A component mounting apparatus having a feature in which the component mounting apparatus includes a component mounting unit including a nozzle and a distance detector for optically detecting a distance between a component held by the mounting nozzle and a board, and an illuminated region formed by the distance detector is located in a vicinity of a portion obtained by projecting the mounting nozzle onto the board.
Various embodiments of the present invention generally relate to operating an electronic gaming machine to generate a wager-based game. A game control unit and a secure enclosure are provided. The secure enclosure is divided into two compartments. A game control unit including a game controller and two heat dissipation units is disposed within the first compartment. In a second compartment, which is fluidly coupled to the first compartment, fans are provided. The fans drive air from outside the secure enclosure through the heat dissipation units in the first compartment to cool electrical components associated with the game controller which are mounted on an outside of the heat dissipation units. The two heat dissipation units can each include fins and heat pipes. The ends of the fins of the two heat dissipation units can be substantially touching one another to provide a compact form factor.
An enclosure with a substantially continuous seal about its perimeter for protecting electronic components of a model vehicle, comprising a housing with one or more walls at least partially surrounding the electronic components, a cover having one or more walls surrounding the perimeter of the housing, and one or more seal members interposed between the housing perimeter walls and the cover perimeter walls, wherein the cover perimeter walls are configured to contact the seal members against the housing perimeter walls to create a watertight barrier configured to provide protection ranging from water-resistant to waterproof.
Polymers of reaction products of dihalogens and compounds containing benzimidazole moieties are included in metal electroplating compositions to provide level metal deposits on substrates.
An electronic device includes a circuit board having a plurality of conductive contacts, and an electronic component disposed on the circuit board and having a plurality of electrode terminals. The conductive contacts include a plurality of solder pads spaced apart from each other, and are coupled to the electrode terminals, respectively. The stress generated by any one of the electrode terminals is distributed to all of the solder pads so as to prevent the electronic component from being offset during an assembly process.
A flexible printed circuit board may include a data signal circuit layer on which a data signal circuit is formed; and a destruction detection circuit layer on which a destruction detection circuit, structured to detect at least one of a break and a short-circuit of the destruction detection circuit layer, is formed, the destruction detection circuit layer overlapping the data signal circuit layer. The destruction detection circuit may be structured to carry destruction detection signals which are squarewave-shaped digital signals. The data signal circuit layer may include a first data signal circuit layer on which the data signal circuit is formed, the data signal circuit including linear-shaped first pattern wirings arranged parallel to one another. The destruction detection circuit may include a first destruction detection circuit layer including second pattern wirings formed by a linear portions orthogonally crossing the first pattern wirings and arcuate portions.
A power supply with a thermal insulation function includes a casing, a circuit board, and a power connector. The casing has an opening and includes a first casing member and a second casing member, and the first casing member has a hollow insulation structure. The circuit board is installed in the casing and retained on the second casing member. The power connector is coupled to the circuit board and configured to be facing the opening. When the first and second casing members are engaged into the casing, the hollow insulation structure divides the area of a surface of the circuit board facing the first casing member into a first insulation space and a second insulation space, and the power connector is disposed in the first insulation space, and the hollow insulation structure is separated with an interval apart from the second insulation space for accommodating air.
A spheromak is a plasma of ions and electrons formed into a toroidal shape. A spheromak plasma can include electrons and ions of nearly equal amounts such that it is essentially charge neutral. It contains large internal electrical currents and their associated internal magnetic fields arranged so that the forces within the spheromak are nearly balanced. The spheromak described herein is observed to form around an electric arc in partial atmosphere, and is observed to be self-stable with no external magnetic containment.
An advanced lighting control system including systems for commissioning a network of lighting fixtures preferably includes a plurality of lighting fixtures, each having a sensor and control module. The sensor and control module includes occupancy and light sensing elements, and a first transceiver. The lighting fixtures can send wireless signals to a second transceiver located in a room controller and/or a network coordinator. The room controller being configured to interpret the occupancy and light sensing information and make decisions thereon, while the network coordinator can rank the lighting fixtures according to a determined signal strength. The network coordinator can command each of the lighting fixtures to illuminate, and based on an observation of the lighting fixture, a determination is made about whether the lighting fixture is located in a particular room. The network coordinator can also include a third transceiver for receiving wireless commands from a remote device.
A constant power backup power supply for LED lighting fixtures is disclosed. The power supply includes a storage battery that is charged while an AC power source is in an ON condition. When AC power transitions to an OFF condition, a capacitor bank charged by the battery supplies current to the primary side of a flyback converter operating in discontinuous conduction mode. The secondary side of the flyback converter supplies constant output power to the LED lighting fixture for an arbitrary output voltage within a predetermined range.
Aspects of the subject technology relate to control circuitry for light-emitting diodes. The control circuitry includes a two-dimensional light-emitting diode (LED) array. The control circuitry may include a single LED array operable by a common driver or multiple LED arrays each operable by a dedicated LED matrix driver. Each matrix driver may receive a synchronization signal from a common controller and may include a programmable phase lock loop (PLL) to synchronize each matrix driver to the synchronization signal. The LED array may include multiple strings of LEDs mounted in series along the string. Each LED in each string may include a bypass switch operable to modify the current through that LED by pulse-width modulation.
An LED lighting device includes at least two luminescent devices, two current sensing elements, and two current regulators. The first and second luminescent device are driven by a rectified AC voltage for providing light according to first current and second current, respectively. The first current sensing element provides a first feedback voltage associated with the first current and the second current sensing element provides a second feedback voltage associated with the second current. The first current regulator provides a first regulating current setting according to the first feedback voltage and a line voltage detection voltage associated with the rectified AC voltage, wherein the waveform of the first regulating current setting follows the waveform of the rectified AC voltage. The second current controller is coupled in parallel to the second luminescent device and provides a constant second regulating current setting according to the second feedback voltage.
A method for IP [=Internet Protocol] communication between a mobile terminal and its correspondent node in a mobile radio network. The method comprises establishing an IP connection between the mobile terminal and its correspondent node. After detecting a period of inactivity in the IP connection, keep-alive messages are sent via the IP connection at predetermined intervals, which are varied. The method comprises monitoring the lengths of several periods of inactivity at which the mobile radio network disconnects the IP connection.
According to some embodiments, a method in a wireless device configured to use a first cell for wireless access network (WAN) operation comprises receiving, from a network node, an identification of a second cell that the wireless device may use for device-to-device (D2D) operation. The wireless device determines a reference cell associated with an uplink carrier used for D2D operation in the second cell. The method further comprises measuring a downlink reference signal of the reference cell, and performing one or more tasks related to D2D communication on the uplink carrier based on the measurement of the downlink reference signal.
Embodiments provide a bearer control method and system. The bearer control method includes: establishing a PDN connection when a UE accesses a network; and identifying and transmitting a service data flow of the UE on an air interface bearer between the UE and an access network access node according to obtained QoS information, and transmitting the service data flow by using a transmission tunnel between the access network access node and a core network gateway, or directly sending the service data flow to a packet data network by using the access network access node.
Disclosed are apparatuses, methods, systems, and program products for establishing a local connection in a roaming location. The communication method is applied in a mobile communication device, wherein the mobile communication device is able to perform a service transmission in a circuit switched domain within a first communication network. The communication method includes detecting a user terminal at a roaming location, obtaining user identity information over a first communication network of a home location and a second communication network of the roaming location, registering the user identity information with the second communication network of the roaming location, and establishing a localized connection between the user terminal and the second communication network based on the registered user identity information.
The present document relates to a backoff procedure and apparatus for efficiently accessing a broadband channel in a wireless LAN system. To this end, a station performs a clear channel assessment (CCA) operation in each of a plurality of channels, and when one or more of the plurality of channels is/are not used and the one or more channels is/are not used for frame transmission in the basic service set (BSS) of its/their station, the station is characterized in that it performs or re-performs a backoff procedure in the one or more channels. When a backoff counter value becomes zero according to the backoff procedure, the station may transmit a frame through the one or more channels.
Techniques are described for wireless communication. One method includes winning a contention for access to an unlicensed radio frequency spectrum band, transmitting a request message upon winning the contention for access to the unlicensed radio frequency spectrum band, and receiving a response message over the unlicensed radio frequency spectrum band. The request message is transmitted by a user equipment (UE) on an enhanced physical random access channel (ePRACH) or shortened ePRACH (SePRACH), to access a cell that operates in the unlicensed radio frequency spectrum band. The response message is received in response to transmitting the request message, and the request message may be transmitted irrespective of whether a base station has gained access to the unlicensed radio frequency spectrum band.
Disclosed herein are various embodiments of collision avoidance systems and methods. One method embodiment, among others, comprises a client sending an end of transmission (EOT) request to an access point (AP), and responsive to the EOT request, the AP responding with an EOT frame.
Techniques for managing contention on a shared communication medium are disclosed. Various techniques are provided to facilitate aspects such as reference signaling, downlink medium access, uplink medium access, resource reuse, channel structures, acknowledgment schemes, fairness, acquisition, random access, paging, mobility, inter-operator mitigation, and so on for a frame structure implemented on the shared communication medium.
A method includes storing locations of mobile devices that are registered for ad hoc grouping, and matching an access request that specifies a location that corresponds to a goal for an ad hoc grouping with candidate mobile devices that match the access request. The method also includes retrieving network addresses of the candidate mobile devices and sending invitations to join the ad hoc grouping. An ad hoc grouping is formed from the candidate mobile devices accepting the invitations.
Methods and apparatus for identification of macro-cells and subordinate transmission nodes. In one embodiment, the methods and apparatus are configured for use within a long term evolution (LTE/LTE-A) network, and include a scrambling technique which can facilitate advanced capabilities in which the subordinate nodes possess unique cell identities from the macro-cell. The use of unique scrambling sequences allows subordinate node switching and other advanced multi-antenna techniques in heterogeneous networks. The disclosed methods and apparatus further allow for distinction and detection of signals transmitted from low-power RRHs, femto-cells, etc. and advantageously achieve greater interference randomization gain.
Systems and methods to encode and/or decode structured super-position coding to enhance control channel capacity are disclosed herein. User equipment (UE) may be configured to communicatively couple to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). A first UE and a second UE may be coupled to the eNB. Basic PDCCH may be sent to the second UE, and extra PDCCH may be sent to the first UE on the same time-frequency resource. The second UE may be able to decode the basic PDCCH as it normally does. The first UE may be able to decode the basic PDCCH for the second UE, cancel the basic PDCCH from the signal, and decode the extra PDCCH. The extra PDCCH may be restricted to certain positions relative to the basic PDCCH to simplify searching by the first UE.
A cell2 configured by only a DL CC2 being a resource for downlink is configured. The cell2 does not include a resource for uplink, that is, a UL CC to be associated with the DL CC2 by a DL/UL link. The link information indicating the above is notified a communication terminal device by a base station device using the DL CC2. A DL CC1 and a UL CC1 constitute a cell1. The downlink communication from the base station device to the communication terminal device is performed using the cell1 and the cell2, and the uplink communication from the communication terminal device to the base station device is performed using the cell1.
Some demonstrative embodiments include apparatuses, systems and/or methods of Fine Timing Measurement (FTM). For example, a first wireless station may be configured to transmit an FTM request message to a second wireless station; to transmit a first Non Data Packet (NDP) to the second wireless station; to process an FTM response message from the second wireless station; and to process a second NDP from the second wireless station.
An audio device includes a signal input interface, a first output interface, a second output interface, at least one processing circuit configured as a buffer control portion, at least one memory configured to store an audio signal. The buffer control portion sets a second reading position at a position that precedes a first reading position of the first output interface by delay time, and, when starting output of the audio signal, writes silent data for the delay time in the memory and sets the first reading position at the head of the silent data.
An information processing apparatus performs a communication using a wireless encryption method via an access point. A plurality of access points are displayed on a display unit of the information processing apparatus in a manner that one of the plurality of access points can be selected. At this time, an encryption method of a communication adopted by the access point is obtained, and it is determined whether the obtained encryption method of the access point is a predetermined encryption method. The access point determined to have a predetermined encryption strength is displayed on the display unit more preferentially than other access points.
In one example, a mobile AP device receives from a mobile device a request to a server or device in an IP network. When cellular data service of the mobile AP device is available, the mobile AP device allows the request to be sent to a mobile network for communication to the server or device. When the cellular data service is suspended, the mobile AP device disallows the request from being sent to the mobile network to prohibit the communication to the server or device. For a request for content, the mobile AP device may additionally generate and send to the mobile device a response indicating a redirect to a local landing page of the mobile AP device. A control center or server may send one or more messages which instruct the mobile AP device to process the requests in accordance with one or more rules to disallow the requests.
A communication networks including a plurality of small cell providing air interface infrastructure functionality is provided. Aspects of the present disclosure relate to the management of inter-small cell communication in accordance multiple air interfaces supported within individual small cells. Additionally, aspects of the present disclosure relate to the management of intra-small cell communication in accordance with communication networks implementing multiple small cells. In other aspects, small cells coordinate handovers through the use of a controller, or by leveraging wireless connections created between the small cells. In further aspects, the small cells enable the utilization of multiple air interface standards within a small cell.
A technique relating to resource configuration in a wireless communication network. A terminal device in the wireless communication network receives information about supplemental resource from a source cell. Then the terminal device determines a time interval, in which the supplemental resource is available to the terminal device, in a transition period of a handover from the source cell to a target cell based on a timer associated with a random access procedure in the handover. In this way, the terminal device may use the supplemental resource during the handover.
In the case where a wireless terminal conducts a handover from a first device to a second device, a communication device of this exemplary embodiment performs communication with the second device and a core network node, in order to notify an appropriate device of information regarding the transfer path of data. The communication device receives control information from the core network node upon the handover. The control information is information regarding the transfer path of data to be transferred from the first device to the second device.
A network for facilitating wireless radio communication. The network includes a first access area, wherein the access area includes one or more transmission/receive points. At least one transmission/receive point includes a base station that supports wireless communication between a network and user equipment (UE), such as, a mobile device. The network includes a dedicated connection signature (DCS) that is assigned to a UE. The DCS provides for and is used by the UE to maintain active, unified access to the wireless network. More particularly, the DCS provides for active, contention free, and fast access for the UE to the network through transmission/receive points within the first access area, which is of significance to present and future UE centric virtual radio access networks having high densities of mobile and non-mobile users and with high populations of different types of traffic patterns and applications.
Methods, apparatuses, system and computer program product for activation and/or deactivation of bearers for a group of devices are disclosed. The method comprises receiving an attach request for a device belonging to a group of devices, obtaining an identity of the group of devices, allocating a first bearer identity for the group of devices, and sending the identity of the group and the first bearer identity to a first network element, wherein the first network element is involved in transmission of user data of the group of devices.
A method and apparatus for modification of a reporting interval are disclosed. For example, the method determines whether a modification of a reporting interval of a machine type communication device is to be performed, when the machine type communication device is a device of a customer for which the modification of the reporting interval is provided, identifies a reporting interval for the machine type communication device when the modification of the reporting interval of the machine type communication device is to be performed, and sends the reporting interval that is identified to the machine type communication device in a message.
Measurement and demodulation may be impacted by varying transmit power due to varying numbers of carriers in a shared radio frequency (RF) spectrum band. Methods, systems, and devices are described for wireless communication. One method includes monitoring at least one carrier of a RF spectrum band for a first reference signal transmitted in a number of listen-before-talk (LBT) radio frames from a plurality of LBT radio frames associated with the plurality of carriers, where the plurality of LBT radio frames are received at the user equipment (UE) in different sets of at least one carrier of the RF spectrum band at different times, and where the first reference signal is associated with a first fixed transmit power; receiving a plurality of instances of the first reference signal; measuring the plurality of instances; and determining a cell measurement based at least in part on the measurements of the plurality of instances.
This disclosure relates to radio link monitoring techniques. According to some embodiments, a wireless device may establish a radio link with a cellular base station according to a radio access technology. The base station may provide reference signals, control signals, and data signals to the wireless device via the radio link. The wireless device may perform radio link monitoring of the radio link using characteristics of decoding performance for one or more of the control signals and the data signals. Performing radio link monitoring of the radio link may include determining whether the radio link is in-sync or out-of-sync and determining whether radio link failure has occurred.
A method for performing a measurement by a communication device including selecting at least one measurement type of a plurality of measurement types, wherein each measurement type is assigned to a time slot, wherein the at least one measurement type is selected for a time interval which is pre-defined as a transmission gap of a receiver of the communication device for carrying out measurements by the receiver corresponding to the time slot; and performing a measurement of the at least one measurement type during the time interval.
Systems and methods are disclosed for providing visualization of a telecommunications network topology. In an embodiment, a request is sent for data matching a search query. A response is then received at a client device that includes a data object containing a plurality of data fields and corresponding field values. These data fields and corresponding field values collectively define a plurality of communications paths in the telecommunications network. Each path describes the topological structure of network objects in the path of communication between two network objects. The received data object is then processed at the client device to generate a visual representation of each path defined in the data object. Finally, the generated visual representations are displayed at the client device in an interactive, graphical user interface.
A telecommunications system includes a plurality of ranging terminals programmed to communicate with a plurality of satellites over a plurality of frequencies. A processor, having a memory, is programmed to receive ranging data from each of the plurality of ranging terminals, determine a plurality of power levels for each of the plurality of terminals, and transmit the plurality of power levels to each of the plurality of ranging terminals. Each power level is associated with one of the plurality of frequencies. The plurality of ranging terminals is programmed to transmit signals to the plurality of satellites over the plurality of frequencies in accordance with the power levels determined by the processor.
Methods and apparatus, including computer program products, are provided for adaptive security. In one aspect there is provided a method. The method may include receiving, at a user equipment, at least one policy update representative of a rule defining at least one of a security level and an operation allowed to be performed at the security level; monitoring a configuration of the user equipment to determine whether the configuration of the user equipment violates the at least one policy update; and adapting, based on the monitoring, at least one of a security indicator at the user equipment and the operation at the user equipment. Related apparatus, systems, methods, and articles are also described.
We disclose various embodiments that enable a mobile terminal to confirm authenticity of a base station before the mobile terminal proceeds to camp on the corresponding cell. In an example embodiment, the authentication processing includes the mobile terminal tuning to a selected control channel of the base station to monitor RF signals transmitted thereon. The base station is deemed to be authentic if the monitored RF signals indicate the presence of live traffic between the base station and one or more other mobile terminals. The control channel can be selected from a fixed set of uplink and/or downlink control channels that are typically used by a legitimate base station. The presence of live traffic on the selected control channel can be detected by detecting certain control messages that are typically transmitted on that control channel between the base station and one or more mobile terminals served by that base station.
The present invention relates not only to a 4th-generation (4G) communication system such as long term evolution (LTE) but also to a 5th-generation (5G) or pre-5G communication system to be provided to support a higher data transmission rate. According to the present invention, a first user equipment (UE) is configured to transmit, to a base station, a request message comprising information indicating that a discovery message is to be transmitted through a data channel and information on the amount of data related to the discovery message, receive, from the base station, a control message comprising information on a resource allocated to transmit the discovery message and information indicating that the control message comprises information for the transmission of the discovery message, and transmits the discovery message to a second UE through the data channel based on the control message.
A method, device and system are described for updating triggering information of an MTC device group. The method includes: an SCS is connected with a BM-SC through a GCS AS, and sends a request message for updating triggering information of the MTC device group to the BM-SC; and the BM-SC performs a corresponding operation on group triggering information to be updated, and sends a response message of updating success to the SCS after completing the corresponding operation if the group triggering information to be updated has not been sent to the MTC device group and a valid time of the group triggering information to be updated has not been exceeded; and sends a response message of updating failure to the SCS if the valid time of group triggering information to be updated has been exceeded or group triggering information to be updated has been sent to the MTC device group.
A network-based service is utilized to facilitate twinning of two or more communication devices associated with a subscriber account. Incoming communication is intercepted by a communication device and forwarded to a network server, which in turn transmits the incoming communication to the multiple twinned devices. In addition, identifier data associated with outgoing communication is replaced with a primary identifier (e.g., customer telephone number (CTN)) of a user's primary device or a common identifier (e.g., a mobile one number (MON)) assigned to devices associated with the user's subscriber account. Communication devices can be temporarily twinned for a defined time period, during which a common bill can be generated for the twinned devices.
In the context of half-duplex communications in a communication network composed of a plurality of sub-networks associated respectively with supernode devices, a supernode device receiving a floor request: transmits a floor pre-grant message; determines a timer duration according to a distribution law fτ(t) for time period between a floor release and the next floor control, and a network-latency distribution law fδ(d), so that the probability of subsequent dismissing of the floor control is below a predefined threshold; and broadcasts the data transmitted in the context of the floor control, when the timer has elapsed. When a floor request with higher priority is detected before the expiration of the timer, the supernode device does not broadcast the data and notifies that the floor control is finally refused.
Systems and methods for recognizing and/or predicting activities of a user of a mobile device are disclosed. In certain embodiments, the systems and methods may predict a future activity and/or location of a mobile device user based on current and/or historical device data and/or other personal information relating to the user. In some embodiments, probabilistic determinations and/or other statistical models may be used to predict future activities and locations of a mobile device user. The disclosed systems and methods may further utilize location and/or activity recognition and/or prediction methods to deliver personalized services to a user of a mobile device at a particular time and/or location.
Systems, apparatuses, and methods are provided herein for updating directions to a container. In one embodiment an apparatus for updating directions to a container comprises a container housing, a movement sensor attached to the container housing, a wireless transceiver; and a control circuit coupled to the movement sensor and the wireless transceiver. The control circuit being configured to: detect a relocation of the container housing via the movement sensor, determine an estimated new location of the container, and send, via the wireless transceiver, the estimated new location to a computing device to initiate an update of a direction to the container.
A method, apparatus and computer program product are described to provide geographically-related features and services based at least in part upon the data provided by a mapping database, such as by providing for selective communication with user devices in a manner dependent upon a mapping database. In the context of a method, the location of a user device is determined. The method also determines whether the location of the user device is within an inner zone or a proximity zone extending at least partially about the inner zone. The inner zone is defined to encompass a reference point. If the user device is within the inner zone, a message is caused to be transmitted to the user device. However, if the user device is in the proximity zone, a function is performed relative to the user device that differs from causing the message to be transmitted to the user device.
A system and method for detecting potential tampering with a data stream from a monitoring device is provided. The method includes storing a list of cellular receivers and at least one corresponding geographic characteristic; receiving, from a remote monitoring device through a cellular network, a location of the monitoring device and the identity of a particular cellular receiver that relayed the location; identifying, from the received location and the stored at least one corresponding geographic characteristic, an expected cellular receiver from the list of cellular receivers; comparing the particular cellular receiver with the expect cellular receiver; and issuing an alert based on at least a negative result of the comparing.
Methods and apparatuses for providing a k-nearest neighbor for location based services are provided. A method can include querying a database to detect a plurality of interest points within a predetermined distance of the user device using a kNN algorithm, organizing the interest points within a Voronoi tree, and continuously return a position specific result of relevant interest points.
Embodiments herein relate generally to changing spatial audio fields that are defined for audio sources. In the embodiments, the spatial audio fields are indicated to a user performing audio mixing, for instance by displaying them as polygons on a touch screen. The spatial audio fields move as the related audio sources move, and/or as the position of a notional consumer changes. Apparatus of the embodiments is configured to detect whether at any time (initially, or after movement) there is overlapping of two spatial audio fields. If an overlap is detected, this is indicated to a user performing audio mixing The apparatus then responds to a user input (e.g. a gesture on the touch screen) by detecting the nature of the user input and then moving or sizing one or both of overlapping spatial audio fields and such that overlapping is avoided or reduced.
Embodiments of wireless audio systems and methods for synchronizing wireless headphones are disclosed herein. In one example, a wireless audio system includes an audio source, a first wireless headphone, and a second wireless headphone. The audio source is configured to separately transmit a left-channel audio signal and a right-channel audio signal using a short-range wireless communication protocol. The first wireless headphone is configured to receive the left-channel audio signal and synchronize a first clock of the first wireless headphone with the audio source based on the left-channel audio signal. The second wireless headphone is configured to receive the right-channel audio signal and synchronize a second clock of the second wireless headphone with the audio source based on the right-channel audio signal, so that the first clock of the first wireless headphone is synchronized with the second clock of the second wireless headphone.
A sound output apparatus is provided, which includes an outer case having an upper portion with an opening formed upward, and a lower portion with sound holes formed therethrough, a first sound output unit provided at an upper side within the outer case and capable of outputting sounds of a first frequency band, a second sound output unit provided at a lower side within the outer case and capable of outputting sounds of a second frequency band, and a conveying device provided below the first sound output unit and capable of moving the first sound output unit up and down, wherein the conveying device allows the first sound output unit to protrude upwardly such that sounds are output between the outer case and the first sound output unit.
An audio forwarding device includes a media interface that is configured to receive a media stream, the media stream includes a video stream and an audio stream, the audio stream being synchronized with the video stream. A display interface is configured to transmit the video stream to a display for display of the video stream, and a wireless data network interface is configured to stream the audio stream in the form of digital data to a mobile computing device over a digital wireless data connection for the mobile computing device to play the audio stream on a headphone interface.
A method for low-latency streaming of audio and video via a mobile computing device to facilitate a high-quality, real-time interactive streaming experience. The method includes receiving an application audio stream generated by execution of an application program, an application video stream generated by execution of the application program, a microphone audio stream, and a camera video stream. The application audio stream and the microphone audio stream are mixed to produce a mixed audio stream. The application video stream and the camera video stream are composited to produce a composited video stream. The mixed audio stream is encoded to produce an encoded audio stream, and the composited video stream is encoded to produce an encoded video stream. The encoded audio and video streams are packaged into one or more streaming packets, and output, to a remote computing device.
A test system for testing a plurality of end-user devices. A controller performs pre-provision verification, provisioning, and post-provision testing. Pre-provision verification can be performed on a subset of end-user devices while others are bring provisioned.
