method and more preferably using a screen-printing method, said conductor surface being in direct electrical contact with the electrically-conductive substrate.
US09648733B2

A method of fabricating a substrate core structure comprises: providing first and second patterned conductive layers defining openings therein on each side of a starting insulating layer; providing a first and a second supplemental insulating layers onto respective ones of a first and a second patterned conductive layer; laser drilling a set of via openings extending through at least some of the conductive layer openings of the first and second patterned conductive layers; filling the set of via openings with a conductive material to provide a set of conductive vias; and providing a first and a second supplemental patterned conductive layer onto respective ones of the first and the second supplemental insulating layers, the set of conductive vias contacting the first supplemental patterned conductive layer at one side thereof, and the second supplemental patterned conductive layer at another side thereof.
US09648727B2

Fault detection optimized electronic circuit includes a circuit substrate on which components of the electronic circuit are respectively disposed. Each of the components has a component body which includes at least a first and second contacts. A component trace formed of conductive material is disposed on a first exterior surface of each component body facing the substrate. The component trace is electrically insulated from the first and second contact. Each of the components contains a network consisting of at least two capacitors connected in series between the first and second contact. A test point is formed of conductive material disposed on a second exterior surface of each body. The test point is electrically isolated from the first and second contacts and electrically connected to at least the component trace.
US09648726B2

A plurality of suspension boards are integrally supported by a support frame. A plurality of inspection substrates are provided to correspond to the plurality of suspension boards. In each suspension board, lines are formed on a conductive support substrate with a base insulating layer sandwiched therebetween. The support substrate and the line are electrically connected by a via in the base insulating layer. In each inspection substrate, a conductor layer is formed on a conductive support substrate with a base insulating layer sandwiched therebetween. The support substrate and the conductor layer are electrically connected by a via in the base insulating layer.
US09648722B2

A printed circuit board assembly comprises a printed circuit board having at least one conductive layer supported by a substrate layer, and at least one power semiconductor device, wherein the at least one power semiconductor device is at least partly embedded in the substrate layer.
US09648718B2

A plasma emission device in an embodiment includes: an electromagnetic wave generator; a waveguide transmitting an electromagnetic wave emitted from the electromagnetic wave generator, an antenna receiving the electromagnetic wave transmitted through the waveguide; an electromagnetic wave focuser which is irradiated with the electromagnetic wave from the antenna; and an electrodeless bulb disposed in the electromagnetic wave focuser. A light-emitting material filled in the electrodeless bulb is excited by the electromagnetic wave focused by the electromagnetic wave focuser to perform plasma emission. The electromagnetic wave generator includes a cathode part and an anode part. A maximum output efficiency of the electromagnetic wave to be generated with an input power of 700 W or less is 70% or more.
US09648717B2

Certain embodiments described herein are directed to generators that can be used to sustain a plasma in a driven mode and in an oscillation mode and optionally in a hybrid mode. In some embodiments, the generator is configured to switch between the two modes during operation. In certain instances, the plasma may be ignited when the generator is in a driven mode and may be used to analyze samples when the generator is in an oscillation mode or driven mode or hybrid mode.
US09648709B2

Various embodiments may relate to a fault detection device for streetlamp lighting system. The streetlamp lighting system includes multiple load groups which are powered by a power cable. The fault detection device includes a master detection control unit and load detection control units configured for respective load groups, wherein the master detection control unit determines, according to a first fault feedback signal provided by respective load detection control unit, whether the load group corresponding to the load detection control unit is failed, while the streetlamp lighting system is in a first state, and the master detection control unit determines, according to a physical quantity detected on the power cable, whether the power cable is failed, while the streetlamp lighting system is in a second state. In addition, various embodiments further relate to a method of controlling the fault detection device.
US09648705B2

A lamp head assembly is provided. The lamp head assembly includes a plurality of arrays of light producing elements; a driver circuit configured to provide energy to each of the plurality of arrays; and a microprocessor for controlling operation of the driver circuit.
US09648704B2

A two-level LED security light with a motion sensor. At night, the LED is turned on for a low level illumination. When the motion sensor detects any intrusion, the LED is switched from the low level illumination to a high level illumination for a short duration time. After the short duration time, the LED security light returns to the low level illumination for saving energy. The LED security light includes a power supply unit, a light sensing control unit, a motion sensing unit, a loading and power control unit, and a lighting-emitting unit. The lighting-emitting unit includes one or a plurality of LEDs which may be turned-on or turned-off according to the sensing results from the light sensing control unit. When the motion sensing unit detects an intrusion, the illumination of the LED security light can be immediately turned on to the high level to scare away the intruder.
US09648697B1

A system monitors operational status of a lighting element. A lighting fixture processor instructs a lighting element to illuminate at a predetermined time, receives sensed light level information from the light sensing element, and transmits a wireless message including information representing the sensed light level. A room controller can control some or all of these steps. A daylighting arrangement includes a room controller that instructs the lighting fixtures of a lighting group to illuminate their lighting elements at a predetermined time of day. Sensed light level information is obtained and wirelessly transmitted to the room controller, which determines an initial daylighting target for the lighting fixture group based on an average of the sensed light level information. The room controller instructs the lighting fixtures to illuminate their respective lighting elements in accordance with the initial daylighting target.
US09648696B2

Some embodiments include a method of operating a tunable light module. The method can include driving a lamp in the tunable light module, having lamps of at least two colors, to produce a colored light according to the color mixing plan that corresponds to a correlated color temperature (CCT); measuring a light characteristic of the lamp using a light sensor; detecting a degradation level by comparing the measured light characteristic against an expected light characteristic; and adjusting a current level for driving the lamp at the CCT by referencing the color mixing plan and an alternative coefficient corresponding to the degradation level.
US09648672B2

The Multiple Display-units LED light device has special light effects which means the more than one of display-unit can be assembly into one viewing product install within the base by certain strength or assembly means which has the prong means or other unlimited power source mans to supply the electric signal to the said LEDs to make the eye-catching light effects. The display unit may have the build-in input-end or separated input-end to allow to match the said receptacle means of the base. The base with LED related circuit, prong means and other control means, IC means may disposed into the base or incorporated with sealed-unit to make the light beam to be seen by viewer though the viewing area for dedicated art, word, signal, data, design, motion liquid, 3 dimensional, geometric design, art, digital data, liquid crystal screen, LCD and colored image with color change LEDs for illumination.
US09648668B2

An induction hob (100) includes a solid plate (105), and a plurality of electrically activatable coil members (1101-1108) arranged underneath the plate. The define corresponding cooking zones (1151-1158) of the induction hob, and a control unit (135) is configured to select power levels for the cooking zones. Upon selection of first (P1) and second (P6) power levels for non-adjacent first (1151) and second (1156) cooking zones, respectively, the control unit is configured to automatically select for each intermediate cooking zone (1152-1155) between the first and second cooking zones a corresponding power level (P2-P5) obtained by interpolation of the first and second power levels with a predefined interpolating function.
US09648664B2

A communication terminal, in particular an eCall terminal. The terminal comprises a communication unit and an interface for communication of the terminal with communication networks. The terminal comprises a determination unit for determining in which communication network the terminal is located. The terminal comprises a database in which communication network related data for a number of different communication networks are stored and in which said communication network related data are linked to paging channels of the respective communications networks. The terminal further comprises a scanning unit for scanning paging channels and an evaluation unit for evaluating information received via a paging channel. In addition the present invention relates to a method of scanning paging channel and to a method for activation of a communication terminal.
US09648654B2

One example discloses an acoustic pairing device, comprising: an acoustic processor configured to receive a first acoustic signal and a second acoustic signal; a signal comparison module configured to identify a propagation delay or amplitude difference between the first and second acoustic signals; and a pairing module configured to output a pairing signal if the propagation delay or amplitude difference is between a first value and a second value. Another example discloses a method for acoustic pairing between a first device and a second device, executed by a computer programmed with non-transient executable instructions, comprising: receiving a propagation delay or amplitude difference between a first acoustic signal and a second acoustic signal; pairing the first and second devices if the propagation delay or amplitude difference is between a first value and a second value.
US09648650B2

A method for pairing a multimedia receiver connected to an IP network with at least one mobile equipment connected to a mobile network using a communication protocol different from the IP network. A unique identifier of the mobile equipment is introduced into an application on the multimedia receiver. The latter transmits, to the mobile equipment, a message comprising a pairing request and a command for acquiring a unique public address of the multimedia receiver, said mobile equipment being identified by an address associated to the unique identifier. The mobile equipment receives the message and transmits a response message to the multimedia receiver identified by the unique public address, said response message comprising unique identifier. The multimedia receiver verifies the unique identifier in the response message by comparing it with the unique identifier introduced into the application. If the verification is successful, the mobile equipment pairs with the multimedia receiver.
US09648647B2

In one aspect of the present invention, a base station includes a reception unit configured to receive a call request or a paging response according to circuit switching from a mobile station; a packet switched communication state determination unit configured to determine a state of packet switched communication of the mobile station, when the call request or the paging response is received from the mobile station; and a circuit switching communication processing unit configured to establish a circuit switched bearer using a radio parameter for circuit switched communication, when no packet switched communication is performed in the mobile station.
US09648642B2

Integrated circuitry for use in a mobile radio station includes a receiver that receives control information and a data processor coupled to the receiver. The data processor provides a number of different sequences that are derived from a base sequence. The different derived sequences are respectively associated with different amounts of data or reception qualities, have different cyclic shifts, and are arranged in an increasing order of the cyclic shifts. The data processor randomly selects a sequence from a subset of the derived sequences. The subset of derived sequences depends on the control information.
US09648641B2

A data transmission method is provided. The method includes obtaining configuration information, wherein the configuration information indicates transmission resources of a random access preamble and payload data corresponding to the random access preamble, transmitting the random access preamble and the payload data at the transmission resources, modulating the payload data using a modulation scheme supporting asynchronous transmission, and receiving feedback information, wherein the feedback information comprises an indication which indicates whether the payload data is successfully received. Various examples of the present disclosure also describe a method for receiving data with space multiplexing which is applied to a base station side, and further describe a terminal and a base station. Employing the examples of the present disclosure, transmission efficiency of long duty cycle and sporadic small data packets of a large number of devices in the Internet of Things in future communication systems can be improved.
US09648638B2

A method and apparatus for establishing a device-to-device (D2D) connection in a wireless communication system is provided. A first mobile device may transmit an identity of a network node to a second mobile device. In this case, the first mobile device and the network node are connected by a first connection, and the first mobile device and the second mobile device are connected by a second connection. Or, a base station may transmit information on a D2D connection between mobile devices which are connected to the base station, to a neighboring network node. The information on the D2D connection includes at least one of information on the mobile devices, and a D2D mode.
US09648637B2

A method and a base station for transmitting downlink data to a user equipment configured with a plurality of serving cells; and a method and a user equipment configured with a plurality of serving cells for receiving downlink data are discussed. The method for transmitting downlink data according to an embodiment includes transmitting a physical downlink control channel (PDCCH) carrying a downlink grant through a scheduling cell; and transmitting a physical downlink shared channel (PDSCH) carrying the downlink data through a scheduled cell. A primary cell (PCell) group is configured with a PCell and zero or more secondary cells (SCells), and an SCell group is configured with one or more SCells. The scheduled cell belongs to the PCell group when the scheduling cell belongs to the PCell group, and the scheduled cell belongs to the SCell group when the scheduled cell belongs to the SCell group.
US09648630B2

A calibration method for a base station removes distortion in traffic signals incurred in transmit paths of the base station. The transmit paths are coupled to an antenna array for transmitting the traffic signals in a wireless network. The method includes conditioning a traffic signal to reduce a correlation with another traffic signal before the traffic signals enter the transmit paths. For each of the traffic signals, an impairment estimation is performed based on the traffic signals captured before entering the transmit paths and the traffic signals captured before entering the antenna array. An approximate inverse of the impairment estimation is applied to each of the traffic signals before the traffic signals enter the transmit paths.
US09648617B2

An Orthogonal Frequency Division Multiplex (OFDM) data communication system has an access subsystem that exchanges user data with an access network. The OFDM system has a trusted subsystem that exchanges user data with a trusted network. The trusted subsystem also encodes trust challenge data with a physically-embedded key and transfers the encoded trust challenge data for remote hardware trust validation. The access subsystem allocates OFDM resource blocks to the trusted subsystem and schedules its user data in the remaining OFDM resource blocks. The trusted subsystem schedules its user data in the allocated OFDM resource blocks and determines a Common Public Radio Interface (CPRI) sequence for the user data based on the OFDM scheduling. The access subsystem exchanges its user data with the trusted subsystem. The trusted subsystem exchanges the user data with a CPRI communication system based on the CPRI sequence.
US09648615B2

A plurality of time slots are allocated during which a location procedure is performed for one or more target wireless devices. Select ones of a plurality of wireless access points at different positions are assigned to each time slot such that multiple wireless access points assigned to a given time slot are sufficiently separated. In addition, wireless access points are assigned to a corresponding one of a plurality of groups for each time slot such that wireless access points assigned to a group tune to a channel used by a wireless access point in the group that transmits one or more frames that are intended to provoke one or more response frames from the one or more wireless devices.
US09648613B2

A method for gaining access according to one embodiment of the present invention in which a station (STA) gains access to a medium in wireless communication system comprises the steps of: sensing a carrier wave for a medium so as to transmit a set frame; and, if the medium is busy, executing a random back-off procedure, wherein the starting point of the random back-off procedure is indicated by a second parameter randomly selected from within a range in accordance with a first parameter.
US09648601B2

The present disclosure provides a communication method, base station and user equipment for configuring a parameter table in a wireless communication system including a base station and a user equipment, the communication method comprising: defining at both the base station and the user equipment a parameter table which includes whole entries of a legacy parameter table and extended entries; and transmitting from the base station to the user equipment a bitmap indication which indicates a sub-table selected from the parameter table, wherein the number of the entries in the sub-table is the same as in the legacy parameter table.
US09648593B2

Methods and apparatus are disclosed for transmitting data to a remote node via each of two or more transmitted carrier signals, wherein a distinct outbound packet data traffic channel is mapped to each transmitted carrier signal. In an exemplary method, aggregated control channel data is formed by combining control channel data corresponding to each of two or more received carrier signals, simultaneously transmitting traffic channel data to the remote node on each of the two or more outbound packet data traffic channels, and transmitting the aggregated control channel data using one or more physical control channels mapped to a first one of the transmitted carrier signals. In particular, these methods and apparatus may be applied to a multi-carrier High-Speed Packet Access (HSPA) system.
US09648592B2

There is provided fine-grain and backward-compliant resource allocation, comprising allocating, to a control channel, one of a first plurality of bandwidths being standardized for a first radio access standard, and allocating, to a data channel, one of a second plurality of bandwidths being standardized for a second radio access standard, the second bandwidths plurality exceeding the first bandwidths plurality in terms of at least one of granularity and range. The thus disclosed resource allocation may exemplarily be applied on a downlink.
US09648574B2

A receiving device includes a first processing unit configured to execute a first demodulation process on a second signal transmitted in a second radio area different from a first radio area in which a first signal as a desired signal is transmitted; a first estimation unit configured to execute a first estimation process of estimating a channel for the second radio area based on an execution result of the first demodulation process; and a second processing unit configured to execute a cancellation process of cancelling a component from a received signal based on the estimated channel, the component being attributed to the second signal transmitted in the second radio area, wherein the receiving device executes a second demodulation process on the desired signal based on an execution result of the cancellation process.
US09648562B2

A transceiver front-end circuit for a cellular radio architecture for a vehicle, where the transceiver circuit employs components for reducing power consumption. The transceiver circuit includes a receiver module having a delta-sigma modulator that converts analog receive signals to a representative digital signal in an interleaving process, where the delta-sigma modulator includes a combiner, a low noise amplifier (LNA), an LC filter and a quantizer circuit. The LC filter is a multi-order filter and the quantizer circuit is an interleaving quantizer circuit that interleaves multiple groups of bits from the filter. The order of the LC filter is selectively reduced in situations where a full dynamic range of the cellular radio is not required and a bit resolution of the quantizer circuit is reduced so as to reduce the power requirements of the cellular radio.
US09648559B2

System and method embodiments are provided for differentiated fast initial link setup. The embodiments enable improved performance of initial link setup by stations in a wireless local area network during the association process and mitigate the negative effect of bursty association on existing associated users. In an embodiment, a method in a wirelessly enabled network component for differentiated fast initial link setup in a wireless local area network, includes determining categories of station types for initial link setup; determining initial link setup conditions for each station type, wherein the initial link setup conditions specify a priority of associating for each station type; and broadcasting initial link setup conditions to a plurality of stations, wherein the stations determine whether to associate with the wirelessly enabled network component immediately or after a time duration according to the station types and initial link setup conditions.
US09648556B2

Examples herein disclose preventing multiple radios from simultaneously scanning a same channel. The examples identify a first scan time associated with the multiple radios and determine a second scan time based on the first scan time. The examples prevent the multiple radios from simultaneously scanning the same channel through a coordination of channel scanning of each of the multiple radios based on the second scan time.
US09648553B2

The present invention provides a cell measurement method, a user equipment, and a base station. A cell measurement method according to an embodiment of the present invention includes receiving, by a user equipment, a neighbor cell list of a serving cell of a base station, wherein the neighbor cell list corresponds to a frequency, is sent by the base station, and includes a list of all neighboring cells at the frequency and information indicating whether each neighboring cell in the list of all neighboring cells can be measured by at least one of a first type of user equipment and a second type of user equipment at the frequency corresponding to the neighbor cell list. The cell measurement method also includes performing, by the user equipment, cell measurement according to the neighbor cell list.
US09648552B2

A device may use positioning information to increase the efficiency a wireless local area network (WLAN) scanning process. To determine the presence of WLANs within range, a device may determine its own location. For example, the device may determine its own location using a satellite-based navigation system. The device may then determine a wireless scanning strategy based on the determined location. The determination may be further based on connection parameters, such as, channel information, network capabilities, and/or other connection parameters.
US09648549B2

Systems, methods, and devices for wireless communication are provided. In an embodiment, a method of wireless communication includes receiving, at an access point, a probe request, generating a probe response to conditionally include neighbor report information based on the probe request; and transmitting the probe response to a wireless device.
US09648540B2

A node device includes: a communication unit to transmit a data frame containing frequency information and receive the data frame; a storage unit to store a table in which frame identification information and the frequency information are associated; and a control unit to: determine whether a destination of the received data frame is its own node device; determine whether the frame identification information of the received data frame is registered in the table; determine whether the number of transmission times is less than or equal to the number of transmission times corresponding to the frame identification information registered in the table; update the frequency information corresponding to the frame identification information registered in the table with the frequency information of the received data frame; and increase the number of transmission times, wherein the communication unit transmits the data frame for which the number of transmission times is increased.
US09648539B1

For an ultra dense network (UDN) having small cells of highly overlapped coverages, a user equipment (UE) selects in a handover process a preferred base station (BS) from candidate BSs for minimizing occurrence of handover events. The UE computes finite differences consisting of a first-, a second-, and one or more higher-order differences, according to received signal strength (RSS) values obtained for each candidate BS. A preference level, which is a total number of finite differences having consecutive order numbers, including the first-order difference, and being positive or non-negative, is computed for each candidate BS. One or more favorable candidate BSs from the candidate BSs are identified such that the group of such favorable candidate BSs has the same preference level that is maximum among all the preference levels computed for the candidate BSs. The preferred BS is selected from the group of such favorable candidate BSs.
US09648530B2

A method for anticipating the loss of connectivity between a mobile device and a wireless short-range access point among a plurality of such wireless access points, this method comprising the following steps: —collecting a plurality of paths corresponding to the mobile device movements within the coverage areas of the access points to which the mobile device was successively associated without loss of connectivity, each path comprising a root access point at which a connectivity is originated and a dead-end access point at which the connectivity is lost; —detecting the current access point to which the mobile device is currently associated; —identifying the paths comprising the current access point; —computing the risks of losing the connectivity when following each of the identified paths from the current access point to the root access point or to the dead-end access point of each of the identified paths.
US09648529B1

Systems and methods are described for avoiding packet loss during a handover. A handover request may be received at a control element of a first communication network. It may be determined that the handover request comprises a first type of handover request. A gateway node of the first communication network may be instructed to buffer packets for the wireless device based on the determination that the handover request comprises a first type of handover request. And the gateway node may be instructed to stop buffering the packets for the wireless device based on an execution of the requested handover.
US09648527B2

A cell for communication with a user equipment within a mobile communications network in which the network comprises a plurality of cells, is selected by identifying (201) cells having the required signal strength for communication with a user equipment; grouping (203) the identified cells according to maximum transmit power level a user equipment may use when communicating within that cell, p-Max, each group being allocated a priority level such that the group having the lowest p-Max is allocated the highest priority level through to the group having the highest p-Max allocated the lowest priority level; and selecting (205) one of the grouped cells for communication with the user equipment from the group of cells having the highest priority level.
US09648520B2

A method of processing data associated with mobility of a user equipment (UE) in a wireless network is described. A mobility management entity (MME) starts an activation procedure for a default bearer for a packet data network (PDN) connection associated with a local Internet protocol access (LIPA). If a base station rejects an establishment of the default bearer for the PDN connection associated with the LIPA due to a triggered handover, the MME transmits a PDN connection reject message including a cause value, and releasing a network resource allocated for the activation procedure.
US09648517B2

A hierarchical cellular network system having a core and comprising a plurality of nodes, wherein at least one node comprises a relay; and wherein at least one relay includes: a tunneling sub-system; a backhauling link subsystem interfacing between the tunneling subsystem and a node which is closer to the core than the relay; and a base station subsystem, interfacing between the tunneling subsystem and a mobile station or a node which is further from the core than the relay, wherein the tunneling subsystem is operative to perform the following, on data arriving from a base station subsystem belonging to another node from among the plurality of nodes: collecting the data; and encapsulating the results to be sent in an individual session into packets and sending the packets to the Backhauling Link Subsystem.
US09648512B2

A mobile communications device with a wireless module and a controller module is provided. The wireless module performs wireless transceiving to and from a first cellular station of a first service network and a second cellular station of a second service network, wherein the first service network is a long term evolution (LTE) network and the second service network is a Universal Mobile Telecommunications System (UMTS) network. The controller module receives a measurement request message from the first cellular station via the wireless module, performs a measurement on the second cellular station in response to the measurement request message and reports the measurement result to the first service network via the wireless module, wherein the second cellular station is previously not requested or configured by the first service network to be measured.
US09648504B2

Methods, systems, and devices are described for transmitting across a broad azimuth using an antenna array. In one example, a method is described that includes forming two subarrays from an antenna array. Beamforming weights are selected for each subarray to cause the radiation patterns to be complementary over a range of the azimuth of a cell. The beamforming weights may be selected according to a recursive relation based on the number of antenna elements in each subarray. Information may be encoded, scrambled, and mapped to modulation symbols. A Space Frequency Block Code (SFBC) such as an Alamouti Code may then be used to form two signals to be transmitted over the two subarrays.
US09648489B2

This invention provides a method, system and apparatus for controlling mobility on a wireless network, which includes retrieving a network mobility preference, the network mobility preference indicating a level of mobility service for the mobile station, the level of mobility service indicating the extent to which the mobile station can handoff among base stations of the wireless network, and establishing a level of mobility service for the mobile station based on the retrieved network mobility preference. The method and apparatus may further include determining the level of mobility service for the mobile station to be fully or partially restricted based on the mobility preference.
US09648464B1

An efficient process is provided that exploits features in historical and current client location data to forecast client counts of different zones up to several hours ahead. These features may be obtained from correlations of client counts of multiple zones in a recent and long period of time. These features may also be combined using techniques that choose the best performing method for a particular dataset and a particular lookahead time. This process provides better forecast/prediction on the zone-based client count data, and is very useful in customer analytics which can now show the future predicted value. This can help the analytics customers to plan their operations based on the location analytics.
US09648450B2

Assistance techniques that give customers more knowledge and more freedom to seek out employees or other help providers. In an example method, a mobile device of a customer sends a request for assistance to a host computer, receives a location of help provider from the host computer, and displays the location on a map. The customer may then seek out the help provider.
US09648442B2

A system, method, computer readable medium, and computer program for processing wireless communication device identification numbers such as MEID numbers 10 in any standard representation (such as decimal or hexadecimal) and converting the wireless communication device identification number 140 to all commonly used forms and representations. This capability ensures older systems and wireless networks are compatible with the latest standards in wireless communication device identification numbers. Additionally, the system can validate the wireless communication device identification numbers 70 and verify/calculate any check digits 100.
US09648441B2

A method and system for providing on-line services to a user from a services provider over a wireless cellular network. The cellular network is located between the user and the services provider, and a distributed computer system such as the Internet is located between the services provider and the cellular network for transmitting data between the services provide and the cellular network. In one embodiment, the services provider transmits software and operating characteristics over the distributed computer system to the cellular network, and the cellular network installs this software on one or more nodes of the network. When a user connects to the cellular network for services from the service provider, the network operates the software on the one or more nodes in accordance with the operating characteristics, to provide one or more services from this one or more nodes to the user from the service provider.
US09648420B2

An audio power amplifier arrangement includes an audio power amplification integrated circuit having two loudspeaker outputs. A rectifier circuit includes a first diode having a cathode connected to one of the two loudspeaker outputs and an anode connected to a rectifier output node. A second diode has an anode connected to the one loudspeaker output. A first resistor has a first end connected to a cathode of the second diode and a second end connected to the rectifier output node. A capacitor has a first end connected to the rectifier output node and a second end connected to electrical ground. A second resistor has a first end connected to the rectifier output node and a second end connected to electrical ground.
US09648416B2

A method of operating an audio entertainment system in a vehicle includes detecting an operating parameter of the vehicle. A sensor signal corresponding to the detected operating parameter is transmitted. Music that is audibly produced within the vehicle is musically modified dependent upon the sensor signal.
US09648412B2

A speaker assembly includes a support structure and a tactile vibrator coupled to the support structure. The tactile vibrator includes a plurality of rigid members coupled to a plurality of suspension members. Each rigid member of the plurality of rigid members has at least one magnetic member coupled thereto for generating tactile vibrations during operation of the speaker assembly. A headphone includes the speaker assembly. A method of operating a speaker assembly includes driving a tactile vibrator having a plurality of magnetic members coupled to a plurality of rigid members and a plurality of suspension members to cause tactile vibrations in the speaker assembly.
US09648401B2

A data center network and a method for deploying the data center network. The data center network includes one core switch group, m cyclic arrayed waveguide grating (CAWG) groups, and m edge switch groups, where the core switch group includes k core switches; each CAWG group includes 2*Y N*N CAWGs, where the 2*Y CAWGs include Y uplink CAWGs and Y downlink CAWGs, the Y uplink CAWGs are connected to each core switch in the core switch group separately using an optical uplink, and the Y downlink CAWGs are connected to each core switch in the core switch group separately using an optical downlink; and each edge switch of an edge switch group is connected to an uplink CAWG and a downlink CAWG in a corresponding CAWG group separately. The present invention can reduce the number of optical fibers in a data center network.
US09648400B2

The invention relates to a system of consumption meters (2) arranged in a communication network, where program data of the consumption meters can be updated via the communication network. A data collector (3) is arranged for updating the program data of a group of consumption meters over the network. This is performed by establishing a dedicated update session to each consumption meter of the group of consumption meters, and transmitting addressed update program segments to consumption meters in session. During the update session with a given consumption meter, any other consumption meter which is within communication range (8) will, if it receives the update segment, store it even though the segment is addressed to another meter. In an update session of a next meter, only segments not already stored from a previous session to another consumption meter are transmitted to the next meter.
US09648398B2

A method consistent with certain implementations involves receiving a triggerable declarative object (TDO) at a digital television receiver device that carries out a programmed script upon execution; the programmed script including a parameter discovery function that determines an operational parameter of the television receiver device and further includes a programmed function; initiating the execution of the TDO in order to initiate execution of the script on a processor of the television receiver device; running the script on the processor of the television receiver device in order to discover the operational parameter and in order to carry out the programmed function; and where the programmed function is conditional upon the discovered operational parameter of the television receiver. This abstract is not to be considered limiting, since other embodiments may deviate from the features described in this abstract.
US09648395B1

Systems, methods, and non-transitory computer-readable media can identify a beginning portion and a remaining portion of a video to be encoded. A first constant quality variable bit rate encoding process can be applied to the beginning portion, based on a first set of encoding parameters, to produce an encoded beginning portion. A second constant quality variable bit rate encoding process can be applied to the remaining portion, based on a second set of encoding parameters, to produce an encoded remaining portion. The encoded beginning portion can be provided for video playback. The encoded remaining portion can be provided, when requested, for video playback subsequent to the encoded beginning portion.
US09648392B2

An apparatus, method, and system are described for transmitting a television program signal. A portion of a local frequency spectrum may be determined to be free, or relatively unused. A user selection of a television program or broadcast programming channel may be received from a program lineup in an electronic programming guide. The selected program may be selected from a gateway, translated, and transmitted over the portion of the frequency spectrum determined to be free. The translation may include converting a signal from the gateway into a National Television Systems Committee (NTSC) signal or a mobile TV signal.
US09648390B2

Items of video content offered for viewing on a video-on-demand (VOD) platform of a digital TV service provider are each assigned a respective title and hierarchical address corresponding to hierarchically-arranged categories and subcategories within which the title for the video content is to be categorized. The title is listed in a location of an electronic program guide (EPG) using the same categories and subcategories as its hierarchical address. Any TV subscriber can access the EPG and navigate through its categories and subcategories to find a title for viewing on the TV. The EPG dynamically adjust its display listings of each level of categories, subcategories, and titles in order to minimize the number of remote control keypresses needed for a viewer to navigate to a title of interest. In one basic form, the EPG display is reordered by listing more frequently visited categories or subcategories first, and other less frequently visited categories or subcategories lower on the listing or out-of-sight on another page of the display.
US09648383B2

A method of transmitting and receiving a measurement report frame in a wireless local area network (WLAN) is disclosed. A method of transmitting a measurement report frame form a first station to a second station in a regulatory domain where a licensed device and an unlicensed device are permitted to operate together in a wireless local area network (WLAN) comprising: receiving, at the first station, a measurement request frame from the second station; and transmitting, to the second station, the measurement report frame including a Primary Service Signal Map field indicating which TV channels are occupied by a primary service signal, wherein the primary service signal is a signal that requires protection by regulation.
US09648377B2

An interactive television program guide system is provided in which a viewer may direct a television to simultaneously display a selected television program and a program guide display. A viewer may use the program guide display to browse available video-on-demand (VOD) while continuing to view a previously selected program in the background. The viewer may browse through video-on-demand programs on the program guide display using a variety of keys on a remote control unit. The viewer may direct the program guide to order a given video-on-demand program, and set a desired broadcast time for that program.
US09648363B2

A method is implementable in a source device that is operable to provide, via a wireless channel, a video stream to a sink device for display by the sink device. The method includes receiving compressed video data corresponding to one or more video frames of the video stream, and generating a current packet of a plurality of packets. The plurality of packets collectively includes the compressed video data. The current packet includes a current portion of the compressed video data and recovery information indicative of at least one of (i) an arrangement of an earlier portion of the compressed video data, or (ii) content of the earlier portion of the compressed video data, wherein the earlier portion of the compressed video data is data included in an earlier packet of the plurality of packets. The method also includes causing the current packet to be transmitted to the sink device.
US09648361B2

The present invention provides a method of transmitting broadcast signals, the method including encoding service data, building at least one signal frame by mapping the encoded service data, modulating data in the built at least one signal frame by an Orthogonal Frequency Division Multiplexing, OFDM, scheme and transmitting the broadcast signals having the modulated data.
US09648358B2

Methods and systems that provide enhanced personal video recorder (“PVR”) and interactive television program guide (“IPG”) functionality are provided. An interactive television application may be used to display a list of PVR recordings, schedule recordings to a PVR, configure recordings, view a list of scheduled recordings, configure recording settings, or select delete priority settings for recordings. The application may integrate pay-per-view and PVR functionality. The application may send user notifications for changes that are to be made to the recording content of a PVR. Live programming may be buffered by the application using straight buffers that are created for each new program. Parallel buffers for concurrent programs may be implemented using multiple tuners. Straight buffers may be used in managing or controlling the flow of programming. Television content may be automatically paused when a user is engaged in using the application. Multiple IPGs for different users of a PVR may be implemented.
US09648357B2

A method and device for ranking video feeds provide a user with the best feed depending on what the user wishes to see. The method includes obtaining one or more video feeds and ranking the video feeds. The ranking is based, at least in part, upon input from a viewer indicating an object of interest. The ranking can consider things such as video stream resolution and signal strength.
US09648356B2

A data structure defining a high dynamic range image comprises a tone map having a reduced dynamic range and HDR information. The high dynamic range image can be reconstructed from the tone map and the HDR information. The data structure can be backwards compatible with legacy hardware or software viewers. The data structure may comprise a JFIF file having the tone map encoded as a JPEG image with the HDR information in an application extension or comment field of the JFIF file, or a MPEG file having the tone map encoded as a MPEG image with the HDR information in a video or audio channel of the MPEG file. Apparatus and methods for encoding or decoding the data structure may apply pre- or post correction to compensate for lossy encoding of the high dynamic range information.
US09648349B2

A video decoding method for performing video decoding, in which a maximum split level of a transformation unit is determined based on maximum split information for an intra mode when information about the prediction mode indicates that a coding unit is predicted according to the intra mode. Accordingly, the information about the prediction mode indicates that the coding unit is predicted according to the intra mode, rather than according to any prediction modes.
US09648348B2

A computing device generates a file that comprises a track box that contains metadata for a track in the file. Media data for the track comprises a sequence of samples. Each of the samples is a video access unit of multi-layer video data. As part of generating the file, the computing device generates, in the file, an additional box that documents all of the samples containing at least one Intra Random Access Point (IRAP) picture.
US09648347B1

A method of generating new views for a multi-view display system includes receiving a block-based disparity estimate between left image data and right image data for a frame of image data at a processor, upscaling the block-based disparity estimate to a pixel-based disparity for each pixel in the image date, performing motion vector based disparity interpolation and image interpolation simultaneously to produce left and right side interpolated data, and generating at least one new view using left and right side interpolated data.
US09648333B2

A video coding device may identify a network abstraction layer (NAL) unit. The video coding device may determine whether the NAL unit includes an active parameter set for a current layer. When the NAL unit includes the active parameter set for the current layer, the video coding device may set an NAL unit header layer identifier associated with the NAL unit to at least one of: zero, a value indicative of the current layer, or a value indicative of a reference layer of the current layer. The NAL unit may be a picture parameter set (PPS) NAL unit. The NAL unit may be a sequence parameter set (SPS) NAL unit.
US09648331B2

Provided are a method and an apparatus for coefficient scan on the base of a partition mode of a prediction unit. The method comprises the steps of: determining a scan method on the basis of a partition mode of a prediction unit; and encoding the information about the scan method, wherein the scan method is determined, on the basis of RDO (Rate Distortion optimization), from among the extracted candidate scan methods which have been extracted with consideration of the shapes of the partitions of the partition mode.
US09648330B2

A device for decoding video data includes a memory configured to store video data, and at least one processor. The at least one processor may be configured to: determine luma residual samples for a block of video data, determine predictive chroma residual samples for the block of video data, scale the luma residual samples with a scale factor to produce scaled luma residual samples, and determine updated chroma residual samples based on the predictive chroma residual samples and the scaled luma residual samples.
US09648324B2

An image coding method includes coding a motion vector difference indicating a difference between the motion vector and a predicted motion vector, wherein the coding includes: coding a first portion that is a part of a first component which is one of a horizontal component and a vertical component of the motion vector difference; coding a second portion that is a part of a second component which is different from the first component and is the other one of the horizontal component and the vertical component; coding a third portion that is a part of the first component and is different from the first portion; coding a fourth portion that is a part of the second component and is different from the second portion; and generating a code string which includes the first portion, the second portion, the third portion, and the fourth portion in the stated order.
US09648323B2

An image coding method includes: selecting a first picture from plural pictures; setting a first temporal motion vector prediction flag which is associated with the first picture and is a temporal motion vector prediction flag indicating whether or not temporal motion vector prediction is to be used, to indicate that the temporal motion vector prediction is not to be used, and coding the first temporal motion vector prediction flag; coding the first picture without using the temporal motion vector prediction; and coding a second picture which follows the first picture in coding order, with referring to a motion vector of a picture preceding the first picture in coding order being prohibited.
US09648320B2

Methods and system for processing data are disclosed. One method can comprise receiving content data in a first format and context description data relating to a portion of the content data. The method may further comprise converting the portion of the content data to an intermediate format, and converting the portion of the content data from the intermediate format to a second format based at least in part upon the context description data.
US09648318B2

In general, techniques are described for performing residual prediction in video coding. As one example, a device configured to code scalable or multi-view video data may comprise one or more processors configured to perform the techniques. The processors may determine a difference picture, for a current picture, based on a first reference picture in a same layer or view as the current picture and a decoded picture in a different layer or view as the current picture. The decoded picture may be in a same access unit as the first reference picture. The processors may perform bi-prediction based on the difference picture to code at least a portion of the current picture.
US09648313B1

An aviation display system includes an input source configured to provide a left eye input channel including a first band and an input source configured to provide a right eye input channel having a second band different from the first band. A processor is coupled with the input sources and with a non-transitory processor readable medium storing processor executable code, which causes the processor to receive data indicative of the left eye and right eye input channels from the input sources and to generate a left eye output channel and a right eye output channel. A display is configured to receive the left and right eye output channels from the processor and to provide an image indicative of the left eye output channel to a left eye of a user, and an image indicative of the right eye output channel to a right eye of the user.
US09648312B2

A display device including a display part including a pixel of a first series having a first horizontal pixel width and a pixel of a second series having a second horizontal pixel width smaller than the first horizontal pixel width, the pixels of the first series and the pixels of the second series being arrayed alternately in each of a horizontal direction and a vertical direction, and a light beam control part that controls a light beam from the display part or a light beam toward the display part.
US09648302B2

An RGB-D imaging system having an ultrasonic array for generating images that include depth data, and methods for manufacturing and using same. The RGB-D imaging system includes an ultrasonic sensor array positioned on a housing that includes an ultrasonic emitter and a plurality of ultrasonic sensors. The RGB-D imaging system also includes an RGB camera assembly positioned on the housing in a parallel plane with, and operably connected to, the ultrasonic sensor. The RGB-D imaging system thereby provides/enables improved imaging in a wide variety of lighting conditions compared to conventional systems.
US09648300B2

The technology disclosed can provide capabilities such as calibrating an imaging device based on images taken by device cameras of reflections of the device itself. Implementations exploit device components that are easily recognizable in the images, such as one or more light-emitting devices (LEDs) or other light sources to eliminate the need for specialized calibration hardware and can be accomplished, instead, with hardware readily available to a user of the device—the device itself and a reflecting surface, such as a computer screen. The user may hold the device near the screen under varying orientations and capture a series of images of the reflection with the device's cameras. These images are analyzed to determine camera parameters based on the known positions of the light sources. If the positions of the light sources themselves are subject to errors requiring calibration, they may be solved for as unknowns in the analysis.
US09648298B2

A higher compression rate or better rate/distortion ratio is achieved by adopting or predicting second coding parameters used for encoding a second view of the multi-view signal from first coding parameters used in encoding a first view of the multi-view signal. The redundancies between views of a multi-view signal were found to be not restricted to the views themselves, such as the video information thereof. Rather, the coding parameters in parallely encoding these views show similarities which may be exploited in order to further improve the coding rate.
US09648293B2

The conversion of RAW data captured by a camera can have artifacts in smoothness of various hues for varying chroma. To optimize smoothness and color accuracy, transform coefficients defining conversion of a standard color model to a target color model are determined. The RAW data is converted to data in a standard color model and the data in the standard color model is converted to data in the target color model using the transform coefficients. The process is repeated for various lightness levels and combined into a look up table to efficiently convert RAW data to data in the target color model for various lightness levels.
US09648276B2

A transmission management apparatus for managing a session performing transmission/reception of content data via a relay apparatus includes a service information management unit configured to manage service management information in which service identification information identifying service content provided to each of a plurality of transmission terminals, and service content corresponding to the service identification information are stored preliminarily; a service identification information acquisition unit configured to acquire service identification information of each of the transmission terminals participating in the session; a service content determination unit configured to determine the service content of the session, based on the service identification information acquired by the service identification information acquisition unit and the service management information; and a session control unit configured to report session information based on the service content of the session determined by the service content determination unit to the relay apparatus.
US09648265B2

An image sensor may have an array of pixels and readout circuitry. The array may include image pixels that generate signals in response to image light and reference pixels that generate signals in response to electrical noise. The readout circuitry may obtain first pixel values from the image pixels and may obtain second pixel values from the reference pixels. The readout circuitry may generate an extended precision pixel value based on the second pixel values that have an extended bit width relative to the each of the second pixel values. The readout circuitry may generate multiple dithered correction values by adding randomized sequences of least significant bits to the extended precision pixel value. The readout circuitry may mitigate visible quantization error and noise such as row-correlated and column-correlated noise in the final image by subtracting the dithered correction values from corresponding first pixel values.
US09648260B2

A solid-state image taking device including a pixel section and a scan driving section wherein on each pixel column included in the pixel area determined in advance to serve as a pixel column having the unit pixels laid out in the scan direction, the opto-electric conversion section and the electric-charge holding section are laid out alternately and repeatedly, and on each of the pixel columns in the pixel area determined in advance, two the electric-charge holding sections of two adjacent ones of the unit pixels are laid out disproportionately toward one side of the scan direction with respect to the optical-path limiting section or the opto-electric conversion section.
US09648258B2

An image sensor controls the gain of a pixel signal on a pixel-by-pixel basis and extends a dynamic range while maintaining a S/N ratio at a favorable level. A column unit in an image sensor is independently detects a level of each pixel signal and independently sets a gain for level of the signal. A photoelectric converting region unit has pixels arranged two-dimensionally with a vertical signal line for each pixel column to output each pixel signal. The column unit is on an output side of the vertical signal line. The column unit for each pixel column has a pixel signal level detecting circuit, a programmable gain control, a sample and hold (S/H) circuit. Gain correction is performed according to a result of a detected level of the pixel signal.
US09648257B2

A method for reading an imaging device intended for capturing images in a detector including a large number of photosensitive points called pixels organized into a matrix. The pixels of the same column are linked to a column conductor enabling the successive reading of the photosignals acquired by the pixels of the column, the method consisting for each of the pixels in carrying out a correlated double sampling read phase, the read phase comprising an operation of resetting the pixel followed by two read operations, the first without the photosignal, and the second with the photosignal. Three steps are concatenated in succession for the pixels of the same column: 1. a first of the operations of reading the pixel of a first row, 2. one of the operations of reading a second row, 3. a second of the operations of reading the pixel of the first row.
US09648251B2

The present invention relates in general to a method of high dynamic range (HDR) digital imaging and determining and setting exposure parameters for detection of image data by an imaging device, such as a digital camera, to produce a high dynamic range (HDR) image of a scene. The method includes setting an exposure (Ei+1) for a next frame (fi+1) as a function of the current exposure (Ei), of a first brightness distribution (Hfulli) of colors of pixels of the current frame (fi) and of a second brightness distribution (Hmotioni) of colors of those pixels weighted by the motion of those pixels, such that motion is evaluated for those pixels in comparison with a previous frame (fi), capturing the next frame (fi+1) under the set exposure (Ei+1) and merging the next frame (fi+1) with at least the current frame (fi) into an HDR image.
US09648250B2

A mechanism which makes it possible to obtain high-quality images in continuous photographing by reducing the influence of flicker while suppressing reduction of frame speed. An image pickup apparatus includes an image pickup device and an exposure unit configured to perform exposure of the image pickup device in response to a photographing instruction. An AE sensor detects peak timing of flicker. A camera CPU switches between peak synchronous exposure in which exposure operation is performed by making the same synchronous with the peak timing of flicker and normal exposure in which exposure operation is performed without making the same synchronous with the peak timing of flicker. The camera CPU corrects a photographed image obtained by the normal exposure. The camera CPU switches between the peak synchronous exposure and the normal exposure, based on the detected peak timing of flicker.
US09648249B2

An image capturing apparatus comprises an image capturing unit, a calculation unit configured to calculate light amount variation characteristics of light from an object, a photometric value determination unit configured to determine a photometry value used for determination of an exposure condition based on the light amount variation characteristics calculated by the calculation unit, and an exposure condition determination unit configured to determine an exposure condition when performing exposure of the image capturing unit at a timing set based on the light amount variation characteristics calculated by the calculation unit, based on the photometry value determined by the photometric value determination unit.
US09648243B2

An image capturing apparatus comprises a display unit connected to an apparatus through a movable portion so that a direction of a display surface is changeable; a detection unit configured to detect a rotation position of the display unit; and a display control unit configured to perform a change in a direction of information displayed on the display surface based on comparison between the detected rotation position and a threshold, wherein the display control unit sets such that a first threshold serving as a threshold of the rotation position in a mode in which a handwritten input to the display surface is allowed is made different from a second threshold serving as a threshold of the rotation position in another mode.
US09648237B2

A portable device and a manipulation method are disclosed. The portable device includes a camera unit, a first sensor and a control module. The camera unit has a plurality of functional modes. The functional modes include a photo-capturing mode and a video-recording mode. The first sensor is disposed on the portable device and configured for sensing a manipulation input. The manipulation input has a manipulation pattern and duration information of the manipulation pattern. The control module is coupled with the camera unit and the first sensor. The control module is configured for selecting one of the functional modes corresponding to the manipulation pattern and the duration information sensed by the first sensor, and triggering the camera unit into the selected functional mode.
US09648233B2

The present invention relates to a system, a device, and vehicle for recording panoramic images. According to the present invention, panoramic images can be obtained using a plurality of optical cameras and light directing elements which are arranged based on a parabola. This allows a compact device to be obtained while ensuring that each camera records a partial image as if it were at substantially the same focus point as the other cameras. By arranging the plurality of cameras and light directing elements such that the respective focus points are slightly offset relative to each other, a slight overlap between adjacent field of views can be obtained to improve stitching of the partial images to from the panoramic image.
US09648228B2

An image pickup apparatus performs at least one exposure adjusting operation on the image captured by the camera. While the display is displaying the image which the camera is capturing, the touch panel has a first region with a width, in a peripheral portion of the display, and a second region which is disposed at an inner side of the first region in the display. While the display is displaying the image which the camera is capturing, when the touch panel detects a touch in the second region, at least an exposure adjusting operation starts to be performed. After the exposure adjusting operation has started, and while the display is displaying the image which the camera is capturing, when the touch panel detects a touch in the first region, any operation relating to the exposure adjusting operation is not performed, and the started exposure adjusting operation is maintained.
US09648223B2

An apparatus with autofocus includes a scanning laser projector to provide autofocus assist. The scanning laser projector may project visible or nonvisible light in contrasting patterns to provide passive autofocus assist. The scanning laser projector may include a time-of-flight determination circuit to measure distances to provide active autofocus assist. Passive and active autofocus assist are combined to provide hybrid autofocus assist.
US09648222B2

An image capturing apparatus including a plurality of photoelectric conversion portions for each of a plurality of microlenses, the image capturing apparatus comprising: a readout unit configured to be driven using a first driving method in which a signal is read out from part of the plurality of photoelectric conversion portions, and a second driving method in which a signal is read out from a greater number of the photoelectric conversion portions than in the first driving method; and a supply unit configured to, in a case where a signal is read out using the first driving method, supply an amperage that is smaller than that in a case where a signal is read out using the second driving method, to the readout unit.
US09648220B2

A digital camera includes an optical system including a focus lens, a zoom lens and a diaphragm, an HDMI output terminal configured to output sound collected by a microphone unit and a picture imaged by a CCD image sensor to an external recorder, and a controller. The controller controls switching between a moving image priority mode and a still image priority mode in which the optical system is driven at a higher speed than a speed in a moving image priority mode. In addition, the controller allows change to a moving image imaging mode by an operation unit when detecting that output to the external recorder is possible in the HDMI output terminal.
US09648215B2

A communication device capable of preventing a failure in light emission control caused due to communication with a lighting device such as the master and the slave. The communication device is capable of connecting to an image pickup device and transmits a lighting instruction from the image pickup device to a lighting device through a communication unit capable of performing bidirectional communication. It is determined whether or not the lighting device is ready for lighting. The lighting device is prevented from transmitting information to the communication unit when the lighting device is ready for lighting.
US09648213B2

An image sensor comprises: a pixel array having image forming pixels and phase-difference detecting pixels; and an outputting unit configured to add correction processing information, and position information of the phase-difference detecting pixels to image data obtained from the pixel array and to output the image data.
US09648201B2

Disclosed is an image reading apparatus including: a reading unit configured to optically read an original and to output image data; an image conversion unit configured to convert the image data into data having a predetermined format; a storing unit configured to store the data having the predetermined format; a transfer unit configured to transfer the data to a designated destination; a judgment unit configured to judge whether the data can be transferred to the designated destination; and an executing unit configured to instruct the image reading apparatus to execute a process for reading the original and for converting the image data to store the data in the storing unit regardless of whether the judgment unit judges that the data can be transmitted, and to instruct the image reading apparatus to transfer the data after the judgment unit judges that the data can be transmitted.
US09648199B2

The disclosure relates generally to geographic-based signal detection. One claim recites an apparatus comprising: an input for receiving a signal from a cell phone; an electronic processor for determining, based at least in part on the signal, whether the cell phone is physically located in a predetermined home area; and upon a condition of not being in the predetermined home area, communicating a machine-readable code detector to the cell phone for use as its primary machine-readable code detector to detect machine-readable code while outside of its predetermined home area. Of course, other claims and combinations are provided as well.
US09648198B2

An image processing apparatus for embedding additional information in an image having a plurality of pixels and image information. A generating unit generates (a) the additional information to be embedded and (b) a bookbinding type of a medium containing the image. A holding unit holds a plurality of quantization conditions for embedding the additional information, including a quantization threshold. A selection unit segments the image into a plurality of embedding regions, and selects a condition to use in quantization based on the image information. A quantization condition control unit controls at least one of the plurality of quantization conditions for a predetermined region of the image based on the bookbinding type generated. An error diffusion processing unit distributes an error to peripheral pixels of a target pixel. A separating unit separates the embedded additional information from the image.
US09648194B2

A document reading device including an image reader. The image reader includes a first reader to read a first image from a first face of a document fed by a document feeder and a second reader to read a second face of the document. An operation mode is switchable between a normal operation mode in which the image reader is in an operation enabled state and an energy-saving mode in which the image reader is in an operation stop state. In a return from the energy saving mode to the normal operation mode, the image reader performs a start-up operation including a first initial operation for returning the first reader to the normal operation mode and then performs a second initial operation for returning the second reader to the normal operation mode.
US09648191B2

A method for controlling a job processing apparatus includes determining, when an instruction is issued to input a job by a voice that is input via a voice receiving unit, whether there is another job being executed. If the determining determines that the other job is being executed, an inquiry is made of a user about whether to interrupt the other job to execute the input job or to execute the input job without interrupting the other job.
US09648190B2

An image forming apparatus capable of returning from the power saving state and performing user authentication by one action of holding an authentication card over a card reader even when the apparatus is in the power saving state. The apparatus performs short-distance wireless communication with an external device. A controller performs control processing including at least authentication processing. When short-distance wireless communication with the device is started, a short-distance wireless communication section delivers a return-starting interrupt, to the controller, receives authentication data from the device to thereby store the authentication data during returning of the apparatus. The controller performs authentication processing based on the stored authentication data after returning of the apparatus from the power saving state, and notifies the device of an authentication processing result by a different channel.
US09648185B2

An image reading apparatus includes: a first unit including a supporter and a first image reader; and a second unit. The second unit includes: a pressing member that presses a reading object onto the supporter; a contact member that contacts a conveyed sheet; a sheet holder opposed to the contact member; a second image reader disposed on an opposite side of the contact member from the sheet holder; and a cover spaced apart from the contact member at a second position. When the second unit is located at the closed position, movement of the cover to the second position is limited by the first unit, and the cover is located at a position opposed to the first unit and different from a position of the pressing member. When the second unit is located at an open position, the limitation of the movement is canceled.
US09648182B2

An image forming device executes a plurality of applications, and includes a scan controlling unit configured to instruct an image reading unit to read image data, and store the image data in an image data storage unit according to a request from the application; a display data generating unit configured to generate a display data of the image data stored in the image data storage unit, and store the display data in a display image data storage unit according to the request from the application, the display image data storage unit being inaccessible from the application; a display controlling unit configured to display the display data in a display unit according to the request from the application; and a deleting unit configured to delete the display data from the display data storage unit in response to a termination notice of use of the display data from the application.
US09648173B2

Network status information is provided to a mobile device. The data usage of the mobile device is tracked. A data usage criterion is determined from an account for the mobile device. The account information is stored on at least one server. The data usage is compared with the data usage criterion. Based on the comparison, it is determined whether the data usage meets the data usage criterion. Upon determining that the data usage meets the data usage criterion, a notification message is sent to the mobile device in real time through an information element field within an existing message in a bearer channel of the wireless packet data communication network. The notification message may instruct the mobile device to prevent generation and/or transmission of automatic network access requests while allowing user-initiated network access requests.
US09648168B2

A system for optimizing response time to events or representations thereof waiting in a queue has a first server having access to the queue; a software application running on the first server; and a second server accessible from the first server, the second server containing rules governing the optimization. In a preferred embodiment, the software application at least periodically accesses the queue and parses certain ones of events or tokens in the queue and compares the parsed results against rules accessed from the second server in order to determine a measure of disposal time for each parsed event wherein if the determined measure is sufficiently low for one or more of the parsed events, those one or more events are modified to a reflect a higher priority state than originally assigned enabling faster treatment of those events resulting in relief from those events to the queue system load.
US09648158B2

An echo path monitoring system for controlling an adaptive filter configured to estimate an echo of a far-end signal comprised in a microphone signal, the system comprising a comparison generator configured to compare the microphone signal with the estimated echo to obtain a first comparison and compare an error signal, which represents a difference between the microphone signal and the estimated echo, with the estimated echo to obtain a second comparison, and a controller configured to combine the first and second comparisons to form a parameter indicative of a state of the microphone signal and, in dependence on said parameter, control an operating mode of the adaptive filter.
US09648155B2

A mobile terminal that performs communication with an onboard device includes: a communication control unit configured to control reception of information instructing to switch a sound source which is transmitted from the onboard device, the information including information indicating an application program which is executed in the terminal serving as the sound source, and transmission of a sound, played by an application program operating in a foreground of the terminal, to the onboard device; a switching unit configured to switch an application program having been in operation in a foreground until immediately before, to a background, on the basis of the received information instructing to switch a sound source, and to switch an application program having been in operation in a background until immediately before, to a foreground; and a sound control unit configured to stop playing a sound of the application program having been in operation in a foreground until immediately before, and to start playing a sound of the application program having been in operation in a background until immediately before, subsequently to the stop.
US09648151B2

A mobile device having: a keyboard; a printed circuit board having at least one contact responsive to the keyboard; and a fuel cell assembly having: a fuel cell located between the keyboard and the printed circuit board, the fuel cell having a membrane and at least one aperture corresponding with the at least one contact; a tank adapted to store a fuel for the fuel cell; and piping connecting the tank with the fuel cell, where the fuel cell ventilates through the keyboard. Alternatively, the fuel cell acts as the printed circuit board and at least one contact for the keyboard is printed onto the fuel cell.
US09648146B2

An information processing system includes a first server that performs processes in accordance with first operations included in a system of operations for the first server, a second server that performs processes in accordance with second operations included in a system of operations for the second server different from the system of operations for the first server, and a terminal apparatus that requires the first and second servers to perform the processes. The terminal apparatus includes a first requiring portion that requires the first server to perform a process in accordance with at least one of the first operations designated by a user and a converter that converts the at least one first operation into a command set and stores the command set in a storage, the command set including at least one command, which is a part of the process and is performed by the first and second servers.
US09648141B2

In one embodiment, first content is served by an application server to a client computer through an Internet service provider network. The first content includes a link to second content on a third-party server. A token request is sent from the third-party server to the application server in response to selection of the link by the client computer. A token is provided to the third-party server by the application server in response to the token request. The token is configured to authorize data flow at a bandwidth for the second content by the Internet service provider network to the client computer. The data flow is authorized based on an agreement for the bandwidth between an operator of the application server and an operator of the Internet service provider network.
US09648137B1

Examples of techniques for upgrading a descriptor engine for a network interface card (NIC) are disclosed. An example method may include: quiescing a transmit stream to the NIC; stopping a descriptor engine from providing new receive descriptors to the NIC; creating a copy in a memory of any receive descriptors already available to the NIC prior to the stopping the descriptor engine; setting a controller to redirect inbound traffic to the memory; logging a current configuration, state, and receive pointers of the descriptor engine; updating the descriptor engine; restoring a transmit configuration and a transmit state of the descriptor engine; and enabling a transmit stream of a data router such that transmit packets are created by the descriptor engine for transmission by the NIC.
US09648136B2

A method of distributing content to an application from a server is disclosed. The method includes detecting in a file to be sent to the application from the server that the application is directed to request one or more resources to be downloaded to the application. A network latency associated with the downloading of the one or more resources is determined. A subset of the one or more resources is selectively packaged based at least in part on the network latency. The selectively packaged subset of the one or more resources is sent to the application.
US09648133B2

Each application executing on an application server uses an extended version of the Berkeley Packet Filter (BPF) language to define an application-specific rule set. The application server also includes a Just-In-Time compiler to compile the BPF rule set. The compiled rule set is downloaded to a Packet Forwarding Entity (PFE) in the network, and used to control how the PFE steers data packets generated by the application through a communications network.
US09648129B2

In particular embodiments, a computing device determines a social context of each of one or more images to provide for display to a user. The computing device determines a relevance of each of the social contexts to the user. The computing device provides for display to the user one or more of the images based at least in part on the relevance of the social context of each image to the user.
US09648128B2

Mechanisms are provided for generating a dynamically generated ad hoc cloud storage system of mobile devices. A mobile device transmits a request to dynamically generate an ad hoc cloud storage system, to other devices within a local vicinity of the mobile device. Responses are received from the other devices within the local vicinity of the mobile device indicating that a corresponding device is available to participate in the dynamically generated ad hoc cloud storage system. The dynamically generated ad hoc cloud storage system is generated using memory resources of the other devices corresponding to the responses. The mobile device captures recording data and distributes the recording data to the other devices for storage in memory resources of the other devices.
US09648125B2

Described herein are systems, devices, and methods for content delivery on the Internet. In certain non-limiting embodiments, a caching model is provided that can support caching for indefinite time periods, potentially with infinite or relatively long time-to-live values, yet provide prompt updates when the underlying origin content changes. In one approach, an origin server can annotate its responses to content requests with tokens, e.g., placing them in an appended HTTP header or otherwise. The tokens can drive the process of caching, and can be used as handles for later invalidating the responses within caching proxy servers delivering the content. Tokens may be used to represent a variety of kinds of dependencies expressed in the response, including without limitation data, data ranges, or logic that was a basis for the construction of the response.
US09648124B2

According to an aspect, techniques for processing hybrid data include receiving a web request and translating the web request into a translated native request. The translated native request and a native request are sent to a server via a single web client. A response is received from the server via the single web client. It is determined whether the response corresponds to the translated native request or to the native request.
US09648119B2

The present invention relates to the exchange of data between a server and a receiving device. The exchange method comprises receiving, at the receiving device, a push message comprising pushed data from the server; storing received pushed data in a cache memory of the receiving device, the stored data being identified as being of push type; transmitting, from the receiving device to the server, a request for data comprising information about pushed data stored in the cache memory of the receiving device; and receiving, from the server, at the receiving device, a response to said request comprising requested data.
US09648109B2

An image processing apparatus includes a communicator portion that communicates with a portable terminal apparatus having an address book, a contact data obtaining portion that obtains contacts from the address book, the contacts including contact names and addresses, a registration portion that registers the contacts to a shared address book along with user identification information indicating the log-in user, a display, and a display controller that makes the display show the contacts at least by the contact name, the contacts being registered in the shared address book, that judges whether or not the shared address book contains contacts with different contact names but with identical addresses, and that, if it contains contacts with different contact names but with identical addresses, makes the display show any of the contacts by the contact name, the any contact having the user identification information indicating the log-in user.
US09648097B2

A computer-implemented method and system for updating application data for a first instance of an application via C2DM is disclosed. An application server may receive a request from the first client computing device for updated application data via a network connection. The updated application data may correspond to a second instance of the application at a second client computing device. In response to determining the second instance of the application at the second client computing device supports push notifications, the system and method may generate a C2DM message including a user ID corresponding to the first client computing device and the request for updated application data. A server may then send the C2DM message to the second client computing device, wherein the C2DM message causes the second instance to wake up and generate the updated application data. The updated application data may be returned to the first client computing device.
US09648093B2

In one embodiment, a display engine and one or more data files are determined. They are then sent to a website provider's network. The display engine and data are used to provide ASP functionality without contacting the ASP network for every user request. So even if the ASP network is not available, the ASP functionality provided by the display engine and data is always accessible to the website provider. For example, the website provider's network may provide the ASP functionality by displaying data in one or more data files at a user's display device. This is performed without relying on the availability of the ASP network.
US09648089B2

A method and system for providing an answer to a subscription-based query service. The method includes acquiring context information and evidence information from one or more electronic devices based on a query. One or more belief values are assigned based on the evidence information and the context information. The belief values are aggregated for determining a score for competing hypotheses using a probabilistic model. Sufficiency of hypotheses is determined based on statistical significance for potential answer information to the query.
US09648087B2

A method begins by a dispersed storage (DS) processing module obtaining a plurality of data access requests and a request to execute a distributed computing function that includes a plurality of partial tasks. The method continues with the DS processing module allocating execution of the plurality of partial tasks to a set of distributed storage and task execution (DSTE) units in accordance with a desired executing efficiency and allocating processing of the plurality of data access requests in accordance with a desired data access efficiency. The method continues with the DS processing module establishing the desired executing efficiency and the desired data access efficiency to obtain a desired utilization of the set of DSTE units.
US09648080B2