A computing device may include a memory and a processor cooperating therewith to receive a plurality of data streams from at least one data source to be relayed to different destinations on demand, where each data stream has a respective content identifier associated therewith. The processor may further determine when a first one of the data streams for a first destination shares identical data with a second one of the data streams for a second destination based upon the respective content identifiers associated therewith, and suspend relaying the second data stream to the second destination, and begin relaying the first data stream to the second destination, based upon the determination that the first and second data streams share identical data based upon the respective content identifiers associated therewith.
A method of generating a blended output including an interactive user interface and one or more supplemental images. At a client device, a video stream containing an interactive user interface is received from a server using a first data communications channel configured to communicate video content and a command is transmitted to the server that relates to a user input received through the interactive user interface. In response to the transmitting, an updated user interface is received using the first data communications channel, and one or more supplemental images are received using a second data communications channel. Each supplemental image is associated with a corresponding transparency coefficient. The updated user interface and the one or more supplemental images are blended according to the transparency coefficient for each supplemental image to generate a blended output and the blended output is transmitted toward the display device for display thereon.
In a digital contents receiver for receiving transmitted digital contents, the digital contents include at least component information indicating an element which constitutes a program of the contents. When the component information indicates that the received digital contents are a 3D component, it is determined whether a display part corresponds to display of the 3D component. If the display part corresponds to display of the 3D component, the received digital contents are displayed in 3D.
Systems and methods for identifying objects displayed in a media asset are provided. First and second parental control restrictions associated with first and second users within a perceivable range of a user equipment device are retrieved. The first parental control restriction enables access to content associated with a first authorization level and the second parental control restriction enables access to content associated with a second authorization level. A common authorization level that does not violate the first and second parental control restrictions is identified. A media asset that satisfies the common authorization level is presented to the first and second users in a first form. Supplemental content associated with the media asset that violates the second parental control restriction but does not violate the first parental control restriction is selected. The supplemental content is presented in a second form while the media asset is being presented in the first form.
Methods and apparatus for distributing content using a spectrum generation device. In one embodiment, digital content is received via a time-multiplexed network transport (such as Gigabit Ethernet), and converted to frequency channels suitable for transmission over a content distribution (e.g., Hybrid Fiber Coaxial (HFC)) network. In one variant, the conversion is performed using digital domain processing performed by a full spectrum generation device. Additionally, methods and apparatus for selectively adding, removing, and/or changing digital content from the full spectrum device are also disclosed. Various aspects of the present invention enable physical (infrastructure) consolidation, and software-implemented remote management of content distribution.
The present disclosure relates to a method and system for facilitating the delivery of recorded data over a network by a data delivery data. The data delivery system receives user request from at least one requesting user device for viewing recorded data and also one or more parameters from at least one requesting user device and a plurality of recording user devices. Based on the received one or more parameters the data delivery system determines a set of recording user devices from the plurality of recording user devices and initiates delivery of recorded data from the set of the recording user devices to the at least one requesting user device. The data delivery system monitors progress of the delivery at predefined intervals of time and re-initiates the delivery of one or more segments of the recorded data based on the monitoring for facilitating delivery of recorded data over a network.
A method for encoding a packet in a broadcasting system supporting an Internet Protocol (IP)-based multimedia service is provided. The method includes dividing a data stream into data payloads, generating a Motion Picture Expert Group (MPEG) Media Transport (MMT) packet by adding a first header to each of the data payloads, and generating a source packet by adding an MMT packet header to the MMT packet and performing Forward Error Correction (FEC) encoding on the header-added MMT packet. The MMT packet header includes type information of the MMT packet.
A method and apparatus for a low complexity transform unit partitioning structure for High Efficiency Video Coding (HEVC). The method includes determining prediction unit size of a coding unit, and setting the size of transform unit size of Y, U and V according to the prediction unit size of the coding unit.
In DBBP, there is a problem because of a large processing amount of a synthesis process in which two complement images are synthesized according to segmentation and a filtering process is executed. A predicted image generation device includes a segmentation derivation section that derives segmentation information from an image; and an image synthesis section that generates a predicted image. The image synthesis section executes a filtering process based on a partition mode and the segmentation information.
An electronic device and an method of operating the same according to various example embodiments of the present disclosure are provided. The method may include: receiving, by first image reception circuitry of a first image reception unit, first image data corresponding to a first attribute parameter; receiving, by second image reception circuitry of a second image reception unit, second image data corresponding to a second attribute parameter; detecting converted image data from the first image data based on a difference in component between the first attribute parameter and the second attribute parameter; and generating compressed image data for the second image data using the converted image data.
Several methods and systems for masking multimedia data are disclosed. In an embodiment, a method for masking includes performing a prediction for at least one multimedia data block based on a prediction mode of a plurality of prediction modes. The at least one multimedia data block is associated with a region of interest (ROI). A residual multimedia data associated with the at least one multimedia data block is generated based on the prediction. A quantization of the residual multimedia data is performed based on a quantization parameter (QP) value. The QP value is variable such that varying the QP value controls a degree of masking of the ROI.
There is provided a picture coding device that performs intra prediction coding of a picture signal including a luma signal and a chroma signal in units of blocks and codes information relating to an intra prediction mode. When the intra prediction of a picture signal is made in units of coding blocks, in a case where a chroma format is 4:2:2, in a mode for setting a chroma intra prediction mode in accordance with the luma intra prediction mode, an intra prediction unit sets the chroma intra prediction mode based on the luma intra prediction mode and the chroma format and makes an intra prediction of the chroma signal.
Devices and methods are described herein for providing foveated image projection. In general, at least one source of laser light is used to generate a laser beam, and scanning mirror(s) that reflect the laser beam into a pattern of scan lines. The source of light is controlled to selectively generate projected image pixels during a first portion of the pattern of scan lines, and to selectively generate depth mapping pulses during a second portion of the pattern of scan lines. The projected image pixels generate a projected image, while the depth mapping pulses are reflected from the surface, received, and used to generate a 3-dimensional point clouds that describe the measured surface depth at each point. Thus, during each scan of the pattern both a projected image and a surface depth map can be generated, with the surface depth map used to modify some portion of the projected pixels.
In a method for determining the 3D coordinates of an object a pattern (6) is projected onto the object (1) by a projector (3), the light reflected by the object (1) is captured by a camera (4), and the shots recorded by the camera (4) are evaluated. Reference marks (8) on and/or beside the object (1) are recorded by a reference camera (5). The reference camera (5) has a larger field of view (9) than the camera (4). To improve such method, the reference camera (5) is connected with the camera (4) or with a 3D sensor (2) which comprises the projector (3) and the camera (4).
According to one embodiment, a display device includes an optical modulation element configured to emit image light corresponding to an image by using illumination light from an illumination device, a polarization control element configured to emit first polarized light, and second polarized light on the basis of the image light receiving from the optical modulation element, a polarization separation element configured to transmit the first polarized light as transmitted light and reflect the second polarized light as reflected light, and a projector configured to project the transmitted light onto a first projection area of a projection plane, and projects reflected light onto a second projection area of the projection plane.
In embodiments of collaborative camera viewpoint control for interactive telepresence, a system includes a vehicle that travels based on received travel instructions, and the vehicle includes a camera system of multiple cameras that each capture video of an environment in which the vehicle travels from different viewpoints. Viewing devices receive the video of the environment from the different viewpoints, where the video of the environment from a selected one of the viewpoints is displayable to users of the viewing devices. Controller devices that are associated with the viewing devices can each receive a user input as a proposed travel instruction for the vehicle based on the selected viewpoint of the video that is displayed on the viewing devices. A trajectory planner receives the proposed travel instructions initiated via the controller devices, and generates a consensus travel instruction for the vehicle based on the proposed travel instructions.
An image pickup apparatus includes: a first light source which, in operation, emits first pulsed light to project a first image of a first pattern at a first position in a predetermined region of a subject, and emits second pulsed light to project a second image of a second pattern at a second position, different from the first position, in the predetermined region of the subject; an image sensor including multiple pixels each including a photodetector that, in operation, converts received light into a signal charge, and a first accumulator and a second accumulator each of which, in operation, accumulates the signal charge; and a control circuit which, in operation, controls the first light source and the image sensor.
Embodiments of the present disclosure provide a video generation method, device and terminal. Embodiments of the present disclosure may perform effect processing for the image frames obtained from a video during shooting of the video or after the shooting of the video is finished using the selected video effect template, and compose the processed image frames to obtain the composite video. The problem of only presenting contents shot using a camera during the recording of a song and being not able to provide customized functions satisfying users' requirements may be solved. The effect of performing effect processing for all image frames or partial image frames in the shot video using the video effect template selected by the user to obtain the composite video satisfying the users' requirements may be achieved.
The present invention relates to a method for configuring a first camera. The method comprises presenting a visual representation of a second camera in a camera managing device, presenting a visual representation of the first camera in the camera managing device, connecting the visual representation of the first camera to the visual representation of the second camera, transferring, to the first camera, settings information related to the second camera in response to said connecting of the visual representation of the first camera to the visual representation of the second camera, and configuring the first camera using the transferred settings information.
The disclosure provides an approach for predicting trajectories for real-time capture of video and object tracking, while adhering to smoothness constraints so that predictions are not excessively jittery. In one embodiment, a temporally consistent search and learn (TC-SEARN) algorithm is applied to train a regressor for camera planning. A automatic broadcasting application first receives video input captured by a human-operated camera and another video input captured by a stationary camera with a wide field of view. The automatic broadcasting application extracts feature vectors and pan-tilt-zoom states from the stationary camera input and human-operated camera input, respectively. The automatic broadcasting application further applies the TC-SEARN algorithm to learn a sequential regressor for predicting camera trajectories, based on the extracted feature vectors and pan-tilt-zoom states. The TC-SEARN algorithm itself is able to learn the regressor using a loss function which enables decision trees to reason about spatiotemporal smoothness via an autoregressive function.
There is provided an imaging apparatus including: a determination unit configured to determine presence or absence of an object in front of an imaging lens on the basis of first sensing data; and a decision unit configured to decide a behavior related to imaging processing through the imaging lens, on the basis of a result of the determination by the determination unit.
An image stabilization apparatus includes: a first detection unit that detects object moving amounts at a plurality of positions on a screen; a determination unit that determines an object range on the screen based on a result of detection performed by the first detection unit; a holding unit that holds object position information regarding an object position within the object range in association with moving amount information at the object position based on the result of detection performed by the first detection unit and a result of detection performed by a second detection unit that detects a motion of the apparatus; and a control unit that controls an operation of an image stabilization unit that corrects object image blur at the object position held in the holding unit.
An electronic device displays an image in a sequence of images. The sequence of images includes a representative image and images acquired by the camera before and after acquiring the representative image. While displaying the image, the device detects a first input and, in response, displays a user interface for trimming the sequence of images. The user interface includes: representations of images in the sequence of images; a begin-trim icon that delimits a beginning image in the subset of the sequence of images; and an end-trim icon that delimits an ending image in the subset of the sequence of images. The begin-trim and end-trim icons are located at positions that are automatically selected by the device. The device detects a second input and, in response, trims the sequence of images to the subset of the sequence of images based on the positions of the begin-trim and the end-trim icons.
A method and an apparatus for photographing using a portable terminal are provided. The apparatus includes an interface for intuitively identifying different photographing compositions in a preview mode and supports photographing a subject according to each composition selected by a user in the interface. The method includes driving a camera module and displaying a plurality of images in a multi-preview window corresponding to a plurality of compositions.
Provided are an image pickup apparatus and a method of controlling the image pickup apparatus, capable of quickly determining possibility of refocusing for bringing each of objects located at different view angle positions on a photographed image into focus. The image pickup apparatus includes an acquisition unit configured to acquire an image photographed by using an image pickup element having a pupil-division pixel area together with photographing information of an optical system at a time of photographing, an object detecting unit configured to calculate an object area of an object and to calculate an object distance corresponding to a depth distance to the object, and a refocusing possibility determining unit configured to determine possibility of refocusing for bringing the object into focus by calculating a refocusable view angle range and determining whether or not the object area is included in the refocusable view angle range through comparison.
At an electronic device with a touch-sensitive display, a remote camera control user interface may be displayed. In some examples, a user may provide input through a gesture at a location corresponding to the touch-sensitive display and/or through a rotation of a rotatable input mechanism to control a camera of an external device. Camera control may include control of the external device's camera features, including image capture, zoom settings, focus settings, flash settings, and timer settings, for example, and may also include access to the external device's library of previously captured images.
Techniques provided for using hardware and software to modify a mobile device to improve the safety and awareness of a user to their environmental surroundings. One embodiment of the invention is to update mobile device applications to include live video using the built in rear camera of area ahead of the user as background image. Rear camera would normally be viewing ground, so an embodiment includes a custom case or other attachment to the mobile device with a mirror to allow rear camera to view area ahead. The case or attachment positions the mirror relative to the camera and has an adjustable angle to achieve the correct field of view for the way (or posture) the user is holding the mobile device.
Described herein are systems and methods for processing an image such as a halftone image. For example, in some embodiments, pixels of an image are checked to see if when printed would be represented by a given output. Pixels of the image that match defined values are replaced with pixels that are represented by a different set of outputs. This latter set of outputs may be selected to optimize one or more imaging attributes.
An image processing apparatus includes a reading device and at least one processor. The reading device reads a document into image data of a document image with a first resolution and a second resolution that are different from each other. The first resolution is used for reading the document in a main scanning direction. The second resolution is used for reading the document in a sub-scanning direction perpendicular to the main scanning direction. One or more processors detect an inclination angle of the document image corresponding to inclination of the document, obtain a distortion angle of the document image based on the inclination angle and a ratio between the first resolution and the second resolution, and correct distortion of the document image using the distortion angle.
A method for controlling a communication apparatus includes receiving a transmission destination, acquiring identification information of a user who inputs a transmission destination of image data, requesting identification information of a checker for the transmission destination, acquiring the requested checker identification information, and storing the acquired user identification information and the acquired checker identification information as transmission history information of the image data.
An object of the present invention is to detect the home position with a high accuracy without being affected by temperature. The present invention is an image reading apparatus having a reading portion, and the apparatus includes: an acquisition unit configured to acquire first data obtained by the reading portion reading a main scanning line in a state where a light source of the reading portion is turned on in a first light quantity, and second data obtained by the reading portion reading the main scanning line in a state where the light source of the reading portion is turned on in a second light quantity smaller than the first light quantity; a generation unit configured to generate difference data by subtracting the value of the second data from the value of the first data; and a determination unit configured to determine whether a mark arranged at a position corresponding to a home position of the reading portion has been detected on the main scanning line based on the difference data.
An information processing apparatus to connect with a printer and a display, includes: a processor to control the printer to print one or more images that are obtained to output one or more printed images, in response to a print request received from a first user; and control the display to display the one or more images that have been printed with the printer, the images being displayed to one or more users other than the first user.
A document conveying apparatus includes a first conveying roller for conveying a document stacked on the document tray, a second conveying roller, provided at a downstream side with respect to the first conveying roller, for conveying a document stacked on the document tray, a separation roller, provided at a downstream side with respect to the second conveying roller, for performing separation operation of the document, a driving force transmission mechanism for transmitting the driving force to a driving shaft of the first conveying roller, a driving shaft of the second conveying roller, and a driving shaft of the separation roller, and a first blocking mechanism, provided between the first conveying roller and the driving shaft of the first conveying roller, for blocking a driving force transmitted to the driving shaft of the first conveying roller, for a first certain period of time.
According to an embodiment, an image processing apparatus includes a display unit, an operation unit, a processing unit, a storage unit, and a control unit. The display unit is configured to display an operation screen on which a processing mode and setting information may be selected. The operation unit is configured to receive an operation instruction from the operation screen displayed on the display unit and to transmit a processing job based on the operation instruction. The processing unit is configured to execute a process based on the processing job received from the operation unit. The storage unit is configured to store use history information indicating the processing jobs. The control unit is configured to customize the operation screen according to the use history information stored by the storage unit and cause the display unit to display the customized operation screen.
A communication apparatus includes: a first type communication unit configured to perform communication with a portable device in a near field communication mode; a display unit; and a control device configured to perform: a receiving process of receiving a radio wave for connection with the portable device in the near field communication mode, from the portable device through the first type communication unit; and a display process of controlling the display unit to display a notice for prompting a user to perform operation for permitting the portable device to transmit information to the communication apparatus in the near field communication mode, in response to receipt of the radio wave in the receiving process.
Methods and apparatus are disclosed to identify media using hash keys. An example disclosed method includes generating a hash key based on first samples of media. In the disclosed example method, the first samples corresponds to a portion of the media sampled in a buffer of a computing device. The example method also includes applying a blurring function to the hash key to generate a blurred hash key. The example method also includes generating first confirmation data based on second samples of the media. The example method also includes storing the blurred hash key in association with the first confirmation data and first reference data in a memory separate from the buffer of the sampled media. In the example methods, the reference data identifies the portion of the media.
Disclosed are various embodiments for restricting usage of a mobile device when a user is driving a vehicle. In one embodiment, it is determined that a mobile device is in use by a driver of an active vehicle. A functionality of the mobile device is then restricted based at least in part on determining that the mobile device is in use by the driver of the active vehicle. For example, a touch screen of the mobile device may be disabled, and the use of a hands-free interface may be made mandatory.
In a method for informing a driver of a vehicle regarding the availability of a communication link of the vehicle to an external communication unit, a first service category and a second service category are provided which utilize the communication link, the availability of the communication link is checked for both service categories, and the result of the availability check is displayed graphically to the vehicle driver in one symbol for both service categories.
A telecommunications system for communicating internet packet data in accordance with a first internet protocol (IPV6) via a packet radio network operable in accordance a second internet protocol (IPV4) includes a user equipment operable to request a bearer for communicating internet protocol data according to the second internet protocol (IPV4) to and from a gateway support node of the packet radio network. The gateway support node is operable to establish a tunnelling protocol bearer for communicating the internet packet data to and from the user equipment across the packet radio network. The user equipment is operable in combination with the gateway support node to form an address which is compatible with the first internet protocol (IPv6). The address includes an interface identifier having a tunnel end identifier of the tunnelling protocol bearer which ends at the gateway support node of the packet radio network. The internet packet data is communicated to and from a correspondent node via the gateway support node and the established bearer using internet protocol address which is compatible with the first internet protocol (Ipv6).
A special-purpose processing system, a method of carrying out sharing special-purpose processing resources and a graphics processing system. In one embodiment, the special-purpose processing system includes: (1) a special-purpose processing resource and (2) a Representational State Transfer (ReST) application programming interface operable to process data using the special-purpose processing resource in response to stateless commands based on a standard protocol selected from the group consisting of: (2a) a standard network protocol and (2b) a standard database query protocol.
A method, system and device for monitoring data. A server receives service running data of a service transmitted from a client. The server acquires a first abnormal strategy corresponding to the service and provides an alarm for the service when the first abnormal strategy is matched according to the service running data. The server can determine for which service running on the client the abnormality occurs and an alarm is provided.
Distribution schemes for subscriber-created content are described. Subscribers create and upload content for distribution to communities of recipients. The recipients join the communities in response to invitations from the subscribers. When connections to devices associated with the recipients are detected, any content due for delivery to the recipients is distributed. Systems supporting these distribution schemes may include content distribution modules that receive the content from the subscribers, and that provide corresponding content notifications. Content storage modules store the uploaded subscriber content. In response to the content notifications, notification modules notify the recipients that the content is available. Presence modules detect the connections to the devices, and provide corresponding device notifications. In response to the device notifications, device management modules provide recipient notifications, which associate recipients with the detected devices. Content distribution modules receive the recipient notifications and distribute the content to the recipients.
A method, system, and computer-program product for analysis and use of aggregated social media information are disclosed. The method includes creating a new geometric shape and determining whether the new geometric shape overlaps an existing geometric shape. The new geometric shape is created using new polytope information, the new polytope information describes a new polytope, and the new geometric shape corresponds to the new polytope. The existing geometric shape corresponds to an existing polytope.
Methods, systems, and computer-readable media for program code allocation based on processor features are disclosed. Analysis of program code is performed using static analysis and/or runtime analysis. The analysis determines one or more processor features invoked by the program code. One or more program execution servers are selected from a plurality of program execution servers based at least in part on the one or more processor features invoked by the program code. One or more selected program execution servers comprise the one or more processor features invoked by the program code, and an additional one or more of the program execution servers lack the one or more processor features invoked by the program code. The program code is executed using the one or more selected program execution servers.
The disclosed computer-implemented method for reducing network traffic by using delta transfers may include (1) receiving, from a client device, an original request message that requests at least one action from a server, (2) storing the original request message to serve as a foundation for a delta transfer that includes the original request message and at least one subsequent request message that builds upon the original request message, (3) receiving, from the client device, a subsequent request message that excludes at least a portion of the original request message to reduce redundancy between the original request message and the subsequent request message, and (4) applying the subsequent request message to the original request message to achieve the delta transfer while reducing the redundancy between the original request message and the subsequent request message. Various other methods, systems, and computer-readable media are also disclosed.
A distributed data-based concurrent processing by a control terminal obtaining data block information corresponding to a submitted operation; a task processing terminal sending a task processing request to the control terminal; the control terminal finding a data block that is unassigned and is distributed in the same server where the task processing terminal is distributed, and assigning the found data block to the task processing terminal. The control terminal determines a server having the fewest data blocks that are being processed by the task processing terminal and assigning an unassigned data block to the task processing terminal on the determined server if the data block that is unassigned and is distributed in the same server where the task processing terminal is distributed is not found. The task processing terminal processes the data block assigned by the control terminal according to a flow.
A system, a method, and a computer program product for providing a user interface configuration tool are disclosed. A first user interface containing a presentation is generated. The presentation is generated based on a template stored in a memory and includes a plurality of portions. The presentation is modified based on information stored in the memory. The information relates to at least one user and at least one activity to be performed by the user. A modified presentation is generated for displaying in the first user interface, where the modified presentation is presented in a first format. A second user interface is generated for displaying the modified presentation in the first format. The modified presentation is presented to the user in the second user interface.
A multi-tenant, elastically scalable cache as a service is disclosed. Embodiments of the cache service eliminate the need for applications to manage their own cache tier. The multi-tenant cache service is implemented by maintaining/creating multiple named caches in a cache cluster and mapping each tenant's cache to a named cache in the cluster. Strict quotas are enforced on cache sizes This allows caches with different replication attributes to co-exist on the same cache server, allows migration of a cache from one cluster to another for load balancing purposes, and allows a cache to inflate/deflate to meet business needs. A network load balancer is used to route cache items to servers.
Generally described, the present disclosure is directed to managing request routing functionality corresponding to resource requests for one or more resources associated with a content provider. The processing of the DNS requests by the service provider can include the selective filtering of DNS queries associated with a DNS query-based attack. A service provider can assign DNS servers corresponding to a distributed set of network addresses, or portions of network addresses, such that DNS queries exceeding a threshold, such as in DNS query-based attacks, can be filtered in a manner that can mitigate performance impact on for the content provider or service provider.
A method comprising of receiving, by a user system that includes at least a processor system having at least one processor and a memory system, a first push notification associated with a first priority level for display on the user system; receiving, by the user system, a second push notification associated with a second priority level for display on the user system, the second priority level being higher than the first priority level; and displaying, by the user system, the second push notification prior to the first push notification based on the first and second priority level.
Disclosed is a mobile event streaming system that receives customer application lifecycle and user events including a message, event source and a destination then processes data for consumption by one or more customers, generating a secure data stream and sending the processed data over the generated data stream. An example system for receiving, processing, and delivering customer application lifecycle and user engagement data includes a server system having at least one processor, memory and a network interface where the memory stores program instructions for receiving, storing, processing and transmitting messages via the network interface. The mobile event streaming system may be a distributed content delivery service wherein the content delivered via the service is processed. Processing the data comprises the addition of metadata, one or more identifiers such as user, and event identifiers including predictions of future user engagement to enable real-time data consumption by customers.
The present invention discloses a cross-protocol distributed cloud storage system based on a network node operation control unit. The distributed cloud storage system includes a plurality of network nodes, each of which includes an operation control unit that directly interacts with a data link layer, the operation control unit including a file unit, a network information management unit and a resource scheduling unit, wherein the file unit is used to mange and store file information of the network node where it is located; the network information management unit is used to interact with the data link layer so as to perform link scheduling for delivering the information between the network nodes, and to update data between the nodes; the resource scheduling unit is used to allocate and schedule hardware or network resources for the network information management unit and the file unit for implementing functions thereof.
Techniques to protect against data loss are disclosed. In various embodiments, an amount of data that has changed since a last backup of at least a defined subset of a save set is determined. The determined amount of changed data is compared to a corresponding threshold. A backup is performed based at least part on a determination that the determined amount of changed data equals or exceeds the threshold.
The present disclosure provides a method and system for content delivery used in a mobile terminal application. The method includes: (a) integrating, by the mobile terminal application, a software development kit (sdk) into the mobile terminal application, importing a download request into the sdk, and waiting to receive downloaded data; (b) receiving, by the sdk, the download request imported by the mobile terminal application, downloading an initial packet from a cache system or a source station based on the download request, and determining if P2P download can be started based on the initial packet, the initial packet being an initial data fragment of data to be downloaded; (c) when it is determined to start the P2P download, fragmenting, by the sdk, remaining undownloaded data to a plurality virtual files; and (d) sequentially downloading the plurality of virtual files and caching a download result until downloading of all of the virtual files is completed.
Methods and systems for transparent user interface integration between remote (“published”) applications and their local counterparts are described, providing a seamless, unified user experience, and allowing integration of a start menu, dock, taskbar, desktop shortcuts, windows, window and application switching, system tray elements, client-to-host and host-to-client file type association, URL redirection, browser cookie redirection, token redirection, status message interception and redirection, and other elements. These methods and systems further enhance theme-integration between a client and remote desktop or virtual machine by remoting all UI elements to a recipient for generation, including text controls, buttons, progress bars, radio buttons, list boxes, or other elements; presenting them with the receiver's product and OS-specific UI; and returning status back to the sender. This may achieve a more unified and transparent UI integration. Furthermore, international text may be correctly received in cross-language environments, or translated into the language of the presenting environment.