A digital magazine server displays content to a user based on a page template specifying sizing and positioning of content items. The page template is selected from a set of candidate page templates, which is determined based on characteristics of page templates and characteristics of other page templates used to present content to the user. Different characteristics of a page template are weighted based on the page template's position in a series of additional page templates used to present content and characteristics of the additional page templates. Weights associated with different characteristics of a page template are combined to determine a template score for the page template, and the template score is used to determine if the page template is a candidate page template.
US09648075B1

Provided are systems and methods for generating an event map of events located near a user's location. The event map may include embedded media, such as audio, video, images, and the like for events located within a specific geographic area, such as geographic radius around a user's location, and a specific timeframe. Each event may be displayed at a position on the event map that corresponds to the location of the event, and the embedded media for the event may be displayed at an event's position. Additionally, the event map may include data for each event, such as date and time of the event and links to event-related resources.
US09648048B2

A method of handling a Session Initiation Protocol (SIP) communication at a SIP application server within an IP Multimedia Subsystem, the method including handling a message received from a Serving Call/State Control Function node based upon a header of the message containing the URI of the served user. The SIP message is handled according to one of an originating case based upon a P-Asserted Identity contained in the SIP message or a terminating case using a Request-Uniform Resource Identifier (R-URI) of the SIP message, the appropriate case being identified in said header.
US09648045B2

Systems, methods, computer readable media and articles of manufacture consistent with innovations herein are directed to computer virtualization, computer security and/or memory access. According to some illustrative implementations, innovations herein may utilize and/or involve a separation kernel hypervisor which may include the use of a guest operating system virtual machine protection domain, a virtualization assistance layer, and/or a instruction execution detection/interception mechanism (which may be proximate in temporal and/or spatial locality to malicious code, but isolated from it). The instruction execution detection/interception mechanism may perform processing, inter alia, for detection and/or notification of, and actions upon by a monitoring guest, code execution by a monitored guest involving predetermined physical memory locations, such as API calls. Such actions may include interception of API calls within the monitored guest and simulation thereof by the monitoring guest or another authorized guest.
US09648033B2

A method, system, computer program product embodied in a computer readable storage medium, and computer system are disclosed for identifying a rogue domain name service (DNS) server. Embodiments include passively monitoring traffic on a target network; and identifying a DNS resolution response in the traffic on the network. The DNS resolution response includes a mapping of a domain to an internet protocol (IP) address. The DNS resolution response is compared with a preconfigured list of known mappings of domains to IP addresses. Based on the results of the comparison, it can be determined whether the DNS resolution response is correct. In cases where the DNS resolution response is incorrect, the provider of the DNS resolution response is a rogue DNS server.
US09648015B1

Secure authentication may be facilitated using a biometric-enabled transitory password authentication device. Exemplary implementations may facilitate secure payments and/or authentication via an application running on a user computing platform (e.g., a mobile device) simultaneously coordinating with both a server and the authentication device, which may act in some respects as an external hardware token. Exemplary implementations may rely on combining three parameters to establish a three-factor based approach to authentication in a fraud-free manner for digital wallets, third-party software, and/or other purposes. The three-factor based approach to authentication may require something the user possesses (e.g., the authentication device), something the user is (e.g., a biometric identifier such as a fingerprint), and something the user knows (e.g., an image or numeric based pin used to unlock the authentication device). The authentication device may include a time-based one-time password (TOTP) generator made accessible by a fingerprint matching algorithm.
US09648007B1

A token-based storage service may comprise a repository of key-value data. In response to a request to store a data item, the storage service may generate a token comprising a namespace and a unique identifier. The token may be used as a key to store and retrieve the data item from the repository. Requests to access the data may be validated based on ownership information stored with the data item and information indicative of the origin of the request for access. In response to a request to store a new version of the data item, a new token may be generated.
US09648002B2

Embodiments are directed to validating the identity of a user. In one scenario, a computer system determines that a login account has been created for a user, where the creation includes generation of a first identifier for the user based on a user's determined location at the time of account creation. The computer system next receives a login attempt from the user that includes a second, different identifier and one or more login credentials. The computer system then determines the location from which the login attempt was received and, using the second identifier and the determined login location, identifies the user account corresponding to the user. The computer system further authenticates the user upon determining that the second identifier and login location match the first identifier.
US09647996B2

A server is in communication with a low power device. The server has a handshake key (Kh) with a key exchange that provides for a communication session between a mobile device and the low power device. The mobile device does not have the (Kh). A user mobile device is in communication with the server and uses a cipher to provide a secured communication between the mobile device and the low power device.
US09647995B2

A system and method is provided to determine location information of a portable computing device and, in particular, to a secure and scalable system and method of decoupling and exposing handset originated location information to third parties. The system includes a location platform to determine location information of a remote user, and an encryption service configured to secure the location information of the remote user and send the secure location information to a content provider.
US09647989B2

An intercepting proxy server processes traffic between an enterprise user and a cloud application which provides Software as a Service (SaaS). The intercepting proxy server provides interception of real data elements in communications from the enterprise to the cloud and replacing them with obfuscating information by encrypting individual real data elements without disturbing the validity of the application protocol. To the processing cloud application real data are only visible as encrypted tokens. Tokens included in results returned from the cloud, are intercepted by the intercepting proxy server, and replaced with the corresponding sensitive real data. In this way, the enterprise is able to enjoy the benefits of the cloud application, while protecting the privacy of real data.
US09647977B2

An e-mail system is disclosed that overcomes many deficiencies of, but is backward compatible with, existing e-mail systems. Embodiments of the system may include various features, including but not limited to: (1) secure transfer of e-mail messages, without the need for users to replace existing e-mail clients or to change e-mail addresses; (2) tracking of all actions performed in connection with an e-mail transmission; (3) the ability for a recipient to view information about an e-mail message, optionally including information about how other addressees have responded to it, before deciding whether to retrieve the e-mail message; (4) the aggregation of entire e-mail conversations into a single threaded view; (5) the ability to include both private and public messages in a single e-mail communication; (6) sender control over downstream actions performed in connection with an e-mail message; (7) flexible control over cryptographic methods used to encrypt emails messages for storage.
US09647975B1

Systems and methods for identifying a spam email message. A system can include a rules database configured to store a plurality of ratio determination rules, a vectors database configured to store a plurality of known vectors, a message processing tool configured to receive an email message, a gram building tool configured to build a k-skip-n-gram set of word combinations according he ratio determination rules, a vector building tool configured to receive the k-skip-n-gram set of word combinations, and build a vector for each k-skip-n-gram word combination, and a spam identification tool configured to determine a spam presence threshold based on the cosine similarity for each k-skip-n-gram word combination and the plurality of known vectors for the particular email message subject field subject category, and determine that the email message contains spam when the spam presence threshold is exceeded.
US09647974B2

A method (300) and apparatus are disclosed for event notification. An apparatus that incorporates teachings of the present disclosure may include, for example, a presence services system (PSS) (102) can have a controller (104) that manages operations of a communications interface (110). The controller can be programmed to monitor (302) presence information of a plurality of communication devices of an end user operating in a communications system, and receive (316) a request from a calendar reminder system (CRS) for access to the presence information. Additional embodiments are disclosed.
US09647970B2

Emails are received and parsed for a set of dates. A set of words surrounding the set of dates are identified and contextual information is correlated with the set of dates based on the set of words. It is then determined whether the dates are promotional expiration dates based on the contextual information. The emails that have promotional dates are placed in a list having a chronological order that is based on the promotional expiration dates. The current calendar date is checked and emails are excluded from the list in response to the current calendar date being chronologically after the promotional expiration date. The list is then displayed based on the exclusion of the email.
US09647969B2

A method, system and computer program product for utilizing email as a transport mechanism for activity stream posting. The method, program system, and computer product may include receiving an email, with content, at a target email system of a target from a source email system of a source. Content that is to be posted to an activity stream is extracted from the email content. The extracted content is posted to the activity stream. The method, program system, and computer product may further include examining the email at the target to identify whether the email includes content that is to be posted to the activity stream, or the target email system may deliver the email to a designated email address mailbox assigned to emails containing content to be sent to the activity stream. A notification of the email may be provided or the mailbox may be checked for email.
US09647955B2

In an embodiment, the systems, methods, and devices disclosed herein comprise a computer resource monitoring and allocation system. In an embodiment, the resource monitoring and allocation system can be configured to allocate computer resources that are available on various nodes of a cluster to specific jobs and/or sub-jobs and/or tasks and/or processes.
US09647954B2

A server array controller that includes a Data Flow Segment (DFS) and at least one Control Segment (CS). The DFS includes the hardware-optimized portion of the controller, while the CS includes the software-optimized portions. The DFS performs most of the repetitive chores including statistics gathering and per-packet policy enforcement (e.g. packet switching). The DFS also performs tasks such as that of a router, a switch, or a routing switch. The CS determines the translation to be performed on each flow of packets, and thus performs high-level control functions and per-flow policy enforcement. Network address translation (NAT) is performed by the combined operation of the CS and DFS. The CS and DFS may be incorporated into one or more separate blocks. The CS and DFS are independently scalable. Additionally, the functionality of either the DFS or the CS may be separately implemented in software and/or hardware.
US09647953B2

In one embodiment, a system includes a hardware processor and logic integrated with and/or executable by the processor or media access control (MAC) functionality of a network port. The logic is configured to negotiate a credit aging duration during initialization of a link between a receiving endpoint and a sending endpoint, the receiving and sending endpoints being connected in a network fabric. The link includes at least one virtual link. The logic is also configured to receive an amount of available flow credits from the receiving endpoint and transmit one or more packets to the receiving endpoint. The amount of available flow credits are used to determine a capacity to process packets at the receiving endpoint. The exchange of flow credits is performed on a per virtual link basis. Other systems, methods, and computer program products are presented according to more embodiments.
US09647951B2

In a media delivery system over an Internet Protocol (IP) network, a device for network jitter reduction and rate reconstruction using a means for receiving streams with jitter, buffering the streams, and playing out/streaming each stream at an original rate of respective streams.
US09647950B2

Systems and methods of site traffic control are disclosed. In some example embodiments, a first request for an online service to perform an operation is received from a first user on a first client device, and at least one overload condition for the online service is detected, or otherwise determined, with the overload condition(s) corresponding to a first request time of the first request. A first token and a first return time parameter for the first user are determined based on the determination of the overload condition, and the first token is stored in association with the first return time parameter. The first token and the first return time parameter are transmitted to the first client device.
US09647946B2

Concepts and technologies are disclosed herein for controlling data access and rate in a network. An enforcement application can detect a request for a data session and determine how and when the requested data session is to be established. The enforcement application can consider various data, input obtained at the user device, and/or other considerations including subscriber data and network data. Based upon these data, the enforcement application can determine network congestion, available resources, available bandwidth, an allocation rate of congestion credits (“credits”) for the user, a flow rate of the credits from an account to a credit pool, and a usage rate of the credits from the credit pool. The enforcement application can be configured to enforce the usage rate against a data session and to issue one or more commands to control the data session.
US09647943B2

A system and method is provided for two-tiered load balancing on a hosted voice-over Internet protocol (VoIP) private branch exchange (PBX). The system includes a plurality of client devices, at least one device load balancer, and at least one call load balancer. The device load balancer identifies a device group to which each client device belongs; and a cluster of computing resources for processing calls for the device group. The cluster is assigned to the device group based on prescribed conditions. In response to a communications request, call load balancers in communication with the device load balancers dynamically determine if predefined conditions are currently being met within an identified cluster of computing resources. If the predefined conditions are currently being met, then the communications request for a primary client device associated with the request is established via one of a plurality of server nodes within the cluster of computing resources.
US09647929B2

Methods and systems are disclosed for enabling centralized path definition and policy with distributed path setup, and centralized path setup control with distributed path utilization constraints. In one example, a path computation client (PCC) requests, utilizing opaque PCE profile identifiers, path computation from a path computation element (PCE). The PCE profile identifier corresponds to path computation constraints, stored local to PCE, and are unknown to the PCC. Advantageously, the PCE profile identifiers allow the PCC to initiate path computation requests based on information local the PCC while leveraging centralized computation by the PCE. In another example, a PCE requests, utilizing opaque PCC profile identifiers, that a PCC initiate a path. The PCC profile identifier corresponds to path usage constraints, stored local to PCC, and are unknown to the PCE. Advantageously, the PCC identifiers allow the PCE to marshal path initiation while leveraging distributed resources to enforce compliance with usage parameters.
US09647928B2

A network device identifies an Open Shortest Path First (OSPF) link between the network device and a layer 2 network as one of a point-to-multipoint over broadcast interface or a point-to-multipoint over non-broadcast multi access (NBMA) interface, and performs database synchronization and neighbor discovery and maintenance using one of a broadcast model or a NBMA model. The network device also generates a link-state advertisement for the network device, where the link-state advertisement includes a separate link description for each point-to-point link within the layer 2 network; and sends the link-state advertisement to each fully adjacent neighbor in the layer 2 network.
US09647927B2

A computer-implemented method includes a principal process including performing a computational procedure in which the or each vertex preceding a particular vertex receives a notification that a computational procedure has been completed for the preceding vertex; and calculates new path lengths for the particular vertex by adding the length value attributed to the edge from the preceding vertex to the particular vertex to each of the recorded k shortest path lengths from the first vertex to the preceding vertex. A record of the k shortest path lengths calculated for the particular vertex is maintained. After the new path lengths have been calculated for the or each of the preceding vertices, a notification that the computational procedure has been completed for the particular vertex is issued. The computational procedure is performed with the source vertex as the first vertex and each vertex on a path from the source vertex to the destination vertex as the particular vertex.
US09647925B2

A method for operating a source node includes receiving a data path validation request command requesting validation of a path associated with a traffic flow identified in the data path validation request command, and determining a first hop sequence in accordance with the path being validated, wherein the first hop sequence is identical to a second hop sequence associated with a non-validation request packet associated with the path being validated. The method also includes generating, by the source node, a validation request packet in accordance with the data path validation request command, the validation request packet comprises route information associated with the first hop sequence, an alert flag set to a specified value, and a path validation header specifying processing performed by nodes receiving the validation request packet, and transmitting, by the source node, the validation request packet in accordance with the route information.
US09647910B2

Methods and apparatuses for managing a service system virtually built are provided. A management server assigns identifiers that are unique to a service system to components used to build the service system, and records connections of the components and the time of building the service system. When detecting a change in the connections of the components, the management server records the changed connection and the time of the change, collects monitoring information and monitoring times from a data center, and records the monitoring information associated with the monitoring times. When receiving information designating a time from a terminal, the management server identifies and outputs the configuration of the service system and the monitoring information at the designated time based on the identifiers of the components associated with the designated time.
US09647908B2

A method, apparatus and system for determining software performance. After the software is published, performance parameters of operation systems of running the software and performance parameters of run software are acquired from various user terminals. The performance parameters of the operation system of running the software and the performance parameters of the run software is processed to acquire a performance parameter processing result according to a preset method for processing a performance parameter. Performance of the software is determined according to the performance parameter processing result.
US09647906B2

A cloud-based remote monitoring system and method monitor an industrial facility. The industrial facility includes one or more industrial devices. A cloud agent located at the industrial facility is configured to, by at least one processor, collect data indicative of a past and/or a present state of the industrial devices according a manifest specific to the industrial facility. The cloud agent is further configured to send the collected data to a remote cloud platform according to the manifest dynamically reconfigure the cloud agent without interrupting the collecting and the sending. The cloud platform processes the sent data to facilitate remote monitoring of the industrial devices.
US09647904B2

Methods and apparatus for supporting customer-directed networking limits in distributed systems are disclosed. A client request is received via a programmatic interface, indicating a particular lower resource usage limit to be imposed on at least one category of network traffic at a particular instance of a network-accessible service. Resource usage metrics for one or more categories of network traffic at the particular instance are obtained. In response to a determination that resource usage at the particular instance has reached a threshold level, one or more responsive actions are initiated.
US09647901B2

In a content delivery network (CDN a method includes: receiving a request for a CDN service of a particular type, wherein a CDN service of said particular type defines a fixed number of configurable layers of request processing, sequentially from a first layer to a last layer; and processing said request, starting at said first layer, said processing being based on a modifiable runtime environment, said processing continuing conditionally through each of said layers in turn until either said request is terminated by one of said layers or said last layer processes said request. A layer may cause some of the processing of a request to be handled by another service. The CDN service may be selected from: delivery services, collector services, reducer services, rendezvous services, configuration services, and control services.
US09647898B2

An electronic device displays a first row of graphical representations, each corresponding to a context element of a route sequence map of a first user. The route sequence map includes context elements organized in a hierarchical structure, each context element having one or more property values specifying an action to be performed by the server or a link to one or more child context elements in the hierarchical structure. In response to a selection of a first graphical representation from the first row, a first message having at least a first identifier (ID) of the first graphical representation is transmitted to the server. A second message is received from the server in response to the first message, the second message including data identifying a second row of context elements of the route sequence map. The second row is displayed as a child row to the first row.
US09647893B2

A method and system for identifying logical loops in an Ethernet network may determine a number of nodes N and a number of links L between nodes. A number of rings R, including a number of major rings and a number of sub-rings for the Ethernet network may be determined. Specific formulas for the values for L, R, and N may be evaluated to determine when the Ethernet network includes logical loops.
US09647887B2

A system can include a mobile computing device and a wearable computing device. The wearable computing device can include a sensor that outputs an indication that the wearable computing device is not being worn. Responsive to receiving the indication that the wearable computing device is being not being worn, one or both of the devices can be operable to change an access mode of computing environment provided by the respective device from an increased access mode to a reduced access mode.
US09647886B2

Systems and methods for updating appliance communication settings to compensate for temperature fluctuations are provided. In particular, an appliance that includes one or more data communication components that provide wireless communication functionality can monitor one or more characteristics describing data communication failures experienced by the one or more data communication components. When the monitored characteristics indicate that the appliance is experiencing an increased rate of communication failure, the appliance can log the temperature conditions at the data communication components. Periodically, the appliance can analyze the logged temperatures to identify one or more temperature ranges associated with increased communication failure. The appliance can then update one or more communication settings associated with such temperature ranges so as to compensate for anticipated temperature fluctuations.
US09647878B2

An announcement method, apparatus and system are provided. The method includes: an announcement node configuring sending ports of the announcement node in a first region and a second region, wherein, the first region and the second region apply different network protection switching technologies; the announcement node acquiring a protection switching request sent from the first region; and the announcement node sending the protection switching request to the second region through the sending port corresponding to the second region, wherein, a post-switching link state of the first region is contained in the protection switching request, and under a situation that the post-switching link state of the first region is inconsistent with a current link state of the second region, the second region needs to perform protection switching and otherwise does not need to perform the protection switching.
US09647875B1

In a method of performing discovery, at least a plurality of identifiers associated with a plurality of respective communication devices is processed, using a first hash function, to generate a first bit string. The first bit string is indicative of whether each of the plurality of identifiers is included in a group. An indication that a new hash function should be used is detected, and, in response to detecting the indication that a new hash function should be used, at least the plurality of identifiers is processed, using a second hash function different than the first hash function, to generate a second bit string. The second bit string is indicative of whether each of the plurality of identifiers is included in the group.
US09647872B2

Informing a user of a large scale network dynamically of other network users includes determining dynamically an online context of the user. Other users presently within the online context of the user are identified and trait information is stored that is related essentially only to the user or to the other users in a users store associated with the online context. The user is informed dynamically of the other users based on the stored trait information, such as, for example, an age or other demographic identifier, or information indicative of an expertise, interest, preference, user type and/or other quality of the user or of the other individual.
US09647866B2

A radio frequency (RF) transmitter has at least one digital signal processing module and at least one power amplifier module. The digital signal processing module includes at least one digital pre-distortion component arranged to receive at least one complex input signal, perform two-dimensional non-uniform mapping of the complex input signal to a first, in-phase, digital pre-distortion control word and a further, quadrature, digital pre-distortion control word, and output the in-phase and quadrature pre-distortion digital control words. The power amplifier module includes a first, in-phase, array of switch-mode power cells and at least one further, quadrature, array of switch-mode power cells. The two-dimensional non-uniform mapping has a pre-distortion profile at least partly based on an input/output relationship for the power amplifier module arranged to generate an analog RF signal based at least partly on the in-phase and quadrature digital pre-distortion control words.
US09647863B2

Techniques to manage dwell times for pilot rotation are described. An apparatus may comprise a memory configured to store a data structure with a set of modulation and coding schemes (MCS) available to an orthogonal frequency division multiplexing (OFDM) system, each MCS having an associated pilot dwell time. The apparatus may further comprise a processor circuit coupled to the memory, the processor circuit configured to identify a MCS to communicate a packet using multiple subcarriers of the OFDM system, and retrieve a pilot dwell time associated with the MCS from the memory, the pilot dwell time to indicate when to shift a pilot tone between subcarriers of the multiple subcarriers during communication of the packet. Other embodiments are described and claimed.
US09647861B1

A system and method for reducing the duration of destructive interference received at a location from two transmitting antennas where either a time varying phase shift or time varying delay or both are introduced into the signal paths of one or both of the two antennas.
US09647857B2

An equalizer provided in a digital transmitter compensates for attenuation in a signal channel to a digital receiver. The equalizer generates signal levels as a logical function of bit history to emphasize transition signal levels relative to repeated signal levels. The preferred equalizer includes an FIR transition filter using a look-up table. Parallel circuits including FIR filters and digital-to-analog converters provide a high speed equalizer with lower speed circuitry. The equalizer is particularly suited to in-cabinet and local area network transmissions where feedback circuitry facilitates adaptive training of the equalizer.
US09647856B2

A receiver receives, using a plurality of antennas, a multiplexed signal that includes (i) a first OFDM modulation signal with a subcarrier carrying a symbol including multiplex information and a subcarrier carrying a pilot symbol and a subcarrier carrying a data symbol and (ii) a second OFDM modulation signal with a subcarrier carrying a symbol including multiplex information and a subcarrier carrying the pilot symbol and a subcarrier carrying the data symbol. A decoder uses the symbol including multiplex information and decodes the data symbol.
US09647855B2

A method and system for payments for mobile phone payments with a disabling feature is disclosed. The method includes activating a mobile phone containing contactless payment systems, and having a timeout feature disable the contactless payment systems after a set period of time.
US09647851B2

Ingress noise from subscriber equipment is mitigated or prevented from reaching a cable television (CATV) network. All upstream signals including ingress noise are initially transmitted to the CATV network whenever their instantaneous power exceeds a threshold which typically distinguishes ingress noise from a valid upstream signal. Whenever the instantaneous power is below the threshold, ingress noise is blocked from reaching the CATV network. A gas tube surge protection device is included to resist component destruction and malfunction arising from lightning strikes and other high voltage, high current surges.
US09647848B2

The present invention discloses an application charging method. The method includes receiving, by a CTF device, a charging rule of an application from a PCRF device, wherein the charging rule of the application carries an application identifier and charging rule parameters of the application, executing the charging rule of the application, and detecting, according to an application identifier, a flow of the application transmitted on one or more bearers, sending, by the CTF device according to charging rule parameters of the application, a charging session establishment request to a charging system and establishing a charging session of the application, collecting charging information about the detected flow of the application, and sending the collected charging information about the flow of the application to the charging system by using the charging session of the application.
US09647844B2

Metadata respectively associated with one or more input data sets processed by one or more analytic applications is obtained. The metadata for each data set is indicative of at least one of trust and veracity associated with the data set. The one or more analytic applications generate analytic results based on the one or more input data sets. A governed placement is determined for at least the analytic results based on at least a portion of the obtained metadata.
US09647842B2

A session key is negotiated to secure a user session executed in a host computer. An electronic hardware security module (HSM) located in the host computer generates a first session key. A smart card generates a second session key that matches the first session key. An encrypted copy of the second session key is communicated to an electronic host application module installed in the host computer. The electronic host application module decrypts the encrypted session key to obtain a copy of the session key such that the first and second session keys possessed by the smart card, the host application module and the HSM match one another.
US09647836B2

Embodiments are directed towards managing data storage for secure storage of shared documents. A user or an application may provide data destined for encryption and a public key. Instruction set information that references at least a seed file that may be installed on the network computer may be generated. An encryption key based on the instruction set information may be generated. Header information that includes the instruction set may be generated. And, the header information may be encrypted using the public key. A secure bundle that includes the public key, the encrypted header information, and the encrypted data may be generated and provided to the user that provided the data and the public key or the application that provided the data and the public key. Decrypting the data included in the secure bundle the above actions are generally performed in reverse.
US09647830B2

A wireless communication apparatus has an analog control loop circuitry to generate an analog control signal which adjusts a phase of a voltage-controlled oscillation signal, an integrator to integrate the analog control signal, a phase adjuster to adjust a phase of the voltage-controlled oscillation signal, a digital control loop circuitry, in a first mode, to match a frequency of the voltage-controlled oscillation signal to a frequency of the received signal based on an output signal of the phase adjuster, and in a second mode, to generate a digital control signal which is opposite in phase to the analog control signal and has a frequency, a voltage-controlled oscillator to generate the voltage-controlled oscillation signal based on the analog and digital control signals, and a signal switch to supply the analog control signal to the integrator in the first mode and to the voltage-controlled oscillator in the second mode.
US09647827B1

An apparatus comprises a photonic oscillator circuit configured to generate optical signals that are separated by a uniform delay; radio frequency (RF) generating circuitry configured to receive the optical signals and produce a series of reference clock signals having a same clock signal frequency, wherein each reference clock signal in the series includes a uniform delay from a previous clock signal in the series; and a plurality of analog-to-digital converter (ADC) circuits, wherein an ADC circuit includes a signal input to directly receive an RF input signal that is continuous in time and amplitude, and a clock input to receive a reference clock signal of the repeating series of reference clock signals, wherein the ADC circuits are configured to sample a RF input signal at the frequency of the reference clock signal with the uniform delay to sample interleaved digital values representing the RF signal.
US09647825B2

When a data path includes CMOS circuitry, such circuitry may introduce jitter into the data signal. Embodiments are described in which additional data transitions are made to occur, and these additional data transitions may change the characteristics of the data frequency content transferred to the power supply so that such noise may be better filtered. This may have an effect of reducing jitter in the data signal. In one embodiment, a second data signal is generated to be a version of a first data signal with every second bit inverted. Second CMOS circuitry receives the second data signal in parallel to first CMOS circuitry receiving the first data signal. The first CMOS circuitry and the second CMOS circuitry are connected to a same power supply.
US09647823B2

Methods, systems, and devices are described for wireless communication at an access point (AP). A scheduling procedure for using a full duplex wireless local area network (WLAN) AP with legacy station (STA) compatibility (e.g., half duplex) may be implemented. For example, a system may include a full duplex AP and have half duplex STAs with two antennas each. The scheduling procedure may involve dynamic grouping of STAs into half duplex sets, for example, based at least in part on location information of the STAs. The STAs may be grouped such that the AP is able to transmit to one of the half duplex sets while concurrently receiving from another of the half-duplex sets. The AP may employ beamforming, via the STAs, to reduce interference between full duplex in-band communications.
US09647816B2

An operation method of station in wireless local area network is provided. The operation method includes generating a legacy preamble, generating a high efficiency (HE) preamble including at least one HE-signal (HE-SIG) field, a HE-short training field (HE-STF), and at least one HE-long training field (HE-LTF), and generating a HE physical layer convergence procedure protocol data unit (HE-PPDU) including the legacy preamble and the HE preamble. Therefore, performance of WLAN can be enhanced.
US09647815B2

A method and apparatus are provided for transmitting Uplink Control Information (UCI) on a data channel in a multi-carrier wireless communication system. The method includes channel-coding a UCI with reference to a number of UCI bits available; dividing the channel coded UCI bits into a number of Physical Uplink Shared Channels (PUSCHs); and transmitting the UCI multiplexed with data on the individual PUSCHs.
US09647813B2

Disclosed is a transmission apparatus capable of properly performing cross carrier scheduling in ePDCCHs. In this apparatus, when communication is performed using a plurality of component carriers (CCs), configuration section 102 configures a first search space as a candidate to which control information for a first CC is assigned and a second search space as a candidate to which control information for a second CC other than the first CC among the plurality of CCs is assigned, within a same allocation unit group among a plurality of allocation unit groups included in a data-assignable region within the first CC, and transmission section 106 transmits control information mapped to the first search space and control information mapped to the second search space.
US09647812B2

The present invention relates to a wireless communication system. A method for receiving data by a user equipment (UE) in a cooperative multi-point (CoMP) wireless communication system includes receiving information indicating a transmission base station (BS) that actually transmits data among a plurality of BSs that participate in CoMP, receiving information about zero-power channel state information-reference signal (CSI-RS) of each of the plural BSs, and assuming that data is not mapped to a resource element of zero-power CSI-RS corresponding to the transmission BS and receiving the data through a physical downlink control channel (PDSCH).
US09647800B2

Fulcrum network codes, which are a network coding framework, achieve three objectives: (i) to reduce the overhead per coded packet to almost 1 bit per source packet; (ii) to operate the network using only low field size operations at intermediate nodes, dramatically reducing complexity in the network; and (iii) to deliver an end-to-end performance that is close to that of a high field size network coding system for high-end receivers while simultaneously catering to low-end ones that can only decode in a lower field size. Sources may encode using a high field size expansion to increase the number of dimensions seen by the network using a linear mapping. Receivers can tradeoff computational effort with network delay, decoding in the high field size, the low field size, or a combination thereof.
US09647792B2

A spectral-temporal connector interconnects a large number of nodes in a full-mesh structure. Each node connects to the spectral-temporal connector through a dual link. Signals occupying multiple spectral bands carried by a link from a node are de-multiplexed into separate spectral bands individually directed to different connector modules. Each connector module has a set temporal rotators and a set of spectral multiplexers. A temporal rotator cyclically distributes segments of each signal at each inlet of the rotator to each outlet of the rotator. Each spectral multiplexer combines signals occupying different spectral bands at outlets of the set of temporal rotators onto a respective output link. Several arrangements for time-aligning all the nodes to the connector modules are disclosed.
US09647791B2

The present application provides a wavelength configuration method for a multi-wavelength passive optical network, which includes: scanning, by an ONU, a downstream receiving wavelength, and receiving, downstream wavelength information of each downstream wavelength channel that is broadcast by an OLT separately through each downstream wavelength channel of a multi-wavelength PON system; establishing, by the ONU, a downstream receiving wavelength mapping table, where an entry of the downstream receiving wavelength mapping table includes downstream receiving wavelength information, drive current information of a downstream optical receiver and receiving optical physical parameter information of the ONU; selecting, by the ONU, one downstream wavelength from the downstream wavelength information broadcast by the OLT, and setting, according to the drive current information of the downstream optical receiver recorded in a related entry of the downstream receiving wavelength mapping table, an operating wavelength of the downstream optical receiver to the selected downstream wavelength.
US09647782B2