To share snips of content, an identifier of a recipient of a content file is received. With reference to content access rules for the recipient, content access metadata of the content file is parsed to identify a range of the content file accessible to the recipient. A user can identify a selection of a snip of the content file accessible to the recipient in a user interface. Once the selection is identified, a link to the content file can be generated and forwarded to the recipient. The link can include an argument that identifies a start and an end of the snip. The link can also include other arguments, such as copy snip, access rule, or expiration arguments. In another embodiment, a portion of the content file, limited by the start and end of the snip, can be forwarded to the recipient.
A method, an apparatus, and a computer program for analyzing performance of a network application program are provided. The method for analyzing performance of a network application program which operates at a controller in a software defined networking (SDN) environment may include receiving identification information of the application program, flow information, and network configuration information of a network controlled by the controller, emulating a virtual network using the network configuration information, executing the virtual network using the flow information, measuring a time, when a virtual controller processes a flow, on a function basis, extracting information corresponding to the identification information of the application program from the measured result, and analyzing a performance degradation factor of the application program using the extracted information. According to an embodiment, a network manager automatically searches for a critical path and a hotspot using a conventional profiling scheme.
Techniques provided herein implement systems and methods that can improve access to content items, from an online content source, by a client device. According to some embodiments, an intermediate content streaming system is implemented on a client device for caching digital content locally at the client device as the content is streamed to the client device from an online content source (e.g., content server) over a network. Additionally, according to some embodiments, a priority-based content downloading system is implemented on a client device to facilitate priority-based pre-downloading of content items to the client device before a user at the client device is presented with access to the content items, such as through a social networking news feed.
A split streaming system and method are provided in which a stream of data (that can be video, audio or textual data) is split and sent over a plurality of stream reflectors to a stream recipient. Each stream reflector performs time gradient replacement to manage the split streaming.
A computer-implemented method is provided in which a server receives from a user device a request to join an online meeting, the request including a meeting identifier for the online meeting. It is determined whether a meeting exists with a meeting identifier that matches the meeting identifier contained in the request. If a match is determined, a message is sent to the user device, the message indicating one or more join methods that the user device can use to join the online meeting.
A system comprises client devices that include user interfaces that comprise workspaces that can be used to display a live history of a multimedia collaboration session. The workspaces can be private and can be configured to display information representative of media elements that can be shared within the multimedia collaboration session, but that are only viewable to a participant associated with a particular client device. The private workspaces can be used to preview information before publishing it to other participants or to view a live history of the multimedia collaboration session.
Selective regulation of information transmission from mobile applications to a third-party privacy compliant target system. A privacy policy is configured for and mapped to each of a multiplicity of mobile application concerns, with each privacy policy comprising rules regulating the transmission of information to a third-party privacy compliant target system. Instrumentation instructions can be integrated with a mobile application and provided to a mobile device. The instrumentation instructions direct the mobile application to submit a privacy policy request comprising a mobile application identifier from the mobile device to a third-party privacy compliance system and enable sending information from the mobile device to the third-party privacy compliant target system, subject to the privacy policy. The privacy policy request is received at the third-party privacy compliance system which selects the privacy policy based on an application identifier and sends the privacy policy to the mobile device for implementation.
A system comprises: a representation of a network; a communications requirements file for an application to be executed by a node of said network; and a security policy file defining a security policy for said node of said network. Said files are processed to determine whether said security policy and said communication requirements are compatible.
Attack simulation systems include a computing device coupled with a database, the device displaying input interfaces configured to store a plurality of threat model components, threats, and compensating controls in the database, and associate each stored threat with at least one stored component and associate each stored control with at least one of the stored threats through the database. A diagram interface is configured to diagram a system, application, or process, the diagram including some of the stored components and controls, to define a first threat model, and is further configured to display attack paths of all stored threats associated with the diagrammed components which compromise a selected component. Attack simulation methods include defining threat models and displaying attack paths using system interfaces. Threat model chaining methods include adding a component group to a first threat model to include therein a second threat model associated with a predefined component group.
The techniques described herein are directed to robust matching for identity screening. In some examples, the techniques can include generating a similarity score for received identity information compared to a reference record. In some examples, the techniques can utilize a region associated with the received identity information to weight tokens composing the identity information or of the reference record to adjust the similarity score. Moreover, the techniques can include multiple tokenizers, transformation providers, and token weight providers and the techniques can be configured to select between the multiple tokenizers, transformation providers, and token weight providers based at least in part on a region to improve the accuracy of the similarity score. The techniques can determine whether or not to flag or otherwise affirm an identity of an individual or entity associated with the entity information based at least in part on the similarity score.
Techniques for automatically determining whether malware samples are similar are disclosed. In some embodiments, a system, process, and/or computer program product for automatically determining whether malware samples are similar includes receiving a plurality of samples for performing automated malware analysis to generate log files based on the automated malware analysis; comparing the log files based on the automated malware analysis; determining whether any of the plurality of samples are similar based on the comparison of the log files based on the automated malware analysis; and performing an action based on determining that at least two samples are similar.
Active memory for managing network telemetry information, or other types of information stored as objects, has objects partially-serialized to allow greater amounts of information to store in a memory of a given size with slightly increased retrieval times. Storing additional information in an active memory provides an overall increase in network security platform responsiveness by allowing a greater amount of information to be accessible from the active memory instead of archive.
In one implementation, a server receives a request from a client device to access a user account, wherein the user account provides access to one or more credentials associated with the user. The server determines that the client device is not associated with the user account and prompts the user to provide a biometric identification of the user. The server then receives data representing the biometric identification of the user from the client device. The server determines that the data representing the biometric identification of the user matches a biometric profile of the user associated with the user account. In response to the determination, the server associates the client device with the user account, such that the user is enabled to access the user account, and the associated one or more credentials, from the client device.
Techniques for detecting malicious files are disclosed. In one embodiment, the techniques may be realized as a system for detecting malicious files comprising one or more computer processors. The one or more computer processors may be configured to collect at least one of a file or an attribute of the file. The one or more computer processors may further be configured to determine if the file is malicious. The one or more computer processors may further be configured to identify, if the file is determined to be malicious, a Uniform Resource Locator (URL) and a time frame associated with the file. The one or more computer processors may further be configured to detect a threat based on the URL and the time frame.
The disclosed computer-implemented method for dynamically validating remote requests within enterprise networks may include (1) receiving, on a target system within an enterprise network, a request to access a portion of the target system from a remote system within the enterprise network, (2) performing a validation operation to determine whether the remote system is trustworthy to access the portion of the target system by (A) querying an enterprise security system to authorize the request from the remote system and (B) receiving, from the enterprise security system in response to the query, a notification indicating whether the remote system is trustworthy to access the portion of the target system, and then (3) determining whether to grant the request based at least in part on the notification received from the enterprise security system as part of the validation operation. Various other methods, systems, and computer-readable media are also disclosed.
A system that incorporates the subject disclosure may perform, for example, obtaining programming data via an over-the-air programming message for use by a communication device, wherein the over-the-air programming message is obtained from, and encrypted by an over-the-air programming server. The over-the-air programming message is decrypted utilizing a first keyset obtained by a secure device processor processing the first keyset obtained from a remote management server via transmission by the over-the-air programming server, to generate a first-key decrypted over-the-air programming message. The decrypted over-the-air programming message is provided to a secure element to enable the secure element to further decrypt the first-key decrypted over-the-air programming message utilizing a second keyset, wherein the secure device processor does not have access to the second keyset. Other embodiments are disclosed.
User physical interaction characteristics information or the way a user physically interacts with a device is analyzed to aid in authenticating a user of a device. User physical interaction characteristics information such as swipe speed, finger area, finger conductivity, finger angle, device angle, movement patterns, acceleration, etc., provide signatures that are distinctive for particular individuals and possibly unique if measured to a sufficiently high level of precision. In some examples, a device measures finger positions, finger pad sizes, moisture level, acceleration, displacement, and changes in finger pad size for a particular user and compares the measurements to physical interaction characteristics measured during subsequent usage of the device to verify that a user is an authorized user.
Systems and methods are provided for authenticating a user. The systems and methods include receiving a request to generate a user profile from a device of a user. The systems and methods may determine first information associated with a first entity from the request, and may also determine second information associated with a second entity distinct from the first entity from the request. The systems and methods may access, using system credentials not associated with the user, multiple distinct data sources in a specified order to retrieve additional information. Accessing these multiple distinct data sources may include retrieving a first item of the additional information using the first information, and retrieving a second item of the additional information using the second information. The systems and methods may authenticate the user based on the additional information, and may generate a user profile based in part on the additional information.
A system and method is disclosed for transporting application data through a communications tunnel between a host device and a guest device that each includes networked processors. The application data may be transported between the host device and the guest device through an allowed port of the host device, the communications tunnel, and a port of the guest device. Based on logon credentials, the guest device can be authenticated by a security server and a role may be determined. The role can include allowed ports and associated applications on the host that the guest is allowed to access. Remote access from the guest device to host devices or remote devices may be enabled without needing prior knowledge of their configurations. Secure access may be facilitated to remote host devices or remote devices, according to security policies that can vary on a per-session basis and takes into account various factors.
A system and method for homomorphic encryption in a healthcare network environment is provided and includes receiving digital data over the healthcare network at a data custodian server in a plurality of formats from various data sources, encrypting the data according to a homomorphic encryption scheme, receiving a query at the data custodian server from a data consumer device concerning a portion of the encrypted data, initiating a secure homomorphic work session between the data custodian server and the data consumer device, generating a homomorphic work space associated with the homomorphic work session, compiling, by the data custodian server, a results set satisfying the query, loading the results set into the homomorphic work space, and building an application programming interface (API) compatible with the results set, the API facilitating encrypted analysis on the results set in the homomorphic work space.
Disclosed are examples of systems, apparatus, methods and computer program products for combining updates of a social network feed. In some implementations, a feed of a social networking system can be configured to share feed items associated with an enterprise record. The feed items can include a first update associated with a first user. A first request to share a comment on the first update can be processed. A second request to share a first post in a feed can be processed. The first post can be related to the first update based on a first attribute conforming to a second attribute. A combined update can be generated based on the first post being related to the first update. The combined update can be displayed in a feed.
A system and method for generating a conversation in a social network based on visual search results. A mixed media reality (MMR) engine indexes source materials as MMR objects, receives images from a user device and identifies matching MMR objects. A content management engine generates metadata corresponding to the MMR objects. A social network application generates conversations corresponding to the MMR object. The conversation includes multiple discussion threads. If a conversation already exists, the social network application provides the user with access to the conversation.
A method of obfuscating at least a portion of content of an email message may include identifying an email message that has been sent to one or more recipients and that pertains to one or more end user processes of a print environment, identifying a content section of the email message, and identifying one or more delimiters associated with the identified content section. The method involves determining whether the identified content section includes the delimiters, and if so, generating an obfuscated content section by obfuscating all content of the identified content section except the one or more identified delimiters. The method includes analyzing the obfuscated content section to ascertain information relevant to the one or more end user processes, and associating the ascertained information with one or more of the one or more end user processes.
A storage controller processes electronic messages by partitioning a storage device into logical disks and designating a logical disk as unavailable based on its storage capacity being fully used. A time is assigned to each logical disk that is available for writing, and an estimated deletion time is determined for an electronic message. The electronic message is stored in a logical disk that is identified by comparing the assigned times of the logical disks to the estimated deletion time of the electronic message. The electronic message may be deleted based on the detection of a triggering event. If a deletion of a message results in an unavailable logical disk having more than a threshold amount of unused storage capacity, then each of the electronic messages stored in the unavailable logical disk may be copied to a logical disk available for writing and the unavailable designation may be removed from the logical disk.
Methods for responding to an email message by a phone call from a mobile device are described. In some embodiments, mobile devices are capable of receiving emails. The emails may be in form of messages in a threaded conversation. Each message has metadata and the metadata includes a phone number corresponding to a sender of the message. The text or information associated with the message is displayed but not the metadata. While a user is reading the message displayed on the mobile device, the user is provided with a plurality of options to respond to the message, an option is for the user to call the sender of the message using the phone number in the metadata. Upon selecting such an option, the user is able to initiate a call to the sender of the message by activating a feature to call using the phone number stored in the metadata without physically looking up and dialing the sender's number. Other embodiments are also described.
Various methods and systems for implementing resource management for an infrastructure are provided. Resource management includes datacenter byproduct management interfaces, datacenter power management, datacenter operations optimization and infrastructure resource management. Resource management facilitates using and distributing physical resources, including incidental physical resources that are generated during operation of an infrastructure, based on a minimum threshold reserve of the physical resource associated with the operating the infrastructure. Resource management can include controlling an amount of the physical resource that is generated and an amount the physical resource that is reserved. The minimum threshold reserve in combination with the control over generating and reserving the physical resource help identify an allocable amount of the physical resource. Physical resources of an infrastructure are quantified to support resource management. Quantifying physical resources is associated with devices of the infrastructure and requests for physical resources in the infrastructure to perform different types of operations.
Various embodiments are described herein that provide a network system comprising a first network element coupled to a network and a second network element directly coupled to the first network element. The first network element and the second network element are to connect to form a link aggregation group. The system additionally includes a network management device including a control agent, where the control agent is configured to configure the link aggregation group as a logical virtual tunnel end point (VTEP) of a virtual local area network (VLAN).
In one example, a method includes by a Software Defined Networking (SDN) controller, receiving one or more virtual routes to virtual interfaces from a first virtual router agent managed by the SDN controller, the one or more virtual routes received via a messaging protocol session between the SDN controller and the first virtual router agent; storing, by the SDN controller, the one or more virtual routes to a data structure; in response to determining the messaging protocol session has closed, marking, by the SDN controller, the one or more virtual routes in the data structure as stale without deleting the one or more virtual routes from the data structure and without withdrawing the virtual routes from routing protocol peers of the SDN controller; and subsequent to marking the one or more virtual routes as stale, sending, by the SDN controller, the one or more virtual routes to a second virtual router agent.
A method of data routing in a network through time-variant contextual trust includes: determining, by the network, a level and a nature of confidentiality of data to be transmitted from at least one network component to at least one recipient network component; determining, by the network, a time-variant availability of at least one hop node; determining, by the network, an owner of the at least one hop node and a profile of the owner of the at least one hop node; determining, by the network, a time-variant contextual trust between an owner of the at least one network component and the owner of the at least one hop node; and determining, by the network, a hop routing strategy for data routing.
System and method of a manipulative handle for revealing detail information in an interactive mobile user interface are disclosed. In one embodiment, when an activity supported by a cloud-based (e.g., online cloud-based collaboration platform) is initiated, the status of the activity is tracked and displayed using an animated user interface element. On and/or near the animated user interface element are hidden grab points that can be engaged to expand the user interface element to reveal detail relating to the activity. If the user interface element is already in an expanded state, detecting activation of hidden grab points on and/or near the user interface element causes minimization of the user interface element, thereby concealing the detail revealed earlier.
System and techniques are described for applying selectable applications to process data packets an adaptive private network (APN). Methods to select application specific processing within a WAN ingress processing pipeline begin with receiving a packet from a local area network (LAN) in an adaptive private network (APN) WAN ingress processing stages. The received packet is identified to be separately processed by a selected application that is different than standard ingress processing. Packet processing flow is redirected to the selected application for application specific processing of the received packet in response to the packet being identified to be separately processed. The separately processed packet is returned to the standard ingress processing after completing the separate processing.
Methods, systems, and apparatus include computer programs encoded on a computer-readable storage medium, including a method for providing content. A first device associated with a first user is identified. A second different device, associated with a second different user, is determined to be in proximity to the first device, forming a first group. A determination is made of an occurrence of an event in association with the second different device. The event is evaluated to determine when the event is indicative of a follow-on opportunity for presentation of content to the first user. The information related to the event is stored as a record in a log in association with an identifier for the group. A first opportunity to provide content to the first device is identified and evaluated including locating the record. Information in the record is used when selecting content for delivery in response to the first opportunity.
There are provided measures for realizing multi-level self-organizing network coordination, including self-organizing network coordination procedures. Such measures exemplarily comprise communication of a notification for self-organizing network coordination, which notifies an action of at least one self-organizing network function at a lower management level, from the lower management level of a self-organizing network to a higher management level of the self-organizing network, either before the action is actually performed or after the action has actually been performed, and coordination of the notified action in terms of self-organizing network coordination at the higher management level.
A method and apparatus for improving channel estimation within an OFDM communication system. Channel estimation in OFDM is usually performed with the aid of pilot symbols. The pilot symbols are typically spaced in time and frequency. The set of frequencies and times at which pilot symbols are inserted is referred to as a pilot pattern. In some cases, the pilot pattern is a diagonal-shaped lattice, either regular or irregular. The method first interpolates in the direction of larger coherence (time or frequency). Using these measurements, the density of pilot symbols in the direction of faster change will be increased thereby improving channel estimation without increasing overhead. As such, the results of the first interpolating step can then be used to assist the interpolation in the dimension of smaller coherence (time or frequency).
Automatic Gain Control (AGC) system for multi-channel signals attenuates an incoming multi-channel signal by providing a gain. The system further adjusts each individual channel, of the multi-channel signal, by supplying a second gain if needed. The AGC system is designed to ensure a received signal power is at an optimal level for analog to digital conversion or any other form of signal processing. The system also enables elimination of mid-packet gain adjustments.
Generating first and second discharge control signals in response to a clock signal and an input voltage signal, the first and second discharge control signals decreasing at different rates to a threshold level during a first time period, wherein a difference in rates is determined by the input voltage signal, generating a differential voltage on a pair of nodes during the first time period by selectively controlling a respective amount of discharge of an initial charge on each node of the pair of nodes by applying the first and second discharge control signals to respective transistors in a differential transistor pair connected to the pair of nodes, and maintaining the differential voltage on the pair of nodes during a subsequent time period, and generating an amplified differential voltage during at least a portion of the subsequent time period by amplifying the differential voltage.
A variable ISI transmission channel apparatus inserted in a high-speed transmission channel for the high-speed serial data communication simulates a “live” ISI environment to which the high-speed transmission channel in operation is exposed, in a situation such as a bit error test by means of continuously adjusting an amount of inter-symbol interference (ISI) in the high-speed transmission channel.By allowing an undersurface of a transmission loss generating member (6) (16) (26) such as a dielectric, a magnetic body, and an electric conductor to face, and slide on, a top surface of a conductor strip (2) exposed on a top surface of a plate-shaped dielectric substrate (1), a facing area is continuously increased/decreased. A dielectric loss, a magnetic loss, or a resistance loss increased/decreased in the transmission loss generating member is reflected on a high-frequency signal on the conductor strip (2).
An appliance, communication system, and method thereof for a communicating on a network including an appliance interactive display coupled to an appliance communication module, wherein the appliance communication module is configured to receive a message including an embedded interactive element, and sending a return message that relates to the activation of the embedded interactive element.
The invention relates to a method for a communication system comprising a first device and a second device. The method comprises transferring a packet from a first device to a second device, which packet comprises an authentication request having a challenge; encrypting the challenge from the authentication request by the second device; including the determined challenge as a challenge-response to a response packet by the second device; sending the response packet from the second device to the first device; determining whether the challenge matches with the challenge-response, and if so, authenticating the second device.
A method for leveraging a first secure channel of communication between a first agent and a second agent to create a second secure channel of communication between the first agent and a third agent. The method includes creating the first secure channel of communication between the first agent and the second agent using a configurable data-driven initial process on a first computing device. Responsive to the first agent receiving a request from the third agent to establish the second secure channel of communication, the method further includes retrieving identifying information from the third agent. The method further includes ending the identifying information from the third agent to the second agent over the first secure channel of communication. Responsive to receiving approval of the third agent's request from the second agent, the method further includes establishing the second secure channel of communication.
The present invention discloses a shift register capable of defending against DPA attack, comprising 4 master-slave D flip-flops, 12 two-input NAND/AND gates, 4 three-input NOR/OR gates and 40 inverters; the 4 master-slave D flip-flops are provided with reset function; it is based on TSMC 65 mm CMOS technique; as indicated by Spectre simulation verification, the shift register of the present invention has correct logic function with NED and NSD below 2.66% and 0.63% respectively under multi PVT combinations, which is provided with significant performance in defense differential power consumption analysis.
Apparatus and method for enacting data security in a data storage device, such as by protecting against a differential power analysis (DPA) attack. In some embodiments, a dithered clock signal is generated having a succession of clock pulse segments. Each of the clock pulse segments has a different respective frequency selected in response to a first random number and a different overall duration selected in response to a second random number. The different segment frequencies are selected by supplying the first random number to a lookup table, and the different segment durations are obtained by initializing a timer circuit using the second random number. The dithered clock signal is used to clock a programmable processor during execution of a cryptographic function.
In an optical communications system, the thermal pathway for dissipating heat generated by clock and data recovery (CDR) circuitry of an optical communications module is a separate from the thermal pathway that is used to dissipate heat generated by other components of the module. The CDR circuitry is external to the module and is provided with its own heat dissipation device. Keeping the CDR circuitry external to the module and providing it with its own heat dissipation device decouples the thermal pathway for dissipating heat generated by the CDR circuitry from the thermal pathways used for dissipating heat generated by other components of the module. This results in more effective heat dissipation and better component performance.
Devices and systems useful in concurrently receiving and transmitting Wi-Fi signals and Bluetooth signals in the same frequency band are provided. By way of example, an electronic device includes a transceiver configured to transmit data and to receive data over channels of a first wireless network and a second wireless network concurrently. The transceiver includes a plurality of filters configured to allow the transceiver to transmit the data and to receive the data in the same frequency band by reducing interference between signals of the first wireless network and the second wireless network.
The present invention relates to a method for assigning transmission resources (101) to communications between an access node (11) and a plurality of subscriber devices (41 to 46) coupled to a shared transmission medium.In accordance with an embodiment of the invention, the method comprises characterizing interference between respective ones of the plurality of subscriber devices over the shared transmission medium, grouping highly-interfering subscriber devices into respective interfering groups (G1, G2, G3, G4) based on the so-characterized interference, and assigning disjoint transmission time intervals to upstream communication from any one subscriber device of any one interfering group and to downstream communication towards any other subscriber device of the same interfering group.The present invention also relates to a resource controller.
Disclosed herein are a one-way data transmission apparatus, a one-way data reception apparatus, and a one-way data transmission/reception method using the apparatuses. The one-way data transmission/reception method uses a one-way data transmission apparatus and a one-way data reception apparatus, and includes receiving data from a high-security zone through a one-way path, generating tag information of the data, sending a message in which the tag information is added to the data to the one-way data reception apparatus, receiving the message from the one-way data transmission apparatus, checking the tag information of the message, and transmitting the data to a low-security zone.
The present disclosure provides a method and a device for transmitting data using a LDPC code. The method for transmitting data using a LDPC code includes: determining a check code length according to a current LDPC code rate; informing a receiving end about the current LDPC code rate and the check code length, adding a check code with the check code length to data to be sent, and implementing a LDPC encoding using the current LDPC code rate, so as to obtain LDPC code data; and sending the LDPC code data to a receiving end. The method and the device of the present disclosure can improve spectrum effectiveness of transmitting data using LDPC code.
A flexible grid optical transceiver communicatively coupled to an optical network includes a coherent optical transmitter configured to generate a transmit signal at a first frequency/wavelength center and spanning a first one or more bins of optical spectrum; and a coherent optical receiver configured to receive a receive signal at a second frequency/wavelength center and spanning a second one or more bins of optical spectrum, wherein a size of each of the first one or more of bins and the second one or more of bins is based on a required roll off of a wavelength selective component in the optical network.
Apparatuses and methods relating to interfacing and controlling external batteries are described. In one embodiment, an external battery is integrated with a touch screen display. In one embodiment, the external battery provides an infrared communication link with a detachable device or system controller. In one embodiment, the external battery touch screen interface provides data received from a detachable device or system controller.
Unified optical fiber-based distributed antenna systems (DASs) for supporting small cell communications deployment from multiple small cell service providers are disclosed. The unified optical fiber-based DASs disclosed herein are configured to receive multiple small cell communications from different small cell service providers to be deployed over optical fiber to small cells in the DAS. In this manner, the same DAS architecture can be employed to distribute different small cell communications from different small cell service providers to small cells. Use of optical fiber for delivering small cell communications can reduce the risk of having to deploy new cabling if bandwidth needs for future small cell communication services exceeds conductive wiring capabilities. Optical fiber cabling can also allow for higher distance cable runs to the small cells due to the lower loss of optical fiber, which can provide for enhanced centralization services.
The present disclosure relates to a method for testing a fiber optic network including a fiber distribution hub. The method includes providing a test splitter within the fiber distribution hub to provide optical connectivity between an F1 fiber and at least a portion of an F2 fiber network. The method also includes testing sending a test signal from the F1 fiber through the test splitter to the F2 fiber network, and replacing the test splitter after testing has been completed.
Methods and systems are described for providing end-to-end beamforming. For example, end-to-end beamforming systems include end-to-end relays and ground networks to provide communications to user terminals located in user beam coverage areas. The ground segment can include geographically distributed access nodes and a central processing system. Return uplink signals, transmitted from the user terminals, have multipath induced by a plurality of receive/transmit signal paths in the end to end relay and are relayed to the ground network. The ground network, using beamformers, recovers user data streams transmitted by the user terminals from return downlink signals. The ground network, using beamformers generates forward uplink signals from appropriately weighted combinations of user data streams that, after relay by the end-end-end relay, produce forward downlink signals that combine to form user beams.
An electronic device may include a peripheral conductive wall. A gap in the wall may divide the wall into first and second segments. The device may include a first antenna having a first resonating element arm formed from the first segment and a second antenna having a second resonating element arm formed from the second segment. A non-near-field communications transceiver may perform multiple-input and multiple-output (MIMO) operations using the first and second antennas. The gap may provide satisfactory isolation between the first and second antennas while the first and second antennas perform MIMO operations. Near-field communications circuitry may convey near-field communications signals over a conductive loop path that includes portions of the first and second segments and the antenna ground. The volume of the conductive loop path may extend across substantially all of a width of the electronic device.