We disclose an interface device configured to inter-convert CPRI data frames and Optical Transport Units (OTUs). The interface device acquires frame synchronization by temporarily storing data in a buffer bank such that translated sync characters are placed at respective predetermined locations within the buffer bank. Each translated sync character represents, in the corresponding OTU, a respective sync character of a CPRI hyperframe. The interface device is configured to distinguish translated sync characters from payload-data words of identical value based on predetermined alignment, in the buffer bank, of data temporarily stored therein for conversion into the CPRI data format. The interface device advantageously enables multiplexing of a plurality of CPRI links and aggregation and encapsulation of the multiplexed CPRI data into a stream of OTUs for transmission to the intended destination over an Optical Transport Network.
US09647774B2

A method and apparatus are presented for transmitting a signal in accordance with an adaptive blind interference alignment (BIA) scheme in a wireless access system. A transmitter configures a first block including desired signals and interference signals on the basis of a number of receivers within a cell and a number of reception modes of the receivers. Further, the transmitter configures a second block including either the desired signals or the interference signals, and configures alignment blocks for each of the receivers by combining the first block with the second block. The transmitter transmits the alignment blocks to the receivers in accordance with transmission symbol patterns corresponding to the alignment blocks. Symbol vectors included in the alignment blocks for each of the receivers are configured to be overlapped between the receivers.
US09647760B2

A method allocating timeslots for transmission of data packets and REPORT messages in a communication network including plural logical links managed by a terminal, including: implemented at each cycle by the terminal receiving at least one REPORT message from at least one logical link, the REPORT message including an updated queue length expressed in timeslots of the logical link and, upon receiving the REPORT message, updating the image queue length, based on the updated queue length; allocating to logical links having non-zero image queue length at least one timeslot in a next cycle based on a theoretical transmission time for transmitting data packets or REPORT messages and based on a fraction of overhead associated with the transmission, until all timeslots of the next cycle are allocated or all image queue lengths are zero, and incrementing the theoretical transmission time of each logical link based on its required minimum bit rate.
US09647755B1

A light augmented system for securely pairing a computing device and a peripheral device may include a light emitting device provided in the peripheral device, and a light receiving device provided in the computing device. A sensing device may be included in one of the computing device or the peripheral device, and a magnet may be included at a specific location in the other of the computing device or the peripheral device. Upon detection by the sensing device of the magnet at the specific location and confirmation that the computing device and the peripheral device are in a secure closed position, a secure pairing operation may be carried out between the peripheral device and the computing device as the light emitting device transmits a pattern of light to the computing device, the pattern of light defining a bit stream of information corresponding to a pairing code known by the peripheral device and the computing device.
US09647752B2

A central node connected to a remote network node via a fiber optic link controls an antenna switch in the remote network node by controlling the DC bias current of the laser providing an optical transmission signal from the central network node to the remote network node via the fiber optic link. The remote network node converts the received optical transmission signal to an electrical transmission signal, and detects the DC level of the electrical transmission signal. If the detected DC level satisfies a predetermined condition, the remote network node connects the antenna port of the antenna switch, and thus the antenna, to a reception signal path of the remote network node. Otherwise, the remote network node connects the antenna port of the antenna switch, and thus the antenna, to a transmission signal path of the remote network node.
US09647741B2

Certain aspects of the present disclosure relate to techniques for control channel resource mapping with transmit diversity. In an aspect, a method for wireless communications is provided with includes transmitting a signal associated with a downlink control channel, where the downlink control channel spans at least one group of resource elements (REs), and the group of REs indicates a first orthogonal resource to be used by a user equipment (UE). The method also includes signaling a second orthogonal resource to be used by the UE.
US09647738B2

The present invention relates to a wireless communication system. A method for transmitting channel state information (CSI) in a wireless communication system, according to one embodiment of the present invention, comprises steps of: subsampling a codebook for a four-antenna port including 16 precoding matrices; and performing feedback for the CSI on the basis of a subsampled codebook, wherein when a rank indicator (RI) is four, a subsampled codebook includes, from 16 precoding matrices, a first precoding matrix having index 0, a third precoding matrix having index 2, a ninth precoding matrix having index 8, and an eleventh precoding matrix having index 10.
US09647735B2

A hybrid digital and analog beamforming device for a node operable with an antenna array is disclosed. In an example, the hybrid digital and analog beamforming device can include computer circuitry configured to: Segment antenna elements of an antenna array into at least two groups of antenna elements; map antenna ports for transmission chains to one group of the antenna elements; constrain digital precoding weights for a digital precoder for the antenna elements, where the digital precoding weight includes a digital phase and amplitude; and determine analog precoding weights for an analog precoder for the antenna elements, where the analog precoding weight includes an analog phase.
US09647726B2

An arrangement for managing bi-directional wireless communication between a controller and a plurality of controllable-devices wherein each controllable-device is able to provide operable function specific instructions to the controller as to how it would like to be operated by the controller and wherein a proximity mechanism means provides bidirectional communications over a distance of a few centimeters between the controller and the or each controllable-device.
US09647725B1

A circuit comprises an antenna and a first port coupled to the antenna using a first reactive circuit. A first switching device is coupled across first and second input nodes of the first port, and configured to convey a signal across the first and second input nodes to a Near Field Communication (NFC) circuit in a first mode, and to isolate the NFC circuit from the antenna in a second mode. The antenna has a first resonance at a first frequency in a first mode and has a second resonance at a second frequency in a second mode. A second port is coupled to the antenna using a second reactive circuit. A rectifier has an input coupled to the second port and an output coupled to an energy storage device. A second switching device is coupled across the second port and configured to control an amount of current flowing through the rectifier by alternating between a first state and a second state at a third frequency when the circuit is in the second mode.
US09647722B2

Systems and methods for improving data communication over less than perfect power lines or transmission lines are described. The systems and methods allow for pushing out electrically any null within a frequency range of interest and/or for lossless transmission by providing impedance matching between communication devices and the transmission line. This is achieved by implementing line equalizing modules within the transceivers, at the transmitter side and/or the receiver side, or by plugging, as a stand-alone module, into an electrical outlet within a building. The line equalizing module includes multiple inductor-capacitor cells coupled in cascade where multiple switches allow for selective and concurrent connection between the inductor-capacitor cells. In another embodiment, the line equalizing module includes variable inductor-capacitor cells. The line equalizing module provides a variable propagation delay that allows for stretching electrically the transmission line. Further improvement may achieve by adjusting the operational frequency using an up-conversion or down-conversion operation.
US09647712B2

The present invention relates to a phone holder for holding a mobile phone. The holder includes at least one lateral support. At least one insert can be located between the lateral support and the phone. Preferably, the insert can be replaceable, and the lateral support is manufactured separately and fastenable to a common body used with holders for multiple phone types.
US09647710B2

An electronic device includes a strap, a coupling part disposed on one end of the strap, configured to couple the one end of the strap to another end of the strap, and a communications module embedded in the coupling part and configured to perform wireless communications.
US09647709B1

A data carrier including a SIM card may be converted into a cradle to support a mobile communications device after the SIM card is removed and inserted into the device. The card body includes first, second, and third manipulation lines extending across the card body. The card body may be manipulated about these manipulation lines to form a stand and cradle comprising a first support portion to support a rear surface of the mobile communications device, a second support portion mobile to support a side surface of the mobile communications device, and a lip portion that secures the mobile communications device within the cradle. The lip portion is shorter in length than either the first or second support portions to limit obstruction of a display for the mobile communications device when disposed within the cradle to facilitate viewing of the display.
US09647705B2

The present application a digital self-interference residual cancellation method that adjusts a magnitude of a sampled transmit signal based on compared magnitude and phases associated with tones. The digital self-interference residual cancellation method may follow an analog carrier cancellation stage where the digital self-interference residual cancellation is based on a determination of the channel circuit response used to control an infinite impulse response filter which can compensate using both poles and zeroes.
US09647704B2

Embodiments of the present disclosure a digital predistortion system and method based on envelope tracking, and a radio frequency system, so as to reduce complexity of the digital predistortion system based on envelope tracking. The system includes: a digital predistorter, a digital-to-analog converter, a frequency mixer, a power amplifier, and a power supply apparatus; where a value range of a predistortion signal that is obtained when the digital predistorter uses a first processing manner is within a first interval, and in this case, a value of a supply voltage generated by the power supply apparatus is a constant; a value range of the predistortion signal that is obtained when the digital predistorter uses a second processing manner is within a second interval, and in this case, a change of the supply voltage generated by the power supply apparatus tracks a change of an envelope signal of the predistortion signal.
US09647703B2

In an embodiment, an apparatus includes a first radio frequency (RF) signal path and a second RF signal path. The first RF signal path can provide a first RF signal when active and the second RF signal path can provide a second RF signal when active. The second RF signal path can include a matching network with a load impedance configured to prevent a resonance in the second RF signal path due to coupling with the first RF signal path when the first RF signal path is active.
US09647700B2

A power amplification module includes a first amplification transistor that receives a first signal outputs an amplified second signal from the collector thereof; and a bias circuit that supplies a bias current to the base of the first amplification transistor. The first bias circuit includes a first transistor that is diode connected and is supplied with a bias control current; a second transistor that is diode connected, the collector thereof being connected to the emitter of the first transistor; a third transistor, the base thereof being connected to the base of the first transistor, and the bias current being output from the emitter thereof; a fourth transistor, the collector thereof being connected to the emitter of the third transistor and the base thereof being connected to the base of the second transistor; and a first capacitor between the base and the emitter of the third transistor.
US09647695B2

A method of reading multi-bit data stored in a memory cell of a flash memory includes attempting to perform hard decision (HD) decoding on output data from the flash memory, and performing soft decision (SD) decoding on the output data when the HD decoding cannot be performed. The performing of the SD decoding includes: changing a maximum number of iterations according to a threshold voltage distribution of the memory cell; and performing the SD decoding based on the changed maximum number of iterations.
US09647694B2

A quarter product code codeword includes various R code symbols and C code symbols each including a plurality of symbols. Each symbol is loaded into a diagonal anti-diagonal structure in two unique locations. To provide for fast loading, the symbols may be shifted by one or more shift registers associated with the diagonal or anti-diagonal structure. The two locations at which each symbol is positioned are included within different diagonals or anti-diagonals making it possible to load or unload either symbol or multiple symbols in a single clock cycle. Further, by partitioning the diagonal anti-diagonal structure, multiple respective symbols or plurality of symbols may be loaded or unloaded in a single clock cycle.
US09647688B1

A method of encoding a data word in a physical coding sublayer before serial transmission is provided, where data words comprising data bits are received, and the data words encoded using one or more 8B/10B encodings to generate 8B/10B transmission characters. ECC check bits are then generated, and the transmission characters and ECC check bits DC balanced prior to shuffling the bits together to form an encoded word to be transmitted. A receiver may decode by implementing a decode process with error correction. In some embodiments 26 data bits from two 13-bit word are encoded into a 40-bit encoded word. Bits of two or more encoded words may be interleaved for transmission, or multiple copies of encoded words sent. An integrated circuit serializer/deserializer comprises hardware to perform encoding and/or decoding. A hardware functional verification system may also implement the disclosed encoding/decoding for interconnections between emulation chips.
US09647686B2

Representative embodiments are disclosed for a rapid and highly parallel decompression of compressed executable and other files, such as executable files for operating systems and applications, having compressed blocks including run length encoded (“RLE”) data having data-dependent references. An exemplary embodiment includes a plurality of processors or processor cores to identify a start or end of each compressed block; to partially decompress, in parallel, a selected compressed block into independent data, dependent (RLE) data, and linked dependent (RLE) data; to sequence the independent data, dependent (RLE) data, and linked dependent (RLE) data from a plurality of partial decompressions of a plurality of compressed blocks, to obtain data specified by the dependent (RLE) data and linked dependent (RLE) data, and to insert the obtained data into a corresponding location in an uncompressed file. The representative embodiments are also applicable to other types of data processing for applications having data dependencies.
US09647680B2

A sensor may encode data using a first encoding scheme. The first encoding scheme may include encoding a data bit, included in the data, using a first chip sequence that corresponds to a first set of current levels. A second encoding scheme may be used by another sensor to encode other data. The second encoding scheme may include encoding a data bit, included in the other data, using a second chip sequence that corresponds to a second set of current levels. The first chip sequence and the second chip sequence being different chip sequences. The sensor may modulate a current, based on the first set of current levels, to provide the encoded data.
US09647667B1

Systems and methods for configuring circuitry for use with a field programmable gate array (FPGA) are disclosed. The circuitry includes an array of signal processing accelerators (SPAs) and an array of network nodes. The array of SPAs is separate from a field programmable gate array (FPGA), and the array of SPAs is configured to receive input signals from the FPGA. The array of network nodes controllably route the input signals to the array of SPAs.
US09647665B2

To provide a semiconductor device that inhibits unexpected output of a high-level signal immediately after the rise of a power supply voltage. A semiconductor device includes a first buffer circuit, a level shifter circuit, and a second buffer circuit. A first potential is supplied to the first buffer circuit, and a second potential is supplied to the level shifter circuit and the second buffer circuit; consequently, the semiconductor device returns to a normal state. The first potential is supplied to the first buffer circuit before the second potential is supplied to the level shifter circuit and the second buffer circuit, whereby the operations of the level shifter circuit and the second buffer circuit can be controlled. This inhibits unexpected output of a high-level signal to a wiring connected to the second buffer circuit.
US09647652B2

A semiconductor device includes a first pre-stress block suitable for generating a first load signal, which corresponds to an active signal during an active mode and/or to a high voltage level during a precharge mode, in response to a stress section signal; a first delay amount reflection block suitable for reflecting a first delay amount in the first load signal in response to one or more first delay amount control signals; and a first main stress block suitable for generating a word line driving control signal, which corresponds to the active signal during the active mode and the high voltage level during the precharge mode, in response to the stress section signal and the first load signal.
US09647645B1

A low voltage to high voltage level translator that is independent of the high supply voltage. The translator includes first and second transistors with current terminals coupled to a first supply voltage and control terminals that are cross-coupled to one of first and second output nodes. The translator includes first and second input stages each having a first current terminal coupled to a second supply voltage, having a second current terminal coupled to one of the first and second output nodes, and having a control terminal coupled to one of first and second input nodes. The translator further includes first and second resistors, each having a first terminal coupled to the second current terminal of one of the first and second transistors and a second terminal coupled to one of the first and second output nodes. The added resistors enable wider voltage translation and avoid conventional configuration issues.
US09647637B2

A filter working with surface acoustic waves comprises a piezoelectric substrate (SU), a first transducer (IDT1) arranged in the acoustic track coupled to an input, having a first mean finger period (pi) assigned to a center frequency of a pass band of the filter and a second transducer (IDT2) arranged in the acoustic track coupled to an output, having the same first mean finger period (p1), and a reflector arranged between first and second transducer having a second mean finger period (p2) assigned to a stop band frequency different from the center frequency. Further, a new type of very broad bandwidth filters with small insertion loss and high return loss and high rejection are given that use a substrate that can propagate a PSAW and comprises fan shaped transducers.
US09647633B2

SAW element has a substrate; an IDT having a first comb-shaped electrode and a second comb-shaped electrode located on an upper surface of the substrate; and a capacitance element located on the upper surface of the substrate. The capacitance element has a first counter electrode connected to the first comb-shaped electrode and a second counter electrode connected to the second comb-shaped electrode and facing the first counter electrode across a third gaps. The direction from the first counter electrode through the third gaps toward the second counter electrode is a reverse direction from the direction from the first comb-shaped electrode through the gaps toward the second comb-shaped electrode. If it is assumed that the gap and width of the gap are di and wi, and the gap and width of the third gap are Dj and Wj, the following formula holds: 0<Σ(Wj/Dj2)<2Σ(wi/di2).
US09647623B2

A signal processor for a radio frequency (RF) receiver includes a plurality of distributed signal processing elements, in which a first one receives an input signal and a last one provides an output signal, and a plurality of gain elements interspersed between pairs of said plurality of distributed signal processing elements. The signal processor also includes a like plurality of peak detectors coupled to outputs of corresponding ones of said plurality of gain elements, and an automatic gain controller having inputs coupled to outputs of each of the peak detectors, and outputs coupled to each of the plurality of gain elements. The automatic gain controller independently controls each of the plurality of gain elements to form a like plurality of independent automatic gain control (AGC) loops.
US09647615B2

Parallel capacitors (5c and 5d) of impedance matching circuits (5) which are connected to two transistors (1), respectively, have their first ends connected to a ground through via holes (5e and 5f) that are used in common, respectively. Although a conventional circuit necessitates via holes by the number equal to the number of stages multiplied by the number of cells of the transistors (1) for an LPF type impedance matching circuit (3), the present circuit can halve the number of via holes of the LPF type impedance matching circuit (5), thereby being able to downsize the circuit.
US09647614B2

A power amplifier includes a class D amplification section and a load current feedback circuit. The class D amplification section includes an input section and a switching section serving as an output stage and switched depending on a signal input to the input section, and outputs current from a power source to a load via the switching section. The load current feedback circuit negatively feeds back the current flowing in the load to the input section of the class D amplification section.
US09647608B2

An oscillator circuit that includes a Wien bridge oscillator circuit, a full-wave rectifier circuit, coupled to an output of the Wien bridge oscillator circuit, an integrator circuit, coupled to an output of the full-wave rectifier circuit, and a multiplier circuit. The multiplier circuit may include a first input coupled to the output of the Wien bridge oscillator circuit, and a second input, coupled to an output of the integrator, wherein the multiple signals are configured to provide dynamic gain control to the Wien bridge oscillator circuit.
US09647607B2

A solar power system is mounted to a solar power componentry support structure suspended above a pre-existing surface by a collective of solar collector suspension base supports. Suspended solar power system row support structure members and suspended solar power system column support structure members may for a solar component position lattice to which a matrix of individual solar power components such as solar panels can be attached. Solar module quick-fasten assemblages may serve also as solar componentry emergency releases and may include loose axis retainers and firm axis fasteners such as dual component, single point operative emergency releases and fasteners. Slide-in retainers and corner slot tabs can be included as well as frame alignment notches. Fulcrum pivot fasteners and slide wedge releases can aid in installation and release. Pre-sealed roof base supports such as semidome base supports can include a sandwiched membrane.
US09647605B2

A driving circuit for a single-phase-brushless motor and a method that includes a driving-signal-generating circuit configured to generate a driving signal for supplying, to a driving coil of the single-phase brushless motor, an output circuit coupled to the driving signal generating circuit; and an induced voltage zero-cross detecting circuit having a plurality of inputs and an output, a first input coupled to the driving signal generating circuit and configured to detect a zero cross of an induced voltage in response to operation in the de-energized period.
US09647596B2

A motor control system powered by an input power source. The system includes a reactive power reducing input power system in electrical communication with a motor and a constant frequency input power source. The reactive power reducing input power system includes an AC-DC converter and a regulator system, wherein the regulator system is in electrical communication with a DC-AC inverter that is in electrical communication with the motor. The system may include an isolation system to electrically isolate the DC-AC inverter from the motor when the DC-AC inverter is not transmitting power to the motor. The system may accept multiple alternating current voltage sources including both single phase and three phase sources.
US09647595B2

A method of controlling an electric motor may include determining a desired torque at the electric motor. A current at a first phase of the electric motor may be calculated at a controller. The calculated current may be a current that results in supplying the desired torque at the electric motor. The controller may compare the calculated current to a predetermined threshold current, and when the calculated current is greater than the predetermined threshold current, the controller may reduce the calculated current to the predetermined threshold current and adjust a current in a second phase adjacent to the first phase of the electric motor to continue to supply the desired torque at the electric motor.
US09647594B2

A flyback control mode-based controller includes a power supply circuit, a position-checking circuit, a current-checking circuit, a control circuit, and a power output circuit. The power output circuit includes a controlled energy conversion unit. The energy conversion unit includes a control switch and an energy conversion circuit. The energy conversion circuit uses the capacitor C circuit, the inductor L circuit, or the LC circuit to connect parallelly or serially with an inductor in a motor winding L so as to form an oscillation circuit, such that periodic oscillations with attenuation are enabled by relying on the energy stored in the motor winding L. By applying the controller to motors having forward control mode or motors having flyback control mode, the current to be released by the motor during discharging can be repeated used, thereby achieving maximum energy conservation.
US09647591B2

Techniques for motor magnet degradation controls and diagnostics are disclosed. An exemplary technique determines q-axis current, d-axis current, q-axis voltage, and/or d-axis voltage of a permanent magnet motor based upon sensed current and voltage information of the motor. This information is utilized to determine flux information. The flux information is utilized in evaluating collective state conditions of a plurality of motor magnets and evaluating localized state conditions of a subset of the plurality of motor magnets. The evaluations can be used to identify degradation or damage to one or more of the magnets which may occur as a result of elevated temperature conditions, physical degradation, or chemical degradation.
US09647590B2

A phase compensation apparatus in an inverter output voltage in a system is provided, whereby performance of an inverter can be enhanced by compensating a time delay of measured voltage of inverter output voltage detection unit.
US09647588B2

A system and method for a decay lock loop for time varying current regulation in electric motors determines if a predetermined electrical current regulation level for an electric motor has been obtained within a tuning control time window. A coarse control loop increases or decreases a fast current decay, in response to a determination that the predetermined electrical current regulation level has not been obtained within the tuning control time window, until the predetermined electrical current regulation level falls within the tuning control time window. A fine control loop increments or decrements an amount of fast current decay during a total decay time, in response to a determination that the predetermined electrical current regulation level has been obtained within the tuning control time window, until a predetermined timing of the predetermined electrical current regulation level has been obtained.
US09647587B2

A system for determining the position of a moving part driven by an electric motor: a single position sensor, coupled to the electric motor, incrementally detects an amount of movement thereof; a direction switching arrangement controls a direction of movement of the electric motor; and a control unit, coupled to the single position sensor and the direction switching arrangement, at each incremental amount of movement detected by the single position sensor, determines a current position of the moving part based on a previous position thereof and the current direction of movement controlled by the direction switching arrangement.
US09647583B2

A variable magnetization machine controller has a current command module, a magnetization module and a reducing current module. The current command module computes a vector current command in a dq axis based on a torque command. The magnetization module applies a magnetization control pulse to a d-axis current of the vector current command. Thus, the reducing current module applies a reducing current to a q-axis current of the vector current command based on the torque command and one of an estimated torque of the variable magnetization machine and a measured torque of the variable magnetization machine.
US09647582B2

Disclosed in the present invention is a tandem starter-generator construction that includes an induction motor-generator, a permanent magnet motor-generator and power transmission unit disposed adjacent to the motor-generators. The induction motor-generator is utilized predominantly as a motor to provide mechanical power at relatively high efficiency as a motor, and as a generator to provide electrical power during regenerative braking. The permanent magnet motor-generator is used predominantly as a generator for very high efficiency power conversion and to capture additional electrical power during regenerative braking to compensates for the regenerative energy captured at lower efficiency by the induction motor-generator. Accordingly, the tandem motor-generator construction disclosed herein overcomes the drawbacks of low efficiency of an induction motor-generator operating in regenerative mode and a permanent magnet motor-generator magnetic drag losses during periods of non-utilization at high speeds in order to improve fuel efficiency of a parallel hybrid vehicle.
US09647580B2

A wireless signal transmitting apparatus, includes: a piezoelectric harvester configured to generate electrical energy responsive to user switch manipulation; and, a wireless communication circuit configured to generate wireless signals from the electrical energy and wirelessly transmit the wireless signals to an external wireless power receiving device.
US09647572B2

A method for controlling a converter including a resonant circuit, where the converter is controlled such that control switches are switched into a first state at the occurrence of an event that is related to a dependent variable of the converter and are switched into a second state at the occurrence of an event that is not related to a dependent variable of the converter. The method may be employed in a converter or an inductive power transfer transmitter.
US09647563B1

A regenerative clamping circuit for a power converter using clamping diodes to transfer charge to a clamping capacitor and a regenerative converter to transfer charge out of the clamping capacitor back to the power supply input connection. The regenerative converter uses a switch connected to the midpoint of a series connected inductor and capacitor. The ends of the inductor and capacitor series are connected across the terminals of the power supply to be in parallel with the power supply.
US09647558B2

The system and method creates a substantially constant output voltage ripple in a buck converter in discontinuous conduction mode by varying the on-time of a pulse width modulator (PWM) signal driving the buck converter when the buck converter is operating in discontinuous conduction mode. A first signal is generated that is a function of the switching frequency of the buck converter. This signal is low-pass filtered and compared with a second signal that is a function of the switching frequency of the buck converter when operating in continuous conduction mode and with constant PWM on-time. The output signal generated by the comparator is a signal that is equal to the ratio of the first signal and the second signal. The on-time of a voltage controlled oscillator is controlled by the output signal, the oscillator signal causing the on-time of the PWM signal to vary in a controlled fashion.
US09647542B2

A switched mode power supply, SMPS. The SMPS comprises a switch, one or more inductors, an output smoothing capacitor, and a controller. The controller is configured to determine a first energy difference that is an instantaneous energy in the inductor(s) minus an energy in the inductor(s) at a load current, and determine a second energy difference that is an energy in the output smoothing capacitor at a reference voltage minus an instantaneous energy in the output smoothing capacitor. The controller is further configured to turn the switch on and off with a clock rate and a variable duty cycle such that the switch is on from the start of each period of the clock until the first energy difference is substantially equal to the second energy difference, and such that the switch is otherwise off.
US09647534B2

A power conversion apparatus is constituted by a power conversion circuit and a control section. The control section causes a gate driving signal to alternately open and close a set of a first switch and a fourth switch, and a set of a second switch and a third switch based on a circuit current flowing through the power conversion circuit and a voltage of an AC power supply. A current in which a high frequency component is mixed into a low frequency component of the AC power supply flows through the power conversion apparatus by the opening and closing the sets of the switches.
US09647529B2

Electric power is transferred between an AC voltage grid and a DC voltage grid in the high-voltage range. Phase modules have at least one common DC voltage connection and separate AC voltage connections. A phase module branch between the DC voltage connection and each AC voltage connection has a series circuit of two-pole sub-modules, each with an energy storage device and a power semiconductor circuit in parallel with the energy storage device. The power semiconductor circuit is driven to generate either the voltage drop across the energy storage device or else a zero voltage at the two sub-module connection terminals. A converter transformer has a primary side on an AC voltage grid and a secondary side connected to the AC voltage connections. Improved protection against overloading is provided by at least one surge arrester between the or one of the common DC voltage connections and the inverter neutral point.
US09647528B2

A resonant converter includes a first switch coupled between a first node and a primary side ground, a second switch coupled between an input voltage and the first node, at least one capacitor and at least one inductor coupled in series between both ends of the first switch, and a switch control circuit that shifts switching frequencies of the first and second switches during a period for which an abnormal event lasts when occurrence of the abnormal event is detected, and shifts the switching frequencies in an opposite direction when the abnormal event ends.
US09647516B2

A fan device includes two magnetic members, a fan and a wire. The fan is disposed between the magnetic members, and includes a rotatable hub and a plurality of fan blades radiating from the hub. The wire is mounted on the fan, and has two electrode ends and a plurality of induction portions that are disposed between the electrode ends. Each induction portion is coupled to a respective fan blade, and is co-rotatable with the respective fan blade to intersect a magnetic field between the magnetic members to thereby generate an induced current that flows toward the electrode ends of the wire.
US09647515B2

Relay terminals, which are formed integrally with a W-phase terminal, a V-phase terminal and a U-phase terminal provided radially outside bobbins, connect stator coils and the W-phase terminal, the V-phase terminal and the U-phase terminal. Second connection parts of the relay terminals connected to the coils are provided radially inside the W-phase terminal, the V-phase terminal and the U-phase terminal. Thus distances between the second connection part and the inner wall surface of a housing are increased to maintain insulation between the relay terminals and the housing. Thus the relay terminals are protected from breakage.
US09647514B2

A motor control unit is obtained by integrating an inverter unit and a motor unit having a motor, the inverter unit having a control board erected on a support board.
US09647509B2

A surface of a plate (102) having a predetermined thickness is used as a cooling surface (101). A pair of cooling medium entrance and exit (111, 112) are provided on one end surface (102a). First and second cooling medium flow paths (131, 132), a cooling medium branch path (121) communicating with the cooling medium entrance (111) and used for dividing cooling medium to flow into the cooling medium flow paths (131, 132), and a cooling medium merging path (122) at which the cooling media flowing from the exits of the cooling medium flow paths (131, 132) merge, are formed on a surface opposite to the cooling surface (101). The cooling medium flowing clockwise through the first cooling medium flow path (131) passes through a cooling medium communicating flow path (123) formed so as to three-dimensionally cross the first cooling medium flow path (131), so that the cooling medium flowing counterclockwise through the second cooling medium flow path (132) and the cooling medium flowing through the first cooling medium flow path (131) flow into the cooling medium merging path (122). Thus, pressure loss is avoided, high cooling performance is obtained, and simplification of a cooling system including a cooling medium pipe and the like can be realized.
US09647501B2

A rotor outer peripheral surface includes first arcs and second arcs. The first arc is positioned in a magnetic pole center portion. The second arc is positioned in an inter-pole portion. The first arc bulges toward a radially outer side to a higher degree than the second arc. An air gap is varied in a manner of being increased as approaching from each of the magnetic pole center portions to the adjacent inter-pole portions. A hole defining portion of a magnet insertion hole on the radially outer side has a curvature of a third arc, and a hole defining portion of the magnet insertion hole on a radially inner side has a curvature of a fourth arc. An opening angle of a tooth tip portion, an opening angle of the first arc, and an opening angle of the third arc coincide with each other.
US09647498B2

An electric machine, especially a transversal flux machine, the stator being composed of a stack of phase segments, each phase segment having at least one stator segment and one stator winding, especially a single winding, each stator segment having an annular stator bridge, on which pole shoes are premolded, which in particular extend in the radially inward direction, and/or which extend in the direction of the rotor and/or which are situated between the rotor and the annular stator bridge, the pole shoes having the same shape, in particular, the axial width of the pole shoe decreasing with increasing radial clearance, the associated profile being disposed between a first and a second profile, the first profile being a linear function of the radial clearance, the pole back associated with the first profile being a planar area, in particular, the second profile being a circular function, in particular a circular segment function, the pole back associated with the second profile being a cylindrical section area, in particular.
US09647497B2

Disclosed is a wireless power transmitter. The wireless power transmitter includes a coil in a first case; a first passage groove having a shape corresponding to a shape of the first case; and a second case coupled to the first case.
US09647492B2

A DC uninterruptible power supply system includes plural uninterruptible power supply devices, each of which includes a power cord, a battery module, a voltage detecting circuit, a current detecting circuit, and a control unit. When the voltage detecting circuit detects that a voltage at the power cord is lower than a first preset value, the control unit controls the battery module to output electrical power to the power cord. When the current detecting circuit detects that current of another uninterruptible power supply device is smaller than a second preset value, the control unit controls a switch to permit current flow to the another uninterruptible power supply device.
US09647490B2