A wireless communication apparatus and method minimizes degradation in a separation characteristic of a code-multiplexed response signal using two-dimensional processing. One of plural cyclic shift values defines a reference signal sequence that is spread with an orthogonal sequence associated with one of the plural cyclic shift values. This two-dimensional processing compensates for interference affecting the reference signal.
One example described herein includes a launchable communications device. The device includes an electronic payload comprising a communication system configured to receive a first communications signal and to transmit a second communications signal along a communications path between a first communication station and a second communication station. The device also includes deployment equipment configured to deploy the launchable communications device and to sustain a deployment state of the launchable communications device with respect to a predetermined operational environment. The device further includes a rigid housing configured to substantially enclose the electronic payload and the conveyance equipment prior to and during at least a portion of deployment of the launchable communications device to the predetermined operational environment.
Lossless content-aware compression and decompression techniques are provided for floating point data, such as seismic data. A minimum-length compression technique exploits an association between an exponent and a length of the significand, which corresponds to the position of the least significant bit of the significand. A reduced number of bits from the significand can then be stored. A prediction method is also optionally previously applied, so that residual values with shorter lengths are compressed instead of the original values. An alignment compression technique exploits repetition patterns in the floating point numbers when they are aligned to the same exponent. Floating point numbers are then split into integral and fractional parts. The fractional part is separately encoded using a dictionary-based compression method, while the integral part is compressed using a delta-encoding method. A prediction method is also optionally previously applied to the integral part, thereby increasing the compression ratio.
An analog-to-digital conversion (ADC) block includes: an amplifier block configured to receive two analog input signals and a primary-precision configuration signal and generate a first pair of differential signals by amplifying the two analog input signals according to a primary-precision gain that is programmably set by the primary-precision configuration signal; a configuration block configured to receive a fractional-precision configuration signal and generate a second pair of differential signals by amplifying the first pair of differential signals according to a fractional-precision gain that is programmably set by the fractional-precision configuration signal; and a differential analog-to-digital converter (ADC) including a voltage-controlled oscillator (VCO), two counters, and an error generator block. The VCO receives the second pair of differential signals and generates two pulse signals having frequencies that vary depending on a difference between the second pair of differential signals. Each of the two counters receives a respective pulse signal from the VCO and generate a digital counter value. The error generator block receives digital counter values from the two digital counters generates a digital conversion code corresponding to a difference between the digital counter values.
Droop caused by a filter may be compensated by applying a pre-filter to the audio signal that cancels out, at least in part, the droop caused by the filter. The pre-filter may implement magnitude compensation that causes an approximately flat passband response when the pre-filtered signal is passed through the filter. The pre-filter may be applied to one-bit wide data streams, such as high-fidelity direct stream digital (DSD) audio data or other one-bit wide data such as pulse-density modulation (PDM) encoded data. The pre-filtering and filtering may be implemented in components of an audio processor, such as in a digital-to-analog converter (DAC). The pre-filtering may include upsampling the one-bit wide data to form symbols and substituting an eighth bit of the symbol with an inverted version of an earlier-received bit.
A delay-locked loop includes multiple inverters coupled together, wherein the inverters receive an input clock signal and output a first clock signal and a second clock signal. The input clock signal passes through a first set of inverters having a first number of inverters to generate the first clock signal. The input clock signal also passes through a second set of inverters having a second number of inverters one inverter greater than the first number of inverters to generate the second clock signal. The delay-locked loop also includes a polarity matching block that receives the first clock signal and the second clock signal and changes polarity of one of the first clock signal and the second clock signal.
Disclosed herein is a semiconductor device that includes a first transistor unit coupled to the data terminal, and a plurality of second transistor units coupled to the calibration terminal. The first transistor unit includes a plurality of first transistors having a first conductivity type connected in parallel to each other so that an impedance of the first transistor unit is adjustable. Each of the second transistor units includes a plurality of second transistors having the first conductivity type connected in parallel to each other so that an impedance of each of the second transistor units is adjustable. The semiconductor device further includes an impedance control circuit that reflects the impedance of each of the second transistor units to the first transistor unit.
Provided is an IO interface level shift circuit, comprising: an intermediate level generation circuit (11) and a level shift circuit (12). The intermediate level generation circuit is configured to provide an intermediate level Vdd_io of an IO interface. The level shift circuit is configured to convert an external logical signal into a signal in an internal power domain of a chip according to the intermediate level Vdd_io of the IO interface. Also provided are an IO interface level shift method and a storage medium. The interface level shift circuit enables level shift on an external IO signal at any level in a voltage withstanding domain of a device without adding a power domain suitable for an external IO level in the circuit.
A timer block includes: a digital control block including a mode selector and a register loading a time delay; a counter coupled to the register of the digital control block, wherein the counter loads a counter value corresponding to the time delay based on an operational mode selected by the mode selector and generates a digital output indicating the counter value that is decremented at each clock; and a pulse generator configured to generate a pulse signal based on the counter value of the counter. The timer block is integrated in a programmable logic device (PLD) including a programmable fabric and a signal wrapper that is configured to provide signals between the timer block and the programmable fabric. The operational mode of the timer block is programmably configured using the programmable fabric and the signal wrapper.
A circuit includes first and second half bridges, a first inductor, a second inductor, and a main inductor. The half bridges each include a high side switch, a low side switch, and a gate driver configured to apply switching signals to the high side switch and the low side switch. The first inductor has one side electrically connected to an output node of the first half bridge between the high side switch and the low side switch. The second inductor has one side electrically connected to an output node of the second half bridge between the high side switch and the low side switch. The main inductor is coupled to a node between the other sides of the first and second inductors. The main inductor has a greater inductance than each of the first and second inductors, and the first and second inductors are inversely coupled to one another.
Some embodiments include apparatus and methods using a first latch to receive an input signal at a gate of a transistor of the first latch and compare the input signal with a reference signal to provide a first output signal at an output node of the first latch, and a second latch coupled to the output node of the first latch, the second latch including a complementary metal-oxide semiconductor (CMOS) inverter to generate a second output signal at an output node of the second latch based on the first output signal. The second output signal has a signal swing greater than a signal swing of the first output signal.
Circuits, methods, and apparatus that may compensate for an incompatibility between connection detection schemes used by different interface circuits for different connector receptacles. One example may provide an active pull-down that normally provides a pull-down resistor and provides an open circuit for a period of time following a disconnection of an interface from a cable.
Systems and methods manage power in an integrated circuit using power islands. The integrated circuit includes a plurality of power islands wherein a power consumption of each power island within the plurality of power islands is independently controlled within each of the power islands. A power manager determines a target power level for one power island of the plurality of power islands. The power manager then determines an action to change a consumption power level of the one power island of the plurality of power islands to the target power level. The power manager performs the action to change the consumption power level of the one power island of the plurality of power islands to the target power level.
A crystal oscillator package includes a crystal piece configured to vibrate in response to an electrical signal, a first vibrating part protruding from an upper surface of the crystal piece, a second vibrating part protruding from a lower surface of the crystal piece, a first exciting electrode disposed on the first vibrating part, a second exciting electrode disposed on the second vibrating part, and protrusions extending from an end portion of the lower surface of the crystal piece. The protrusions include two or more stages.
A filter chip includes a substrate, a plurality of external terminals formed on the substrate for external connection, and a plurality of passive element forming regions provided in the regions between the plurality of external terminals in plan view when viewed along a direction normal to the surface of the substrate, the plurality of passive element forming regions including at least a resistor forming region where a resistor is formed. The resistor forming region includes a resistive conductive film formed on the substrate with one end and the other end thereof electrically connected to different ones of the external terminals, and a fuse portion integrally formed with the resistive conductive film. The fuse portion is cuttably provided to electrically connect a part of the resistive conductive film to the external terminals, or to electrically separate a part of the resistive conductive film from the external terminals.
An audio playback system performs a method including identifying a first type of audio included in a first audio stream, tagging the first audio stream with a first digital tag corresponding to the first type of audio, identifying a second type of audio included in a second audio stream, tagging the second audio stream with a second digital tag corresponding to the second type of audio, rendering the first audio stream with a first equalization profile applied thereto, the first equalization profile selected responsive to the audio playback system detecting the first digital tag in the first audio stream, and rendering the second audio stream with a second equalization profile different than the first equalization profile applied thereto, the second equalization profile selected responsive to the audio playback system detecting the second digital tag in the second audio stream.
Systems, devices, and techniques for performing peak detection are described. A described receiver includes a first amplifier to amplify an input signal to generate a first amplified signal; a mixer to downconvert the first amplified signal to generate a downconverted signal; a second amplifier to amplify the downconverted signal to generate a second amplified signal; a filter, being selectably engageable by the receiver, a peak detector configured to perform voltage measurements of the second amplified signal; and switch circuitry. The switch circuitry is configured to selectably disengage the filter during a first measurement phase during which a first voltage measurement performed by the peak detector is indicative of an output voltage swing of the first amplifier, and to selectably engage the filter during a second measurement phase during which a second voltage measurement performed by the peak detector is indicative of an output voltage swing of the second amplifier.
A radio frequency (RF) power transistor circuit includes a power transistor and a decoupling circuit. The power transistor has a control electrode coupled to an input terminal for receiving an RF input signal, a first current electrode for providing an RF output signal at an output terminal, and a second current electrode coupled to a voltage reference. The decoupling circuit includes a first inductive element, a first resistor, and a first capacitor coupled together in series between the first current electrode of the power transistor and the voltage reference. The decoupling circuit is for dampening a resonance at a frequency lower than an RF frequency.
The present invention relates to a power management system (PMS) for multiple energy storage systems (ESS) that is for integrated management of the system having multiple ESS for controlling a frequency and having a hierarchical control structure. The PMS for ESS comprises: a plurality of ESS; a local management system (LMS) for managing one or more ESS of the plurality of ESS for each local unit; an ESS Controller (ESSC) for general management of the LMS, judging a state of the LMS and determining an output value of one or more ESS in the LMS, and transmitting the determined output value to the respective ESS; and a PMS for general management of the entire system comprising the plurality of ESS, the LMS and the ESSC, judging the state of the entire system and participating in a power grid frequency control market through a grid operator contract, controlling the output of the LMS, and adjusting a control parameter for output control.
A self-reconfigurable returnable mixer includes a self-reconfigurable transconductance stage. The input RF voltage signal is converted into RF current through the self-reconfigurable transconductance stage. The RF current is converted into an IF signal through down-conversion and low-pass filtering. The IF signal is fed back to the reconfigurable transconductance stage; the self-reconfigurable transconductance stage presents an open-loop structure to the input RF voltage signal, and the self-reconfigurable transconductance stage presents the topology structure of the negative feedback amplifier to the fed-back IF signal. The self-reconfigurable transconductance stage circuit achieves a high-linearity IF gain while providing a high bandwidth for the RF signal, effectively alleviating the contradiction between the conversion gain and the IF linearity in the conventional returnable structure.
A housing for an electrical connection of a solar panel is disclosed. The housing comprises a first body having a first recess positioned along a side wall, a second body having a second recess positioned along a side wall, the second body attached to the first body to define a confined space, a bushing positioned between the first body and the second body and received in each of the first recess and the second recess, and a cable extending from an exterior of the first and second bodies through the bushing and into the confined space such that the bushing seals the confined space from the exterior.
A motor control system comprises a motor control circuit, a non-transitory storage medium and a processing circuitry. The storage medium is configured to store a current threshold profile that is indicative of a current requirement of the motor control circuit for an operational cycle of a motor. The processing circuitry is configured to adjust the stored current threshold profile based on a change to the operational cycle of the motor (e.g., from standard to non-standard).
In a control device for an electric motor (101), a three-phase/two-phase conversion section (203) outputs N d-axis current values and N q-axis current values in each measurement period that is 1/N of a carrier period. An average value calculation section (204) calculates average values of those values. A difference calculation section (205) calculates a difference between a k-th d-axis current value and the average value of the d-axis current values as a d-axis current difference, and calculates a difference between a k-th q-axis current value and the average value of the q-axis current values as a q-axis current difference. A filtering section (206) performs low-pass filtering on each difference, and outputs d-axis and q-axis current correction values. A correction calculation section (207) performs a linear operation of each k-th current value and the corresponding current correction value, and outputs the corrected current values.
The present invention relates to a method for operating a doubly fed induction generator wind power facility during an OVRT event, said the wind turbine facility being adapted to inject active and/or reactive current into an associated grid, the method comprising the steps of determining the occurrence of an over voltage grid event, and maintaining a grid-side inverter of the doubly fed induction generator wind power facility fully operable during the over voltage ride though event so as to maintain a controllable active and/or reactive current capability during the over voltage grid event.
A flyback converter is provided with a synchronous rectifier (SR) controller including a pulse linear regulator (PLR) charging path and an LDO charging path. The SR controller is configured to monitor the switching period and/or duty cycle of a power switch in the flyback converter to select between the PLR and LDO charging paths.
A unit is equipped with a main battery, a pair of third wires that are connected to the main battery, a system main relay that is arranged on the third wires, a pair of fourth wires that is connected to the third wires between the system main relays and the main battery to the converter, a converter that is connected to the fourth wires, a case for accommodation, a main connector that connects the wire to a pair of first wires outside the case, and a sub-connector that connects the converter to a pair of second wires outside the case.
A circuit for clamping current in a charge pump is disclosed. The charge pump includes switching circuitry having a number of switching circuitry transistors. Each of first and second pairs of transistors in the circuit can provide an additional path for current from its associated one of the switching circuitry transistors during off-switching of that transistor so that a spike in current from the switching circuitry transistor is only partially transmitted through a path extending between the switching circuitry transistor and a capacitor of the charge pump.
An isostatic brush holder (10) comprises a central body (12), one or more arms (14, 14′) rotationally disposed in proximity of the opposite ends of said central body (12), and defining a first and a second end (16, 16′), and a plurality of brushes (20) cooperating with at least one elastic element (22), where said arms (14, 14′) define the respective first ends (16) of quick release snap catches (24, 24′), said arms being pivoted to each other at the second ends (16′), said arms being further connected in a swivelling manner and in proximity to said second ends (16′) at the opposite ends of said central body (12).
In this rectifying apparatus, a circuit board is disposed between a first rectifying element holding portion and a second rectifying element holding portion such that first rectifying element connecting portions are disposed in a loosely fitted state inside a second penetrating aperture that is formed on the second rectifying element holding portion, and second rectifying element connecting portions are disposed in a loosely fitted state inside a first penetrating aperture that is formed on the first rectifying element holding portion; first leading electrodes of a plurality of first rectifying elements respectively extend axially and are connected to each of the first rectifying element connecting portions; and second leading electrodes of a plurality of second rectifying elements respectively extend axially and are connected to each of the second rectifying element connecting portions.
An electric machine is disclosed. The electric machine may include a rotor and an endplate. The endplate may define an aperture, an inner locknut surface and a balance-ring surface. The locknut surface may extend from a periphery of the aperture to a first diameter. The balance-ring surface may extend from a second diameter that is greater than the first diameter to an outer periphery of the endplate. Before assembly, the balance-ring surface may be adjacent to the rotor and the locknut surface may be spaced apart from the rotor.
A rotor of an electric motor including a rotor core, two conductive end plates, a plurality of conductors and a casting metal is provided. The rotor core has a central hole and a plurality of slots surrounding the central hole at a predetermined interval. The two conductive end plates, disposed at two ends of the rotor core, have a plurality of fixing structures, respectively. A plurality of cavities is disposed between two neighboring fixing structures and the shape and the positions of the cavities correspond to that of the slots. The conductors are shaped as long bars and penetrate the slots. Two ends of the conductors are fixed by the fixing structures. The casting metal is injected into the cavities and the slots, and further covers the peripheral of the conductors and the fixing structures, two ends of the rotor core and outside of the two conductive end plates.
Provided is an apparatus and method that may stably perform wireless transmission. According to one general aspect, a power supply for a wireless power transmitter may include: a detecting unit configured to detect voltage, current, or both supplied to a power amplifier (PA); a controller configured to determine power supplied to the PA based on the detected voltage, the detected current, or both, and to determine a reference current based on the determined power supplied to the PA; and a breaker configured to cut off the power supplied to the PA based on a comparison of current supplied to the PA and the reference current.
A nonlinear resonator is presented that enhances the bandwidth while providing high resonance amplitude. The nonlinear resonance circuit is comprised of an inductor electrically coupled to a capacitor, where either the inductor or capacitor is nonlinear. Response of the nonlinear resonance circuit to an excitation signal is described by a family of second-order differential equations with cubic-order nonlinearity, known as Duffing equations.
In accordance with some embodiments, a transmitter for wireless transfer includes a rectifier that receives an AC voltage and provides a DC voltage; a capacitor that receives and smooths the DC voltage; a regulator that receives the DC voltage and outputs an input voltage; and a wireless transmitter that receives the input voltage and transmits wireless power.
A power tool system includes a power tool, a power tool battery pack and a battery pack charger. The power tool battery pack is separable from and attachable to the power tool, and electrically connectable to the power tool electrical terminals when attached to the power tool. The power tool battery pack has at least one battery cell, a receiver coil, and a control circuit for controlling the amount of power that is provided to the at least one battery cell. The battery pack charger has at least one transmitter coil for generating a magnetic field which induces a voltage in the receiver coil, and a control circuit for controlling the amount of power that is provided to the transmitter coil.
A power-receiving apparatus includes a power supply unit and a wireless communication unit. The power supply unit includes a first rechargeable battery that accumulates power, a power-receiving unit that receives power transferred from a power-transfer apparatus by using a radio system, and a power controller that, in a wireless charging mode, performs control of charging of the first rechargeable battery in accordance with the power received by the power-receiving unit and stops supply of the power to a main controller. The wireless charging mode is set for wirelessly charging the first rechargeable battery as an operation mode. The main controller performs control of predetermined operations of the power-receiving apparatus. The wireless communication unit operates when receiving supply of the power from the power supply unit and wirelessly communicates with the power-transfer apparatus.
Systems and methods are described for providing wireless power. In some embodiments, a method for wireless power transmission comprises sending, via an antenna of a first wireless power receiver client and during a first tone time block, a beacon signal to a wireless power transmission system. During a first power tick time block of a plurality of power tick time blocks, a wireless power signal is received from an antenna array of the wireless power transmission system. When not sending the beacon signal and when not receiving the wireless power signal, a low power mode is entered that is configured to consume less power than a power consumed by the first wireless power receiver during either the sending of the beacon signal or the receiving of the wireless power signal.
Techniques for a smart battery are described. In at least some implementations, a smart battery includes internal components that enable the smart battery to perform various actions, such as communicating with a remote device, tracking power usage, controlling power output, and so forth. In at least some implementations, a smart battery includes in internal charge circuit that enables the smart battery to be recharged via an externally-supplied charging current without damaging internal components of the smart battery. In at least some implementations, a battery application enables operational parameters of a smart battery to be configured by a remote device.
An electric power conversion device for charging and discharging energy storage devices having at least one bidirectional voltage converter which can be connected to a power supply network and to at least one electrochemical energy converter for an energy storage device that is configured as a flow battery and has a circulation arrangement for electrolytes. The electric power conversion device has a controller connected to the voltage converter and is designed to control the voltage converter with regard to the power flow direction thereof. The controller is designed to control one or more energy storage peripheral devices associated with the electrolytes depending on the power flow direction of the voltage converter specified by the controller. The controller has at least one control port for connection of at least one of these energy storage peripheral devices.
A power-supplying device includes a terminal, a rechargeable battery, a first shutdown circuit, and a second shutdown circuit. The terminal is configured to be connected to a power tool. The rechargeable battery is configured to output electrical power to the power tool via the terminal. The first shutdown circuit is positioned at a plus side of the rechargeable battery, the first shutdown circuit being configured to shutdown output of the rechargeable battery. The second shutdown circuit is positioned at a minus side of the rechargeable battery. The second shutdown circuit is configured to shutdown output of the rechargeable battery.
There are disclosed herein various implementations of a connect/disconnect module for use with a battery pack. The connect/disconnect module includes a charge/discharge current path including multiple transistors having a first safe operating area (SOA), and a pre-charge current path coupled across the charge/discharge current path. The pre-charge current path includes multiple transistors having a second SOA that is significantly greater than the first SOA.
The present disclosure is directed to a system and method for controlling an energy storage system. The energy storage system includes a plurality of battery strings connected in parallel with the battery strings having a plurality of batteries connected in series. The method includes determining, via a controller, one or more operating parameters of the energy storage system. The method also includes determining, via the controller, a maximum current rating of one or more of the battery strings. Another step includes estimating, via the controller, a voltage range for the one or more battery strings as a function of the one or more operating parameters and the maximum current rating. The method also includes dynamically controlling the one or more battery strings based on the voltage range so as to prevent over-current recharge or discharge of the parallel battery strings.
A battery pack includes one or more battery cells including at one side electrode tabs of different polarities, the electrode tabs distanced from each other in a first direction and each protruding in a second direction transverse to the first direction; and a protective circuit module connected to the one side of the one or more battery cells to control charging/discharging of the one or more battery cells, and the protective circuit module is arranged to be superposed on the one or more battery cells.
An exemplary embodiment of the present invention provides a battery module including a plurality of rechargeable batteries, a holder defining a plurality of storage spaces for holding the rechargeable batteries in a stacked configuration, a housing for enclosing the holder, and including a first cover and a second cover that face each other and press the holder, and a protective circuit module in the housing and configured to control charging and discharging operations of the rechargeable batteries.
Electronic devices may have several power supplies. Current from the power supplies may be provided to multiple loads, such as motors, processors, or other devices. When a current demand of one or more of the loads increases, current from the power supplies may be provided to meet the increased current demands of the one or more loads. To determine how much current can be provided to the loads from the power supplies, output currents of the power supplies can be determined, and a feedback voltage can be generated based on the output currents. The feedback voltage can be compared against hysteretic voltages to determine how much current may be transferred from the power supplies to the loads to compensate for the current demands of the loads.
A method for controlling energy supply to different units includes receiving, by an aggregator, the demand request signal, and performing, by the aggregator, an allocation of the requested demand modification to the units based on a negotiating process with the units for minimizing an impact of the allocation on a future operation of another utility or of other utilities. Each unit is connected to multiple utilities for receiving enemy for operating its energy systems. A demand request signal is provided by at least one operational entity and/or by at least one utility for requesting a demand modification of a utility and/or of one form of energy.
This microgrid system (100) includes: a generator device (111) for outputting power; a plurality of sub-microgrids (110) that include utility customers (112) who consume power; a shared unit (120) connected to the plurality of sub-microgrids (110), and provided with a plurality of energy storage devices (121) for storing power; and a control device (130) that, when power outputted by the generator device (111) is to be stored in the energy storage devices (121), selects an energy storage device (121) as the storage destination for the power outputted by the generator device (111), in accordance with the respective status of the plurality of energy storage devices (121), and when power is to be supplied to utility customers (112), selects an energy storage device (121) as the supply source for supplying power to the utility customers (112), in accordance with the respective status of the plurality of energy storage devices (121).
Systems and methods are provided for a three-phase compensation system, whereby an electric circuit is configured to be connected with three input phases of a power source and to supply three respective output phases, said electric circuit further configured to compensate for one or two malfunctioning input phases of said three input phases by supplying current from a functioning input phase of said three input phases to replace a malfunctioning input phase.
An energy regulation system is provided that comprises a plurality of demand resources, a metering load controller for each demand resource on the plurality of demand resources, an energy modulator capable of consuming or producing additional power on demand, a system controller communicatively connected to the metering load controller, energy modulator, and an energy source, wherein the system controller manages the energy demand from the metering load controller, the energy modulator, and the energy source.
A method performed in an electrical microgrid for facilitating connection of a first and second AC power networks. The method includes, when the power networks are disconnected, from the second power network, controlling the AC frequency of the first power network based on the AC frequency of the second power network for ensuring that when the first and second networks are connected power will flow from the power network of the first and second power networks having a higher frequency to the power network of the first and second power networks having a lower frequency. The method also includes, after the controlling, connecting the first power network to the second power network, whereby power, at the instant of connecting, flows from the power network of the first and second power networks having a higher frequency to the power network of the first and second power networks having a lower frequency.
In a particular illustrative embodiment of the present invention, an inter-island power transmission system is disclosed. An electronic box is placed on each end of a medium voltage three phase power cable running between two islands. The electronic box senses an open cable on the three phase cable and switches to direct current power transmission on the remaining two good cables. The direct current power is converted back to three phase power transmission on the receiving end of the direct current power.
A delay circuit configured to delay the disconnection of one or more line conductors from one or more load conductors, wherein the one or more line conductors are disconnected from the one or more load conductors in a tripped condition. The delay circuit includes a first switch, a second switch, and a third switch. The first switch is configured to receive a fault detection signal and trigger in response to receiving the fault detection signal. Wherein the triggering of the second switch and the third switch is delayed for an amount of time, and after the amount of time has elapsed, the second switch and the third switch are activated to place the one or more line conductors and the one or more load conductors in the tripped condition.
A wind turbine rotor blade has a blade root, a lightning protection conductor for dissipating a lightning current toward the blade root, a suction side, a pressure side, a lightning receptor arranged on the suction side, a lightning receptor arranged on the pressure side, and an integrally formed lightning receptor base, which is arranged in the wind turbine rotor blade and on which the two lightning receptors and the lightning protection conductor are fastened, wherein the lightning receptor base includes two fastening rings, which each have an internal thread, into which one of the two lightning receptors is screwed, and an outer diameter and an outer side, wherein the outer sides of the fastening rings are arranged with a spacing of less than one outer diameter from one another.
A fixing structure includes an attaching portion, a nut, and a spacer. The attaching portion has an attaching hole through which an attaching bolt provided to a vehicle body is inserted. The nut fixes the attaching portion to the vehicle body by being tightened to the attaching bolt with a washer interposed between the nut and the attaching portion. The spacer is disposed between an inner circumferential surface of the attaching hole and an outer circumferential surface of the attaching bolt, and is in contact with the vehicle body and the washer in an axial direction of the attaching bolt in a state where the attaching bolt and the nut are tightened. The spacer has an opening on a cylindrical side surface thereof and is capable of rotating around the axial direction of the attaching bolt in a state where the attaching bolt is inserted into the opening.