An electric household appliance has a low-voltage capacitive power means (10) connected to an electrical power network (3) and is designed to generate a low-voltage (S2,V2). The low-voltage capacitive power means (10) comprise a capacitive dividing circuit (28) comprising a first (30) and second input terminal (31) connected to a first and second power line (3) at a first (V1) and second (VREF) predetermined potential respectively; a first output terminal (32) adapted to generate said low-voltage enabling signal (S2); first (37) and second charge-accumulating means (38) connected between said first and second input terminal; and at least one voltage limiter (40) connected parallel to said second charge-accumulating means (38) and designed to switch from a non-conducting to a conducting state when subjected to a voltage above a predetermined breakdown voltage (VZ). The first (37) and second charge-accumulating means (38) are designed so that the voltage (VC2) at the terminals of said second charge-accumulating means (38) is below the predetermined breakdown voltage (VZ).
US09647485B2

A portable device is provided. The portable device includes a power receiving unit configured to receive a first energy or a second energy from a wireless power transmitter, the first energy being used to perform a communication function and a control function, the second energy being used to charge a battery, and the wireless power transmitter being configured to wirelessly transmit a power, a voltage generator configured to generate a wake-up voltage from the first energy, or to generate a voltage for charging the battery from the second energy, a controller configured to perform the communication function and the control function, the controller being activated by the wake-up voltage, and a communication unit configured to perform a communication with the wireless power transmitter based on a control of the controller.
US09647472B2

Circuitry and methods to “capture”, recover, store and/or use electrical energy output and/or generated by the battery/cell as discharge signals of a charging sequence/operation. Such electrical energy may then be “reused” by the charging circuitry or system and/or in the system powered by the battery/cell and/or external to the charging circuitry or battery/cell. The energy output and/or generated by the battery/cell in response to discharge signals of a charging sequence/operation may (1) supply energy to the associated system being powered by the battery, (2) supply charge current to the same battery/cell or another battery/cell, (3) supply charge to one or more cells in a multiple cell battery pack that are at a lower voltage than the other cells, (4) store the charge in a different charge storing device (e.g., a capacitor and/or second battery), and/or (5) heat a battery/cell to improve charging performance.
US09647458B2

Methods, systems, and computer program products for distributed phase balancing are provided herein. A method of use in connection with a distribution network having a phase imbalance includes determining one or more power consumption parameters associated with a given entity of the distribution network; determining one or more power supply parameters associated with the given entity of the distribution network; and computing, based on said one or more power consumption parameters and said one or more power supply parameters, at least one of (i) a level of power consumption increase and/or decrease and (ii) a level of power supply increase and/or decrease associated with one or more devices of the given entity to remedy the phase imbalance within the distribution network.
US09647450B2

This specification relates to fault current limiter (FCL). More particularly, to solve problems of protecting and designing current limiting impedance in a protective coordination system, as limitations of the related art, the fault current limiter may measure heat capacity of a current limiting impedance unit by detecting fault current flowing to the current limiting impedance unit and limiting the fault current flowing to the current limiting impedance unit according to the measured heat capacity, which may result in preventing the current limiting impedance unit from being damaged due to the fault current, preventing an extended accident due to the damaged current limiting impedance unit and enabling a stabilized system and line protection.
US09647449B2

An integrated circuit arrangement (100, 200, 600) has a first circuit part (102, 202, 602) which can be supplied with a first supply voltage (106, 206, 606), and a second circuit part (104, 204, 604) which can be supplied with a second supply voltage (108, 208, 608). The first circuit part and the second circuit part are arranged in a manner spatially separate from one another. The first circuit part has a first conduction element (110, 210, 310, 410, 610), and the second circuit part has a second conduction element (112, 212, 312, 412, 612). The integrated circuit arrangement also has a third conduction element (114, 214, 314, 414, 614), the third conduction element being arranged between the first conduction element and the second conduction element in such a manner that the third conduction element is arranged adjacent to the first conduction element and the third conduction element is also arranged adjacent to the second conduction element. The third conduction element can be supplied with a reference potential (116, 216, 616) at a first end, and the third conduction element is connected, at a second end, to an evaluation circuit (118, 218, 618) for detecting a short circuit from the first conduction element to the third conduction element or from the second conduction element to the third conduction element.
US09647447B2

The present invention is directed to an electrical wiring device that includes a circuit interrupter assembly coupled to a solenoid actuator and configured to move along an assembly axis in a direction normal to a major surface of the electrical isolation member to provide electrical continuity between the plurality of line terminals, the plurality of load terminals and the plurality of receptacle contact structures in a reset state and to interrupt the electrical continuity to effect a tripped state. The circuit interrupter assembly including at least one portion configured to pivot relative to the assembly axis to effect the reset state or the tripped state.
US09647446B2

An electrical switching apparatus includes a transductor circuit that senses a direct current between at least one input terminal and at least one output terminal and outputs an alternating current proportional to the direct current between the input terminal and the output terminal. The electrical switching apparatus also includes a current sensor configured to sense an alternating current component of the direct current. The electrical switching apparatus further includes an alternating current electronic trip circuit including an arc fault detection circuit configured to detect an arc fault based on the sensed alternating current component. The alternating current electronic trip circuit is also configured to control pairs of separable contacts to trip open based on the alternating current output from the transductor circuit or the detected arc fault.
US09647445B2

A determination is made as to when the current flowing through a transistor exceeds a predetermined threshold. When the current exceeds the predetermined threshold, the transistor is deactivated. The deactivating of the transistor is effective to limit the current that flows through the transistor. The limiting of the current is effective to prevent damage to the transistor in an over current condition. The transistor is maintained in a deactivated state until a time off circuit resets the DC-DC converter circuit. The maintaining of the transistor in the deactivated state until a time off circuit resets the DC-DC converter circuit is additionally effective to reduce the time on (Duty Cycle—D.C.) and frequency to further prevent damage to the transistor due to switching power losses.
US09647436B2

A high voltage electric cable having a longitudinal axis may include: a conductive core having a first cross sectional area; wherein the conductive core includes a solid, central conductor, and at least three solid, sector conductors stranded around the central conductor. The central conductor may have a second cross sectional area. A ratio of the second cross sectional area to the first cross sectional area may be of from 1/130 to 1/20.
US09647435B2

A busbar system for the transport of energy especially for long vertical paths is disclosed, wherein the busbar system includes multiple sections, the sections each include multiple busbars and a holding piece, and the busbars of the sections are held by the respective holding pieces and electrically connected to one another via a connection.
US09647430B1

A bus assembly is for a load center. The load center includes a cover apparatus and an electrical switching apparatus. The cover apparatus has a number of cover segments. The bus assembly comprises a bus stab structured to be coupled to the number of cover segments and the electrical switching apparatus; a bus bar structured to be coupled to the number of cover segments; and a connection device comprising an element extending from a corresponding one of the bus stab and the bus bar. The connection device is structured to move between a FIRST position corresponding to the element being electrically disconnected from the other of the corresponding one of the bus stab and the bus bar, and a SECOND position corresponding to the element being electrically connected to the other of the corresponding one of the bus stab and the bus bar.
US09647422B1

A laser device has a plurality of semiconductor lasers, a driving device that supplies a driving electric current to the semiconductor laser, a trigger generation circuit that sends a trigger signal to the driving device in order to output the driving electric current, and a wave-combining device that wave-combines laser light emitted from the semiconductor lasers at the combined-wave end, and at least any one of a signal transmitting time, an electric current transmitting time and a light transmitting time is adjusted so as to be the time set respectively for transmitting paths; wherein the signal transmitting time in which the trigger signal transmits over the signal path, the electric current transmitting time in which the laser light transmits over the electric current path, a light transmitting time in which the laser light transmits over the optical path.
US09647420B2

Provided are methods of forming sealed via structures. One method involves: (a) providing a semiconductor substrate having a first surface and a second surface opposite the first surface; (b) forming a layer on the first surface of the substrate; (c) etching a via hole through the substrate from the second surface to the layer, the via hole having a first perimeter at the first surface; (d) forming an aperture in the layer, wherein the aperture has a second perimeter within the first perimeter; and (e) providing a conductive structure for sealing the via structure. Also provided are sealed via structures, methods of detecting leakage in a sealed device package, sealed device packages, device packages having cooling structures, and methods of bonding a first component to a second component.
US09647416B2

The invention relates to bi-directional long-cavity semiconductor lasers for high power applications having two AR coated facets (2AR) to provide an un-folded cavity with enhanced output power. The lasers exhibit more uniform photon and carrier density distributions along the cavity than conventional uni-directional high-power lasers, enabling longer lasers with greater output power and lasing efficiency due to reduced longitudinal hole burning. Optical sources are further provided wherein radiation from both facets of several 2AR lasers that are disposed at vertically offset levels is combined into a single composite beam.
US09647415B2

A laser apparatus according to embodiment may include: a laser chamber filled with a laser gain medium; a pair of electrodes disposed in the laser chamber; a charger configured to apply a charge voltage for causing a discharge to occur between the pair of the electrodes; a pulse power module configured to covert the charge voltage applied by the charger into a short pulsed voltage, and apply the short pulsed voltage between the pair of the electrodes; and a controller configured to calculate input energies Ein applied to the pair of the electrodes based on the charge voltage, calculate an integration value Einsum of the input energies Ein by integrating the calculated input energies Ein, and determine whether the integration value Einsum exceeds an integration lifetime value Einsumlife of input energy or not.
US09647414B2

A laser and methods for providing a continuous wave output beam. The laser and method includes positioning a micro-plasma chip capable of creating micro-plasmas within a resonant cavity. A gas is input into the resonant cavity and flows around the micro-plasma chip. Micro-plasmas ignite and excite the gas to create metastables. The metastables are further excited by an optical pump having an energy sufficient to cause the metastables to lase.
US09647401B2

A connector device includes first and second connectors including first and second housings. The second housing has a recess that receives the first housing. The first housing is connected to one end portion of a cable and has a first opening portion, which allows the other end portion of the cable to extend to the outside, on a peripheral wall at one side. An outer peripheral surface of the peripheral wall includes an inclined surface at the other side. The inclined surface is inclined so as to approach a bottom portion of the recess while extending in a direction from the one end portion toward the other end portion of the cable. The inclined surface is brought into contact with the recess so that the first connector is moved relative to the second connector in the direction from the one end portion toward the other end portion.
US09647400B2

An apparatus selectively connectable to the prongs of an electrical plug that provides an indication to a person of the presence of power to the prongs.
US09647394B2

A shielded coaxial connector including a central conductor and a waveguide to shield the central conductor from RF signals.
US09647391B2

A lattice (29) is provided on a rear surface of a connector main body (10) and defines a plurality of insertion openings (28). The lattice (29) includes first and second walls (31, 32) extending parallel to each other in the same direction and third walls (33) intersecting the first and second walls (31, 32,). Rear ends of the first, second and third walls (31, 32, 33) are located more backward in the order of the second walls (32), the third walls (33) and the first walls (31). The first walls (31) provide identification from the surrounding by projecting more backward than the second walls (32). The third walls (33) achieve an improved resin flow by alleviating steps between the first and second walls (31, 32).
US09647389B2

A plug connector part for connecting to an associated mating plug connector part includes a housing. A plug-in portion is arranged on the housing and can be plugged into the associated mating plug connector part in a plugging direction to engage with the mating plug connector part when in a connection position. At least one electrical contact element is arranged on the plug-in portion. The at least one electrical contact element is for making electrical contact with the mating plug connector part. A locking element is movably arranged on the housing. The locking element has a locking position for locking the plug connector part with respect to the mating plug connector part when in the connected position. The locking element can be moved out of the locking position to unlock the connection between the plug connector part and the mating plug connector part.
US09647384B2

A back body for a cable-connector assembly includes: an annular central portion; an annular mating portion that merges with one end of the central portion and is configured to mate with an outer conductor extension of a coaxial connector; and a plurality of fingers that extend axially from an opposite end of the central portion, the fingers being configured to flex inwardly to engage a jacket of a coaxial cable. The central portion, the mating portion, and the fingers define a bore configured to receive the coaxial cable. A radial clamp is configured to apply radially-inwardly directed pressure to the fingers.
US09647382B2

A connector terminal includes a barrel part capable of attaching thereto a conductor exposed from an outer skin of an electric wire to cause to conduct and connect, and a terminal part caused to conduct to a mating terminal. The barrel part and an end of the electric wire are covered with a waterproof case made of resin to be made waterproof. The waterproof case is made of divided two case members, and is formed of the same material as the outer skin of the electric wire.
US09647381B2

A downhole electrical wet connector comprising a plug which is slidingly inserted into a socket, the socket comprising a series of wiper seals spaced apart by separation zones, each zone being individually supplied with dielectric fluid from a separate reservoir. A retractable insert is arranged in the socket and displaced by the plug during connection. The fluid pressure in each zone is individually regulated relative to ambient wellbore pressure and the pressure in adjacent zones and optionally equalized to minimize loss of fluid.
US09647378B1

An electrical connector is provided including a connector body having an upper housing, a lower housing and a front housing. The upper housing has terminal channels configured to receive terminals therein. The upper housing, the lower housing and the front housing are molded as a single piece with front sacrificial links connecting the upper and front housings and with rear sacrificial links connecting the upper and lower housings. The lower housing is press mated to the upper housing whereby the rear sacrificial links break as the lower housing is closed and mated to the upper housing. The front housing is press mated to the upper housing whereby the front sacrificial links break as the front housing is closed and mated to the upper housing.
US09647377B1

An electrical connector includes multiple terminals and an insulation body integrally formed with the terminals. Each terminal has a contacting portion and a head portion extending forward from the contacting portion. The insulation body includes a tongue extending along a front-back direction. Each contacting portion is partially insert-molded to the tongue and partially exposed to a surface of the tongue. Each head portion is embedded into a front end of the tongue. The insulation body has a first gate and a second gate. The first gate is located on a front end surface of the tongue, and the second gate is located in a middle portion or a rear portion of the insulation body.
US09647376B2

A tamper resistant receptacle having shutter doors engaging a toggle mechanism wherein each shutter door must engage the toggle mechanism to move the device into the open position. When engaged properly by insertion of force into both the hot and neutral openings of the device simultaneous by the hot and neutral blades of an electrical plug, the shutter doors pivot to contact the toggle platform with force sufficient to overcome a spring bias and allow the platform to descend downwardly a distance sufficient to uncover blade openings in the platform and allow the blades to engage the device's electrical contacts. If only one of the pivoting doors contacts the platform, the platform tips, or toggles, in the direction of the door which blocks the item inserted into the receptacle opening of the device from reaching the underlying electrical contact.
US09647375B2

The present invention relates to a power connector for receiving an electric plug. The power connector is provided with a three-piece safety shutter architecture to prevent unwanted or improper insertion of a single plug pole into the power receptacles. In this architecture, the locking bar is formed with a first and a second tabs. The first and second tabs work with a protrusion formed therebetween to engage with the safety shutters and keep the safety shutters spaced apart from each other by a predetermined distance, so that the safety shutters are slidably latched in parallel by the locking bar and only allowed to travel dependently of each other along the travel direction, making the invention to meet the strict international safety standards for household plugs, adapters and socket-outlets.
US09647366B1

Connector shielding devices are described herein. One connector shielding device includes a circuit board having a connector that is connectable with a connector of an additional circuit board. The shielding device further includes a plurality of spring fingers connected to and extending from a first surface of the circuit board or a base support adjacent to the first surface of the circuit board. The plurality of spring fingers provides a perimeter around the connector of the circuit board. Additionally, each spring finger of the plurality of spring fingers is configured to deflect toward the first surface of the circuit board when the connector of the circuit board connects with the connector of the additional circuit board. Further, a Faraday cage is provided by the circuit board, the additional circuit board, and the plurality of spring fingers when the connector and the additional connector are connected.
US09647363B2

Embodiments of the present disclosure are directed towards techniques and configurations to control movement and position of surface mounted electrical devices. In one embodiment, an electrical contact includes a leg portion configured to extend in a first direction, a foot portion coupled with the leg portion, the foot portion having a surface that extends in a second direction that is substantially perpendicular to the first direction, the surface being configured to directly couple with solderable material to form a solder joint, a heel portion adjoining the leg portion and the foot portion, the heel portion having a profile shape, and a toe portion extending from the foot portion and disposed opposite to the heel portion, the toe portion having a profile shape that is symmetric with the profile shape of the heel portion. Other embodiments may be described and/or claimed.
US09647362B2

A contact lug for electrically conductively connecting at least two components, wherein the contact lug is designed to apply a contact pressure to at least one of the components, the contact pressure being exerted by elastic deformation of the contact lug, wherein the contact lug is at least partially formed from a bimetal in such a way that an increase in the temperature of this bimetal leads to an increase in the contact pressure.
US09647352B2

Provided is an electric wire with a terminal (1), in which a resin portion (4) molded by a die covers a conductor exposure portion of a terminal (3) to which a conductor is connected. At least groove portion (16) is provided at a part of the terminal (3) covered with the resin portion (4) so that the groove portion (16) prevents the resin portion (4) from separating from the terminal (3) in a removing direction of the die after the resin portion (4) is molded by the die.
US09647351B2

An apparatus for providing a temporary electrical grounding connection is described. The apparatus comprises a cable electrically joining first and second conductive couplings, the first and second conductive couplings each electrically coupled to a conductive surface using a clamp, magnetic component, or other connection component. A conductive coupling may be connected to the magnetic component using a clamp connected to a stub extending from the magnetic component, and there may be multiple clamps or magnetic components used in different combinations or series to provide an electrical bypass between two or more conductive surfaces.
US09647350B2

A ground clamp adapter for grounding electrical wire. The ground clamp adapter comprises a first section. The first section comprises a body having a platform extending laterally from the body. The platform having a lateral recess and a transverse recess orthogonally integrally formed in the platform. At least one bracket is adjustably coupled to the platform proximate one of the lateral recess and the transverse recess. The bracket and one of the lateral recess and the transverse recess are configured to clamp a grounding wire. A second section has a coupling portion configured to adjustably couple with the first section. The second section is configured to clamp onto a pipe shaped object to conduct electricity to ground.
US09647339B2

A wearable device includes a nonconductive base, a metal loop, and a matching circuit. The nonconductive base substantially has a hollow structure. The metal loop is disposed on the nonconductive base, and has a feeding point and a grounding point. The metal loop has at least one notch. The grounding point of the metal loop is coupled through the matching circuit to a ground voltage. An antenna structure of the wearable device is formed by the metal loop and the matching circuit.
US09647333B2

Embodiments of the present invention relate to the communication field and provide an array antenna. The array antenna includes: an antenna body, which is a multi-beam antenna, a single-beam antenna without grating lobes, or a single-beam antenna with grating lobes and transmits or receives a beam set by centering on the antenna body, where the beam set includes at least one beam; a planar reflection board, configured to reflect the beam set transmitted or received by the antenna body; and an adjusting unit, connected to the antenna body and/or the planar reflection board, and configured to adjust a relative position between the planar reflection board and the beam set of the antenna body so that the beam set of the antenna body can be transmitted or received in any direction after being reflected by the planar reflection board.
US09647331B2

An antenna assembly may include a first ground plane, a second ground plane that may be switched between grounding and non-grounding states, and first and second antenna layers. Each of the first and second antenna layers may include a plurality of pixels interconnected by a plurality of phase change material (PCM) switches. The PCM switches are configured to be selectively switched between phases to provide a plurality of antenna patterns within the first and second antenna layers.
US09647322B2

A first resin layer is provided with a step part formed in conformity with a shape of at least part of an electrically conductive pattern, and the first resin layer and a second resin layer closely adhere to each other in the step part.
US09647319B2

A window assembly includes an electrically conductive transparent layer and an antenna element disposed on a substrate. The transparent layer has an area defining a periphery with a plurality of edges. An outer region devoid of the transparent layer is defined adjacent the transparent layer along the periphery. The antenna element includes a first antenna segment and a second antenna segment. The first antenna segment is elongated and disposed in the outer region and spaced from the periphery and extends solely along one edge of the periphery. The second antenna segment extends integrally from the first antenna segment towards the transparent layer such that the second antenna segment crosses a periphery of the transparent layer. A feeding element is coupled to the first antenna segment to energize the antenna element and the transparent layer such that the antenna element and the transparent layer collectively transmit and/or receive radio frequency signals.
US09647308B2

Provided is a dielectric filter that can be anchored in a stable manner without causing damage even when there is variation in the size of the parts. With this dielectric filter, one surface of washers has a concave part, which is equipped with an edge part formed at the perimeter of the one surface, a floor surface provided at a lower position than the edge part, and a tapered part formed between the edge part and the floor surface. The washers are arranged on the upper surface of and fastened by means of screws to dielectric bodies with the concave parts facing the dielectric bodies, with sheet metal therebetween.
US09647300B2

The technology of the present application provides a solar canopy having a cavity. The cavity defines at least one space that is sized and shaped to receive a high capacity battery, of which electric vehicle batteries are one example. The cavity includes an opening to allow access to the space. Contacts are arranged in the cavity to align with contacts of a battery inserted into the space to electrically couple the battery to the power electronics or power conditioner, which includes a power conversion system, and inverter, and a converter or transformer. The cavity also includes a heat dissipation system.
US09647298B2

A nonaqueous electrolyte battery is provided. The nonaqueous electrolyte battery includes an anode; a cathode; a separator; an electrolytic solution including a solvent and an electrolyte salt; wherein the solvent includes a fluoro ethylene carbonate, wherein the nonaqueous electrolyte battery has a discharge capacity ratio of a discharge capacity B when discharging at a 5 C rate to a discharge capacity A when discharging at a 0.2 C rate ((B/A)×100%), and wherein the discharge capacity ratio is 80% or more. An electrical apparatus including a nonaqueous electrolyte battery is also provided.
US09647297B2

According to the present invention, there is provided a seal step (ST105) storing an electrode laminate in which a separator is disposed between a positive electrode and a negative electrode and an electrolyte within an exterior body constituted by a laminate film and sealing the exterior body; a pressure application step (ST106) of applying a pressure to the exterior body in which the electrode laminate is stored by means of a flat plate press working or so forth; charge step (ST102) of charging up to a full charge; a gas removal step (ST107) of unsealing the exterior body and removing gas generated within the exterior body at the charge step; and a re-seal step (ST108) of sealing the exterior body after the gas removal step.The number of times of the gas removal steps is small and an influence of gas on battery characteristics is suppressed.
US09647295B2

Provided is an electrolyte additive for a lithium ion secondary battery including an organic lithium compound and a hyper-branched structure material. The electrolyte additive enhances the decomposition voltage of the electrolyte up to 5.5 V, and increases the heat endurable temperature by 10° C. or more. The safety of the battery is thus improved.
US09647293B2

A gel polymer composite electrolyte, a polymer lithium ion battery comprising the gel polymer composite electrolyte and methods of preparing the polymer lithium ion battery are provided. The gel polymer composite electrolyte is formed by swelling after a polymer membrane absorbs an electrolyte, wherein the polymer membrane is formed by thermocuring a polymer mixture comprising an acrylic emulsion, water and ammonia water, and the acrylic emulsion has a glass transition temperature ranging from about −30° C. to about 50° C.
US09647288B2

A liquid electrolyte formed by reacting phosphoric acid (H3PO4) in the liquid state with silicon tetrachloride (SiCl4), thereby forming a fluid suspension. The fluid suspension is heated to yield a liquid electrolyte including phosphoric acid (H3PO4), pyrophosphoric acid (H4P2O7), and a particulate solid comprising a silicophosphoric acid, wherein the silicophosphoric acid is an acidic molecular compound including silicon and phosphorus. A concentrated silicophosphoric acid composition prepared by removing most of the liquid from the liquid electrolyte is dissolved in water to yield a homogeneous solution. The homogeneous solution is dried to yield a solid electrolyte. In some cases, the homogenous solution is dried on a substrate to coat at least a portion of the substrate with a proton conductive solid electrolyte. A fuel cell may include the liquid electrolyte, the solid electrolyte, or the coated substrate.
US09647286B2

A method for producing a purified carbon dioxide product suitable for EOR and surplus electricity uses a vaporous hydrocarbon feed and a SOFC system. A SOFC system includes a condensate removal system, an acid gas removal system, a hydrodesulfurization system, a sorption bed system, a pre-reformer, a solid oxide fuel cell, a CO2 separations system and a CO2 dehydration system operable to form the purified carbon dioxide product, where the SOFC system is operable to produce surplus electricity from the electricity produced by the solid oxide fuel cell. A method of operating the pre-reformer to maximize the internal reforming capacity of a downstream solid oxide fuel cell uses a pre-reformer fluidly coupled on the upstream side of a solid oxide fuel cell. A method of enhancing hydrocarbon fluid recovery from a hydrocarbon-bearing formation using a SOFC system.
US09647284B2

In various aspects, systems and methods are provided for integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process. The molten carbonate fuel cells can be integrated with a Fischer-Tropsch synthesis process in various manners, including providing synthesis gas for use in producing hydrocarbonaceous carbons. Additionally, integration of molten carbonate fuel cells with a Fischer-Tropsch synthesis process can facilitate further processing of vent streams or secondary product streams generated during the synthesis process.
US09647271B2

An aspect of the subject technology/invention of the present disclosure includes electrode structures or elements/components that have (e.g., present) fractal and/or self-complementary shapes or structures, e.g., on a surface. Such shapes or structures can be pre-existing. The electrodes can be made of any suitable material. The electrodes may function or operate or be used as a “seed” structure to incorporate or receive a material or materials useful for lattice assisted nuclear reactions and/or cold fusion processes.
US09647269B2

In a secondary battery utilizing redox by a radical site, charge-discharge is carried out in such a manner that a lithium ion moves between a positive electrode and a negative electrode (rocking chair-type). An anion in an amount necessary for electrode doping during charge-discharge is made unnecessary, thereby reducing the amount of an electrolytic solution. A secondary battery with a large energy density is achieved. Provided is an electrode active material including at least one polymer including a radical site capable of being converted into a first cation, and an anion site capable of being bonded with the first cation or a second cation.
US09647263B2

A composition for use in a lithium ion battery includes a plurality of elongate elements and a plurality of particles. The elongate elements and particles each include a metal or semi-metal selected from one or more of the group including silicon, tin, germanium, aluminum or mixtures thereof. The composition may include additional ingredients such as a binder, a conductive material and a further electro-active material, such as graphite. The compositions can be used for the fabrication of electrodes, preferably anodes in the manufacture of lithium ion batteries and optionally batteries based on magnesium ions or sodium ions. The composition is able to intercalate and release lithium during the charging and discharging cycles respectively of a battery into which it has been incorporated. Methods of fabricating the composition and electrodes including the composition are included as well as electrodes thus prepared and devices including such electrodes.
US09647260B2

Disclosed is a method of manufacturing an anode for a thermally activated reserve battery using a thin metal foam and a cup, which includes rolling a metal foam, coating the metal foam with a molten eutectic salt, impregnating the metal foam with lithium, and providing the metal foam with an electrode cup and a conductive separation membrane, and in which lithium having excellent capacity and output characteristics is employed in an anode for a thermal battery operating at high temperature.
US09647259B2

Methods of making a battery component are provided. The method comprises gas phase depositing a composition onto an electrode, the composition comprising a first component and a second component, and removing at least a portion of the second component to form a separator comprising a porous polymer film on the electrode. The first component is selected from the group consisting of polymers, dimers and monomers. In some embodiments, the second component is selected from the group consisting of polymers, dimers and monomers and is different from the first component. The first component and the second component each form separate polymer phases and together form a layer. In some embodiments, the second component is selected from the group consisting of by-products and remaining portions of the first component from the forming the first polymer.
US09647253B2

A method of producing microporous membranes includes stretching a multi-layer layer extrudate having first and second layers, the first layer including a first polyolefin and a first diluent, and the second layer including a second polyolefin and a second diluent, the second polyolefin including polypropylene in an amount of 1.0 wt. % to 40.0 wt. %, the polypropylene having an Mw>0.9×106 and a ΔHm≧100.0 J/g; removing at least a portion of the diluents to produce a dried membrane having a first length and a first width; stretching the membrane by a first magnification factor of 1.1 to 1.5 and stretching the membrane by a second magnification factor of 1.1 to 1.3; and reducing the width.
US09647249B2

The present disclosure relates to a cooling system for a vehicle battery, having: a cooling plate; an inlet manifold configured to supply fluid from a heat exchanger to the cooling plate; an outlet manifold configured to return fluid to the heat exchanger; and a plurality of micro-conduits formed in the cooling plate, configured to deliver fluid between the inlet manifold and outlet manifold.
US09647246B2

A battery includes: a cylindrical battery case; and an electrode body disposed in the battery case, and including a positive plate, a negative plate, and a separator disposed between the positive plate and the negative plate. A spacer formed of a dense body and an electrolyte storage space storing an electrolyte are provided between the electrode body and the battery case on one end or both ends of the battery case in an axial direction of the electrode body.
US09647226B2

An organic electroluminescence device according of the invention includes an anode, a cathode, and at least a first emitting layer and a second emitting layer interposed between the anode and the cathode. The first emitting layer includes a first host material and a first dopant material. The second emitting layer includes a second host material, a third host material and a second dopant material.
US09647217B2

The present invention relates to novel organic compounds comprising at least two different selections selected from the group consisting of N-phenyl carbazole, dibenzofuran, dibenzothiophene, triphenylene, aza-(N-phenyl carbazole), aza-dibenzofuran, aza-dibenzothiophene, and aza-triphenylene. The compounds are useful for organic light-emitting diodes. The compounds are also useful for charge-transport and charge-blocking layers, and as hosts in the light-emissive layer for organic light emitting devices (OLEDs).
US09647213B2

Embodiments in accordance with the present invention provide for the use of polycycloolefins in electronic devices and more specifically to the use of such polycycloolefins as interlayers applied to fluoropolymer layers used in the fabrication of electronic devices, the electronic devices that encompass such polycycloolefin interlayers and processes for preparing such polycycloolefin interlayers and electronic devices.
US09647211B2

A method of manufacturing an ink for forming a functional layer includes: dispersing a mixture in which a low molecular material and a high molecular material are mixed in a poor solvent; and dissolving the mixture by adding a good solvent to the poor solvent in which the mixture is dispersed, in which a volume ratio of the poor solvent is from 10% to 70% with respect to the total volume in which the good solvent is added to the poor solvent and the poor solvent and the good solvent can be mixed.
US09647198B2

Piezoelectric oriented ceramics containing a Pb(Ti, Zr)O3-based compound having a high degree of orientation not lower than 0.64, which was calculated with the Lotgering method based on an X-ray diffraction pattern in a prescribed cross-section thereof, and having a sintered density not lower than 85% of a theoretical density.
US09647197B2

There is provided a piezoelectric ceramics, including a perovskite compound of a non-stoichiometric composition represented by a composition formula (KxNa1-x)y(Nb1-zTaz)O3 (0
US09647193B2

[Object] To increase the degree of freedom in designing a system for taking out power from a temperature gradient in terms of a thermoelectric conversion element or a thermoelectric conversion device.[Means for Achieving Object] A thermal spin-wave spin current generating member made of a magneto-dielectric body is provided with an inverse spin Hall effect member, a temperature gradient is provided in the above-described thermal spin-wave spin current generating member in the direction of the thickness, and at the same time a magnetic field is applied to the above-described inverse spin Hall effect member in the direction perpendicular to the longitudinal direction and perpendicular to the direction of the above-described temperature gradient by means of a magnetic field applying means so that a thermal spin-wave spin current is converted to a voltage which is taken out in the above-described inverse spin Hall effect member.
US09647178B2