A plastic corrugated tube having corrugations distributed over its length and a longitudinal slit running along a lateral longitudinal line is provided. The corrugated tube can be converted into an open position by opening the longitudinal slit and into a closed position in which edge regions of the corrugated tube overlap, wherein the corrugated tube is elastically prestressed toward its closed position. The corrugations on the edge region of the corrugated tube, which in the closed position lies radially below the other edge region of the corrugated tube, are offset radially inwards within a predefined circumferential region with respect to the corrugations outside this circumferential region and are designed such that, in the closed position, they are in engagement with the radial underside of the corrugations of the other edge region, which corrugations engage over them such that they are mutually displaceable in the circumferential direction.
The present invention provides an elongated, flexible conduit precut to an intended target length. Within the flexible conduit is arranged a cable. The elongated flexible conduit according to one aspect is a fiber-reinforced polymer conduit, and the conduit and cable are arranged to be hung-off and terminated at a first end to a first structure. The flexible conduit and internally-arranged cable are pre-cut and pre-terminated to a predetermined target length, whereby, under expected cable-laying conditions, a first or primary hang-off collar at a second end of the conduit will optimally reach the hang-off interface at a second installation such as, for example a hang-off interface arranged in a corresponding deck at a second Monopile foundation. The second end of the flexible conduit comprises a primary, or a main, hang-off interface collar arranged at an intended forecast length. However, to provide for a margin of error, the second end also comprises one or more preinstalled extension segments, each having its own hang-off collar.
A light emitting element includes at least a first light reflecting layer formed on a surface of a substrate, a laminated structural body made of a first compound semiconductor layer, an active layer and a second compound semiconductor layer formed on the first light reflecting layer, and a second electrode and a second light reflecting layer formed on the second compound semiconductor layer, the laminated structural body is configured from a plurality of laminated structural body units, a light emitting element unit is configured from each of the laminated structural body units, and a resonator length in the light emitting element unit is different in every light emitting element unit.
Systems, apparatus and methods for performing laser operations in boreholes and other remote locations, such operations including laser drilling of a borehole in the earth, and laser workover and completion operations. Systems, apparatus and methods for generating and delivering high power laser energy below the surface of the earth and within a borehole. Laser operations using such down hole generated laser beams.
A semiconductor laser device includes a base; a heat sink protruding upward from the base and including an upper surface and a lateral surface extending from the base to the upper surface; a plurality of lead electrodes separated from the heat sink; a submount including: a first main surface fixed to the lateral surface of the heat sink, and a second main surface including a first fixing part, an upper second fixing part, and a lower second fixing part; a protective element fixed to the upper second fixing part; and a wire connecting the protective element and one of the plurality of lead electrodes.
Embodiments of the present disclosure include an apparatus and a method for connecting a first device and second device. An apparatus includes an angled connector configured to connect to a first device to a second device, the first device and the second device configured to communicate through signal paths in the connector, the signal paths configured to pass digital data signals, a fastening device configured to secure the angled connector to the first device.
Devices and methods of use for brush holder assemblies are disclosed. Brush holder assemblies including a mounting block and a brush holder are disclosed. Also illustrated is a brush holder assembly including a first portion in sliding engagement with a second portion. In some embodiments the brush holder includes a channel, such that at least a portion of the mounting block is disposed within the channel of the brush holder.
The present invention relates to monolithic structures for use as an electrical contact. In particular, these structures are formed from a laminate alloy, which in turn is composed of a Mn+1AXn compound. Electrical contact assemblies and electrical components having such contacts are also described herein. In some example, such monolithic structures display increased wear resistance, which is useful for sliding electrical contacts.
An arrangement for electrical lines is set forth which is mounted in a steering column switching module and/or in a steering wheel mounted on the module, equipped with its ends electrically conductively connected to one of the electrical components, which is fixedly mounted in the steering wheel switching module or in the steering wheel mounted thereon. At least two of the lines are connected with their other free ends to electrical contacts, which are arranged in at least one coupling body of insulation material in such a way that they are accessible on the plug-in side thereof. The coupling body is accessible from the outside connected with a plug-in side on or in the steering column switching module of the motor vehicle and, in the assembly position, an electrical line leading to the coupling body is connected through an electrical line leading to the onboard network.
The present invention provides a rotary connector device that enables relative rotation between the rotator and the stator to be easily and reliably fixed at a neutral position even when a steering device is disengaged. A rotary connector device (1) according to the present invention is provided with: a self-rotation pin (50) that is self-rotatable with respect to a sleeve (30) and that is provided with a pin-side notch (521) that restricts the self-rotation by coming into contact with an inner circumferential surface of a stator-side inner-circumferential cylindrical portion (23); a stationary-side gear (231) and a self-rotation-side gear (511) that transmit the relative rotation and the self-rotation in an interlocked manner; and a stationary-side switching mechanism (40) and a pin protrusion (52) that switch, in a neutral position, the self-rotation pin (50) from a released state to a restricted state.
A unidirectional cable connector that can be operatively connected between a host device and accessory device in the ecosystem of products. The cable includes first and second plug connectors at opposite ends of a wire where the two plug connectors share a common pinout but the insertion plug of the second connector is shortened in length as compared to the insertion plug of the first connector. The shortened plug prevents the second connector from being fully inserted into the host device that includes a standard depth receptacle connector, and thus prevents the second connector from being operatively coupled to the host device. The shortened plug can, however, be operatively connected with an electronic device having a shortened receptacle connector according to embodiments of the disclosure.
A sleeve assembly is disclosed, including: a sealing rubber plug, a sleeve body, a locking nuts, and a fastening wrench. The sealing rubber plug includes a rubber plug body, a through hole is disposed in the rubber plug body, and a cable that needs to be inserted into a device can be inserted into the through hole. The sleeve body has two opposite ends, a sealing ring is disposed on one end of the sleeve body, and a hollow bolt head is disposed on the other end of the sleeve body. The sleeve assembly can implement a cable protection function when the device requires high-density cable routing. Surface space of the device is not occupied during cable mounting, and mounting efficiency is high.
A floating connector includes an insulating housing, a plurality of conductive terminals installed on the insulating housing, and two soldering members. The insulating housing includes an inserting portion, two extending portions respectively connected to two opposite ends of the inserting portion, and two covering portions respectively located at the two extending portions. The inner walls of each covering portion and the corresponding extending portion co-define a limiting slot having a limiting wall and two limiting holes arranged facing the limiting wall. The two soldering members are respectively and movably arranged in the two limiting slots. Each soldering member includes a beam facing the corresponding limiting wall, two elastic arms connected to the beam and respectively arranged in the two corresponding limiting holes, and two soldering tails respectively connected to two opposite ends of the beam and passing through the corresponding limiting slot.
A radio frequency (RF) connector block assembly having a plurality of connector pin assemblies mounted within a multi-connector block is disclosed. Each connector pin assembly has a dielectric and a contact pin positioned in a housing. Multiple housings may be independently removably mounted in the multi-connector block with independently movable contact pins. A first end of each contact pin is adapted to provide electrical continuity with an external component, for example, a connector, and a second end of each contact pin terminates distally in a connection feature, which may be connected to an external structure, for example, a printed circuit board (PCB). Each contact pin moves axially in response to movement of the connection feature by engagement with the PCB.
A cable termination apparatus for an underwater cable that includes a cable crimp for electrically connecting the underwater cable to a pin; a conductive crimp screen; and an insulating portion molded on the conductive crimp screen and located radially outwardly of the conductive crimp screen.
An electrical connector, used for electrically connecting a chip module to a circuit board, comprising: an insulating body, provided with a plurality of accommodating openings; and a plurality of terminals, correspondingly accommodated in the accommodating openings respectively, wherein each terminal has a connection portion, two sides of the connection portion bend and extend to form a first clamping arm and a second clamping arm, respectively, the first clamping arm and the second clamping arm together clamp a solder material, the first clamping arm has a first upper edge and a first lower edge arranged opposite to each other, and the length of the first upper edge is not equal to the length of the first lower edge. Under conditions of not increasing the length of a metal billet, the length of the first upper edge is increased, and the length of the first lower edge is decreased.
An antenna apparatus includes an omni-directional antenna for omni-directionally transmitting or receiving a signal, and a directional antenna module including a plurality of directional antennae having different radiation angles, wherein each of the directional antennae includes a feed unit to provide a signal, at least one waveguide through which the provided signal is propagated, and at least one radiation slot designed to radiate the signal propagated through the waveguide.
An antenna system may include a first antenna, and a second antenna opposite the first antenna, wherein the first antenna and the second antenna are configured to provide omnidirectional coverage.
A directional MIMO antenna using electro-polarization is provided to realize a MIMO antenna capable of maintaining directivity utilizing an antenna using electro-polarization formed by disposing a metal strip antenna on a circuit board. The directional MIMO antenna includes a horizontal polarization line formed by disposing a plurality of horizontal polarization strips for generating horizontal polarization on one surface of a circuit board, a vertical polarization line formed by disposing a plurality of vertical polarization strips for generating vertical polarization on the other surface of the circuit board to correspond to a position of the horizontal polarization line, and a radiation antenna connected to the horizontal polarization line and the vertical polarization line.
A lens elements array comprises at least two lens elements aligned along an alignment axis. Each lens element includes a spherical lens and a feed element. The feed elements are tilted such that the RF signals generated by the feed elements have major axes form an angle (preferably between 5° and 30°) other than a perpendicular angle with respect to the alignment axis. The combined RF signals produced collectively by these feed elements have amplitude that has minimal dips across the array. The feed elements that are farther away from the center of the array have higher levels of tilts than the feed elements that are closer to the center of the array.
The present invention discloses an antenna for satellite communication having a structure for switching multiband signals. The antenna for satellite communication according to an embodiment of the present invention includes a main reflecting plate configured to be rotatable in a predetermined direction so as to be oriented in a direction in which a satellite is located, a first feed horn configured to be detachably installed in a region of an edge of the main reflecting plate, a sub-reflecting plate configured to be installed so as to be spaced apart from a reflecting surface of the main reflecting plate by a predetermined distance by at least one support means provided in a region of the main reflecting plate, and a second feed horn configured to be detachably installed on a side opposite to the reflecting surface of the sub-reflecting plate, wherein an installation position of the sub-reflecting plate is changeable.
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The present invention relates to an antenna structure for signal radiation in a transmission device. An apparatus for signal radiation includes a feeding unit configured to radiate a signal, and a guiding unit, that consists of a plurality of elements physically spaced from one another, configured to adjust a radiation pattern of the signal radiated by the feeding unit by generating a radio wave in a Transverse Electric (TE) mode. Further, the present invention also includes embodiments different from the above-described embodiment.
A system includes a central server; a reader in communication with the central server; and a set of equipment racks. Each equipment rack of the set of equipment racks defines a face. The each equipment rack includes an observer device and at least two antenna arrays. At least one of the at least two antennas is in communication with the observer device. The system further including a set of tags attached to assets disposed within the set of equipment racks. Each tag of the set of tags is to transmit a beacon signal including a tag identifier of the each tag. The at least one antenna is to receive the beacon signal. The observer device is to communicate the tag identifier and the characteristics of the beacon signal to the reader and central server. The central server determines a rack location based on the characteristics of the beacon signal.
A wireless LED tube lamp device (100) comprises: an at least partially transparent tube (7); at least one LED (1) arranged within said tube; at least one LED driver (4); a LED controller (5); an RF antenna (30; 40) coupled to the controller for receiving and sending wireless commands. The RF antenna is a curved antenna having antenna elements (31, 32, 33; 41, 42, 43) located in a common curved plane wherein said antenna comprises an array of half-loop wire antenna, and said array of half-loop wire antenna comprises a plurality of coils of line.
An exemplary battery pack includes a battery assembly and an enclosure assembly housing the battery assembly. The enclosure assembly is arranged to dissipate heat from at least two sides of the battery assembly.
Disclosed herein is a module housing of a unit module including battery cells, the module housing including a first cover member and a second cover member coupled to each other for covering entire outer surfaces of the battery cells, mounting grooves formed at an inside end of at least one of the first and second cover members such that the battery cells are mounted in the respective mounting grooves, and an injection port formed at the module housing such that a thermoplastic resin is injected to interfaces between the mounting grooves and the battery cells through the injection port in a state in which the battery cells are mounted in the module housing.
A battery module includes a battery module housing, a heat exchanger including a plurality of fins disposed in the housing, a first lithium ion battery cell and a second lithium ion battery cell disposed within the battery module housing. The first lithium ion battery cell and the second lithium ion battery cell are separated by a fin of the plurality of fins. The module includes a temperature sensing component coupled to the fin separating the first and second battery cells. Filler material is disposed within the housing and between the battery cells and the fins to mechanically restrain the battery cells within the battery module housing. The filler materials conduct thermal energy between the battery cells and the fin. The filler material covers a free end of the fin and the temperature sensing component. The temperature sensing component is coupled to a conductor extending out of the filler material.
An electrode assembly includes a first electrode at an upper part, a second electrode at a lower part, and an electrolyte membrane between the first electrode and the second electrode. Each of the first electrode and the second electrode includes an electrode active material layer, a tab portion, and a non-coated portion, the non-coated portion being located at at least one lateral side of the first electrode or the second electrode, and the non-coated portion of at least one of the first electrode and the second electrode includes at least one groove that is parallel to a thickness direction of the first electrode or the second electrode.
The present invention provides a nonaqueous electrolyte secondary battery configured such that a positive electrode, a negative electrode, and a nonaqueous electrolyte are accommodated in a battery case. The battery includes lithium bis(oxalato)borate (LiBOB) at least at the time of assembly of the battery. The negative electrode includes a film derived from the LiBOB and containing a boron atom (B) and a carbonate ion (CO32−). A ratio (mc/mb) of a molar content mc of the carbonate ion to a molar content mb of the boron atom is 4.89 or less. In a preferred aspect, when a molar content A of the LiBOB is A (mmol) and a remaining space volume in the battery case is V (cm3) at the time of the assembly, a ratio A/V is 0.053 or less.
Additives to electrolytes that enable the formation of comparatively more robust SEI films on silicon anodes. The SEI films in these embodiments are seen to be more robust in part because the batteries containing these materials have higher coulombic efficiency and longer cycle life than comparable batteries without such additives. The additives preferably contain a dicarbonate group or are an organo-metallic hydride.
Provided is a material which exhibits excellent ion conductivity and excellent processability and which can provide an electrolyte that exhibits excellent water-resistant shape retention properties after processing. A polyether copolymer having polyether segment blocks having cationic groups and hydrophobic polyether segment blocks. The polyether segments having cationic groups preferably have oxirane monomer units represented by general formula (1). The polyether copolymer may have oxirane monomer units having crosslinkable groups. An electrolyte is obtained by crosslinking a composition containing the polyether copolymer and a crosslinking agent. (In general formula (1), A+ denotes a group having an onium cation structure having a cationic nitrogen atom, and X− denotes an anion).
Energy transmission device module (20) comprising at least one cell (21) connected to cell connectors (C), allowing this at least one cell (21) to be connected to components that are external to the module (20), characterized in that it comprises at least one independent electrical power link (29) of the at least one cell (21), which is connected to two connectors (Ai, Bi) of the module, allowing simple energy transport through the module (20).
A fuel cell system includes: a processing unit configured to perform an activation process of temporarily reducing a cathode potential of a single fuel cell to a target potential for a duration time at a processing frequency; a cationic impurity amount estimating unit configured to estimate an amount of cationic impurities included in an electrolyte membrane of the single fuel cell; and a process degree determining unit configured to determine, when the amount of cationic impurities is large, a degree of the activation process which is higher than that determined when the amount of cationic impurities is small by performing at least one action among actions of changing conditions of the activation process, the actions including an action of reducing the target potential, an action of increasing the duration time, and an action of increasing the processing frequency. The processing unit performs the activation process to the determined degree.
A bipolar plate, a fuel cell, and a fuel cell stack are provided. The bipolar plate includes a first flow-field plate and a second flow-field plate. The first flow-field plate and the second flow-field plate are stacked, and the edges of the first and second flow-field plates have a continuous welding portion to seal the periphery of the bipolar plate by a welding method.
A manufacturing method of a fuel cell separator is provided, whereby the adhesion of a carbon film against a titanium base substrate can be improved and favorable corrosion resistance can be obtained at the same time. A fuel cell separator having such improved adhesion and favorable corrosion resistance is also provided. The method for manufacturing a fuel cell separator according to an embodiment of the invention includes the steps of: forming a TiOx (1
Set forth herein are positive electrode active material compositions, e.g., lithium-rich nickel manganese cobalt oxides. The lithium-rich nickel manganese cobalt oxides set forth herein are characterized, in some examples, by an expanded unit cell which maximizes the uniform distribution of transition metals in the crystalline oxide. Also set forth herein are positive electrode thin films including lithium-rich nickel manganese cobalt oxide materials. Disclosed herein are novel and inventive methods of making and using lithium-rich nickel manganese cobalt oxide materials for lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these materials.
The present disclosure provides a method for producing a composite active material with the capability of improving coating efficiency. The present disclosure achieves an object by providing a method for producing a composite active material having an oxide active material, an oxide solid electrolyte layer that coats a surface of the oxide active material, and a sulfide solid electrolyte layer that coats a surface of the oxide solid electrolyte layer, where the method comprises a coating step of forming the sulfide solid electrolyte layer by conducting a mixing treatment such that a sulfide solid electrolyte material is mixed with the oxide active material coated with the oxide solid electrolyte layer while plastically deforming the sulfide solid electrolyte material, under a pressure decompressed to less than an atmospheric pressure.
A composite anode active material including: a silicon material and a coating layer formed on at least a portion of a surface of the silicon material, wherein the coating layer is chemically bonded to the silicon material, and wherein the coating layer includes a hydrosilylation product of a C4-C30 alkene having a terminal —C(═O)OR group, wherein R is a hydrogen, a C1-C5 alkyl group, a C2-C6 heteroalkyl group, a C6-C12 aryl group, or a C7-C13 arylalkyl group, each of which except hydrogen is substituted or unsubstituted.
A prismatic secondary battery in which a deformation plate becoming deformed when a pressure inside the battery becomes equivalent to or higher than a predetermined value is disposed in a conductive path between a positive electrode plate and a positive electrode terminal. A positive electrode collector electrically connected to the positive electrode plate includes a collector body portion disposed on an electrode body side of the deformation plate, a collector connection that extends from an end of the collector body portion in a longitudinal direction of a sealing plate towards the sealing plate, and a lead portion that extends from the collector connection in the longitudinal direction of the sealing plate. A positive electrode tab portion is connected to the lead portion.
An organic light-emitting display apparatus including: a substrate; a plurality of pixels that are formed on the substrate and each have a light emission area from which visible rays are emitted and a transmission area through which external light is transmitted; a pixel circuit portion disposed in each light emission area of the plurality of pixels; a first electrode that is disposed in each light emission area and is electrically connected to the pixel circuit portion; an intermediate layer that is formed on the first electrode and includes an organic emissive layer; a second electrode formed on the intermediate layer; and a capping layer that is disposed on the second electrode and includes a first capping layer corresponding to the light emission area and a second capping layer corresponding to the transmission area. Accordingly, electrical characteristics and image quality of the organic light-emitting display apparatus may be improved.
A display device includes a display area and a non-display area. The non-display area includes a sealing area which includes a sealing material. The display area includes a thin film transistor structure, a pixel electrode on and connected to the thin film transistor structure, and a pixel defining layer overlapping an edge of the pixel electrode. A first functional layer is on substrate on which the pixel defining layer is formed and does not overlap the sealing area. A light emitting layer is on the first functional layer and overlaps the pixel electrode, and a common electrode on the light emitting layer.
A light-emitting apparatus is provided. The light-emitting apparatus includes a substrate, a light-emitting element on the substrate, a first sealing layer which seals the light-emitting element, and a second b sealing layer. The substrate includes a base, an interconnect layer disposed on the base and electrically connected to the light-emitting element, a metal layer which covers a portion of the interconnect layer, and an electrically insulating layer which covers another portion of the interconnect layer. The second sealing layer seals a boundary between the metal layer and the electrically insulating layer.
A display device for a vehicle and an automobile including the same are disclosed. In one aspect, the display device includes a display unit including an display area on which a plurality of pixels are disposed and a non-display area adjacent to the display area and bent with respect to the display area, wherein a light from the plurality of pixels emits in a front direction, and a heat radiation member adjacent to a rear surface of the display unit and including a first plate facing the rear surface of the display unit, a plurality of first heat radiation pins protruding from the first plate, a first opposite plate parallel to the first plate, and a pair of first side plates at opposite sides of the first plate.
A highly reliable micromachine, display element, or the like is provided. As a micromachine or a transistor including the micromachine, a transistor including an oxide semiconductor in a semiconductor layer where a channel is formed is used. For example, a transistor including an oxide semiconductor is used as at least one transistor in one or a plurality of transistors driving a micromachine.
An organic photoelectric conversion element, an imaging device, and an optical sensor, which can detect a plurality of wavelength regions by a single element structure, are provided. The photoelectric conversion element is formed by providing an organic photoelectric conversion portion including two or more types of organic semiconductor materials having different spectral sensitivities between the first and the second electrodes. Wavelength sensitivity characteristics of the photoelectric conversion element change according to a voltage (bias voltage) applied between the first and the second electrodes. The photoelectric conversion element is mounted in the imaging device and the optical sensor.
A silyl group-containing compound represented by Formula 1: wherein, in Formula 1, groups and variables are the same as described in the specification.
The present disclosure provides a blue luminescent material, and the blue luminescent material is a tertradentate platinum complex having a chemical structure of Formula I comprising a pyridoimidazole carbene platinum structure. The blue luminescent material of the present disclosure may be used in OLED devices and apparatus as a dopant material and emits blue light having a wavelength of 450-490 nm. The present disclosure provides a design route for a material by introducing a pyridoimidazole-type carbene into the ligand of a platinum complex. Since the carbene structure has suitable triplet energy and its carbon-platinum bond is more stable than the nitrogen-platinum bond, the entire spectrum can become narrower, which will promote development of blue luminescent material and improve performances of the devices.
Provided are a fluorine-atom-containing polymer that is a condensation polymer of a fluorine-atom-containing triphenylamine derivative giving a repeating unit represented by formula (1) and a fluorine derivative giving a repeating unit represented by formula (2) and the use of this fluorine-atom-containing polymer. (In the formulas, A represents a fluoroalkanediyl group, at least one of R1 and R2 represents any of an alkoxyl group, an alkenyloxy group, an alkynyloxy group, an aryloxy group, a heteroaryloxy group, and an alkyl group including at least one ether structure, R3-R6 represent prescribed substituents, m1 and m2 each independently represent an integer of 0-4, n1 and n2 represent an integer of 0-3.)
The present disclosure provides a display panel and a fabricating method thereof, and a display device. The fabricating method for the display panel includes forming a glass adhesive layer on a packaging region of a first substrate, forming an OLED device on a display region of the first substrate, and aligning the first substrate with a second substrate, and forming a sealing structure between the first substrate and the second substrate by irradiating the packaging region with laser. The fabricating method for the display panel according to an embodiment of the present disclosure avoids the occurrence of the phenomenon that the coated glass adhesive layer and the evaporated organic light emitting layer are offset during the subsequent packaging process, by fabricating the glass adhesive layer on the substrate for forming the OLED device, thereby the production efficiency of the overall packaging process is enhanced.
The present disclosure relates to a resistive random access memory (RRAM) device. The RRAM device has a bottom electrode arranged over a bottom electrode via. A variable resistive dielectric layer is arranged over the bottom electrode. The variable resistive dielectric layer extends to within a recess in an upper surface of the bottom electrode. A top electrode is disposed over the variable resistive dielectric layer. A top electrode via extends outward from an upper surface of the top electrode at a position centered along a first axis that is laterally offset from a second axis centered upon the recess within the upper surface of the bottom electrode. The top electrode via has a smaller total width than the top electrode.
There is provided a piezoelectric element which includes a first electrode which is formed on a substrate, a piezoelectric layer which is formed on the first electrode, and is formed from a compound oxide having an ABO3 type perovskite structure in which potassium (K), sodium (Na), niobium (Nb), and manganese (Mn) are provided, and a second electrode which is formed on the piezoelectric layer. The manganese includes bivalent manganese (Mn2+), trivalent manganese (Mn3+), and tetravalent manganese (Mn4+). A molar ratio (Mn2+/Mn3++Mn4+) of the bivalent manganese to a sum of the trivalent manganese and the tetravalent manganese is equal to or greater than 0.31.
A quartz crystal resonator unit has an overall length less than 2.1 mm and a base portion having a length less than 0.5 mm and a width less than 0.55 mm, vibrational arms, and mounting arms connected to the base portion through connecting portions. Each vibrational arm has a first vibrational portion including a first width and a first length within a range of 0.32 mm to 0.72 mm and a second vibrational portion including a second width greater than the first width and a second length less than the first length. A groove is formed in at least one main surface of the first vibrational portions of the vibrational arms, a width of the groove being less than 0.07 mm and a distance in the width direction of the groove being less than 0.015 mm. A width of the mounting arms is less than 0.45 mm and a width of the connecting portion is less than 0.41 mm.
Described are concepts, systems, circuits and techniques related to shielded through via structures and methods for fabricating such shielded through via structures. The described shielded through via structures and techniques allow for assembly of multi-layer semiconductor structures including one or more superconducting semiconductor structures (or integrated circuits).
A red phosphor including the composition represented by the following general formula. (x−a)MgO.(a/2)Sc2O3.yMgF2.cCaF2.(1−b)GeO2.(b/2)Mt2O3:zMn4+ where x, y, z, a, b, and c satisfy 2.0≤x≤4.0, 0
A light-emitting device comprises a semiconductor stack; a pad electrode comprising a periphery disposed on the semiconductor stack; and a finger electrode connected to the pad electrode, wherein the finger electrode comprises a first portion extended from the periphery of the pad electrode and a second portion away from the pad electrode, the first portion comprises a first side and a second side, the first side is opposite to the second side, the first side comprises a first arc having a first curvature radius, and the first curvature radius is larger than 10 μm.