A package structure of an optical module includes: a substrate having a frame defined with a light-emitting region and a light-admitting region; a light-emitting chip disposed at the light-emitting region of the substrate; a light-admitting chip disposed at the light-admitting region of the substrate; two encapsulants formed in the frame and enclosing the light-emitting chip and the light-admitting chip, respectively; and a shielding layer formed on the frame and the encapsulants and having a light-emitting hole and a light-admitting hole, wherein the light-emitting hole and the light-admitting hole are positioned above the light-emitting chip and the light-admitting chip, respectively. The optical module package structure uses an opaque glue to reduce costs and total thickness of the package structure.
US09647170B2

The present techniques provide a method for producing a Group III nitride semiconductor light-emitting device, with suppression of an increase in polarity inversion defect density. The production method includes an n-type semiconductor layer formation step, a light-emitting layer formation step, and a p-type semiconductor layer formation step. The p-type semiconductor layer formation step includes a p-type cladding layer formation step. The p-type cladding layer formation step includes a first p-type semiconductor layer formation step for forming a p-type AlGaN layer, a first semiconductor layer growth intermission step after the first p-type semiconductor layer formation step, and a p-type InGaN layer formation step after the first semiconductor layer growth intermission step. In the first semiconductor layer growth intermission step, a mixture of nitrogen gas and hydrogen gas is supplied to the substrate.
US09647169B2

Carbon-based light emitting diodes (LEDs) and techniques for the fabrication thereof are provided. In one aspect, a LED is provided. The LED includes a substrate; an insulator layer on the substrate; a first bottom gate and a second bottom gate embedded in the insulator layer; a gate dielectric on the first bottom gate and the second bottom gate; a carbon material on the gate dielectric over the first bottom gate and the second bottom gate, wherein the carbon material serves as a channel region of the LED; and metal source and drain contacts to the carbon material.
US09647162B2

An electronic power cell memory back-up battery is disclosed. The electronic power cell memory back-up battery utilizes stored light photons to produce usable energy, and can be used to replace batteries or other power sources in electronic devices. The electronic power cell memory back-up battery disclosed includes a light source and a photovoltaic device in optical communication with the light source. The photovoltaic device creates electrical power in response to receiving light from the light source. A portion of the electrical power generated by the photovoltaic device is used to power the light source. In some embodiments power input contacts are included for use in providing initial start-up power to the light source. In some embodiments the light source comprises a light-emitting device and a photoluminescent material optically coupled to the light-emitting device, where the photoluminescent material emits light in response to receiving light from the light-emitting device.
US09647157B2

An attachment point apparatus and system for photovoltaic arrays is disclosed as well as an installed photovoltaic array using attachment apparatus. One embodiment provides a rail for receiving a PV module, including a rail member located substantially beneath at least a portion of a second photovoltaic module and having a first end located near a gap between a first and second photovoltaic modules. An embodiment also provides a second photovoltaic module which is substantially coplanar with and located between a first and third photovoltaic modules and wherein said rail member is connected to the first, second, and third photovoltaic modules and attached to a support structure by a first and second attachment brackets. A further embodiment provides a lever clip, said lever clip comprising a head portion connecting a photovoltaic module to a rail, a lever portion extending away from a head portion, and a retaining portion near an end of a lever portion wherein the lever portion acts as a lever to rotate the head portion during installation such that the head portion secures the photovoltaic module to a frame.
US09647155B1

The disclosure provides a photo-detection device for use in long-wave infrared detection and a method of fabrication. The device comprises a GaSb substrate, a photo absorbing layer comprising InAs/InAsSb superlattice type-II, a barrier layer comprising AlAsSb, and a contact layer comprising InAs/InAsSb superlattice type-II. The barrier layer is configured to allow minority carrier holes current flow while blocking majority carrier electrons current flow between the photo-absorbing and contact layers.The disclosure further provides a method of producing the photo-detector using photolithography which includes selective etching of the contact layer that stops on the top of the barrier so no etching is made to the barrier layer so the barrier may operate as a passivator too.The disclosure presents an x-ray and photoluminescence results for InAs/InAsSb superlattice type-II material. Also present a measurement of a single element, Long-Wave photo-detector, showing very low dark current and very high Quantum efficiency, as predicted.
US09647142B2

A method for producing a semiconductor device includes a first step of forming a fin-shaped semiconductor layer on a semiconductor substrate and forming a first insulating film; a second step of forming a pillar-shaped semiconductor layer and a first dummy gate; a third step of forming a second dummy gate on side walls of the first dummy gate and the pillar-shaped semiconductor layer; a fourth step of forming a fifth insulating film and a sixth insulating film around the second dummy gate; a fifth step of depositing a first interlayer insulating film, removing the second dummy gate and the first dummy gate, forming a gate insulating film around the pillar-shaped semiconductor layer, depositing metal, and performing etch back to form a gate electrode and a gate line; and a sixth step of forming a first diffusion layer in an upper portion of the pillar-shaped semiconductor layer.
US09647129B2

To provide a semiconductor device which occupies a small area and is highly integrated. The semiconductor device includes an oxide semiconductor layer, an electrode layer, and a contact plug. The electrode layer includes one end portion in contact with the oxide semiconductor layer and the other end portion facing the one end portion. The other end portion includes a semicircle notch portion when seen from the above. The contact plug is in contact with the semicircle notch portion.
US09647128B2

To suppress a change in electrical characteristics and to improve reliability in a semiconductor device using a transistor including an oxide semiconductor. The semiconductor device includes a gate electrode over an insulating surface, an oxide semiconductor film overlapping with the gate electrode, a gate insulating film which is between the gate electrode and the oxide semiconductor film and is in contact with a surface of the oxide semiconductor film, a protective film in contact with an opposite surface of the surface of the oxide semiconductor film, and a pair of electrodes in contact with the oxide semiconductor film. In the gate insulating film or the protective film, the amount of gas having a mass-to-charge ratio m/z of 17 released by heat treatment is greater than the amount of nitrogen oxide released by heat treatment.
US09647126B2

Provided is an oxide semiconductor configured to be used in a thin film transistor having high field-effect mobility; a small shift in threshold voltages against light and bias stress; excellent stress resistance. The oxide semiconductor has also excellent resistance to a wet-etchant for patterning of a source-drain electrode. The oxide semiconductor comprises In, Zn, Ga, Sn and O, and satisfies the requirements represented by expressions (1) to (4) shown below, wherein [In], [Zn], [Ga], and [Sn] represent content (in atomic %) of each of the elements relative to the total content of all the metal elements other than oxygen in the oxide. (1.67×[Zn]+1.67×[Ga])≧100  (1) {([Zn]/0.95)+([Sn]/0.40)+([In]/0.4)}≧100  (2) [In]≦40  (3) [Sn]≧5  (4)
US09647125B2

A first trench and a second trench are formed in an insulating layer, a transistor including an oxide semiconductor layer in the first trench is formed, and a capacitor is formed along the second trench. A first gate electrode is formed over the first trench, and a second gate electrode is formed under the first trench.
US09647122B2

A semiconductor device includes a substrate, at least one semiconductor fin, and at least one epitaxy structure. The semiconductor fin is present on the substrate. The semiconductor fin has at least one recess thereon. The epitaxy structure is present in the recess of the semiconductor fin. A topmost location of the epitaxy structure has an n-type impurity concentration lower than an n-type impurity concentration of a location of the epitaxy structure below the topmost location.
US09647121B1

A field effect transistor (FET) is disclosed having one or more fins and providing an increased depletion layer as compared to conventional finFETs. The finFET includes the one or more fins and a substrate formed of a first semiconductor material having a first well region formed of a second semiconductor material, a second well region formed of a third semiconductor material and separated from the first well region by the first semiconductor material, and a deep well region formed of a fourth semiconductor material and disposed below the first well region and the second well region.
US09647116B1

A semiconductor device includes a gate structure disposed over a substrate, and sidewall spacers disposed on both side walls of the gate structure. The sidewall spacers includes at least four spacer layers including first to fourth spacer layers stacked in this order from the gate structure.
US09647113B2

A semiconductor device fabrication process includes forming a fin and a plurality of gates upon a semiconductor substrate, forming sacrificial spacers upon opposing gate sidewalls, forming a mask upon an upper surface of the fin between neighboring gates, removing the sacrificial spacers, recessing a plurality of regions of the fin to create a dummy fin and fin segments, removing the mask, and epitaxially merging the dummy fin and fin segments. The fins may be partially recessed prior to forming the sacrificial spacers. The device may include the substrate, gates, fin segments each associated with a particular gate, the dummy fin between a fin segment pair separated by the wider pitch, and merged epitaxy connecting the dummy fin and the fin segment pair. The dummy fin may serve as a filler between the fin segment pair and may add epitaxial growth planes to allow for epitaxial merging within the wider pitch.
US09647107B1

A vertical transistor and the fabrication method. The transistor comprises a first surface and a second surface that is opposite to the first surface. A drift region of the first doping type, this drift region is located between the first surface and the second surface; at least one source region of the first doping type and the source region being located between the drift region and the first surface, with a first dielectric layer located between adjacent source regions; at least one drain region with said first doping type and said drain region being located between said drift region and said second surface, a gate being provided between adjacent drain regions. Said gate includes a gate electrode and a gate dielectric layer disposed between said gate electrode and said drift region, and the second dielectric layer being positioned between said gate electrode and said second surface.
US09647100B2

A semiconductor device includes transistor cells formed along a first surface at a front side of a semiconductor body in a transistor cell area. A drift zone structure forms first pn junctions with body zones of the transistor cells. An auxiliary structure between the drift zone structure and a second surface at a rear side of the semiconductor body includes a first portion that contains deep level dopants requiring at least 150 meV to ionize. A collector structure directly adjoins the auxiliary structure. An injection efficiency of minority carriers from the collector structure into the drift zone structure varies along a direction parallel to the first surface at least in the transistor cell area.
US09647097B2

Among other things, one or more techniques for forming a vertical tunnel field effect transistor (FET), and a resulting vertical tunnel FET are provided herein. In an embodiment, the vertical tunnel FET is formed by forming a core over a first type substrate region, forming a second type channel shell around a circumference greater than a core circumference, forming a gate dielectric around a circumference greater than the core circumference, forming a gate electrode around a circumference greater than the core circumference, and forming a second type region over a portion of the second type channel shell, where the second type has a doping opposite a doping of the first type. In this manner, line tunneling is enabled, thus providing enhanced tunneling efficiency for a vertical tunnel FET.
US09647095B2

A semiconductor device formed using an oxide semiconductor layer and having small electrical characteristic variation is provided. A highly reliable semiconductor device including an oxide semiconductor layer and exhibiting stable electric characteristics is provided. Further, a method for manufacturing the semiconductor device is provided. In the semiconductor device, an oxide semiconductor layer is used for a channel formation region, a multilayer film which includes an oxide layer in which the oxide semiconductor layer is wrapped is provided, and an edge of the multilayer film has a curvature in a cross section.
US09647088B2

The invention provides a manufacturing method of a low temperature polysilicon thin film transistor, including: providing a substrate; forming a buffer layer on the substrate; simultaneously forming a polysilicon layer and a photoresist layer on the buffer layer; implanting ions into a source region and a drain region; removing the photoresist layer; forming an insulating layer on the polysilicon layer; forming a gate electrode on the insulating layer; and forming a passivation layer on the insulating layer. The passivation layer covers the gate electrode. The invention can only use one time of mask process and one time of ion implantation process to complete the manufacturing processing of the polysilicon layer, the manufacturing process can be simplified and therefore the cost of process is reduced and the productivity is improved.
US09647077B2

A power semiconductor device comprising a first metal electrode and a second metal electrode formed on a first substrate surface of a semiconductor substrate, a semi-insulating field plate interconnecting said first and second metal electrodes, and an insulating oxide layer extending between said first and second metal electrodes and between said field plate and said semiconductor substrate, wherein said semi-insulating field plate is a titanium nitride (TiN) field plate.
US09647066B2

A FinFET device may include a dummy FinFET structure laterally adjacent an active FinFET structure to reduce stress imbalance and the effects of stress imbalance on the active FinFET structure. The FinFET device comprises an active FinFET comprising a plurality of semiconductor fins, and a dummy FinFET comprising a plurality of semiconductor fins. The active FinFET and the dummy FinFET are laterally spaced from each other by a spacing that is related to the fin pitch of the active FinFET.
US09647053B2

Integrated multi-layer magnetic films for use in passive devices in microelectronic applications and methods of manufacture thereof. Soft ferromagnetic materials exhibiting high permeability and low coercivity are laminated together with insulating layers interposed. Electrical conductors coupled to interconnects are magnetically coupled to magnetic film layers to engender an inductor (self and mutual). Soft ferromagnetic materials are provided in an alternating array of parallel plate capacitors. Each alternating magnetic film is electrically coupled to either a primary or secondary electrical conductor interconnects and separated by an electrically insulating dielectric material. Alternatively, each alternating magnetic layer comprises an induced anisotropy material, which can also be combined with coiled conductor giving rise to a hybrid inductive/capacitive device. Also, soft ferromagnetic material are also selected and tuned to provide for FMR notch filtering.
US09647052B2

A flexible display substrate, a flexible organic light emitting display device, and a method of manufacturing the same are provided. The flexible display substrate comprises a flexible substrate including a display area and a non-display area extending from the display area, a first wire formed on the display area of the flexible substrate, and a second wire formed on the non-display area of the flexible substrate, wherein at least a part of the non-display area of the flexible substrate is curved in a bending direction, and the second wire formed on at least a part of the non-display area of the flexible substrate includes a first portion formed to extend in a first direction and a second portion formed to extend in a second direction.
US09647050B2

A flexible circuit film includes a first flexible film, a second flexible film facing the first flexible film, a plurality of wirings arranged between the first flexible film and the second flexible film and extending in a first direction, then bending to extend in a second direction crossing the first direction, and then bending a second time to extend in an opposing direction to the first direction, and a guide film including a material more rigid than the first and second flexible films and arranged on an ends of the first flexible film. The guide film includes a tear-preventing portion overlapping with a bending portion of a shortest one of the wirings while covering portions of an inner edge near inner corners of a U-shaped flexible circuit film.
US09647044B2

Embodiments of the invention disclose an organic light-emitting diode array substrate and a manufacturing method thereof, and a display device. The array substrate comprises: a base substrate, a thin film transistor disposed above the base substrate, an organic light-emitting diode and a filling layer, the organic light-emitting diode including a first electrode, a second electrode, and an organic light-emitting layer disposed between the first electrode and the second electrode, wherein, in a light transmissive region of the organic light-emitting diode array substrate, the base substrate, the filling layer and the organic light-emitting layer of the organic light-emitting diode are disposed to be sequentially abutting.
US09647042B2

Disclosed is an organic light-emitting diode display panel, including: a substrate; a thin-film transistor layer including a plurality of thin-film transistors, arranged on the substrate; a plurality of organic light-emitting diode subpixel structures, arranged on the thin-film transistor layer; a pixel defining layer including a plurality of openings, arranged on the thin-film transistor layer; a plurality of first direction induction lines and second direction induction lines, arranged on the pixel defining layer; an insulation layer, arranged between the plurality of first direction induction lines and second direction induction lines; and a packaging substrate, arranged on the plurality of second direction induction lines. The organic light-emitting diode display panel employs a touch control electrode having a metal mesh structure, the touch control electrode is directly deposited on the pixel defining layer, and the touch control function is directly integrated on the organic light-emitting diode display panel.
US09647033B2

Methods of manufacturing a magnetic memory device including forming a lower magnetic layer, a tunnel barrier layer, and an upper magnetic layer on a substrate, forming a magnetic tunnel junction (MTJ) pattern by patterning the lower magnetic layer, the tunnel barrier layer, and the upper magnetic layer, forming a first insulating layer exposing an upper surface of the MTJ pattern, forming a polymer pattern on the exposed upper surface of the MTJ pattern, forming a second insulating layer exposing an upper surface of the polymer pattern, removing the polymer pattern to form a cavity in the second insulating layer, the cavity exposing the upper surface of the MTJ pattern, and forming a metal line by filling the cavity with a conductive metal.
US09647031B2

A memory device includes a substrate, first and second wirings above the substrate, a third wiring above the first and second wirings, a fourth wiring above the third wiring, a first contact electrically connected between the first wiring and the fourth wiring, a first insulator on the first contact, and a second contact on the first insulator, the second contact being electrically connected between the second wiring and the third wiring. The first contact overlaps the second contact in a direction that is orthogonal to an upper surface of the substrate.
US09647027B2

An inorganic film is dry-etched using plasma with a photoresist pattern serving as a mask, and an organic film is dry-etched using plasma with the photoresist pattern serving as a mask without exposing a pad electrode. The photoresist pattern is removed using a stripping solution. After the removal of the photoresist pattern using a stripping solution, the organic film is etched to expose the pad electrode with the inorganic film that remains after the dry etching of the inorganic film using plasma serving as a mask.
US09647026B2

A solid-state image pickup device, including: a plurality of pixels; a separation structure provided along a boundary line adjacent to the plurality of pixels; the separation structure includes a groove provided from a back surface of the semiconductor substrate to a depth corresponding to a wavelength, the groove being positioned along the boundary line, a first separation layer provided in the groove, and a second separation layer provided above the first separation layer and corresponding to the boundary line, the second separation layer being connected to the first separation layer; and methods including the same.
US09647025B2

A solid-state imaging device includes: a pixel region in which a plurality of pixels composed of a photoelectric conversion section and a pixel transistor is arranged; an on-chip color filter; an on-chip microlens; and a multilayer interconnection layer in which a plurality of layers of interconnections is formed through an interlayer insulating film. The solid-state imaging device further includes a light-shielding film formed through an insulating layer in a pixel boundary of a light receiving surface in which the photoelectric conversion section is arranged.
US09647023B2

A P-type well is defined by an isolation region formed in a semiconductor substrate. A pixel region and a ground region are defined in the P-type well. In the pixel region, a pixel transistor region and a photodiode region having a photodiode formed therein are defined. An antireflection film is formed so as to cover at least the photodiode region and the ground region. A plug connected to the ground region is formed so as to extend through the antireflection film and the like.
US09647021B2

A first waveguide member is formed, as viewed from above, in an image pickup region and a peripheral region of a semiconductor substrate. A part of the first waveguide member, which part is disposed in the peripheral region, is removed. A flattening step is then performed to flatten a surface of the first waveguide member on the side opposite to the semiconductor substrate.
US09647019B2

A TFT and manufacturing method thereof, an array substrate and manufacturing method thereof, an X-ray detector and a display device are disclosed. The manufacturing method includes: forming a gate-insulating-layer thin film (3′), a semiconductor-layer thin film (4′) and a passivation-shielding-layer thin film (5′) successively; forming a pattern (5′) that includes a passivation shielding layer through one patterning process, so that a portion, sheltered by the passivation shielding layer, of the semiconductor-layer thin film forms a pattern of an active layer (4a′); and performing an ion doping process to a portion, not sheltered by the passivation shielding layer, of the semiconductor-layer thin film to form a pattern comprising a source electrode (4c′) and a drain electrode (4b′). The source electrode (4c′) and the drain electrode (4b′) are disposed on two sides of the active layer (4a′) respectively and in a same layer as the active layer (4a′). The manufacturing method can reduce the number of patterning processes and improve the performance of the thin film transistor in the array substrate.
US09647016B2

Provided is a complementary metal-oxide-semiconductor (CMOS) image sensor. The CMOS image sensor can include a substrate having a first device isolation layer defining and dividing a first active region and a second active region, a photodiode disposed in the substrate and can be configured to vertically overlap the first device isolation layer, a transfer gate electrode can be disposed in the first active region and can be configured to vertically overlap the photodiode, and a floating diffusion region can be in the first active region. The transfer gate electrode can be buried in the substrate.
US09647003B2

A display device includes a display panel including gate lines and data lines, the gate lines and the data lines intersecting, and pixels defined at the intersections of the gate lines and data lines, a gate driver to sequentially output a gate driving signal to the gate lines, a data driver to sequentially output a data signal to channels, a switching controller to electrically connect one of the channels with two or more of the data lines, the switching controller including a switch for each of the channels, wherein the two or more data lines are adjacent, one is directly connected to the channel and the other is connected to the channel through the switch, and a timing controller to provide a selection signal to the switch which controls the connection between the other of the two or more data lines and the channel.
US09647000B2

A display device includes a first electrode, a first insulating layer having a first top surface and a first side wall, the first side wall having a closed shape and being exposed to a first opening reaching the first electrode, an oxide semiconductor layer on the first side wall, the oxide semiconductor layer including a first portion and a second portion, the first portion being connected with the first electrode, a gate electrode facing the oxide semiconductor layer, a gate insulating layer between the oxide semiconductor layer and the gate electrode, a first transparent conductive layer above the first top surface, the first transparent conductive layer being connected with the second portion, and a second transparent conductive layer connected with the first transparent conductive layer, the second transparent conductive layer forming the same layer with the first transparent conductive layer.
US09646999B1

The present disclosure proposes a TFT. The source and the drain of the TFT are disposed on the same side as the gate. The gate includes a first buffer layer, a first copper layer, a second copper layer and a second buffer layer that are stacked from bottom to top, and the second buffer layer is disposed on the side that is close to the source and drain. The source and drain include a first buffer layer, a first copper layer, a second copper layer and a second buffer layer that are stacked, and the first buffer layer is disposed on the side that is close to the gate. The first copper layer is deposited by a first power, the second copper layer is deposited by a second power lower than the first power. Through the above method, it is prevents photoresist from shedding when etching.
US09646991B2

A semiconductor device employs surrounding gate transistors (SGTs) which are vertical transistors to constitute a CMOS NOR circuit. The NOR circuit is formed by using a plurality of MOS transistors arranged in m rows and n columns. The MOS transistors constituting the NOR circuit are formed on a planar silicon layer disposed on a substrate, and each have a structure in which a drain, a gate, and a source are arranged in a vertical direction, the gate surrounding a silicon pillar. The planar silicon layer includes a first active region having a first conductivity type and a second active region having a second conductivity type. The first active region and the second active region are connected to one another via a silicon layer formed on a surface of the planar silicon layer. This provides for a semiconductor device that constitutes a NOR circuit.
US09646986B2

A semiconductor memory device includes insulating patterns and conductive patterns stacked alternately with each other, penetrating structures passing through the insulating patterns and the conductive patterns, and deposition suppressing layers formed on one end portions of respective interfaces between the insulating patterns and the conductive patterns.
US09646984B2

A non-volatile memory device is provided. The non-volatile memory device includes a channel structure that is located on a substrate and extends perpendicularly to the substrate, a conductive pattern that extends perpendicularly to the substrate and is spaced apart from the channel structure, an electrode structure that is located between the channel structure and the conductive pattern, and comprises a plurality of gate patterns and a plurality of insulation patterns that are alternately laminated. An insulating layer that contacts with a top surface of the conductive pattern is formed along side surfaces of the electrode structure. The top surface of the conductive pattern is formed to be lower than the top surface of the channel structure.
US09646983B2

A semiconductor device includes a plurality of line patterns including at least two continuous line repetition units having, as one of the line repetition unit, four line patterns continuously arranged in a first direction and having variable widths based on location. To form the plurality of line patterns including the at least two continuous line repetition units, a plurality of reference patterns are formed repeatedly at a uniform reference pitch on a feature layer. A plurality of first spacers covering both side walls of each of the plurality of reference patterns are formed. A plurality of second spacers covering both side walls of each of the plurality of first spacers are formed by removing the plurality of reference patterns. The feature layer is etched using the plurality of second spacers as an etch mask by removing the plurality of first spacers.
US09646980B2

A method includes forming a first pad oxide layer and a second pad oxide layer over a first active region and a second active region, respectively, of a semiconductor substrate, forming a dielectric protection layer overlapping the first pad oxide layer, removing the second pad oxide layer, and forming a floating gate dielectric over the second active region. A floating gate layer is then formed to include a first portion over the dielectric protection layer, and a second portion over the floating gate dielectric. A planarization is performed on the first portion and the second portion of the floating gate layer. A blocking layer, a control gate layer, and a hard mask layer are formed over the second portion of the floating gate layer. The hard mask layer, the control gate layer, and the blocking layer are patterned to form a gate stack for a flash memory cell.
US09646970B2

A method for fabricating floating body memory cells (FBCs), and the resultant FBCs where gates favoring different conductivity type regions are used is described. In one embodiment, a p type back gate with a thicker insulation is used with a thinner insulated n type front gate. Processing, which compensates for misalignment, which allows the different oxide and gate materials to be fabricated is described.
US09646959B2

A bezel of a display includes source lines with a same length, gate in panel (GIP) lines, and at least two customized integrated circuit (IC) chips arranged along a straight line in a lateral direction. Each of the customized IC chips is coupled to at least one of the source lines or the GIP lines. Circuit layouts on the customized IC chips are, together, equivalent to a circuit layout on a standard IC chip. A sum of widths of the customized IC chips in the lateral direction is greater than a width of the standard IC chip.
US09646956B2

Embodiments provide a light emitting device package including a package body having a top-opened cavity disposed in at least a portion thereof, a first electrode layer and a second electrode layer electrically isolated from the package body with an insulating layer interposed therebetween, the first electrode layer and the second electrode layer being electrically isolated from each other at a bottom surface of the cavity, a light emitting device placed on the bottom surface of the cavity configured to emit light through the open region of the cavity, and a sensor placed on at least a portion of the package body at the outside of the cavity configured to measure output of the light emitting device.
US09646955B2

Various packages and methods of forming packages are discussed. According to an embodiment, a package includes a processor die at least laterally encapsulated by an encapsulant, a memory die at least laterally encapsulated by the encapsulant, and a redistribution structure on the encapsulant. The processor die is communicatively coupled to the memory die through the redistribution structure. According to further embodiments, the memory die can include memory that is a cache of the processor die, and the memory die can comprise dynamic random access memory (DRAM).
US09646953B2

Embodiments of the present disclosure are directed toward integrated circuit (IC) packaging techniques and configurations for small form-factor or wearable devices. In one embodiment, an apparatus may include a substrate having a first side and a second side disposed opposite to the first side and a sidewall disposed between the first side and the second side, the sidewall defining a perimeter of the substrate, and a plurality of through-substrate vias (TSVs) disposed between the first side and the second side of the substrate, and a first dielectric layer disposed on the first side and including electrical routing features to route electrical signals of one or more dies in a plane of the first dielectric layer. Other embodiments may be described and/or claimed.
US09646947B2

An integrated circuit (IC) that includes a semiconductor die in an IC package. The semiconductor die includes an electrical endpoint. The IC also includes a pad affixed to the semiconductor die. The pad is characterized by a capacitance and is coupled to the electrical endpoint. The IC also includes a bond wire coupling the pad to an IC package pin. The bond wire is an inductor characterized by an inductance. The inductance is configured to decrease signal degradation caused by the capacitance of the pad on electrical signals transmitted between the pin and the electrical endpoint of the semiconductor die.
US09646936B2

A radio frequency (RF) module comprises RF-shielding structure for providing three-dimensional electromagnetic interference shielding with respect to one or more RF devices disposed on the module. The RF-shielding may comprise wirebond structures disposed adjacent to or surrounding an RF device. Two or more intramodule devices may have wirebond structures configured to at least partially block certain types of RF signals disposed between the devices, thereby reducing effects of cross-talk between the devices.
US09646935B1

A heat sink of a metallic shielding structure is provided in this disclosure, which includes a heating module and a cooling module. The heating module includes a heat generating component, a substrate, and a shield housing. The heat generating component is electrically connected to one side surface of the substrate and forms an opening corresponding the substrate. The cooling module includes a body and a working fluid is disposed in the body.
US09646933B2

According to one embodiment, a semiconductor device includes a first insulating layer on an underlying layer, a first trench formed in the first insulating layer, and a first graphene layer provided in the first trench. The first trench comprises a bottom surface on the underlying and two side surfaces joined to the bottom surface, formed into a U-shape. The first graphene layer has a stacked structure including a plurality of graphene sheets. The plurality of graphene sheets each include a depression in a central portion. Portions of the graphene sheets located in an edge of the first graphene layer are each extended upward, which is in a direction opposite to the bottom surface.
US09646927B2

A power semiconductor device includes a first polarity-side semiconductor element whose first principal electrode is in contact with a first polarity-side surface electrode on an insulator plate; a second polarity-side semiconductor element whose first principal electrode is in contact with an intermediate surface electrode on the insulator plate; an intermediate conductor connecting the intermediate surface electrode with a second principal electrode of the first polarity-side semiconductor element; a heatsink being in contact with the insulator plate; a sealing resin sealing the first polarity-side semiconductor element, the second polarity-side semiconductor element, the insulator plate, and the intermediate conductor; a second polarity-side terminal of plate-type connected with a second principal electrode of the second polarity-side semiconductor element and extending externally from the scaling resin; and an adjusting electrode mounted and connected to the heatsink so as to have a surface facing the second polarity-side terminal.
US09646920B2

A power semiconductor package has a small footprint. A preparation method is used to fabricate the power semiconductor package. A first semiconductor chip and a second semiconductor chip are attached to a front side and a back side of a die paddle respectively. Conductive pads are then attached to electrodes at top surfaces of the first and second semiconductor chips. It is followed by a formation of a plastic package body covering the die paddle, the first and second semiconductor chips, and the conductive pads. Side surfaces of the conductive pads are exposed from a side surface of the plastic package body.
US09646919B2

A semiconductor package. Implementations may include a lateral device that may include a lateral semiconductor device including one of interspersed and interdigitated source and drain regions and one or more gate regions, a single layer clip, and a leadframe. The single layer clip may be coupled to the one of interspersed and interdigitated source and drain regions and the one or more gate regions and to the leadframe. The single layer clip may be configured to redistribute and to isolate source, drain, and gate signals passing into and out from the lateral semiconductor device during operation of the semiconductor device package.
US09646917B2

A component such as an interposer or microelectronic element can be fabricated with a set of vertically extending interconnects of wire bond structure. Such method may include forming a structure having wire bonds extending in an axial direction within one of more openings in an element and each wire bond spaced at least partially apart from a wall of the opening within which it extends, the element consisting essentially of a material having a coefficient of thermal expansion (“CTE”) of less than 10 parts per million per degree Celsius (“ppm/° C.”). First contacts can then be provided at a first surface of the component and second contacts provided at a second surface of the component facing in a direction opposite from the first surface, the first contacts electrically coupled with the second contacts through the wire bonds.
US09646916B1

In one embodiment, the disclosure relates to a system of stacked and connected layers of circuits that includes at least one pair of adjacent layers having very few physical (electrical) connections. The system includes multiple logical connections. The logical interconnections may be made with light transmission. A majority of physical connections may provide power. The physical interconnections may be sparse, periodic and regular. The exemplary system may include physical space (or gap) between the a pair of adjacent layers having few physical connections. The space may be generally set by the sizes of the connections. A constant flow of coolant (gaseous or liquid) may be maintained between the adjacent pair of layers in the space.
US09646915B2