A light emitting diode according to one embodiment comprises: a substrate; a light emitting structure including a first conductive semiconductor layer, an active layer, and a second conductive semiconductor layer, which are on the substrate; a first pad electrode part on the first conductive semiconductor layer; a current blocking layer on the second conductive semiconductor layer; a second electrode on the first conductive semiconductor layer and the current blocking layer; and a second pad electrode part on the second electrode, wherein the width of the current blocking layer can become thicker as the current blocking layer becomes closer to the first pad electrode part from the second pad electrode part.
A method of fabricating a device using a layer with a patterned surface for improving the growth of semiconductor layers, such as group III nitride-based semiconductor layers with a high concentration of aluminum, is provided. The patterned surface can include a substantially flat top surface and a plurality of stress reducing regions, such as openings. The substantially flat top surface can have a root mean square roughness less than approximately 0.5 nanometers, and the stress reducing regions can have a characteristic size between approximately 0.1 microns and approximately five microns and a depth of at least 0.2 microns. A layer of group-III nitride material can be grown on the first layer and have a thickness at least twice the characteristic size of the stress reducing regions. A device including one or more of these features also is provided.
A method for manufacturing a light emitting device includes providing an intermediate member including: at least one light emitting element that includes a plurality of electrodes arranged at a same surface side thereof, and a covering member covering the at least on light emitting element such that at least a portion of a surface of each of the plurality of electrodes is exposed; forming a metal layer that continuously covers the exposed portion of each of the electrodes and the covering member; and removing a portion of the metal layer by irradiating the metal layer with laser light to form a plurality of external connection electrodes that are spaced apart from each other, each of the plurality of external connection electrodes having an area larger than an area of respective one of the plurality of electrodes.
A light-emitting diode (LED) includes a first type semiconductor layer, a second type semiconductor layer, and an active layer. The first type semiconductor layer includes a low resistance portion and a high resistance portion. The low resistance portion is separated from at least one edge of the first type semiconductor layer by the high resistance portion, and the resistivity of the first type semiconductor layer is increased from the low resistance portion toward the high resistance portion. The active layer is disposed between the first type semiconductor layer and the second type semiconductor layer. The active layer has a first region and a second region, in which the first region has a threading dislocation density greater than that of the second region, and a vertical projection of the low resistance portion on the active layer at least partially overlaps with the second region.
A heterostructure for use in fabricating an optoelectronic device is provided. The heterostructure includes a layer, such as an n-type contact or cladding layer, that includes thin sub-layers inserted therein. The thin sub-layers can be spaced throughout the layer and separated by intervening sub-layers fabricated of the material for the layer. The thin sub-layers can have a distinct composition from the intervening sub-layers, which alters stresses present during growth of the heterostructure.
Device for harvesting direct sunlight, transmitting diffuse sunlight and for scattering light from a light source to provide illumination, including: a receiving layer including at least one solar energy collector and at least one light source; at least one optical component disposed on a first side of the receiving layer, the optical component including at least one plano-convex refracting element; a second optical component disposed on a second side of the receiving layer, the second optical component comprising at least one optical element; wherein the at least one plano-convex element is positioned to receive direct light and refract it towards the at least one optical element of the second optical component, and wherein the optical element is positioned to reflect light towards the solar energy collector; wherein the at least one optical element is positioned to refract and emit indirect light impinging thereon towards the exterior of the apparatus.
A high electrical conductive, high temperature stable foil material, a process for the preparation of such a high electrical conductive, high temperature stable foil material, a solar cell interconnector including the high electrical conductive, high temperature stable foil material as well as the use of the high electrical conductive, high temperature stable foil material and/or the solar cell interconnector in solar power, aircraft or space applications. The high electrical conductive, high temperature stable foil material includes an aluminum alloy that has at least two elements selected from the group of scandium (Sc), magnesium (Mg), zirconium (Zr), ytterbium (Yb) and manganese (Mn).
An embodiment of a method of manufacturing a semiconductor device includes providing a semiconductor material that comprises SiC and forming an electrically conductive contact layer on the semiconductor material. A non-ohmic contact is formed between the semiconductor material and the electrically conductive contact layer. The electrically conductive contact layer comprises a metal nitride with a nitrogen content between 10 to 50 atomic %. Additional embodiments of manufacturing a semiconductor device are described.
A semiconductor memory device includes a semiconductor substrate, a stacked body including a plurality of electrode films stacked on the substrate and spaced from each other in a first direction, an end portion in a second direction has a staircase shape, a conductive member adjacent to the stacked body and connected to the semiconductor substrate, a first semiconductor pillar connected to the substrate and extending through a central portion of the stacked body, a second semiconductor pillar connected to the substrate and extending through the end portion of the stacked body, a charge storage member between the first semiconductor pillar and the electrode films, an insulating member between the second semiconductor pillar and an electrode film in the end portion of the stacked body, and an insulating layer between the semiconductor substrate and the second portion of the stacked body.
The present disclosure relates to a thin film transistor, a method for manufacturing a thin film transistor and an array substrate. The thin film transistor comprises an active layer, a source and a drain, the source comprising a source first conductive layer and a source first buffer layer, the drain comprising a drain first conductive layer and a drain first buffer layer; at least a part of an upper surface of the source first buffer layer and at least a part of an upper surface of the drain first buffer layer being in contact with a lower surface of the active layer, at least a part of a side wall of the source first conductive layer and at least a part of a side wall of the drain first conductive layer being in contact with the active layer, the side wall of the source first conductive layer and the side wall of the drain first conductive layer in contact with the active layer being formed with an oxide layer. The composition of the active layer of the above thin film transistor would not be damaged by the source first conductive layer and the drain first conductive layer, in which way higher electron mobility can be guaranteed for the thin film transistor, and the thin film transistor is maintained in a good electric property and stability.
A high-performance semiconductor device with high reliability is provided. The semiconductor device includes a first transistor, a second transistor, a first metal oxide covering at least part of the first transistor, an insulating film over the first transistor and the second transistor, and a second metal oxide over the insulating film. The first transistor includes a first gate electrode, a first gate insulating film, a first oxide, a first source electrode, a first drain electrode, a second gate insulating film, and a second gate electrode. The second transistor includes a third gate electrode, a third gate insulating film, a second oxide, a second source electrode, a second drain electrode, a fourth gate insulating film, and a fourth gate electrode. The first gate insulating film and the second gate insulating film are in contact with the first metal oxide.
Transistors and methods of forming the same include forming a semiconductor fin from a first material on dielectric layer. Material is etched away from the dielectric layer directly underneath a channel region of the semiconductor fin, with the semiconductor fin still being supported by the dielectric layer in a source and drain region. A gate stack is formed around the channel region of the semiconductor fin, with a portion of the gate stack underneath the semiconductor fin being larger than a portion of the gate stack above the semiconductor fin.
A semiconductor device includes a fin feature in a substrate, a stack of semiconductor layers over the fin feature. Each of the semiconductor layers does not contact each other. The device also includes a semiconductor oxide layer interposed between the fin feature and the stack of the semiconductor layers. A surface of the semiconductor oxide layer contacts the fin feature and an opposite surface of the semiconductor oxide layer contacts a bottom layer of the stack of semiconductor layers. The device also includes a conductive material layer encircling each of the semiconductor layers and filling in spaces between each of two semiconductor layers.
A semiconductor device includes first through fourth active fins, which extend alongside one another in a first direction; and a field insulating film that covers lower portions of the first through fourth active fins, the first and second active fins protrude from the field insulating film at a first height, the third active fin protrudes from the field insulating film at a second height different from the first height, and an interval between the first and second active fins is different from an interval between the third and fourth active fins.
A laterally diffused metal-oxide semiconductor field-effect transistor, comprising a substrate, a first conductivity type well region, a second conductivity type well region, a drain electrode in the first conductivity type well region, a source electrode and a body region in the second conductivity type well region, and a gate electrode arranged across surfaces of the first conductivity type well region and the second conductivity type well region, and also comprising a floating layer ring arranged on the top of the first conductivity type well region and located between the gate electrode and the drain electrode and a plurality of groove polysilicon electrodes running through the floating layer ring and stretching into the first conductivity type well region.
The present disclosure provides a laterally diffused metal-oxide-semiconductor (LDMOS) device. The LDMOS device includes a plurality of fin structures formed on a substrate including a first device region, a second device region, and an isolation region sandwiched between the two regions. An opening is formed in the fin structures in the isolation region. The LDMOS device further includes an isolation layer formed in the opening and covering the sidewall of the opening formed by a portion of each fin structure in the first device region. The isolation layer exposes top surfaces of the plurality of fin structures. Moreover, the LDMOS device also includes a gate structure formed across each fin structure in the first device region. The gate structure covers a portion of the sidewall and the top surfaces of the fin structure formed in the first device region and also covers the top surface of the isolation layer.
In a first main surface side of a silicon carbide semiconductor base, a trench is formed. A second base region of a second conductivity type is arranged at a position facing the trench in a depth direction. An end (toward a drain electrode) of the second base region of the second conductivity type, and an end (toward the drain electrode) of a first base region of the second conductivity type reach a position deeper than an end (toward the drain electrode) of a region of a first conductivity type. Thus, the electric field at a gate insulating film at the trench bottom is mitigated, suppressing the breakdown voltage of the active region and enabling breakdown voltage design of the edge termination region to be facilitated. Further, such a semiconductor device may be formed by an easy method of manufacturing.
A semiconductor device includes a guard structure located laterally between a first active area of a semiconductor substrate and a second active area of the semiconductor substrate. The guard structure includes a first doping region located at a front side surface of the semiconductor substrate, and a wiring structure electrically connecting the first doping region to a highly doped portion of a common doping region. The common doping region extends from a backside surface of the semiconductor substrate to at least a part of the front side surface of the semiconductor substrate in contact with the wiring structure of the guard structure. Corresponding methods for forming the semiconductor device are also described.
A compound semiconductor device disclosed herein includes: a GaN carrier transit layer formed on a substrate; a barrier layer formed on the carrier transit layer; a first recess and a second recess formed in the barrier layer; a first InAlN layer and a second InAlN layer formed in the first recess and the second recess respectively, a composition ratio of In in the InAlN layers being equal to or more than 17% and equal to or less than 18%; a source electrode formed on the first InAlN layer; a drain electrode formed on the second InAlN layer; and a gate electrode formed on the barrier layer.
In a semiconductor device according to an embodiment, ends of conductor portions are electrically connected to an overvoltage protection diode so that depletion occurs in a diffusion layer in a portion near an insulating film in a reverse bias application state, and/or ends of conductor portions are electrically connected to the overvoltage protection diode so that depletion occurs in a peripheral semiconductor region in a portion near the insulating film in the reverse bias application state.
A method includes performing a first chemical mechanical polishing process to define a polished replacement gate structure having a dished upper surface, wherein the polished dished upper surface of the polished replacement gate structure has a substantially curved concave configuration. A gate cap layer is formed above the polished replacement gate structure, wherein a bottom surface of the gate cap layer corresponds to the polished dished upper surface of the polished replacement gate structure.
The present disclosure provides a method for forming a transistor, including: forming a base structure, containing a first gate structure, an active layer covering the first gate structure, and an insulating structure in the active layer; forming a second gate structure on the active layer; forming a source-drain region, including a source region and a drain region in the active layer each on a different side of the second gate structure; and forming a first interlayer dielectric layer covering the base structure and the second gate structure. The method also includes: forming a first contact hole that exposes the first gate structure by etching the first interlayer dielectric layer and the insulating structure; and forming a second contact hole that exposes the second gate structure and a third contact hole that exposes the drain region by etching the first interlayer dielectric layer.
A lateral double-diffused metal-oxide-semiconductor field effect (LDMOS) transistor includes a silicon semiconductor structure, a dielectric layer at least partially disposed in a trench of the silicon semiconductor structure in a thickness direction, and a gate conductor embedded in the dielectric layer and extending into the trench in the thickness direction. The dielectric layer and the gate conductor are at least substantially symmetric with respect to a center axis of the trench extending in the thickness direction, as seen when the LDMOS transistor is viewed cross-sectionally in a direction orthogonal to the lateral and thickness directions.
A method for forming a semiconductor device includes forming a first insulation layer on a semiconductor substrate and forming a structured etch stop layer. Further, the method includes depositing a second insulation layer after forming the structured etch stop layer and forming a structured mask layer on the second insulation layer. Additionally, the method includes etching portions of the second insulation layer uncovered by the structured mask layer and portions of the first insulation layer uncovered by the structured etch stop layer to uncover at least one of a portion of the semiconductor substrate and an electrode located within a trench. Further, the method includes depositing electrically conductive material to form an electrical contact to at least one of the uncovered electrode and the uncovered portion of the semiconductor substrate.
Techniques for VFET top source and drain epitaxy are provided. In one aspect, a method of forming a VFET includes: patterning a fin to form a bottom source/drain region and a fin channel of the VFET; forming bottom spacers on the bottom source/drain region; depositing a high-κ gate dielectric onto the bottom spacers and along sidewalls of the fin channel; forming gates over the bottom spacers; forming top spacers on the gates; partially recessing the fin channel to create a trench between the top spacers; forming a nitride liner along sidewalls of the trench; fully recessing the fin channel through the trench such that side portions of the fin channel remain intact; and forming a doped epitaxial top source and drain region over the fin channel. Methods not requiring a nitride liner and VFET formed using the present techniques are also provided.
There is provided a flexible display having a plurality of innovations configured to allow bending of a portion or portions to reduce apparent border size and/or utilize the side surface of an assembled flexible display.
In one embodiment, an apparatus includes a display stack for a touch-sensitive screen. The display stack comprises a plurality of layers in which a top layer comprises a substantially transparent cover layer. The display stack is configured to display a color image. The apparatus also includes a touch sensor provided within the display stack. The touch sensor comprises a plurality of first conductive electrodes contacting a layer of a subset of the plurality of layers of the display stack. The subset of the plurality of layers is below the substantially transparent cover layer. The touch sensor also includes a plurality of second conductive electrodes contacting a layer of the subset of the plurality of layers.
Provided is a light-emitting device that can display an image with a wide color gamut or a novel light-emitting element. The light-emitting device includes a plurality of light-emitting elements each of which includes an EL layer between a pair of electrodes. Light obtained from a first light-emitting element through a first color filter has, on chromaticity coordinates (x, y), a chromaticity x of greater than 0.680 and less than or equal to 0.720 and a chromaticity y of greater than or equal to 0.260 and less than or equal to 0.320. Light obtained from a second light-emitting element through a second color filter has, on chromaticity coordinates (x, y), a chromaticity x of greater than or equal to 0.130 and less than or equal to 0.250 and a chromaticity y of greater than 0.710 and less than or equal to 0.810. Light obtained from a third light-emitting element through a third color filter has, on chromaticity coordinates (x, y), a chromaticity x of greater than or equal to 0.120 and less than or equal to 0.170 and a chromaticity y of greater than or equal to 0.020 and less than 0.060.
Manufacturing methods of MOSFET-type compact three-dimensional memory (3D-MC) are disclosed. In a memory level stacked above the substrate, an x-line extends from a memory array to an above-substrate decoding stage. A MOSFET-type transistor is formed on the x-line as a decoding device for the above-substrate decoding stage, where the overlap portion of the x-line with the control-line (c-line) is semi-conductive.
Provided is an image-capturing unit including an image-capturing chip that includes a first surface having a pixel and a second surface that is on an opposite side of the first surface and has provided thereon an output section that outputs a pixel signal read from the pixel; a transparent substrate that is arranged facing the first surface and includes a wire pattern; a mounting substrate that is arranged facing the second surface and supports the image-capturing chip; and a relay section that is arranged on the mounting substrate and relays, to the wire pattern, the pixel signal output from the output section. Also provided is an image-capturing apparatus including the image-capturing unit described above.
There is provided a method and system for pixel-wise imaging of a scene. The method including: receiving a pixel-wise pattern, the pixel-wise pattern including a masking value for each pixel in an array of pixels of an image sensor; producing an electronic signal at each pixel when such pixel is exposed to light received from the scene; and directing the electronic signal at each pixel to one or more collection nodes associated with such pixel based on the respective masking value, the one or more collection nodes each capable of integrating the received electronic signal.
An imaging device includes: a first pixel cell including a first photoelectric conversion film having a first surface and a second surface opposite to the first surface, a first electrode on the first surface, a second electrode on the first surface, surrounding the first electrode, and a first counter electrode on the second surface, facing the first electrode and the second electrode; and a second pixel cell including a second photoelectric conversion film having a third surface and a fourth surface opposite to the third surface, a third electrode on the third surface, a fourth electrode on the third surface, surrounding the third electrode, and a second counter electrode on the fourth surface, facing the third electrode and the fourth electrode, wherein the second electrode and the fourth electrode are electrically separated from each other.
An array substrate and a manufacturing method thereof, a display panel and a display device are provided. The array substrate manufacturing method comprises: forming a source electrode and a drain electrode on a gate insulating layer; forming photoresist above the gate insulating layer and the source electrode and the drain electrode; etching the photoresist to form an opening region so as to expose the gate insulating layer between the source electrode and the drain electrode, and a part of the source electrode and a part of the drain electrode; and forming an active layer in the opening region, the active layer covering the exposed gate insulating layer, the part of the source electrode and the part of the drain electrode.
A method of manufacturing a transistor display panel and a transistor display panel, the method including forming a polycrystalline silicon layer on a substrate; forming an active layer by patterning the polycrystalline silicon layer; forming a first insulating layer covering the substrate and the active layer; exposing the active layer by polishing the first insulating layer using a polishing apparatus; and forming a second insulating layer that contacts the first insulating layer and the active layer, wherein exposing the active layer by polishing the first insulating layer includes coating a first slurry on a surface of the first insulating layer, the first slurry reducing a polishing rate of the active layer.
A display device and a manufacturing method thereof are provided, and the display device includes a color filter substrate and an array substrate which are cell-assembled, the array substrate includes a first base substrate, an organic insulating layer is formed on the first base substrate, and a via hole is formed in the organic insulating layer; the color filter substrate includes a second base substrate, a main spacer and a secondary spacer is formed on the second base substrate, an orthogonal projection of the secondary spacer is located in an orthogonal projection area of the via hole on the first base substrate, and an orthogonal projection of the main spacer is located outside of the orthogonal projection area of the via hole on the first base substrate.
A display device that includes a substrate having a display region and an adjacent peripheral region is provided, including; a plurality of sub-pixels provided within the display region; a plurality of data lines electrically connected to the sub-pixels; and a first electronic circuit group and a second electronic circuit group provided in the peripheral region, connected to the corresponding data lines. The first electronic circuit group includes a plurality of first electronic circuits, and the second electronic circuit group includes a plurality of second electronic circuits. Two adjacent first electronic circuits are arranged with a first interval therebetween, and the first interval has a first width. Two adjacent second electronic circuits are arranged with a second interval therebetween, and the second interval has a second width. The first width and the second width are different.
Provided is a display device with high display quality. The display device includes a transistor over a substrate, an inorganic insulating film over the transistor, an organic insulating film over the inorganic insulating film, a capacitor electrically connected to the transistor, and a pixel electrode over the organic insulating film. The transistor includes a gate electrode over the substrate, an oxide semiconductor film overlapping with the gate electrode, a gate insulating film in contact with one surface of the oxide semiconductor film, and a pair of conductive films in contact with the oxide semiconductor film. The capacitor includes a metal oxide film over the gate insulating film, the inorganic insulating film, and a first light-transmitting conductive film over the inorganic insulating film. The pixel electrode is formed of a second light-transmitting conductive film and in contact with one of the pair of conductive films and the first light-transmitting conductive film.
A highly flexible display device and a method for manufacturing the display device are provided. A transistor including a light-transmitting semiconductor film, a capacitor including a first electrode, a second electrode, and a dielectric film between the first electrode and the second electrode, and a first insulating film covering the semiconductor film are formed over a flexible substrate. The capacitor includes a region where the first electrode and the dielectric film are in contact with each other, and the first insulating film does not cover the region.
A semiconductor material is patterned to define elongated fins insulated from an underlying substrate. A polysilicon semiconductor material is deposited over and in between the elongated fins, and is patterned to define elongated gates extending to perpendicularly cross over the elongated fins at a transistor channel. Sidewall spacers are formed on side walls of the elongated gates. Portions of the elongated fins located between the elongated gates are removed, along with the underlying insulation, to expose the underlying substrate. One or more semiconductor material layers are then epitaxially grown from the underlying substrate at locations between the elongated gates. The one or more semiconductor material layers may include an undoped epi-layer and an overlying doped epi-layer. The epitaxial material defines a source or drain of the transistor.
A non-volatile memory device is provided. The non-volatile memory device includes a channel structure that is located on a substrate and extends perpendicularly to the substrate, a conductive pattern that extends perpendicularly to the substrate and is spaced apart from the channel structure, an electrode structure that is located between the channel structure and the conductive pattern, and comprises a plurality of gate patterns and a plurality of insulation patterns that are alternately laminated. An insulating layer that contacts with a top surface of the conductive pattern is formed along side surfaces of the electrode structure. The top surface of the conductive pattern is formed to be lower than the top surface of the channel structure.
Methods for abutting two cells with different sized diffusion regions and the resulting devices are provided. Embodiments include abutting a first cell having first drain and source diffusion regions and a second cell having second drain and source diffusion regions, larger than the first diffusion regions, by: forming a dummy gate at a boundary between the two cells; forming a continuous drain diffusion region having an upper portion crossing the dummy gate and encompassing the entire first drain diffusion region and part of the second drain diffusion region and having a lower portion beginning over the dummy gate and encompassing a remainder of the second drain diffusion region; forming a continuous source diffusion region that is the mirror image of the continuous drain diffusion region; and forming a poly-cut mask over the dummy gate between, but separated from, the continuous drain and source diffusion regions.
A cell includes at least two semiconductor structures of the same nature, these two structures both employing voltages and currents that are unidirectional, each structure having an anode (10), a cathode (14) and optionally a gate (16). The structures are integrated into the volume of one and the same semiconductor substrate (4). The cathodes (14), and possibly the gates (16), are arranged on a first side of the semiconductor substrate (4). The anodes (10) are each arranged on a second side of the semiconductor substrate (4), which side is opposite the first side, facing the cathodes and possibly the corresponding gates. Two electrodes, anodes or cathodes, of two separate structures, are electrically connected to each other.
A capacitor includes a plurality of first electrode layers stacked in a first direction, a first conductor extending in the first direction through the plurality of first electrode layers, and a first insulating layer extending in the first direction along the first conductor and located between the first conductor and the plurality of first electrode layers. The capacitor includes a first capacitance provided between the first conductor and the plurality of first electrode layers.
An integrated circuit device including a chip die having a first area with a first thickness surrounding a second area with a second thickness, the first thickness is greater than the second thickness, the chip die having a front-side and a back-side, at least one passive electrical component provided at least one of in or over the chip die in the first area on the front-side, and at least one active electrical component provided at least one of in or over the chip die in the second area on the front-side.
A method of manufacturing a semiconductor package, the method including forming a hole that penetrates an interconnect substrate; providing a first carrier substrate below the interconnect substrate; providing a semiconductor chip in the hole; forming a molding layer by coating a molding composition on the semiconductor chip and the interconnect substrate; adhering a second carrier substrate onto the molding layer with an adhesive layer; removing the first carrier substrate to expose a bottom surface of the semiconductor chip and a bottom surface of the interconnect substrate; forming a redistribution substrate below the semiconductor chip and the interconnect substrate; detaching the second carrier substrate from the adhesive layer; and removing the adhesive layer.
A semiconductor device includes a chip stack structure including a first semiconductor chip and a second semiconductor chip stacked on the first semiconductor chip. The first semiconductor chip includes a first substrate, a first circuit layer on a front surface of the first substrate, and a first connecting layer disposed on the first circuit layer and including a first metal pad electrically connected to the first circuit layer. The second semiconductor chip includes a second substrate, a second circuit layer on a front surface of the second substrate, and a second connecting layer disposed on the second circuit layer and including a second metal pad electrically connected to the second circuit layer. The first connecting layer faces the second connecting layer. The first and second metal pads are in contact with each other to couple the first and second semiconductor chips to each other.
A MEMS sensor device package comprises a sensor assembly comprising a sensor device and a sensor circuit communicating coupled to the sensor device, The MEMS sensor device package further comprises an assembly package housing having a top member and a bottom member attached to the top member for encapsulating the sensor assembly. A passageway fluidly coupled the sensor device to attributes outside the package housing the passageway is embedded into the package housing, wherein the top member comprising a top wall and side walls, the side walls are attached to the bottom member, and the passageway is embedded into at least one of the side walls.
A signal transmission insulating device includes: a first coil; a second coil opposing the first coil to form a transformer together with the first coil; a first insulating film provided between the opposing first coil and second coil and made of a first dielectric material; a second insulating film surrounding the first coil and made of a second dielectric material having a lower resistivity or a higher permittivity than the first dielectric material; and a third insulating film surrounding the second coil and made of a third dielectric material having a lower resistivity or a higher permittivity than the first dielectric material.
A method for metallization during fabrication of an Integrated Circuit (IC). The IC includes a semiconductor wafer having a back surface and a front surface. The method includes etching a via hole through the semiconductor wafer. After this, a seed metal layer is deposited on the back surface of the semiconductor wafer. Thereafter, a photoresist layer is deposited on the back surface of the semiconductor wafer such that the via hole remains uncovered. After depositing the photoresist layer, a metal layer is formed along the walls of the via hole to electrically connect the back surface and the front surface of the semiconductor wafer. Finally, the photoresist layer is removed subsequent to forming the metal layer.
A semiconductor device with a redistribution structure on partial encapsulation is disclosed and may include an electronic device having a top surface, a bottom surface, and side surfaces between the top and bottom surfaces of the electronic device. An encapsulant may encapsulate the side surfaces of the electronic device, a contact pad may be on the top surface of the electronic device, and a redistribution structure may be coupled to the contact pad. The redistribution structure may include a linear portion and a bump pad, and a conductive bump on the bump pad may include a main bump and a protruding part extending toward the linear portion, where the protruding part may be smaller than the main bump.