In a laminating direction of first to fifth ceramic sheets, a first slit and a second slit are positioned closer to a first mounting section and a second mounting section than a first communication hole, a second communication hole, a third communication hole and a fourth communication hole. Moreover, an overlapping section where each first slit and the first communication hole overlap, and an overlapping section where each second slit and the third communication hole overlap, are positioned in the vicinity of an area where the first mounting section and the second mounting section are disposed when viewed from the laminating direction of the first to fifth ceramic sheets.
US09646914B2

A three-dimensional integrated structure includes a first and a second element each having an interconnection part formed by metallization levels encased in an insulating region. The first and second elements are attached to one another by the respective interconnection parts. The first element includes an electrical connection via passing through a substrate. A thermal cooling system includes at least one cavity having a first part located in the insulating region of the interconnection part of the first element and a second part located in the insulating region of the interconnection part of the second element and at least one through channel extending from a rear face of the first element to open into the at least one cavity.
US09646909B2

A mounting assembly is for an electrical switch, such as for example, a dimmer switch, which includes a heat sink. The mounting assembly includes a switching member, an insulator disposed between the switching member and the heat sink, and a separate cover member overlaying the switching member. The separate cover member is structured to secure the switching member and the insulator to the heat sink. The switching member includes a switch body and a conductive tab. The separate cover member secures the switching member to the heat sink, without requiring a separate fastener to be inserted through a hole in the conductive tab. The insulator electrically isolates the conductive tab from the heat sink.
US09646894B2

Embodiments of mechanisms for forming a die package with multiple packaged dies on a package substrate use an interconnect substrate to provide electrical connections between dies and the package substrate. The usage of the interconnect substrate enables cost reduction because it is cheaper to make than an interposer with through silicon vias (TSVs). The interconnect substrate also enables dies with different sizes of bump structures to be packaged in the same die package.
US09646893B2

Embodiments of the present disclosure relate to an apparatus and a method for reducing the adverse effects of exposing portions of an integrated circuit (IC) device to various forms of radiation during one or more operations found within the IC formation processing sequence by controlling the environment surrounding and temperature of an IC device during one or more parts of the IC formation processing sequence. The provided energy may include the delivery of radiation to a surface of a formed or a partially formed IC device during a deposition, etching, inspection or post-processing process operation. In some embodiments of the disclosure, the temperature of the substrate on which the IC device is formed is controlled to a temperature that is below room temperature (e.g., <20° C.) during the one or more parts of the IC formation processing sequence.
US09646891B2

Example embodiments relate to a metal-oxide semiconductor field effect transistor (MOSFET) of a high performance operating with a necessary threshold voltage while including a channel region formed based on a group III-V compound, and a method of manufacturing the MOSFET. The MOSFET includes a substrate, a semiconductor layer including a group III-V compound on the substrate, and a gate structure disposed on the semiconductor layer, and including a gate electrode formed based on metal and undergone an ion implantation process.
US09646889B1

A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a first gate structure on the substrate and a first spacer adjacent to the first gate structure; forming a first epitaxial layer in the substrate adjacent to the first gate structure; forming a first hard mask layer on the first gate structure; removing part of the first hard mask layer to form a protective layer on the first epitaxial layer; and removing the remaining first hard mask layer.
US09646888B2

A method of fabricating a semiconductor device includes: providing a semiconductor substrate including a hard mask layer; performing, using the hard mask layer, etching to the semiconductor substrate to form a fin-type structure and a groove; forming an isolation material layer in the regions between adjacent fins of the fin-type structure and in the groove; removing a portion of the isolation material layer that is located above the hard mask layer to form a shallow trench isolation; and forming a second mask layer over the hard mask layer, the second mask layer having an opening above the shallow trench isolation; performing ion implantation to the shallow trench isolation through the opening; removing the second mask layer and the hard mask layer; and removing a portion of the isolation material layer located in the regions between adjacent fins of the fin-type structure and a portion of the shallow trench isolation.
US09646887B1

Disclosed is a process of making field-effect transistor gate stacks containing different deposited thin film silicon material layers having different hydrogen content, and devices comprising these gate stacks. The threshold voltage (Vt) can be tuned by tailoring the hydrogen content of the thin film silicon material layer positioned below a core dielectric and directly on a semiconductor material substrate.
US09646874B1

Thermally isolated devices may be formed by performing a series of etches on a silicon-based substrate. As a result of the series of etches, silicon material may be removed from underneath a region of an integrated circuit (IC). The removal of the silicon material from underneath the IC forms a gap between remaining substrate and the integrated circuit, though the integrated circuit remains connected to the substrate via a support bar arrangement that suspends the integrated circuit over the substrate. The creation of this gap functions to release the device from the substrate and create a thermally-isolated integrated circuit.
US09646868B2

A method for temporarily bonding a wafer to a support via a temporary bonding arrangement is provided. The arrangement is a composite temporary adhesive layer consisting of a non-silicone thermoplastic resin layer (A) which is releasably bonded to the wafer, a thermosetting siloxane polymer layer (B) laid thereon, and a thermosetting siloxane-modified polymer layer (C) releasably bonded to the support. The method comprises the steps of providing a wafer laminate having a thermosetting silicone composition layer (B′) formed on the resin layer (A) which has been formed on the wafer, providing a support laminate having a siloxane-containing composition layer (C′) formed on the support, joining and heating layer (B′) and layer (C′) in vacuum for bonding and curing the layers together.
US09646867B2

A plasma processing apparatus includes a mounting table including a lower electrode and an electrostatic chuck, a high frequency power supply electrically connected to the lower electrode, a heater provided in the electrostatic chuck, a heater power supply for supplying a power to the heater, a filter unit including a filter connected to the heater power supply, a rod-shaped power feeder connecting the heater power supply and the heater via the filter, an insulating tubular portion having an inner hole through which the power feeder extends, and a conductive choke portion serving to suppress a microwave propagating through the tubular portion. The choke portion includes a first portion extending from the power feeder in a direction intersecting with a longitudinal direction of the power feeder and a cylindrical second portion extending, between the tubular portion and the power feeder, from a peripheral portion of the first portion.
US09646864B2

A substrate processing system includes a plurality of processing chambers configured to perform a predetermined processing with respect to substrates, a transfer device configured to transfer the substrates to the processing chambers in a predetermined order, and a delivery unit configured to deliver the substrates between the delivery unit and the transfer device. The substrate processing system configured to sequentially process the substrates by repeating an operation in a predetermined transfer order. The substrate processing system includes a transfer order setting unit and a transfer control unit configured to switch the first transfer order to the second transfer order.
US09646863B2

Disclosed are a multilayer styrenic resin sheet including 10 to 50 laminated layers which are each made of a styrenic resin composition that includes 29 to 65 mass % of a styrene/conjugated diene copolymer (A), 51 to 15 mass % of a polystyrene resin (B) and 20 to 9 mass % of an impact-resistant polystyrene resin (C) and which each have an average thickness of 2 to 50 μm; and a packaging material (such as carrier tape or tray) for electronic components which is formed from the multilayer styrenic resin sheet. The melt tension of the styrenic resin composition at 220° C. is preferably 10 to 30 mN, and the content of the conjugated diene is preferably 10 to 25 mass % relative to 100 mass % of the copolymer (A).
US09646862B2

Heating within a plane of a substrate may be uniform while a thermal budget is decreased. A substrate processing apparatus includes a process chamber configured to accommodate a substrate; a substrate mounting unit installed in the process chamber and configured to have the substrate placed thereon; an electromagnetic wave supply unit configured to supply an electromagnetic wave to the substrate placed on the substrate mounting unit; and a choke groove formed on a side surface of the substrate mounting unit.
US09646858B2

In an embodiment, the present invention discloses a EUV cleaner system and process for cleaning a EUV carrier. The euv cleaner system comprises separate dirty and cleaned environments, separate cleaning chambers for different components of the double container carrier, gripper arms for picking and placing different components using a same robot handler, gripper arms for holding different components at different locations, horizontal spin cleaning and drying for outer container, hot water and hot air (70 C) cleaning process, vertical nozzles and rasterizing megasonic nozzles for cleaning inner container with hot air nozzles for drying, separate vacuum decontamination chambers for outgassing different components, for example, one for inner and one for outer container with high vacuum (e.g., <10−6 Torr) with purge gas, heaters and RGA sensors inside the vacuum chamber, purge gas assembling station, and purge gas loading and unloading station.
US09646856B2

A method of manufacturing a device includes providing a semiconductor chip having a first face and a second face opposite to the first face with a contact pad arranged on the first face. The semiconductor chip is placed on a carrier with the first face facing the carrier. The semiconductor chip is encapsulated with an encapsulation material. The carrier is removed and the semiconductor material is removed from the second face of the first semiconductor chip without removing encapsulation material at the same time.
US09646849B2

A semiconductor device and a method for manufacturing the same are provided. A semiconductor device includes a substrate, a first capping layer formed above the substrate, a first dielectric layer formed on the first capping layer; a second capping layer formed on the first dielectric layer; a second dielectric layer formed on the second capping layer; a plurality of conducting lines separately formed on the substrate; a third capping layer formed on the conducting lines and the second dielectric layer; and several nano-gaps formed between the adjacent conducting lines, and the nano-gaps being formed in the second dielectric layer, or further extending to the second capping layer or to the first capping layer. The nano-gaps partially open one of the second and first dielectric layers, or the nano-gaps expose the first capping layer or the second capping layer.
US09646844B2

A method for forming a stair-step structure in a substrate is provided. An organic mask is formed over the substrate. A hardmask with a top layer and sidewall layer is formed over the organic mask. The sidewall layer of the hard mask is removed while leaving the top layer of the hardmask. The organic mask is trimmed. The substrate is etched. The forming the hardmask, removing the sidewall layer, trimming the organic mask, and etching the substrate are repeated a plurality of times.
US09646836B2

Provided is a semiconductor device manufacturing method such that miniaturization of a parallel p-n layer can be achieved, and on-state resistance can be reduced. Firstly, deposition of an n−-type epitaxial layer, and formation of an n-type impurity region and p-type impurity region that form an n-type region and p-type region of a parallel p-n layer, are repeatedly carried out. Furthermore, an n−-type counter region is formed in the vicinity of the p-type impurity region in the uppermost n−-type epitaxial layer forming the parallel p-n layer. Next, an n−-type epitaxial layer is deposited on the n−-type epitaxial layer. Next, a MOS gate structure is formed in the n−-type epitaxial layer. At this time, when carrying out a p-type base region diffusion process, the n-type and p-type impurity regions are caused to diffuse, thereby forming the n-type region and p-type region of the parallel p-n layer.
US09646835B2

A bonded wafer structure having a handle wafer, a device wafer, and an interface region with an abrupt transition between the conductivity profile of the device wafer and the handle wafer is used for making semiconductor devices. The improved doping profile of the bonded wafer structure is well suited for use in the manufacture of integrated circuits. The bonded wafer structure is especially suited for making radiation-hardened integrated circuits.
US09646832B2

A method for forming a heteroepitaxial layer includes forming an epitaxial grown layer on a monocrystalline substrate and patterning the epitaxial grown layer to form fins. The fins are converted to porous fins. A surface of the porous fins is treated to make the surface suitable for epitaxial growth. Lattice mismatch is compensated for between an epitaxially grown monocrystalline layer grown on the surface and the monocrystalline substrate by relaxing the epitaxially grown monocrystalline layer using the porous fins to form a relaxed heteroepitaxial interface with the monocrystalline substrate.
US09646829B2

A method for manufacturing a highly reliable semiconductor device with less change in threshold voltage is provided. An insulating film from which oxygen can be released by heating is formed in contact with an oxide semiconductor layer, and light irradiation treatment is performed on a gate electrode or a metal layer formed in a region which overlaps with the gate electrode, so that oxygen is added into the oxide semiconductor layer in a region which overlaps with the gate electrode. Accordingly, oxygen vacancies or interface states in the oxide semiconductor layer in a region which overlaps with the gate electrode can be reduced.
US09646816B2

In a light source device, a control unit causes an energy density of a laser light in a lighting start region RS when a laser support light is maintained to be lower than an energy density of the laser light in the lighting start region RS when the laser support light is put on. For this reason, when the laser support light is maintained, a laser light L is radiated to the lighting start region RS at an energy density of a degree where sputtering does not occur. Therefore, in the light source device, because sputtering in a light emission sealing body can be suppressed, a sufficiently long life can be realized.
US09646815B2

Integrated nanospray ionization package, comprising a nanospray emitter, a push button carriage with button element projecting through a bore in said package, an integral high voltage contact pin, a bore in said package for reversible protrusion of the nanospray emitter, a push-and-retract spring mechanism in which the range of forward motion of the emitter is not dependent on range of travel of the said button, and then upon actuation of said button element and spring element for retraction of said nanospray emitter, said nanospray emitter is pushed forward to establish electrical contact, and upon release of said button retracts and breaks the electrical contact.
US09646809B2

There is described an intaglio printing plate coating apparatus (1) comprising a vacuum chamber (3) having an inner space (30) adapted to receive at least one intaglio printing plate (10) to be coated, a vacuum system (4) coupled to the vacuum chamber (3) adapted to create vacuum in the inner space (30) of the vacuum chamber (3), and a physical vapour deposition (PVD) system (5) adapted to perform deposition of wear-resistant coating material under vacuum onto an engraved surface (10a) of the intaglio printing plate (10), which physical vapour deposition system (5) includes at least one coating material target (51, 52) comprising a source of the wear-resistant coating material to be deposited onto the engraved surface (10a) of the intaglio printing plate (10). The vacuum chamber (3) is arranged so that the intaglio printing plate (10) to be coated sits substantially vertically in the inner space (30) of the vacuum chamber (3) with its engraved surface (10a) facing the at least one coating material target (51, 52). The intaglio printing plate coating apparatus (1) further comprises a movable carrier (6) located within the inner space (30) of the vacuum chamber (3) and adapted to support and cyclically move the intaglio printing plate (10) in front of and past the at least one coating material target (51, 52).
US09646797B2

Disclosed are methods and devices suitable for generating electron beams and pulses of radiation. Specifically, in some disclosed embodiments, multiple emitting electrodes of a ferroelectric emitter are sequentially activated, generating a relatively long electron beam pulse that is substantially a series of substantially consecutive short electron beam pulses generated by the sequentially-activated individual emitting electrodes.
US09646783B1

A knob assembly is provided that includes a knob having a rotatable shaft, a rotatable first circuit board rigidly attached to the rotatable shaft, and a fixed second circuit board positioned near the first circuit board. The first circuit board includes an encoding portion configured to provide positioning data of the knob, and an eccentric rotating mass (ERM) motor mounted to the rotatable, first circuit board with a shaft of the ERM motor perpendicular to the rotatable shaft of the knob. The ERM motor is configured to produce and transfer vibration to the rotatable shaft of the knob. The second circuit board includes a sensor configured to determine a position of the first circuit board and thereby the knob at least in part from the positioning data provided by the encoding portion.
US09646772B2

A high voltage electrode includes a through type aluminum sheet, a plurality of first hollow protrusion members protruded to one side of the through type aluminum sheet, a plurality of second hollow protrusion members protruded to the other side of the through type aluminum sheet, a metal oxidation layer coated on the through type aluminum sheet, the plurality of first hollow protrusion members, and the plurality of second hollow protrusion members, a first active material sheet bonded to the metal oxidation layer so that it is placed in the first surface of the through type aluminum sheet, and a second active material sheet bonded to the metal oxidation layer so that it is placed in the second surface of the through type aluminum sheet.
US09646770B2

There is provided multilayer ceramic capacitor including, a ceramic body including a plurality of dielectric layers laminated therein, an active layer including a plurality of first and second internal electrodes alternately exposed through both end surfaces of the ceramic body, with the dielectric layers interposed therebetween, and having capacitance formed therein, an upper cover layer formed on an upper portion of the active layer, a lower cover layer formed on a lower portion of the active layer and having a thickness greater than that of the upper cover layer, first and second dummy electrode terminals provided in the lower cover layer to be alternately exposed through both end surfaces of the lower cover layer, and first and second external electrodes covering the both end surfaces of the ceramic body.
US09646767B2

A ceramic electronic component includes a ceramic element, a first inner electrode, a second inner electrode, an outer electrode, and a first auxiliary electrode. The first auxiliary electrode extends to a first surface of the ceramic element. The first inner electrode extends along a first direction on the first surface. The first auxiliary electrode extends outward from the region where the first inner electrode is disposed in the first direction on the first surface. The outer electrode covers the first inner electrode and the first auxiliary electrode.
US09646764B2

Provided is a rectangular wire edgewise-bending processing device for performing an edgewise-bending process for a rectangular wire to form a coil, the rectangular wire edgewise-bending processing device including a fixing unit for fixing the rectangular wire, a pressing tool for pressing a surface formed by a long side of a rectangular cross section of the rectangular wire, and a bending tool for bending the rectangular wire into a predetermined coil shape, wherein the edgewise-bending process is performed while the surface formed by the long side of the rectangular cross section of the rectangular wire is pressed.
US09646755B2

A low profile and small size electronic device for use in, e.g., electronic circuits which provides maximum creepage and/or clearance distances. In one embodiment, the device is configured for a small footprint and utilizes two or more windings that require isolation. The exemplary device includes a self-leaded header made from a unitary construction which comprises a box-like support body having a cavity for mounting a circuit element, the support body having a base and leads extending generally horizontally outward from the support body adjacent the base, the support body having one side opening on a side with leads permitting the loading of the inductive device in the cavity, and a routing channel residing on the top of the base, so as to maximize the creepage and clearance distance of the electronic device. Shaped-core and other embodiments are also disclosed.
US09646744B2

A method of manufacturing a surface mount device includes forming a plaque from a material, forming a plurality of conductive protrusions on a top surface and a bottom surface of the plaque, and applying a liquid encapsulant over at least a portion of the top surface and at least a portion of the bottom surface of the plaque. The liquid encapsulant is cured and when cured encapsulant has an oxygen permeability of less than about 0.4 cm3·mm/m2·atm·day. The assembly is cut to provide a plurality of components. After cutting, the top surface of each component includes at least one conductive protrusion, the bottom surface of each component includes at least one conductive protrusion, the top surface and the bottom surface of each component include the cured encapsulant, and a core of each component includes the material.
US09646736B2

A resin composition which has high electrical conductivity and high stiffness, is suppressed in outgassing caused by a temperature rise and is excellent in heat stability during melt molding in the production process and a molded article thereof.The resin composition comprises (A) 65 to 85 parts by weight of an aromatic polycarbonate resin (component A), (B) 15 to 35 parts by weight of graphite having an average particle diameter of 5 to 60 μm (component B), and (C) 0.1 to 5 parts by weight of at least one compound (component C) selected from the group consisting of a polyester having a sulfonate group (component C-1) and a polyether ester having a sulfonate group (component C-2) based on 100 parts by weight of the total of the components A and B.
US09646734B2

[Summary] A positive electrode active material is provided to contain: a solid solution lithium-containing transition metal oxide (A) represented by Li1.5[NiaCobMnc[Li]d]O3 (where a, b, c and d satisfy the relations of a+b+c+d=1.5, 0.1
US09646730B2

A process for cleaning reusable canisters known as pigs which contain radioactive drugs and may contain residual radioactive material and other contaminants. Those pigs that are contaminated with radio-active material are removed from the cleaning process until they have decayed to the background radiation level, cleaned and disinfected. Within a very clean drug preparation area a radioactive drug is inserted into the pig and the pig is placed in a protective outer container. At a treatment site the outer container and pig are delivered to a clean treatment area where the pig is removed from the outer container and the drug is removed from the pig and utilized.
US09646722B2

A method and apparatus for a fret resistant fuel rod for a Boiling Water Reactor (BWR) nuclear fuel bundle. An applied material entrained with fret resistant particles is melted or otherwise fused to a melted, thin layer of the fuel rod cladding. The applied material is made of a material that is chemically compatible with the fuel rod cladding, allowing the fret resistant particles to be captured in the thin layer of re-solidified cladding material to produce an effective and resilient fret resistant layer on an outer layer of the cladding.
US09646715B2

A sample and hold amplifier includes an input node for receiving an input current signal, a non-linear sampling capacitor circuit having an input coupled to the input node, an operational amplifier having a negative input coupled to an output of the non-linear sampling capacitor circuit, a positive input coupled to ground, and an output for providing a sample and hold voltage signal, and a linear capacitor coupled between the negative input and the output of the operational amplifier. The non-linear sampling capacitor includes a non-linear capacitor coupled between an intermediate node and ground, a first switch coupled between the input and the intermediate node configured to switch according to a first phase signal, and a second switch coupled between the output and the intermediate node configured to switch according to a second phase signal.
US09646708B2

An input/output interface circuit is provided for a memory device. The input/output interface circuit receives a first control signal and a second control signal, and provides an output clock signal. The input/output interface circuit includes a plurality of circuit blocks coupled in series, the a plurality of circuit blocks including an input terminal coupled to the first control signal and the second control signal, and an output terminal providing the output clock signal, a plurality of power switch transistors, each power switch transistor including a control terminal and coupled between a corresponding one of the circuit blocks and a power supply terminal, and a plurality of switch control circuits, each switch control circuit coupled to the control terminal of a corresponding one of the power switch transistors. The switch control circuits are configured to activate the circuit blocks in a first predetermined order and deactivate the circuit blocks in a second predetermined order.
US09646704B2

An operation method of a storage device including a nonvolatile memory and a memory controller controlling the nonvolatile memory, includes transmitting a multi-program command to the nonvolatile memory by the memory controller; and programming memory cells connected to two or more word lines by the nonvolatile memory in response to the multi-program command.
US09646694B2

A memory including an array of nvSRAM cells and method of operating the same are provided. Each nvSRAM cell includes a volatile charge storage circuit, and a non-volatile charge storage circuit including exactly one non-volatile memory (NVM) element, a first transistor coupled to the NVM element through which data true is coupled to the volatile charge storage circuit, a second transistor coupled to the NVM element through which a complement of the data is coupled to the volatile charge storage circuit and a third transistor through which the NVM element is coupled to a positive voltage supply line (VCCT). In one embodiment, the first transistor is coupled to a first node of the NVM element, the second transistor is coupled to a second node of the NVM element and the third transistor is coupled between the first node and VCCT. Other embodiments are also disclosed.
US09646673B2

An address detection circuit includes an address storage unit suitable for receiving an address when an active command is activated, and storing recently inputted N number of addresses; and an address determination unit suitable for determining whether an address currently inputted to the address storage unit is already inputted at least a threshold number of times in each period that the active command is activated M (1≦M≦N) number of times, based on the N number of addresses stored in the address storage unit.
US09646671B1

Techniques are provided for managing voltages applied to memory cells in a cross-point array during a write operation (e.g., to transition from a resistive state into a conductive state). The techniques apply to thyristor memory cells and non-thyristor memory cells. Bitlines, connected by a wordline, are preconditioned to a voltage level, by a precondition device, to write data to one or more memory cells at intersections of the bitlines and the wordline. Each bitline is coupled to a high impedance device, a detect device, a precondition device and a clamp device. When a memory cell on a first bitline transitions from a resistive state into a conductive state, it pulls a voltage level of the first-bit line level low. A first clamp device maintains the voltage level at a level to de-bias the first bitline from the wordline, while other memory cells to be written along the wordline remain biased.
US09646669B2

Memory devices, such as MRAM devices, are described that comprise memory elements for storing data and configuration logic for programming memory elements using a two phase boost. The memory devices perform the two phase boosting to program anti-parallel data values during a first programming phase and to program parallel data values during a second programming phase that is subsequent to the first programming phase. The voltage boost is provided by a high percentage of memory elements in a memory device by simultaneously transitioning the source line of the memory elements from a reference voltage to a source voltage during the first programming phase to effectively double the activation voltage for gates of transistors in the memory elements to program anti-parallel data values. Methods are also described for programming memory elements using a two phase boost.
US09646667B2

According to one embodiment, a semiconductor memory device includes: a first active area provided in a semiconductor substrate; a second active area provided in the semiconductor substrate and intersecting with the first active area; a first select transistor comprising a first drain region provided in the first active area and a source region provided in an intersection region of the first and second active areas; a second select transistor comprising a second drain region provided in the second active area and sharing the source region; a word line coupled to gates of the first and second select transistors; and first and second variable resistance elements coupled to the first and second drain regions, respectively.
US09646666B2

Spin switch devices with voltage controlled magnetism in ultra-low power usage applications are disclosed. The spin switch devices may be configured to provide ultra-low power and ultra-high speed switching by directly controlling drain or gate electron spins via electric field induced magnetic anisotropy tuned with finite gate voltage. A lateral spin switch with voltage controlled magnetic drain is placed in an “OFF” or an “ON” state by controlling the gate voltage to be equal to 0 or greater than 0 volts respectively. A vertical spin switch with voltage controlled magnetic gate is placed in an “OFF” or an “ON” state by controlling a value of the gate voltage to be less than a threshold voltage or greater than the threshold voltage respectively. A voltage controlled complementary switch provides a very large gain by controlling a value of the gate voltage to be equal to 0 volts.
US09646663B2

In some embodiments, a circuit comprises a plurality of memory banks, a column line tracking loop and/or a row line tracking loop, and a tracking circuit. The plurality of memory banks are arranged in a plurality of rows and a plurality of columns of memory building blocks. The column line tracking loop traverses at least a portion of the plurality of rows. The row line tracking loop traverses at least a portion of the plurality of columns. The tracking circuit is configured to receive a first edge of a first signal, cause the first edge of a first signal to be propagated through the column line tracking loop and/or through the row line tracking loop and cause a second edge of the first signal when receiving the propagated first edge of the first signal. The first signal is associated with accessing of the plurality of memory banks.
US09646654B2

A computer-implemented method for simultaneously recording a media recording and an event recording includes recording a media recording, recording an event recording simultaneously with the media recording, the event recording encoding a plurality of events, an event being related to one or more user interactions with an input device associated with the media recording and recording the event recording includes for each of a plurality of events of the event recording generating data characterizing the particular event and generating a corresponding time stamp for the particular event by polling a system time of a computer device at the time the particular event takes place, the method further includes providing the data characterizing the particular event and the corresponding time stamp for storage.
US09646650B2

This disclosure generally relates to systems and methods that facilitate synchronizing recordings between a plurality of content recording devices using embedded markers or metadata, and employing the synchronized recordings on a content recording device or a content server to present one or more of the synchronized recordings concurrently in a merged presentation or in a manner that allows for switching between recordings while maintaining synchronization.
US09646649B2

[Problem] To efficiently and effectively exchange information on medical image data. [Solution] A video image extracted from a DICOM file is uploaded from an upload terminal (6) to a server (2). A medical personnel accesses medical image data from a viewing terminal (8a) and plays the video image provided by the server. The user inputs a comment, into which link destination information to the medical image data is incorporated (inserted), via a comment input field on a medical image viewing screen.
US09646645B2

The invention relates to the spindle motor for driving a hard disk drive, comprising: a stationary motor component (10, 12, 16, 18), a rotary motor component (14) rotatably mounted relative to the stationary motor component using a fluid dynamic bearing system, a bearing gap (20) disposed between the stationary motor component and the rotary motor component and filled with a bearing fluid, having at least one open end, at least one sealing gap (34) for sealing the open end, at least one cover cap (30) for covering the sealing gap, which is secured to the rotatable motor component, a disk clamp (44) for attachment of at least one magnetic storage disk (48) on the rotatable motor member and an electromagnetic drive system (40, 42) to drive the rotatable motor member. The disk clamp (44, 156) is centered on a peripheral surface of the cover cap (30, 118).
US09646644B2

An apparatus, computer readable medium device, and method for controlling transportation of a tape medium. A determination is made whether to execute a backhitch operation in response to writing a data set to tape from the buffer. If not, a determination is made whether a transaction size at which data is transferred from the buffer to the tape is less than a buffer size. If so, then a determination is made of a a new speed and whether a current speed is different from the determined new speed. If so, then a backhitch is initiated.
US09646635B2

Implementations disclosed herein allow a signal detected by a magnetoresistive (MR) sensor to be improved by providing for one or more alloyed layers that each includes a ferromagnetic material and a refractory material. The alloyed layers are provided adjacent to a shield element or between soft magnetic layers of the sensor stack.
US09646628B1

A system has multiple audio-enabled devices that communicate with one another over an open microphone mode of communication. When a user says a trigger word, the nearest device validates the trigger word and opens a communication channel with another device. As the user talks, the device receives the speech and generates an audio signal representation that includes the user speech and may additionally include other background or interfering sound from the environment. The device transmits the audio signal to the other device as part of a conversation, while continually analyzing the audio signal to detect when the user stops talking. This analysis may include watching for a lack of speech in the audio signal for a period of time, or an abrupt change in context of the speech (indicating the speech is from another source), or canceling noise or other interfering sound to isolate whether the user is still speaking. Once the device confirms that the user has stopped talking, the device transitions from a transmission mode to a reception mode to await a reply in the conversation.
US09646626B2

Disclosed herein are systems, methods, and computer-readable storage devices for processing audio signals. An example system configured to practice the method receives audio at a device to be transmitted to a remote speech processing system. The system analyzes one of noise conditions, need for an enhanced speech quality, and network load to yield an analysis. Based on the analysis, the system determines to bypass user-defined options for enhancing audio for speech processing. Then, based on the analysis, the system can modify an audio transmission parameter used to transmit the audio from the device to the remote speech processing system. The audio transmission parameter can be one of an amount of coding, a chosen codec, an amount of coding, or a number of audio channels, for example.
US09646621B2

The present invention relates to a voice detector being responsive to an input signal being divided into sub-signals representing a frequency sub-band, comprising: means to calculate, for each sub-band, an SNR value snr[n] based on a corresponding sub-signal for each sub-band and a background signal for each sub-band. The voice detector further comprises: means to calculate a power SNR value for each sub-band, wherein at least one of said power SNR values is calculated based on a non-linear function, means to form a single value snr_sum based on the calculated power SNR values, and means to compare said single value snr_sum and a given threshold value vad_thr to make a voice activity decision vad_prim presented on an output port. The invention also relates to a voice activity detector, a node and a method for selectively suppressing sub-bands in a voice detector.
US09646620B1

The present invention relates to a method and device for encoding or decoding an object audio signal or rendering the object audio signal in a three-dimensional space. The method for processing an audio signal, according to one aspect of the present invention, comprises the steps of: generating a first object signal group and a second object signal group obtained by classifying a plurality of object signals according to a determined method; generating a first down-mix signal for the first object signal group; generating a second down-mix signal for the second object signal group; generating first object extraction information in correspondence with the first down-mix signal with respect to object signals included in the first object signal group; and generating second object extraction information in correspondence with the second down-mix signal with respect to object signals included in the second object signal group.
US09646615B2

A method of encoding a time-domain audio signal is presented. A device transforms the time-domain signal into a frequency-domain signal including a sequence of sample blocks, wherein each block includes a coefficient for each of multiple frequencies. The coefficients of each block are grouped into frequency bands. For each frequency band of each block, a scale factor is estimated for the band, and the energy of the band for the block is compared with the energy of the band of an adjacent sample block, wherein the blocks may be adjacent to each other in either or both of an interchannel and a temporal sense. If the ratio of the band energy for the first block to the band energy for the adjacent block is less than some value, the scale factor of the band for the first block is increased. The coefficients of the band for each block are quantized based on the resulting scale factor. The encoded audio signal is generated based on the quantized coefficients and the scale factors.
US09646609B2