A printed circuit board (PCB) includes a substrate base including at least two chip attach regions spaced apart from one another, a plurality of upper pads disposed in the at least two chip attach regions of the substrate base, an accommodation cavity overlapping a part of each of the at least two chip attach regions and recessed in an upper surface of the substrate base, and at least one spacing groove recessed in the upper surface of the substrate base. The at least one spacing groove is connected to the accommodation cavity, and extends in a region between the at least two chip attach regions.
A leadframe includes a frame, a die pad, a contact including a flank adjacent to the frame, a first tie bar between the frame and die pad, and a second tie bar between the die pad and contact. The leadframe is disposed over a carrier. A semiconductor die is disposed over the die pad. An encapsulant is deposited over the leadframe and semiconductor die including between the carrier and half-etched portions of the leadframe. A first trench is formed in the encapsulant to remove a portion of the frame and expose the flank of the contact. A conductive layer is formed over the flank by electroplating. A second trench is formed in the encapsulant through the second tie bar after forming the conductive layer.
A method of forming metallic pillars between a fluid inlet and outlet for two-phase fluid cooling. The method may include; forming an arrangement of metallic pillars between two structures, the metallic pillars are electrically connected to metallic connecting lines that run through each of the two structures, the arrangement of metallic pillars located between a fluid inlet and a fluid channel, the fluid channel having channel walls running between arrangements of the metallic pillars and a fluid outlet, whereby a fluid passes through the arrangement of metallic pillars to flow into the fluid channel.
The present disclosure relates to a thermally enhanced semiconductor package having field effect transistors (FETs) with a back-gate feature. The thermally enhanced semiconductor package includes a first buried oxide (BOX) layer, a first epitaxial layer over the first BOX layer, a second BOX layer over the first epitaxial layer, a second epitaxial layer over the second BOX layer and having a source, a drain, and a channel between the source and the drain, a gate dielectric aligned over the channel, and a front-gate structure over the gate dielectric. Herein, a back-gate structure is formed in the first epitaxial layer and has a back-gate region aligned below the channel. A FET is formed by the front-gate structure, the source, the drain, the channel, and the back-gate structure.
A printed circuit module having a protective layer in place of a low-resistivity handle layer and methods for manufacturing the same are disclosed. The printed circuit module includes a printed circuit substrate with a thinned integrated passive die (IPD) attached to the printed circuit substrate. A protective layer is disposed over the thinned IPD to protect passive devices integrated within the thinned IPD, wherein the protective layer has a thermal conductivity greater than 2 watts per meter Kelvin (W/mK) and an electrical resistivity of greater than 103 Ohm-cm.
A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of at least one tip-to-tip short or leakage, at least one tip-to-side short or leakage, and at least one side-to-side short or leakage, where such measurements are obtained from cells with respective tip-to-tip short, tip-to-side short, and side-to-side short test areas, using a charged particle-beam inspector with a moving stage and beam deflection to account for motion of the stage.
A method for processing a semiconductor wafer uses non-contact electrical measurements indicative of at least one side-to-side short or leakage, at least one corner short or leakage, and at least one via open or resistance, where such measurements are obtained from non-contact pads associated with respective side-to-side short, corner short, and via open test areas.
Provided herein are methods of tungsten nitride (WN) deposition. Also provided are stacks for tungsten (W) contacts to silicon germanium (SiGe) layers and methods for forming them. The stacks include SiGe/tungsten silicide (WSix)/WN/W layers, with WSix providing an ohmic contact between the SiGe and WN layers. Also provided are methods for reducing fluorine (F) attack of underlying layers in deposition of W-containing films using tungsten hexafluoride (WF6). Apparatuses to perform the methods are also provided.
A system and method for manipulating the structural characteristics of a MEMS device include etching a plurality of holes into the surface of a MEMS device, wherein the plurality of holes comprise one or more geometric shapes determined to provide specific structural characteristics desired in the MEMS device.
A method of fabricating a contact hole structure includes providing a substrate with an epitaxial layer embedded therein. Next, an interlayer dielectric is formed to cover the substrate. After that, a first hole is formed in the interlayer dielectric and the epitaxial layer. Later, a mask layer is formed to cover a sidewall of the first hole and expose a bottom of the first hole. Subsequently, a second hole is formed by etching the epitaxial layer at the bottom of the first hole and taking the mask layer and the interlayer dielectric as a mask, wherein the first hole and the second hole form a contact hole. Then, the mask layer is removed. Finally, a silicide layer is formed to cover the contact hole.
Embodiments of the disclosure include a fixed position mask for workpiece edge treatment. In some embodiments, an apparatus includes a roplat having a rotatable assembly, and a platen coupled to the rotatable assembly, wherein the platen is configured to hold a workpiece. The apparatus further includes a bracket affixed to the rotatable assembly, and a mask directly coupled to the bracket, wherein the mask is positioned adjacent the workpiece. The mask covers an inner portion of the platen and the workpiece, leaving just an outer circumferential edge of the workpiece exposed to an ion treatment. In some embodiments, the platen is permitted to rotate relative to the bracket during an ion treatment. In some embodiments, the mask includes a solid plate section devoid of any openings, and a mounting portion extending from the plate section, wherein the mounting portion is directly coupled to an extension arm of the bracket.
There is provided a temperature control mechanism comprising: a plurality of combinations of a heater and a thyristor, wherein at least one combination of the heater and the thyristor is provided on a zone-by-zone basis, and wherein an area of an electrostatic chuck for mounting a substrate is divided into a plurality of zones; a power supply configured to supply current to heaters of the plurality of combinations respectively through the thyristors of the plurality of combinations; a pair of filters disposed at a power supply line for supplying electric power from the power supply to the heaters and configured to eliminate high frequency power applied to the power supply.
The electrostatic chuck includes a discoidal alumina ceramic substrate and a heater electrode and an electrostatic electrode embedded in the alumina ceramic substrate. The top surface of the alumina ceramic substrate is a wafer-mounting face. The heater electrode has a pattern, for example, of a single continuous line so as to realize electric wiring over the entire surface of the alumina ceramic substrate. Upon the application of a voltage, the heater electrode generates heat and heats the wafer W. The heater electrode is made of a complex oxide of titanium, aluminum, and magnesium (Ti—Al—Mg—O) dispersed in molybdenum.
An imprint apparatus includes a substrate holder including a plurality of chucking regions for chucking a substrate, and a controller that controls chucking forces of the chucking regions. The chucking regions include a first chucking region for chucking a periphery of a first substrate having a first diameter, a second chucking region for chucking a periphery of a second substrate having a second diameter larger than the first diameter, a third chucking region group divided into a plurality of regions inside the first chucking region, and a fourth chucking region group divided into a plurality of regions between the first chucking region and the second chucking region. The controller controls the chucking forces of each of the chucking regions.
A cooling apparatus includes a discrete module and a plastic housing. The discrete module includes a semiconductor die encapsulated by a mold compound, a plurality of leads electrically connected to the semiconductor die and protruding out of the mold compound and a first cooling plate at least partly uncovered by the mold compound. The plastic housing surrounds the periphery of the discrete module. The plastic housing includes a first singular plastic part which receives the discrete module and a second singular plastic part attached to a periphery of the first plastic part. The second plastic part has a cutout which exposes at least part of the first cooling plate and a sealing structure containing a sealing material which forms a water-tight seal around the periphery of the discrete module at a side of the discrete module with the first cooling plate.
Methods and techniques for fabricating metal interconnects, lines, or vias by subtractive etching and liner deposition methods are provided. Methods involve depositing a blanket copper layer, removing regions of the blanket copper layer to form a pattern, treating the patterned metal, depositing a copper-dielectric interface material such that the copper-dielectric interface material adheres only to the patterned copper, depositing a dielectric barrier layer on the substrate, and depositing a dielectric bulk layer on the substrate.
A manufacturing method of a metal gate structure includes the following steps. First, a substrate covered by an interlayer dielectric is provided. A gate trench is formed in the interlayer dielectric, wherein a gate dielectric layer is formed in the gate trench. A silicon-containing work function layer is formed on the gate dielectric layer in the gate trench. The silicon-containing work function layer includes a vertical portion and a horizontal portion. Finally, the gate trench is filled up with a conductive metal layer.
The present document discloses a semiconductor device structure (1) comprising a SiC substrate (11), an Inx1Aly1Ga1-x1-y1N buffer layer (13), wherein x1=0-1, y1=0-1 and x1+y1=1, and an Inx2Aly2Ga1-x2-y2N nucleation layer (12), wherein x2=0-1, y2=0-1 and x2+y2=1, sandwiched between the SiC substrate (11) and the buffer layer (13). The buffer layer (13) presents a rocking curve with a (102) peak having a FWHM below 250 arcsec, and the nucleation layer (12) presents a rocking curve with a (105) peak having a FWHM below 200 arcsec, as determined by X-ray Diffraction (XRD).Methods of making such a semiconductor device structure are disclosed.
There is provided a method of manufacturing a semiconductor device, which includes: forming a first seed layer containing silicon and germanium on a substrate by performing, a predetermined number of times, a cycle which includes supplying a first process gas containing silicon or germanium and containing a halogen element to the substrate, supplying a second process gas containing silicon and not containing a halogen element to the substrate, and supplying a third process gas containing germanium and not containing a halogen element to the substrate; and forming a germanium-containing film on the first seed layer by supplying a fourth process gas containing germanium and not containing a halogen element to the substrate.
Group III-nitride devices are described that include a stack of III-nitride layers, passivation layers, and conductive contacts. The stack includes a channel layer with a 2DEG channel, a barrier layer and a spacer layer. One passivation layer directly contacts a surface of the spacer layer on a side opposite to the channel layer and is an electrical insulator. The stack of III-nitride layers and the first passivation layer form a structure with a reverse side proximate to the first passivation layer and an obverse side proximate to the barrier layer. Another passivation layer is on the obverse side of the structure. Defected nucleation and stress management layers that form a buffer layer during the formation process can be partially or entirely removed.
In an embodiment, a method includes treating an edge region of a wafer including a substrate having an upper surface and one or more epitaxial Group III nitride layers arranged on the upper surface of the substrate, so as to remove material including at least one Group III element from the edge region.
In one embodiment, a substrate treatment apparatus includes cleaning and rinse modules configured to clean and rinse a surface of a substrate provided with a pattern, and a solidifying agent containing liquid supplying module configured to supply a solidifying agent containing liquid that contains a solidifying agent to the cleaned and rinsed surface of the substrate. The apparatus further includes a precipitation module configured to precipitate the solidifying agent as solid on the surface of the substrate, and a decomposition module configured to decompose and gasify the solid to remove the solid from the surface of the substrate. The solidifying agent contains an ammonium salt, and the ammonium salt contains an ammonium ion or an ion having a structure in which at least one of four hydrogen atoms of an ammonium ion is substituted with another atom or atom group.
Embodiments of target retaining apparatus and substrate processing chambers incorporating same are provided herein. In some embodiments, a target retaining apparatus includes a housing including a first slot and a second slot; a cam movably disposed in the housing, wherein movement of the cam is constrained along the first slot; a retaining arm movably coupled to the cam, wherein movement of the retaining arm is constrained along the second slot; a linking member including a first end rotatably coupled to the cam and a second end rotatably coupled to the retaining arm; and a biasing element biasing the cam towards a first position in which the retaining arm extends away from the housing.
A method of electron microscopy imaging of samples, using an electron microscope (100) having a microscope column (10) and a transfer device (11) with a grid carriage (12), comprises the steps of preparing multiple samples (1) on a single electron microscopy grid (2), including dispensing the samples (1) with a dispenser device (30) on distinct positions on the grid (2), introducing the grid (1) with the transfer device (11) into the microscope column (10), and electron microscopy imaging of the samples (1), wherein the preparing step includes holding the grid (2) on the grid carriage (12) of the transfer device (11) or on a grid holder device (20) provided at the electron microscope (100) and dispensing the samples (1) on the grid (2) while holding it on the grid carriage (12) or on the grid holder device (20). Furthermore, an electron microscope (100) for electron microscopy imaging of samples is described.
A circuit breaker includes at least one coil for measuring electric current of an electrical conductor of an electrical circuit, connected to a control unit which compares the measured current or its equivalent with a first current limit value. Upon the first current limit value being exceeded, the control unit initiates an interruption of the electrical circuit. The two terminals of the coil are connected via a series circuit which has a first switch opened in its basic state, a voltage source and a voltage indicator. The control unit is designed such that, when a second current limit value is undercut and a first period of time is exceeded, the first switch is closed for a second period of time, the voltage indicator compares the voltage present with a first voltage value and, when the latter is exceeded, delivers information on the absence of faults of the coil.
An improved bi-stable electrical solenoid switch comprising a solenoid being wound with coil windings. The solenoid having a central aperture defined therein, and the coil windings, which when engaged by a power source, generates a magnetic field. A magnetic coupling member mounted on the solenoid. A plunger partially disposed in the central aperture for movement into and out of the central aperture. A conductive plate coupled to the plunger and provided with contacts on each end of the conductive plate. The conductive plate configured to electrically engage and disengage the solenoid upon respective application of power to the solenoid. The magnetic coupling member configured to reduce the force needed by the solenoid to remain in an open position when selectively energized for moving and retaining the conductive plate of the plunger against the solenoid for allowing wide operating voltage and reduced operating power.
An active electrical component is disclosed. The active electrical component comprises a contact extending away from an outer side of the component in an insertion direction, and a force transmission structure extending to the contact in a continuous manner from a side of the component opposite the contact.
A switch, in particular a low-voltage circuit breaker, in plug-in technology includes a withdrawal shaft to move the switch from an operating position into a removal position; a force store including a storage spring unloaded during withdrawal; and an unlatching shaft which, as the circuit breaker is withdrawn, is configured to rotate into an unlatching position, unloading of the storage spring taking place when the unlatching shaft is in the unlatching position. To permit unloading of the force store during the withdrawal, the unlatching shaft includes a driver element, spaced radially apart from its axis of rotation and configured to rest in a sliding manner on an outer contour of a rotatably mounted cam disk. The withdrawal shaft and the cam disk are connected via a connecting element which transforms the rotation of the withdrawal shaft into a corresponding rotation of the cam disk and therefore, of the unlatching shaft.
Fabric supercapacitors are disclosed herein. The fabric supercapacitor can include an ion permeable separator layer having two opposed surfaces; two electrode layers disposed on the opposed surfaces of the ion permeable separator layer; and two conducting layers disposed on outer surfaces of the two electrode layers and opposite the ion permeable separator layer. The electrode layers can comprise an activated carbon fiber fabric. The activated carbon fiber fabric can be derived from a precursor fabric which has been carbonized, activated, and coated with an electrolyte. The electrolyte can include a polymer gel. The conducting layers can include a non-activated carbon fiber fabric. The fabric supercapacitors disclosed herein exhibit great flexibility which allows the supercapacitors to find use in applications such as apparel products, outdoor activity products, sports wears, and other industrial end uses. Methods of making fabric supercapacitors are also disclosed.
There is provided a tantalum capacitor including: a tantalum capacitor body; a plurality of tantalum wires and an adhesive layer on a lower surface of the tantalum capacitor body; and a molding part enclosing the tantalum capacitor body, wherein the tantalum wire and the adhesive layer are connected to an anode lead frame and a cathode lead frame, respectively.
A capacitor includes: a substrate including a plurality of trenches and a capacitance formation portion, and a margin portion disposed around the capacitance formation portion; dielectric layers disposed on one surface of the substrate and filling the trenches; a plurality of first electrode layers each disposed on one surface of the dielectric layer and each including a first lead portion led out from the capacitance formation portion to the margin portion; and a plurality of second electrode layers each disposed on one surface of the dielectric layer to face the first electrode layer with each of the dielectric layers interposed therebetween, and each including a second lead portion led out from the capacitance formation portion to the margin portion, wherein the first and second lead portions of the plurality of first and second electrode layers are stacked in a stepped shape inclined in a direction from the margin portion to the capacitance formation portion.
An insulation type step-down converter includes first and second step-down transformers each of which includes an input-side coil and an output-side coil. First, second, third, and fourth rectifier elements are connected in series with first, second, third, and fourth series coils, respectively, the first, second, third, and fourth series coils each having the output-side coil of the first step-down transformer and the output-side coil of the second step-down transformer connected in series. The first to fourth series coils are connected to smoothing coils. The connection is such that electric currents flow simultaneously only in one of the first and second series coils and one of the third and fourth series coils in an alternate manner, and electric currents flowing simultaneously in one of the first and second series coils and one of the third and fourth series coils are opposite in direction to each other.
A data cable has a specially formed stranded conductor, as a result of which the transmission properties of the data cable are significantly improved. The stranded conductor is surrounded by insulation and has an unpressed assembly composed of a plurality of individual wires which are of a same type and being embodied as external wires and being disposed around a center. The external wires are embodied with a non-round cross section, with a result that when viewed in cross section an extent of the external wires increases radially outward from the center.
An insulated wire that has a stranded wire conductor, and an insulator that covers an outer circumference of the stranded wire conductor. The stranded wire conductor is made up of at least a plurality of copper-based element wires twisted together, and has been heat-treated after circular compression. The copper-based element wire(s) has (have) an Ni-based plated layer on the surface. The Ni-based plated later has been compressed by the circular compression. The insulator is composed of a cross-linked ethylene-tetrafluoroethylene based copolymer, and has a heating deformation rate in the range of 65% or more, as determined under predetermined conditions using predetermined formulae in conformity with ISO6722.
Insulated winding wires and associated methods for forming winding wires are described. A winding wire may include a conductor and insulation formed around the conductor. The insulation may provide a partial discharge inception voltage greater than approximately 1,000 volts and a dielectric strength greater than approximately 10,000 volts. Additionally, the insulation may be capable of withstanding a continuous operating temperature of approximately 220° C. without degradation. The insulation may include at least one base layer formed around an outer periphery of the conductor, and an extruded thermoplastic layer formed around the base layer. The extruded layer may include at least one of polyetheretherketone (PEEK) or polyaryletherketone (PAEK).
The invention relates to stable compositions of carbon nanotubes and of electrolytic polymers, these electrolytic polymers being characterized by the presence of phosphonyl imide or sulfonyl imide functions or alternatively phosphoric acid functions. The invention also relates to the manufacture of transparent electrodes comprising these compositions of carbon nanotubes and of electrolytic polymers.
A sample transfer system for nuclear irradiation and a method of automatically irradiating sample containers is disclosed. The sample transfer system includes a conduit which may define a passage for transferring a plurality of sample containers, an input assembly which may be configured to allow the plurality of sample containers to pass through the conduit in a predefined order, and an exposure assembly which may be configured to receive the sample containers via the conduit and rotate the sample containers in front of a radiation source.
Methods, processes, and systems of nuclear reactor cores are provided. In one embodiment, the reactor core may comprise a nuclear fuel rod inserted into each of a plurality of moderator blocks in the reactor core; e.g., wherein the fuel comprises plutonium, carbon, hydrogen, zirconium and thorium. In some embodiments, the fuel may comprise hydrogen-containing glass microspheres, wherein the glass microspheres may be coated with a burnable poison, and other coating materials that may aid in keeping the hydrogen within the microsphere glass at relatively high temperature. The disclosed methods, processes and systems may aid in providing energy to remote areas.
An external control device for use with a neurostimulator coupled to a plurality of electrodes capable of conveying electrical stimulation energy into tissue in which the electrodes are implanted. The external control device comprises a user interface including at least one control element, a processor configured for independently assigning stimulation amplitude values to a first set of the electrodes, for linking the first set of electrodes together in response to the actuation of the at least one control element, and for preventing the stimulation amplitude values of the first linked set of electrodes from being varied relative to each other, and output circuitry configured for transmitting the stimulation amplitude values to the neurostimulator.
Embodiments of the present disclosure provide a shift register and a driving method thereof, a driving circuit, an array substrate, and a display device. The shift register comprises: a pull-up control sub-circuit, a pull-up sub-circuit, a pull-down control sub-circuit, a pull-down sub-circuit, a reset sub-circuit, a reverse sub-circuit and an output terminal. The pull-up control sub-circuit controls the pull-up for the electric level of the output terminal by the pull-up sub-circuit. The pull-down control sub-circuit controls the pull-down for the electric level of the output terminal by the pull-down sub-circuit. The reset sub-circuit resets the electric level of the output terminal. The reverse sub-circuit reverses the phase of the clock signal inputted to the pull-up sub-circuit. The circuit structure is simplified and can be applied to a narrow bezel or a screen with ultra-high resolution.
A shift register unit, a shift register, a gate driving circuit and a display device are discloses. The shift register unit has an output node Out(n) of a current stage, a pull-up node PU and a pull-down node PD, and the shift register unit includes a first capacitor module C1, a pull-down module and a pull-down control module, and the pull-down control module is configured to output one of a high level signal and a low level signal to the pull-down node (PD) in accordance with a current operating phase.
A memory device includes core memory such as flash memory for storing data. The memory device includes a first power input to receive a first voltage used to power the flash memory. Additionally, the memory device includes a second power input to receive a second voltage. The memory device includes power management circuitry configured to receive the second voltage and derive one or more internal voltages. The power management circuitry supplies or conveys the internal voltages to the flash memory. The different internal voltages generated by the power management circuitry (e.g., voltage converter circuit) and supplied to the core memory enable operations such as read/program/erase with respect to cells in the core memory.
A method for reading data stored in a flash memory. The flash memory comprises a plurality of memory cells and each memory cell has a particular threshold voltage. The method includes: obtaining a first threshold voltage distribution representing threshold voltages of a first group of the memory cells; obtaining a second threshold voltage distribution representing threshold voltages of a second group of the memory cells, wherein the second threshold voltage distribution is different from the first threshold voltage distribution, and the first group of the memory cells comprises at least a part of the second group of the memory cells; and controlling the flash memory to perform at least one read operation upon the first group of the memory cells according to the second threshold voltage distribution.
The invention introduces a method for read retries, performed by a processing unit, including at least the following steps: in boot time, generating and storing microcodes of a retry-read operation in an instruction buffer; and after a successful boot, receiving a retry-read command from a host device through a first access interface; and starting a state machine to execute the microcodes of the retry-read operation of the instruction buffer.
A method includes, in one aspect, performing a read operation on a wordline of a memory device, wherein the wordline comprises a plurality of cells that are expected to be in a first state; based on the read operation, identifying one or more of the plurality of cells that are determined to be in a second state that differs from the first state; encoding data using information pertaining to the identified cells to generate a codeword comprising a plurality of bits to be written to the wordline, with at least one of the plurality of bits, which are to be written to at least one of the identified cells, having a value corresponding to the second state; and writing the generated codeword to the wordline.
A method for controlling a resistive memory device is described. The resistive memory device including a memory cell provided between a first interconnection and a second interconnection crossing the first interconnection, and the memory cell transitions reversibly between a first resistance state and a second resistance state. The method includes detecting a first current flowing through a memory cell by applying a first voltage between the first interconnection and the second interconnection; comparing a value of the first current with a first criteria value; and determining whether the memory cell is in the first resistance state or the second resistance state. The method further includes comparing the value of the first current with a second criteria value greater than the first criteria value; and setting a first flag for the memory cell when the value of the first current is greater than the second criteria value.
A circuit includes a memory cell with a bitline. A pulldown nMOSFET has a gate terminal connected to an output port of a logic gate, and a drain terminal connected to the first bitline. A write select line is connected to a second input port of the logic gate. A pullup pMOSFET has a gate terminal connected to the write select line, and a drain terminal connected to the bitline.
Various implementations described herein are directed to a device having a memory cell coupled to complementary bitlines. The memory cell may store at least one data bit value associated with complementary bitline signals received via the complementary bitlines. The device may include a pair of write drivers coupled to the memory cell via the complementary bitlines. The pair of write drivers may be arranged to provide the complementary bitline signals to the memory cell based on complementary boost signals. The device may include a pair of complementary boost generators coupled to corresponding gates of the pair of write drivers. The pair of complementary boost generators may be arranged to selectively provide the complementary boost signals to the corresponding gates of the pair of write drivers based on the at least one data bit value.
Methods and structures useful for magnetoresistive random-access memory (MRAM) are disclosed. The MRAM device has a magnetic tunnel junction stack having a significantly improved performance of the free layer in the magnetic tunnel junction structure. The MRAM device also utilizes a three-terminal structure, thereby allowing efficient writing of the bit without a concomitant increase in read disturb.
An amplifier circuit is disclosed having an amplifier with first and second input terminals. The amplifier circuit includes a first compensation capacitor coupled to the first input terminal and having a first capacitance, a second compensation capacitor coupled to the second input terminal and having a second capacitance, a first transistor coupled between the first compensation capacitor and a reference voltage and having a gate terminal that receives a first control signal, and a second transistor coupled between the second compensation capacitor and the reference voltage and having a gate terminal for receiving a second control signal. The amplifier circuit includes a programmable latch circuit arranged to provide the first and second control signals, wherein the first and second transistors are of the same conductivity type, and the first control signal and the second control signal are complementary signals with respect to each other.
A method and playback device for controlling a working state of a mobile terminal, and a storage medium are provided. The mobile terminal is communicated with a playback device, and the playback device includes a sensor, a detector and a transmitter. The method includes: determining, by the sensor, that a current state of the playback device is in an inactive state; detecting, by the detector, whether the mobile terminal is in a working state; and sending, by the transmitter, to the mobile terminal an instruction for instructing the mobile terminal to shift into a standby state when the mobile terminal is in the working state.
A tape drive-implemented method, according to one embodiment, includes: determining a length of a window of a servo pattern to use for calculating a lateral position estimate, and determining a number of the windows of the servo pattern to use for calculating a lateral position value. A lateral position estimate is calculated for each of the number of the windows of the servo pattern. Moreover, the lateral position value is calculated by using the lateral position estimates. The lateral position value is used to control a tape head actuator. Other systems, methods, and computer program products are described in additional embodiments.
A method according to one embodiment includes recessing a portion of a media facing side of a module, the module having first and second transducers of different magnetic transducer types positioned towards the media facing side of the module, wherein the different transducer types are selected from a group consisting of data reader transducers, servo reader transducers, write transducers, piggyback read-write transducers and merged read-write transducers; wherein the recess is positioned towards one of the first transducers, wherein the recess forms a first protection structure for protecting the first transducer; and wherein the second transducer has either no protection or is protected by a second protection structure that is different than the first protection structure.