Systems and processes for generating a shared pronunciation lexicon and using the shared pronunciation lexicon to interpret spoken user inputs received by a virtual assistant are provided. In one example, the process can include receiving pronunciations for words or named entities from multiple users. The pronunciations can be tagged with context tags and stored in the shared pronunciation lexicon. The shared pronunciation lexicon can then be used to interpret a spoken user input received by a user device by determining a relevant subset of the shared pronunciation lexicon based on contextual information associated with the user device and performing speech-to-text conversion on the spoken user input using the determined subset of the shared pronunciation lexicon.
US09646607B2

Systems and methods for managing wake-on-voice buffer quality based on system boot profiling. In an illustrative, non-limiting embodiment, an Information Handling System (IHS) may include at least one logic circuit and at least one memory circuit coupled to the at least one logic circuit, the at least one memory including program instructions stored thereon that, upon execution by the at least one logic circuit, cause the IHS to: determine an expected time duration of a future wake event; receive a verbal command from a user, the verbal command configured to trigger the future wake event; capture the verbal command as an audio signal; adjust at least one of: a quality of the audio signal or a duration of the audio signal, where the adjustment is based, at least in part, upon the expected time duration; and store the adjusted audio signal in a fixed-size buffer.
US09646605B2

A system and method are presented for using spoken word verification to reduce false alarms by exploiting global and local contexts on a lexical level, a phoneme level, and on an acoustical level. The reduction of false alarms may occur through a process that determines whether a word has been detected or if it is a false alarm. Training examples are used to generate models of internal and external contexts which are compared to test word examples. The word may be accepted or rejected based on comparison results. Comparison may be performed either at the end of the process or at multiple steps of the process to determine whether the word is rejected.
US09646600B1

A text reading and vocalizing device having an elongate, handheld, manipulable body positional proximal a line of text, whereby movement of the body along the line of text positions a light scanner, distally disposed upon a second body part, to optically recognize text for audible indication of the text sounded by the body or relayed through a pair of headphones interconnected at a headphone jack, wherein text is readable and playable to a user, the text further translatable into an associated language when one of a plurality of language selection buttons, disposed upon the body, is depressed.
US09646598B2

An audio device connected to an electronic device is provided. The audio device connected to an electronic device includes an audio side connector comprising a microphone terminal that outputs a microphone signal to the electronic device, at least one audio terminal that receives an audio signal from the electronic device, an active noise cancelling (ANC) terminal, and a ground terminal, an ANC block that is driven by power input from the electronic device to remove noise around the audio device, an ANC power source unit that is provided in the electronic device and applies power input via the ANC terminal to the ANC block as drive power, and an on/off switch unit that controls the ANC power source unit, wherein the ANC terminal is included in any one of the areas of the microphone terminal, the audio terminal, and the ground terminal.
US09646597B1

An unmanned aerial vehicle (UAV) may emit masking sounds during operation of the UAV to mask other sounds generated by the UAV during operation. The UAV may be used to deliver items to a residence or other location associated with a customer. The UAV may emit sounds that mask the conventional sounds generated by the propellers and/or motors to cause the UAV to emit sounds that are pleasing to bystanders or do not annoy the bystanders. The UAV may emit sounds using speakers or other sound generating devices, such as fins, reeds, whistles, or other devices which may cause sound to be emitted from the UAV. Noise canceling algorithms may be used to cancel at least some of the conventional noise generated by operation of the UAV using inverted sounds, while additional sound may be emitted by the UAV, which may not be subject to noise cancelation.
US09646596B2

In an active noise reduction device, in order to solve this problem, a control block determines a level of a reference signal detected by a level detection unit. If determining that the level of the reference signal is small, the control block decreases a level of a cancel signal. This operation suppresses generation of an abnormal sound even if a level of a noise is small.
US09646588B1

Systems and methods for creating and presenting sensory stimulating content in a cyber reality environment. One aspect of the disclosure allows a composer to associate audio content with one or more virtual triggers, and to define behavior characteristics which control the functioning of each virtual trigger. Another aspect of the disclosure provides a variety of user interfaces through which a performer can cause content to be presented to an audience.
US09646584B1

A visual aid for music performers provides a mat-like structure having printed portions including a keyboard section, a tempo section, a music mode section, and a timing section. In use, a musician positions illuminated pucks using his/her foot upon the visual aid to communicate musical key changes, tempo changes, music mode changes, and/or timing changes. The visual aid enables musicians to improvise a musical number without interruption.
US09646583B2

A wireless hi-hat cymbal controller is activated by a user's biting action. The controller includes a pressure sensor located in a mouthpiece and operably coupled to a wireless transceiver. An actuator operates in response to a wireless signal received from the controller when the pressure sensor detects that a user is biting down on the mouthpiece.
US09646579B1

A stringed musical instrument including a body in which a cutaway is formed, wherein the body includes a back board on which at least one brace is provided so as to extend in a width direction of the back board, and wherein a first brace, which is the closest to the cutaway among the at least one brace, has a dimension in the width direction of the back board smaller than a width of the back board at a position of the back board at which the first brace is fixed, the first brace being fixed to the back board so as to be disposed nearer to one side of the back board than another side thereof on which the cutaway is formed.
US09646578B2

A keyboard device has a plurality of keys, wherein each key includes: a base member formed of a resin material in a box shape having an open lower surface opposite a touching surface, the base member having a rotatably supported base end side; and a pair of wood members formed of a wood material in a rectangular plate shape, disposed respectively on left and right side surfaces of the base member, wherein at least one of the pair of wood members has a thickness dimension within a range of 2 mm or more and 14.5 mm or less.
US09646577B2

A display device including: a display screen having first region and second region, the first region having a first pixel density and the second region having a second pixel density, the second pixel density being higher than the first pixel density, an input for receiving image data, a power source; and wherein the display screen is operable in a full screen mode in which an image is displayed in both the first region and the second region and a reduced screen mode in which power to the first region is turned off and the image is displayed in the second region.
US09646568B2

A display method is provided that reduces the probability of communication error without causing significant deterioration of picture quality. The method includes specifying, as a specified light emission period, a light emission period in which light emission is performed for greater than or equal to a time required for transmitting a block included in a visible light communication signal, out of one or more light emission periods in which light emission is performed for displaying an image included in a video signal. The method also includes transmitting the block of the visible light communication signal by luminance changing in the specified light emission period.
US09646567B2

According to an aspect, a display device includes an image display unit in which pixels each including a plurality of sub-pixels are arranged in a matrix, and a color converting unit that performs color conversion to reduce power consumption in the image display unit. The color converting unit does not perform the color conversion when total power consumption obtained by adding up the power consumption in the image display unit and power consumption in the color converting unit in a case where the color conversion is performed exceeds the power consumption in the image display unit in a case where the color conversion is not performed.
US09646566B2

Providing a parameter calculation unit that calculates parameters representing medical functional information for pixel positions of the medical image, wherein the upper and lower limit values of the parameter medically represent the same functional information and whose value changes cyclically between these values, an interpolation parameter calculation unit that obtains, for a pixel position for which the parameter is not calculated, a parameter by interpolation, the unit calculating a parameter obtained by the interpolation using a cyclic function in which the interpolation direction differs according to the difference between the parameters calculated for two pixel positions, a display color group storage unit that includes a color group in which the same color corresponds to the upper and lower limit values of the parameter and whose color changes with the magnitude of the parameter, and a mapping unit that maps the parameters based on the color group.
US09646564B2

An information processing apparatus that is capable of displaying, when displaying a large number of contents in a manner divided into a plurality of pages, the contents in a manner such that continuity between each other is maintained, and enables a user to easily recognize the contents located in the vicinity of each page boundary. The information processing apparatus includes a CPU which selects and arranges the contents such that contents selected as objects to be displayed are redundant between adjacent display sections at a predetermined ratio, and subjects displays the contents to screen display in a display area, on a display section-by-display section basis.
US09646561B2

A display device includes a display panel, a gate driver, a data driver, and a driving control unit. The display panel includes pixels connected to a corresponding one of gate lines and a corresponding one of data lines. The gate driver drives the gate lines. The data driver includes first pads and second pads. The first pads are connected to each of first data lines of the data lines, and the second pads are connected to each of second data lines of the data lines. The driving control unit provides control signals and a data signal to the data driver, and to control the gate driver. The data driver includes a digital-to-analog converter and a switching circuit. The digital-to-analog converter converts the data signal into analog signals. The switching circuit sequentially outputs the analog signals to the first pads during a test mode.
US09646559B2

A display device including a panel having a display area and first, second, third and fourth non-display areas formed at an outer portion of the display area, said first non-display area facing the second non-display area, and the third non-display area facing the fourth non-display area; a data driver disposed in the first non-display area, and configured to drive a plurality of data lines provided in a first direction in the display area; a gate driver disposed in the second non-display area and configured to drive a plurality of gate lines provided in a second direction vertical to the first direction in the display area; a timing controller configured to drive the data driver and the gate driver; and a plurality of link lines in the display area and extending from the gate driver and provided in parallel to the data lines respectively connected to the gate lines.
US09646552B2

In RGB time division drives, there is capacitor coupling due to the effects of fluctuation in the drain lines, and thus, the image quality deteriorates (lateral smearing), so that the display brightness becomes different from the desired display brightness due to delay in the convergence of the fluctuation of the common potential, and thus, it is a goal to prevent the image quality from deteriorating (lateral smearing). In RGB time division drives, the order of time division is switched for each frame, or in the direction of the horizontal lines.
US09646551B2

A processor determines a drive scheme from among candidates of a plurality of drive schemes having differing schemes for supplying a signal to a signal line of a display panel. A controller stores a scheme drive information in which a drive scheme information and a signal control information in a drive scheme are associated. A controller receives a scheme information from a processor, and controls a signal supplied to a signal line of a display panel, the control being made based on a scheme information and a scheme drive information.
US09646547B2

The present invention provides a color display device in which each pixel or sub-pixel can display four high quality color states, More specifically, an electrophoretic fluid is provided which comprises four types of particles, dispersed in a solvent or solvent mixture. The fluid may further comprise substantially uncharged neutral buoyancy particles.
US09646541B2

A display device is disclosed. In one aspect, the display device includes a display panel including gate lines and pixels electrically connected to the gate lines, the pixels comprising a first pixel row and a second pixel row having a fewer number of pixels than the first pixel row. The display device also includes a gate driver including stages, each configured to output a gate signal to the respective gate line, the gate lines comprising first and second gate lines respectively connected to the first and second pixel rows, and the stages comprising first and second stages respectively connected to the first and second gate lines. An output transistor of each stage is configured to output the gate signal and the channel width of the output transistor of the first stage is greater than that of the output transistor of the second stage.
US09646537B2

An organic light emitting diode display panel structure includes a number of pixel units and at least one performance enhancing unit. The pixels are arranged in a number of rows and columns. Each pixel unit receives a corresponding data signal. The performance enhancing unit receives performance information corresponding to the data signals of the pixel units, and calculates an enhanced data signal according to the performance information. Each pixel unit operates in a number of time events repeating in sequence. The time events are set by a time controller. A portion of the time events any two adjacent rows of pixel units overlaps. Each pixel unit emits light according to the enhanced data signal.
US09646531B2

A light emitting device and an element substrate which are capable of suppressing variations in luminance intensity of a light emitting element among pixels due to characteristic variations of a driving transistor without suppressing off-current of a switching transistor low and increasing storage capacity of a capacitor. A gate potential of a driving transistor is connected to a first scan line or a second scan line, and the driving transistor operates in a saturation region. A current controlling transistor which operates in a linear region is connected in series to the driving transistor. A video signal which transmits a light emission or non-emission of a pixel is input to the gate of the current controlling transistor through a switching transistor.
US09646527B2

A display apparatus and a method of controlling the same are provided. The display apparatus includes an input device configured to receive a display signal including a video signal, a graphic signal, and an alpha value, a calculator configured to calculate effective bits of data of the video signal and the graphic signal, the effective bits of data being used to perform alpha-blending based on an alpha value of each pixel from the display signal, an alpha-blender configured to perform alpha-blending on the display signal by using the effective bits of data calculated by the calculator and the alpha value, and a display configured to display an image generated according to the alpha-blended display signal.
US09646524B2

A display device includes a display panel, a data driver supplying a data signal to the display panel, a gate driver supplying a gate signal to the display panel, a power supply unit supplying electric power to at least one of the display panel, the data driver, and the gate driver, a voltage monitor unit which monitors an output voltage output from the power supply unit and outputs an alarm signal when the output voltage is cut off, and a timing controller which outputs a gate control signal converting all of gate signal output from the gate driver into a gate-on voltage and a data control signal converting all of the data signal output from the data driver into a black data signal in response to the alarm signal.
US09646516B2

Devices and methods for masking and unmasking sensitive data, based on a standard cryptographic algorithm defining a ciphering algorithm, and a deciphering algorithm using more resources than the ciphering algorithm are described. The masking of sensitive data is done by applying the deciphering algorithm to the sensitive data to obtain masked sensitive data. The unmasking of the masked sensitive data is done by applying the ciphering algorithm to the masked sensitive data to obtain sensitive data in plain form.
US09646515B2

A vehicle extrication door system that is a training simulator which is used to simulate opening the door of a vehicle that has been involved in an accident. The vehicle extrication door system comprises two supports, two consumable pieces, a first connector, and a compound hinge. Each support can have a proximate end, a distal end, an interior surface and an exterior surface, and each consumable piece can have an opening. The proximate end of the first support supports the first consumable piece, and the proximate end of the second support supports the second consumable piece. The opening of the first consumable piece aligns with the opening of the second consumable piece on the same horizontal axis and the first connector then passes through the openings of the consumable pieces and secures the first consumable piece to the second consumable piece. The first support is moveable between an open and a closed position.
US09646510B2

An ice-skate instructional kit is provided and comprises at least one pair of slip-on covers and stickers having directional words, directional symbols, gender identifying words and exchangeable decorations thereon. The top surface of the slip-on cover is adapted to cover the toecap of an ice-skate and is preferably formed of a flexible plastic material that is writeable, erasable and is adapted to receive a plurality of stickers. In a preferred embodiment of the invention, the slip-on cover is secured in place by placing a first confronting flap atop a second confronting flap and further securing the flaps in place by adhesive members attached thereon. In a second embodiment of the invention, small securing clips and large securing clips can be used to hold the slip-on covers in place.
US09646509B2

A training system has sensors that monitor at least one biological parameter. During training, a stress level is determined/calculated based upon data from the sensors and, if the stress level is out of bounds, the training is modified and/or personnel are notified. For example, if the stress level is too high, the training is slowed or stopped and a trainer is notified.
US09646506B2

A method for managing a premature descent envelope during descent of an aircraft is provided. The method receives glideslope deviation data by an instrument landing system (ILS) onboard the aircraft; compares, by the ILS, the glideslope deviation data to an acceptable band of glideslope deviation values; and when the glideslope deviation data is within the acceptable band, expands, by a terrain awareness and warning system (TAWS), the premature descent envelope to produce an increased premature descent envelope for the aircraft.
US09646503B2

Cockpit display systems and methods for generating navigation displays including landing diversion symbology are provided. In one embodiment, the cockpit display system includes a cockpit monitor and a controller coupled to the cockpit monitor. The controller is configured to assess the current feasibility of landing at one or more diversion airports in a range of an aircraft on which the cockpit display system is deployed. The controller is further configured to assign each diversion airport to one of a plurality of predetermined landing feasibility categories, and generate a horizontal navigation display on the cockpit monitor including symbology representative of the feasibility category assigned to one or more of the diversion airports.
US09646499B1

A method for the crowdsourced detection of defective street lights includes receiving reporting data from a plurality of vehicles, where each reporting data includes: (i) at least one light intensity value measured by at least one sensor of a respective vehicle, (ii) a time that the light intensity value was measured by the respective vehicle, and (iii) a location of the respective vehicle at the time that the light intensity value was measured. The method also includes obtaining a baseline light intensity value for at least one street light at the location and combining the reporting data received from the plurality of vehicles to generate combined light intensity data for the location. An indication of a degradation of performance of the at least one street light is then generated in response to a comparison of the combined light intensity data to the baseline light intensity value.
US09646492B2

A congestion sign detection method that is executed by a congestion sign detection device 10 which includes three-dimensional acceleration sensor 14 that acquires acceleration information in each axis direction of an X axis, a Y axis, and a Z axis forming an orthogonal coordinate system of the three-dimensional space. The method includes: an input data calculation step of calculating an acceleration vector using the acceleration information acquired by the three-dimensional acceleration sensor 14, and calculating a norm of a difference of the vectors at two different timings as input data; a frequency analysis step of calculating an autocorrelation of the input data and calculating a power spectrum by performing a Fourier transform on the autocorrelation; an angle information acquisition step of converting the power spectrum into angle information; and a congestion sign detection step of detecting congestion sign according to the angle information.
US09646484B2

Method and/or system for an intelligent smoke sensor may comprise a sensor system configured to detect at least one of a plurality of predefined conditions, a processor coupled to the sensor system. The processor may be configured to generate an alarm indication in response to having detected at least one predefined condition. The intelligent smoke sensor system may comprise a recorder coupled to the processor. The recorder may be configured to record the alarm indication and the detected predefined conditions. The intelligent smoke sensor may comprise communication circuitry that mat be configured to communicate the alarm indication and the detected predefined condition to the network.
US09646476B1

The gas monitoring and fall detection device is a safety device intended to be worn by special duty personnel, such as maintenance people, who do not work in a set location and may inadvertently stray into dangerous situations. The gas monitoring and fall detection device monitors the working environment for dangerous gas levels and, when a dangerous gas level is detected, generates an alarm to the wearer and transmits an alarm to a supervisory station. The gas monitoring and fall detection device also contains an accelerometer to detect falls and a GPS module to provide the location of the wearer. The gas monitoring and fall detection device comprises a monitoring unit that is worn by the wearer and a supervisory station to receive the transmitted alarm information.
US09646473B2

An apparatus for personal security is disclosed that includes a wearable accessory formed to receive an alerting device such that the alerting device is not visible while the accessory is worn. The apparatus includes an alerting device with an alerting element. The alerting device is interchangeable with a plurality of wearable accessories. One or more activation elements are disposed on the wearable accessory and formed to activate the alerting device wherein the alerting element sends an alert signal in response to receiving an activation signal from the one or more activation elements. In one embodiment, the alerting device is in wireless communication with a communication device and sends an alert signal to the communication device in response to receiving the activation signal. In another embodiment, the communication device notifies one or more predefined contacts that an alert signal was sent in response to receiving the alert signal.
US09646469B2

A sensory display for experiencing rigidity and local shape in the display is provided. Rigidity and local shape of cells in an array of cells forming the display is controlled by three independent and different control mechanisms. Cell rigidity controllers control the rigidity of the cells. A shape array controller controls the shape of the array of cells. Cell pinning controllers controls the height of the cells. A computer control interface could control the respective control functionalities of each of the controllers. The display experience could be further enhanced with audio, images or video.
US09646466B2

Proximity-triggered notifications/alerts are communicated to bank customers as a result of a previously abandoned/canceled ATM transaction that has subsequently been pre-queued for completion. In this regard, the present invention recognizes when the customer is proximate in location to a financial institution channel suitable for completing the transaction and sends the customer an alert, which is typically received by the customer via a mobile communication device. The alert indicates that the previous abandoned ATM transaction has been pre-queued for completion and provides the customer with the location of the nearest financial institution channel suitable for completing the transaction. In specific embodiments of the invention, pre-queuing of the transaction for completion provides for the customer to complete the transaction from the last existing point in the transaction completed by the customer.
US09646461B2

An ecommerce platform, available via an interactive electronic resource, allows a user to purchase products and services from the resource, receive promotional-valued credits in return for the purchase, and play games to earn additional promotional-valued credits. The user can purchase products and services at the electronic resource with either or both of a government-issued legal tender, such as the U.S. dollar, or a virtual currency used by the electronic resource, such as the promotional-valued credits. In embodiments of the invention, the user is guaranteed that an amount of legal tender (e.g., the U.S. dollar) paid-in to the ecommerce platform is the same as or less than a fair market value of the products or services purchased via the ecommerce platform.
US09646459B2

An incentive apparatus for a gambling game system aims to increase the odds thereof. The gambling game system includes a betting table and a plurality of game results. The betting table has payout odds marked thereon corresponding to different game results of the gambling game system. The incentive apparatus includes a dynamic raised odds calculation element, an electronic display board and a payout element. The dynamic raised odds calculation element randomly selects a specific number of the game results and generates dynamic raised odds for the selected game results respectively. The electronic display board has a plurality of display zones corresponding to the game results. The display zones immediately display the dynamic raised odds after betting of each round of game stops. The payout element pays out to players who win the round of the game according to the payout odds or the dynamic raised odds.
US09646456B2

A method for providing a jackpot controlled by a computer implemented jackpot controller. The method includes (a) on commencement of the jackpot, the jackpot controller setting a start-up jackpot prize value, the start-up prize value being the sum of a base amount and a predefined average increment amount for the jackpot, (b) incrementing the jackpot prize value by the jackpot controller using contributions from at least one participating gaming device until a jackpot trigger is determined; and (c) in response to the jackpot controller determining the jackpot trigger, awarding the jackpot prize and re-setting the jackpot prize value to the base amount.
US09646449B2

The invention concerns the processing of value documents of different deposits using a value-document processing apparatus. Upon insertion of the value documents into the containers with which they are fed to the value-document processing apparatus, a beginning position and, where applicable, also an end position of the respective deposit is established for each deposit and transmitted to the value-document processing apparatus. Even in the case of different deposits in the same container, the invention enables an error-free association of the checked value documents with the different deposits. When a deposit comprises two separate sub-stacks that were inserted in the same or different containers, said sub-stacks of the contemplated deposit can be brought to account jointly and a joint rejects processing of the sub-stacks of the same deposit carried out.
US09646443B2

A portable machine has a signal receivable area in which, when the portable machine approaches one of a plurality of LF transmitters provided to a vehicle at a first distance, a response request signal only from the LF transmitter is receivable by the portable machine and when the portable machine approaches one of the plurality of LF transmitters at a second distance shorter than the first distance, response request signals from the LF transmitter and any of the remaining LF transmitters are receivable by the portable machine. If the portable machine receives the response request signal from only one of the LF transmitters within a predetermined time period and the response request signal has an RSSI value not less than a threshold, control (door locking/unlocking, engine start, and the like) to the vehicle is inhibited.
US09646438B2

An electronic device may be configured to identify configuration information associated with input sequences. In some examples, the configuration information may enable an association between the input sequences and operations capable of being performed by the electronic device. Additionally, in some aspects, the electronic device may be configured to receive biometric inputs and determine an operation to be performed based at least in part on the received biometric inputs and the association. Further, the electronic device may enable performance of the determined operation.
US09646437B2

The invention refers to a method of generating a means and/or status which is temporarily limited and/or usage limited and allows access to a service which has access restrictions, the method being carried out in a computing system and comprising the steps of establishing a telecommunications connection such that an audio call as for example a telephone call, within the telecommunications connection is preferably initiated by a person; determining biometric data of a specific person such as for example voice information; receiving data such as a voice utterance from the person which is connected by the telecommunications connection; verifying that the received data and the determined biometric data fit; and generating the means and/or status which is temporarily limited and/or usage limited after the verifying step.
US09646435B2

A control system and method are provided for a station to dispense fuel to a vehicle, including an electric vehicle, without requiring dedicated access to a communications network, with the advantage that authorization for fleet vehicles or individuals can be obtained from an access management system, using a portable, wireless device, such as a smart phone or a dashboard appliance. The authorization is wirelessly relayed to the station by the wireless device, to enable the dispensing of fuel. Subsequently, a log comprising the transaction is provided to the access management system, through the same or a different wireless, mobile computing device. The log may also report status and other events, such as load shedding.
US09646433B1

Systems and methods for generating vehicle operation logs are provided. According to certain aspects, an electronic device may receive and analyze image data depicting an individual located within a vehicle. The electronic device may also interface with a set of sensors to retrieve or access relevant data related to the operation of the vehicle, such as time and date information, location information, and other data. The electronic device may generate a vehicle operation log that associates the individual depicted in the image data with the vehicle operating parameters.
US09646427B2

A system which utilizes the on-board capabilities of handheld communication devices, such as smartphones, tablet computers and the like, to detect the operational status of a vehicle, such as the engine being ON, the engine idling, the vehicle moving, etc. The detected operational state may be desirable for monitoring operation of the vehicle, such as fleet management systems, wherein the duration and location of idling are of particular interest. The detected operational state may also be useful for controlling functionality on the handheld communication device, such as disabling texting or other manually operated functions when the vehicle is in motion.
US09646424B2

A system and method for displaying a three-dimensional surface along with ellipsoids representing covariances. In one embodiment, at a point on a three dimensional surface, an ellipsoid is formed having principal axes proportional to the eigenvalues of a covariance matrix. The ellipsoid and the three-dimensional surface are projected onto a two-dimensional plane for display on a two-dimensional screen to a user. The covariance matrix may be an estimated error covariance or a sample covariance.
US09646419B2

Aspects provide for notifications of image recognition analysis matches to streamed image data on augmented reality device displays. Data identifies one or more visual appearance attributes of a target object that are discernible within image data acquired by a camera. Image data captured by a camera is analyzed to determine an occurrence of the visual appearance attribute(s) within a stream of images of captured image data. In response to the analyzing determining an occurrence of the visual appearance attribute(s) within the stream of captured images, the method drives a display screen of the augmented reality device to distinguish a possible location of the target object within surroundings of a user of the augmented reality display device that are displayed to the user by the display screen.
US09646417B1

A method and apparatus for displaying simulation objects. A simulation of a live environment is run while a training device is present in the live environment. A set of simulation objects in the simulation is identified from a number of simulation objects in the simulation using a position of the training device in which the set of simulation objects is visible to the training device in the live environment. Simulation data is generated for the set of simulation objects. The simulation data is sent to the training device in the live environment.
US09646411B2

Disclosed embodiments include a method (system and non-transitory computer storage readable medium) for generating 3-dimensional model data of a virtual 3-dimensional model based on a plurality of 2-dimensional cross-sectional images of a 3-dimensional object. The 3-dimensional model of the 3-dimensional object is generated based on a plurality of virtual hexahedron models. The plurality of hexahedron models are generated based on respective pixels in the 2-dimensional cross-sectional images of the object. By generating the 3-dimensional model of the object including the plurality of hexahedron models, objects within another object can be accurately represented. In addition, the 3-dimensional model is guaranteed to have a closed shape, hence 3-dimensional printing of the 3-dimensional model can be performed successfully.
US09646398B2

A processing device receives input representing a selection of one or more areas of an image and creates a blurred area for the one or more selected areas. The blurred area corresponds to a portion of the image that contains the one or more selected areas. The portion of the image has a size that is greater than an aggregate size of the one or more selected areas. The processing device replaces the one or more selected areas with the corresponding portion of the blurred area.
US09646394B2

A case data visualization application is provided that, when executed on a device, allows a user to visualize a chronology of events associated with a case, view a summary of one or more supporting details of an event, and drill-down to view specific case data of each supporting detail of an event. Thus, the case data visualization application provides a way of collecting, organizing, visualizing, and sharing data associated with a case. Furthermore, the case data visualization application allow a plurality of users to collaborate on the case, and synchronizes a plurality of supporting details created by a plurality of users that are associated with an event.
US09646388B2

A motion compensated integration (MCI) system is disclosed. The MCI system may include a moveable platform, an optical sensor mounted to the moveable platform, an optical sensor line-of-sight measuring device configured to generate optical sensor line-of-sight movement data, and a processor in communication with the optical sensor and the optical sensor line-of-sight measuring device. The optical sensor may include a set of optics, and a focal plane array. The focal plane array may be configured to detect infrared wavelengths focused through the set of optics, and generate focal plane array data. The processor may be configured to simultaneously correct optical distortion from the set of optics and perform MCI re-registration based on the focal plane array data and the optical sensor line-of-sight movement data.
US09646384B2

A method includes determining a first two-dimensional (2D) feature descriptor from a first image captured by an imaging camera in a first pose at a time of capture of the first image, the first pose including a first observation direction of the imaging camera. The method further includes storing, at an electronic device, a 3D feature descriptor including the first 2D feature descriptor and a representation of the first pose of the imaging camera. The method additionally includes determining a second 2D feature descriptor from a second image captured by the imaging camera in a second pose at a time of capture of the second image, the second pose including a second observation direction of the imaging camera. The method also includes storing the 3D feature descriptor with the second 2D feature descriptor and a representation of the second pose of the imaging camera.
US09646382B2

The present disclosure provides an apparatus for detecting placards in a captured image, comprising: input circuitry operable to receive the captured image; detector circuitry operable to detect placards in the captured image on a basis of a predetermined shape and/or color of the placards, the detector circuitry being operable to detect placards of a plurality of different shapes and/or colors; and counter circuitry operable to count a number of detected placards of each different shape and/or color.
US09646381B2

This posture state estimation device is capable of estimating with high accuracy the posture state of an object. The posture state estimation device (100) is a device for estimating the posture state of an object having a plurality of sections connected by joints on the basis of image data that images the object, and has a section candidate extraction unit (140) for extracting a section candidate for a section from the image data, a complementary section candidate extraction unit (160) which estimates that a portion of an unextracted section for which a section candidate has not been extracted is being shadowed by an already extracted section for which a section candidate has been extracted in order to extract a section candidate of the unextracted section, and a posture state estimation unit (170) for estimating the posture state of the object on the basis of the extracted section candidate.
US09646376B2

Systems and methods of use to facilitate classification of cytological specimens are discussed. The system acquires or imports image data of a cytological specimen. The imported image data may include, or the system may otherwise perform an image analysis to identify one or more objects of interest in a respective specimen image dataset, including feature attributes for the identified objects. The system analyzes the feature attributes by predetermined criteria and/or optionally with user inputted criteria. The system includes an analysis tool that assists the user in identifying cytologically abnormal objects, if present in a particular specimen, by manipulating and viewing images of objects selected as a function of feature attributes. More generally, the analysis tool aides the user to find, extract, and display abnormal objects from within a large dataset of images and facilitates navigation through large amounts of image data and enables the efficient classification of the entire specimen.
US09646374B2

Optical image data is acquired by irradiating a pattern with light emitted from a light source. A threshold value is specified by internally dividing a minimum value and a maximum value of a signal amount of reference image data by a division ratio. A position corresponding to a signal amount of a threshold value is determined as an edge of a pattern of the reference image data. A position of a signal amount equal to the threshold value is determined as an edge of the pattern of the optical image data. A line width error is obtained as a difference between a first line width of the optical image data and a second line width of the reference image data. A new threshold value is specified in the case of fluctuation of a light quantity of the light source or decrease of a contrast value of the optical image data.
US09646369B2

Concepts for presenting display features to a user of a system which comprises a display, an acquisition device, and a controller system. In various embodiments, the acquisition device is configured to capture image data of one or more items moving along a conveying mechanism and read item identifiers associated with each item. The system then associates or identifies display features with each item identifier and presents the captured image data with the display features presented on or near the image data of the items.
Patent Agency Ranking