Systems, computer-implemented methods, and tangible computer-readable media are presented to provide dynamic speech processing services during variable network connectivity. The method includes monitoring, via a processor, a level of network connectivity between a device and a network server. When the level of network connectivity between the device and the network server is below a threshold, the method includes performing speech processing using a speech processor of the device. When the level of network connectivity between the device and the network server is at or above the threshold, the method includes performing speech processing using a speech processor at the network server.
An apparatus comprising: a channel analyzer configured to determine for a first frame of at least one audio signal a set of first frame audio signal multi-channel parameters; a multichannel parameter selector configured to select for the first frame a sub-set of the set of first frame audio signal multi-channel parameters based on a value associated with the first frame; and a multichannel parameter encoder configured to generate an encoded first frame audio signal multi-channel parameter based on the selected sub-set of the set of first frame audio signal multi-channel parameters.
A machine-readable medium may include a group of reusable components for building a spoken dialog system. The reusable components may include a group of previously collected audible utterances. A machine-implemented method to build a library of reusable components for use in building a natural language spoken dialog system may include storing a dataset in a database. The dataset may include a group of reusable components for building a spoken dialog system. The reusable components may further include a group of previously collected audible utterances. A second method may include storing at least one set of data. Each one of the at least one set of data may include ones of the reusable components associated with audible data collected during a different collection phase.
Systems, methods, and computer-readable storage devices for performing per-channel automatic speech recognition. An example system configured to practice the method combines a first audio signal of a first speaker in a communication session and a second audio signal from a second speaker in the communication session as a first audio channel and a second audio channel. The system can recognize speech in the first audio channel of the recording using a first model specific to the first speaker, and recognize speech in the second audio channel of the recording using a second model specific to the second speaker, wherein the first model is different from the second model. The system can generate recognized speech as an output from the communication session. The system can identify the models based on identifiers of the speakers, such as a telephone number, an IP address, a customer number, or account number.
A system for remotely generating sound from a musical instrument includes a calibration system to improve the quality of the sound produced by the musical instrument. In one embodiment, the system includes an input configured to receive a signal representative of the sound of a first musical instrument, an exciter for converting the signal to mechanical vibrations, a coupling interface for coupling the mechanical vibrations into a second musical instrument, and a calibration system for altering the signal sent to the exciter.
A drum practice apparatus is provided, including: a main body, including a base and a striking portion, the striking portion disposed on a side of the base; at least one sounding assembly, each sounding assembly including a connection member and at least one sounding member, the connection member being connected with the at least one sounding member and another side of the base opposite to the striking portion, at least one said sounding member being freely movable relative to the connection member.
A metal shell and metal inserts of an acoustic drum. In some examples, an acoustic drum having a metal shell can include one or more metal inserts configured to control the tone of the drum. In some configurations, the one or more inserts can form a portion of a bearing edge at one or more openings of the shell. Moreover, in some examples the inserts can be fitted to be in contact with the shell. The shape and configuration of the metal inserts can therefore control and refine the tone of the drum, allowing, for example, a drum with a metal shell to have a tone resembling that of a wooden drum with the sensitivity and power of a metal drum.
A wind instrument includes: a tube body; and a plurality of tone hole tubes each having an outer open end formed at the outer periphery of the tube body and an inner open end formed through the outer opening end and opening to the inside of the tube body, wherein at least one of the tube body and the tone hole tube is curved such that the plurality of outer open ends of the plurality of tone hole tubes are disposed so as to be in positions corresponding to respective fingers of the performer, and the plurality of inner open ends are connected at positions that cause the tube body to produce a predetermined pitch.
An apparatus may include a memory and graphics logic operative to render a set of one or more data frames for storage in the memory using a received set of data of a digital medium, and output one or more control signals at a first interval. The apparatus may also include a display engine operative to receive the one or more control signals from the graphics logic, retrieve the set of one or more data frames from the memory, and send the one or more data frames to a display device for visual presentation. The one or more data frames may be sent periodically in succession at a second interval corresponding to a native frame rate of the digital medium.
A differential amplifier circuit includes a differential input stage, a first current mirror, a second current mirror, a first current source circuit, and a second current source circuit. The first current source circuit has a first transistor of a first conductivity type with a control terminal supplied with a first bias voltage, and a second transistor of a second conductivity type with a control terminal supplied with a second bias voltage. An output amplifier circuit includes a third transistor of the first conductivity type and a fourth transistor of the second conductivity type. A control circuit has a fifth transistor of the first conductivity type with a first terminal connected to a connection point between the other end of the second current source circuit and the control terminal of the fourth transistor in the output amplifier circuit, with a second terminal connected to an output node of the second current mirror, and with a control terminal receiving the first bias voltage.
A source driver IC chip, designed to prevent flicker in images displayed on a display panel while suppressing power consumption and heat generation, includes: a reference gradation voltage generating part (220) configured to generate a reference gradation voltage based on a first or second gamma characteristic of the display panel, using first and second power supply voltages (VH) and (VL) inputted through first and second external terminals (PA2, PA3); and a third external terminal (PA4) for externally outputting said reference gradation voltage. The source driver IC chip further includes first and second gradation voltage generating parts configured to generate first and second gradation voltages respectively, using a reference gradation voltage based on a first gamma characteristic inputted through a fourth external terminal and a reference gradation voltage having a second gamma characteristic inputted through a fifth external terminal respectively.
Disclosed is an organic light emitting display device. In a sensing mode of sensing a threshold voltage of a driving transistor, when ripple occurs in a driving voltage applied to a drain of the driving transistor, an error may occur in the sensed threshold voltage. Therefore, when sensing a threshold voltage of a driving transistor, the display device corrects a threshold voltage of a driving transistor of each pixel included in a horizontal line having an error caused by a ripple of a driving voltage, to a threshold voltage of each pixel included in another horizontal line.
There is provided a gate driver including a plurality of gate sub-drivers electrically connected to a plurality of gate lines, wherein an (n)th gate sub-driver, of the gate sub-drivers includes a shift register configured to receive an (n−1)th carry signal from an (n−1)th gate sub-driver of the gate sub-drivers adjacent to the (n)th gate sub-driver, to synchronize the (n−1)th carry signal with a first clock signal, and to output an (n)th carry signal based on the synchronized (n−1)th carry signal, and a mask configured to output a gate signal based on the synchronized (n−1)th carry signal and a mask signal, wherein n is an integer greater than or equal to 2.
A scan driving circuit includes a plurality of stages, each having a shift register and a scan signal output unit. The shift register has a first node to receive a first driving voltage according to a control signal and a second node to receive the first driving voltage according to a reset signal. The scan signal output unit outputs scan signals to respective scan lines. The scan signal output unit has a plurality of clock switches controlled according to a voltage of the first node and a plurality of switches controlled according to a voltage of the second node. The clock switches sequentially output clock signals to respective third nodes, which are connected to respective scan lines. The switches output a second driving voltage to the third nodes.
An electroluminescent (EL) display apparatus and method of control are provided. A display screen includes gate signal lines which intersect source signal lines. A pixel provided with an EL device corresponds to each intersection of the gate and source signal lines. A driving transistor is provided for each pixel to supply a current to the EL device. A first switch transistor is provided on a current path through which the current is supplied to the EL device. A gate driver circuit is connected to the gate signal lines. The gate driver circuit includes a shift register circuit, and outputs a select or non-select signal for the gate signal lines. The gate driver circuit turns the first switch transistor on and off to control a duty ratio of the display screen. The duty ratio is controlled by a start pulse fed to the shift register circuit.
Disclosed herein are techniques for pre-processing image data for compression, e.g., image data that represents burn-in statistics for a display device. The techniques can involve receiving the image data, where the image data comprises a plurality of pixels, and each pixel of the plurality of pixels comprises at least two sub-pixel values. Next, each pixel of the plurality of pixels is quantized to produce a plurality of modified pixels. Subsequently, a series of operations are performed against each modified pixel of the plurality of modified pixels, including (1) applying an invertible transformation against the modified pixel, (2) applying a predictive coding against the modified pixel, and (3) applying an encoding of the modified pixel into a buffer as a data stream. The buffer is then compressed (as the modified pixels are serially encoded into the buffer) to produce compressed outputs that are joined together to produce a compressed image.
A device and method for temperature detection, a device and method for compensating for temperature of display panel, and a display device are disclosed. The device for temperature detection includes: a first inverter, inverting a voltage signal at an input terminal thereof to output an inverted signal; a delay assembly, delaying the inverted signal and outputting a delayed inverted signal as an output signal; a switching transistor, applying a first voltage signal to the input terminal of the first inverter from a first voltage signal terminal based on the output signal; a first capacitor, including a first terminal coupled to a first electrode of the switching transistor and a second terminal coupled to the input terminal of the first inverter; and a temperature sensing transistor, configured so that a channel current of the temperature sensing transistor is proportional to a temperature at the sub-threshold bias voltage.
A display device includes an image display panel and a control unit that outputs an output signal to the image display panel and causes an image to be displayed. The control unit includes an input signal acquisition unit that acquires a correction input signal including a control input signal in which a part of data is input signal data including information of an input signal value for causing a pixel to display a predetermined color, and another part of data is a display control code, a processing content determination unit that determine processing content for processing the input signal data to generate an output signal value of the output signal based on the display control code, and an output signal generation unit that generates the output signal based on the processing content determined by the processing content determination unit and the input signal data.
The gate driving circuit includes a shift register including a plurality of stages. An n-th stage among the plurality of stages includes: a pull-up switching element outputting a first clock to an output node in accordance with a voltage in a Q node, a pull-down switching element outputting a gate low voltage VGL to the output node in accordance with a voltage in a QB node, and a logic unit inverting and outputting a voltage in the Q node and a voltage in the QB node. The logic unit includes a first switching element including a gate to which a fourth clock is input and being between a start voltage line which supplies a start voltage and the Q node, a second switching element including a gate connected to the Q node and being connected to the QB node, a third switching element being between the second switching element and a gate low voltage line which supplies the gate low voltage, a fourth switching element including a gate to which a third clock is input and being between a gate high voltage line which supplies a gate high voltage and the QB node, a fifth switching element including a gate connected to the QB node and being between the Q node and the gate low voltage line, a first capacitor between the Q node and the output node, and a second capacitor between the gate low voltage line and the gate of the pull-down switching element.
An apparatus (100) for use in driving a display, especially a color electrophoretic display comprising frame generating means generating a succession of frame pulses at regular intervals; frame blanking generating means generating a succession of frame blanking pulses at the same intervals; a plurality of input lines each arranged to receive one of a plurality of differing input voltages (Vin1, . . . VinN), all of the same polarity; an output line capable of being connected to a device driver (106); and switching means (102A, . . . 102N) connecting the output line to one of the input lines when no frame blanking pulse is present, the switching means (102A, . . . 102N) being capable of changing the input line to which the output line is connected during successive frame periods, the switching means (102A, . . . 102N) being arranged to drain charge from the output line when a frame blanking pulse is present.
A plurality of sub-frame images are generated from an input frame image. Lightness of one or more sub-frame image included in the plurality of sub-frame images is adjusted to generate a light image and a dark image. Color-non-uniformity correction processing is performed on the light image and the dark image to reduce color non-uniformity of a display device using a correction value in accordance with an adjustment degree of the lightness.
A portable medical kit can be identified. The portable medical kit can include one or more medical consumables including bandages, an automated external defibrillator (AED), a sensor for monitoring a quantity of the consumables present in the portable medical kit and for monitoring a charge state and power level of the AED, and a wireless transceiver for communicating the quantity of consumables present in the kit, the charge state, and power level of the AED to a remotely located computing device. A proximate medical training equipment can be detected. The equipment can facilitate the training of a user with the AED or the medical training equipment. A training functionality of the portable medical kit can be activated to enable safe practice with the kit and the equipment. The training functionality can include selectable training content that specifically instructs the user on the use of the kit and the equipment.
An inexpensive and practical surgical training system to train practitioners in the use of surgical stapling and energy-based ligation instruments and procedures is provided. The system comprises a modified or simulated surgical instrument such as linear surgical stapling device having a fixed anvil and an opposed, movable jaw sized and configured to be closed upon a simulated tissue structure. A marking or inking element is associated with the jaw and anvil of the stapling device and configured to impose a visible pattern on the surfaces of simulated tissue placed between the anvil and jaw. A pressure sensitive adhesive or other adhesive is associated with the inner surfaces of the simulated tissue that is activated upon compression between the anvil and jaw to simulate surgical occlusion.
Obstruction detection and management systems and methods are performed through an Air Traffic Control (ATC) system for Unmanned Aerial Vehicles (UAVs). The obstruction detection and management method includes receiving UAV data from a plurality of UAVs, wherein the UAV data includes operational data for the plurality of UAVs and obstruction data from one or more UAVs; updating an obstruction database based on the obstruction data; monitoring a flight plan for the plurality of UAVs based on the operational data; and transmitting obstruction instructions to the plurality of UAVs based on analyzing the obstruction database with their flight plan.
In one example embodiment, an operator alertness monitoring system may include a proximate condition monitor that is configured to issue an alert to direct an operator's attention to a detected hazardous condition, and an operator alertness monitor that is configured to detect the operator's physical reaction to the issued alert and instruct the proximate condition monitor to respond to the operator's detected physical reaction to the issued alert.
The present application relates to road traffic monitoring to detect the number, speed and/or type of vehicles travelling on a road. Noise features (104) are deployed on, or formed in, the surface of a road (101). The noise feature (104) is arranged to generate a characteristic acoustic signature when traversed by the wheels of a vehicle (105) travelling within a lane of the road. A distributed acoustic sensor (102, 103) is deployed to detect occurrences of the characteristic acoustic signature. In some embodiments the noise element may comprise at least two distinct elements (104a, 104b), for instance rumble strips arranged transversely to the road, which are a known distance apart along the road. The acoustic signals from a wheel crossing both elements can be detected and used to determine the vehicle speed. The number of vehicle axles and axle separation can also be determined to categorize the type of vehicle. A plurality of noise features may be located in different lanes of a multi-lane road with noise features in different lanes arranged to generate different characteristic acoustic signatures.
A traffic monitoring system is provided. The traffic monitoring system comprises: a camera system configured to capture images of vehicles, the camera system comprising a first wireless time receiver configured to receive a wirelessly transmitted time signal; and a light system configured to selectively illuminate the vehicles, the light system being spaced apart from the camera system, wherein the light system comprises a second wireless time receiver configured to receive the wirelessly transmitted time signal such that the image capture by the camera system and the illumination by the light system is synchronized.
A method and system for using data associated with a first vehicle and a given road segment defined for a road network and using data associated with a second vehicle and the given road segment to determine a multi-vehicle probability value that indicates a probability that the first vehicle and the second vehicle will arrive at a common position of the given road segment simultaneously. The multi-vehicle probability value can be compared to a threshold probability value to determine whether the first vehicle and/or the second vehicle should take a responsive measure to avoid those vehicles arriving at the common position of the given road segment simultaneously. The data associated the first vehicle and the data associated with the second vehicle can each include a respective electronic horizon for that vehicle, and time parameters and probability values associated with those vehicles being on the given road segment.
A trainable transceiver is provided having an integrated interface connections with various vehicle modules for use with various remote electronic devices and a method of programming and using the same. The wireless trainable transceiver is in a vehicle with an integrated interface allowing connection to a human-to-machine interface and vehicle position determination device, such a navigation system and compass and the wireless trainable transceiver has the ability to change functions associated with preset buttons on the trainable transceiver, depending upon the location of the vehicle.
A central control box utilizes a receiving element configured to receive an input command, a processor configured to receive a first data signal from a first component, receive state information regarding a second component, and process the received input command based on the state information regarding the second component. The central control box further utilizes a transmitter configured to transmit the first data signal, and a storage device connected to the processor. The storage device is configured to store the state information regarding the second component. Other embodiments include a system and a method for routing a first data signal between a first component and a second component.
The present invention is related to monitoring movement, and in particular to systems and methods for securing a monitoring device to a monitor target.
A gaming device is described that provides a number of different methods for cashing out credit balances from a gaming device. These methods include providing incentives, such as benefits, to a player for selecting particular monetary forms in which to receive the cash out. Non-preferred cash out forms may be associated with disincentives, such as penalties, to dissuade players from selecting these types of monetary transfers. In certain embodiments, incentives and disincentives may be associated with a variety of available monetary forms for cash out.
Methods and systems are provided for managing a wagering system. In one exemplary embodiment, state information of a live event such as a sports game may be received in real time. During the event, a plurality of possible future states of the event and their associated probabilities (and odds) may be determined based on the state information, historical information, and current in-game information. A betting market is created for betting on the possible future states at determined odds. The betting market is closed, and winning and losing bets are resolved based on updated state information.
A system and method for facilitating group gameplay in an online game may include executing an game instance of an online game. User selected criteria may define values of one or more parameters associated with the users that may be eligible to receive benefit offers to participate in cooperative gameplay with groups towards common objectives. The benefit offers may include reward enhancements. Synchronous gameplay by the users with the groups towards one or more objectives may be facilitated. Rewards for individual ones of the users may be determined based on one or more of: whether the common objectives are successfully achieved, individual performances of the users, wager information, reward enhancements, and/or other information.
A gaming system comprising a plurality of betting terminals and a computer server comprising: a plurality of betting terminals for selecting and playing one or more live casino game(s) being played at a plurality of tables; each of the plurality of betting terminals has at least one first portion of a first screen for displaying the one or more live-casino game(s) to said player wherein the one or more live casino game(s) is a game offered in at least one casino resort, wherein a results history for each table is displayed in at least one first portion of a first screen to provide a results history display, and a switching mechanism for selecting, switching and playing one or more casino slot machine game(s) adapted to allow the player to switch between the live casino games according to at least the results history display for each table.
A gaming machine that provides an operation unit, a display unit, and a control unit. The operation unit is configured to receive an operation of the player. The display unit is operably coupled to the operation unit and is configured to display a symbol display area. The symbol display area includes a plurality of cells arranged in a grid. The control unit is operably coupled to the operation unit and the display unit and being configured to initiate a game in response to player operation and to establish an outcome of the game. During the game, the control unit, in response to a trigger condition, is further configured to establish a set of replacement symbols and to divide the set of replacements symbols into two groups and to display the replacement groups using features or feature animations.
Methods and systems for retrieving or depositing a package using a beacon are described. A locker and parking space are assigned to a user or selected by the user, and the user is able to access the locker using a mobile device. The mobile device transmits identification information to a beacon associated with the locker. This information is passed to a service provider, who identifies the user or the locker and causes the locker to open.
A system and method for determining the presence of an individual at a particular spot within a location preferably based on the strength of signals received from beacons assigned to the particular spot by a software application (“App”) running on an electronic device of the individual. In one embodiment, certain presence calculations are performed by the App. In another embodiment, the App forwards information regarding the received beacon signals to an electronic identification and location tracking system and the presence calculations are performed by the system.
Implementations relate to interactions, over a wireless communication modality, between an automated assistant of an automobile computer system, and separate client device(s). In some of those implementations, the client device(s) can be paired with the automobile computer system, and the client device(s) and the automobile computer system can include separate instances of an automated assistant, which can be associated with different user accounts. In some additional or alternative implementations, particular actions to be performed by a local application of a client device can be advanced via user interaction with the automobile automated assistant, despite a counterpart to the local application not being installed directly on automobile computer system. For example, despite an automobile computer system not having a third-party messaging application installed, the automobile automated assistant can access requested actions to be performed by the third-party messaging application in order to further a requested action. The automobile computer system can transmit, via the wireless communication modality, content to cause the third-party application to further the requested action.
Systems and methods for generating and facilitating access to a personalized augmented rendering of a user to be presented in an augmented reality environment are discussed herein. The augmented rendering of a user may be personalized by the user to comprise a desired representation of the user in an augmented reality environment. When a second user is detected within the field of view of a first user, the second user may be identified and virtual content (e.g., an augmented rendering) for the second user may be obtained. The virtual content obtained may differ based on one or more subscriptions of the first user and/or permissions associated with the virtual content of the second user. The virtual content obtained may be rendered and appear superimposed over or in conjunction with a view of the second in the augmented reality environment.
A remote expert application identifies a manipulation of virtual objects displayed in a first wearable device. The virtual objects are rendered based a physical object viewed with a second wearable device. A manipulation of the virtual objects is received from the first wearable device. A visualization of the manipulation of the virtual objects is generated for a display of the second wearable device. The visualization of the manipulation of the virtual objects is communicated to the second wearable device.
A head mountable display (HMD) includes a camera operable to capture images of a peripheral and/or control device in use by a wearer of the HMD. A detector of the HMD is configured to detect occlusions in a captured image of the peripheral and/or control device. And an image renderer of the HMD is configured to render a virtual version of the peripheral and/or control device for display to the HMD wearer and to render a representation of a user's hand at a position of a detected occlusion.
An augmented reality system comprises one or more databases storing a passable world model data comprising a set of points pertaining to real objects of the physical world, and one or more object recognizers configured for running on the passable world model data. Each of the object recognizer(s) is programmed to recognize a predetermined object of the real world based on a known geometry of a corresponding set of points. The augmented reality system further comprises a head-worn augmented reality display system configured for displaying virtual content to a user based at least in part on the recognized object.
An apparatus and related methods for applying two-dimensional (2D) texture maps onto three-dimensional (3D) objects are described. A computing device can receive differing first and second meshes representing respective first and second 3D objects and a 2D texture associated with the first 3D object. The computing device can determine correspondence points between the first and second meshes and can align the first and second meshes using an alignment transformation based on the correspondence points. The computing device can determine texture portions of the 2D texture associated with first corresponding portions of the first mesh. The computing device can assign the texture portions to second corresponding portions of the aligned second mesh. For each texture portion, the computing device can: project the texture portion onto a 2D plane related to a particular second corresponding portion and fit the projected texture portion to the particular second corresponding portion.
In various example embodiments, a system and methods are presented for generation and manipulation of three dimensional (3D) models. The system and methods cause presentation of an interface frame encompassing a field of view of an image capture device. The systems and methods detect an object of interest within the interface frame, generate a movement instruction with respect to the object of interest, and detect a first change in position and a second change in position of the object of interest. The systems and methods generate a 3D model of the object of interest based on the first change in position and the second change in position.
A method of providing a virtual experience to a user includes identifying a plurality of virtual objects. The method further includes detecting a position of a part of the user's body other than the user's head. The method further includes detecting a reference line of sight of the user. The method further includes setting an extension direction for a first virtual object of the plurality of virtual objects based on a direction of the reference line of sight. The method further includes setting a region for a first virtual object of the plurality of virtual objects, wherein the region comprises a part extending in the extension direction. The method further includes determining whether the first virtual object and a virtual representation of the part of the body have touched based on a positional relationship between the region and a position of the virtual representation of the part of the body.
A method includes receiving images of a rock sample. The method also includes modifying a set of voxels related to one or more of the received images by applying a digital pore growing operation that changes non-pore voxels surrounding a pore space to pore voxels, wherein the digital pore growing operation is based at least in part on a predetermined dead oil estimate. The method also includes estimating a property of the rock sample based at least in part on the modified set of voxels.
Systems, apparatuses, and methods for preloading caches using a direct memory access (DMA) engine with a fast discard mode are disclosed. In one embodiment, a processor includes one or more compute units, a DMA engine, and one or more caches. When a shader program is detected in a sequence of instructions, the DMA engine is programmed to utilize a fast discard mode to prefetch the shader program from memory. By prefetching the shader program from memory, the one or more caches are populated with address translations and the shader program. Then, the DMA engine discards the shader program rather than writing the shader program to another location. Accordingly, when the shader program is invoked on the compute unit(s), the shader program and its translations are already preloaded in the cache(s).
A method of image rendering includes representing a height map of terrain elevation data as a virtual texture; sampling a portion of the height map terrain elevation data on a uniform grid corresponding to render nodes used for rendering a terrain mesh, where a correspondence of the grid to the render nodes results in the sampled terrain elevation data for a render node being entirely contained within one physical page of memory, and where the equivalent position of a heightmap virtual co-ordinate in a page of physical memory is obtained based upon an offset to a physical page co-ordinate, rather than by reference to an indirection texture; and rendering terrain mesh for a render node according to terrain elevation data obtained from a single physical page of memory corresponding to respective virtual co-ordinates.
Techniques are disclosed herein for applying an artistic style extracted from one or more source images, e.g., paintings, to one or more target images. The extracted artistic style may then be stored as a plurality of layers in a neural network. In some embodiments, two or more stylized target images may be combined and stored as a stylized video sequence. The artistic style may be applied to the target images in the stylized video sequence using various optimization methods and/or pixel- and feature-based regularization techniques in a way that prevents excessive content pixel fluctuations between images and preserves smoothness in the assembled stylized video sequence. In other embodiments, a user may be able to semantically annotate locations of undesired artifacts in a target image, as well as portion(s) of a source image from which a style may be extracted and used to replace the undesired artifacts in the target image.
A method of displaying a network graph with a computing system includes accessing data defining a network and including a plurality of vertices and a plurality of edges. If a number of vertices included in the network graph is below a first threshold, the network graph is locally rendering with a scalable vector graphics rendering engine of the computing system. If a number of vertices included in the network graph is between the first threshold and a second, higher, threshold, the network graph is locally rendered with a raster rendering engine of the computing system. If a number of vertices included in the network graph is above the second threshold, a remotely-rendered network graph rendered by a remote rendering engine is received at the computing system. The method further includes displaying the rendered network graph via a web browser of the computing system.
Graph partitioning for massive scale graphs is described, such as for graphs having vertices representing people and edges representing connections between people in a social networking system; or for graphs where the vertices represent other items and the edges represent relationships between the items. In various embodiments a graph data allocator receives a graph vertex and its edges and allocates the vertex to one of a plurality of clusters each associated with one or more computing devices. In various embodiments the allocation is made by optimizing an objective function which takes into account both a cost of edges between clusters and a cost related to sizes of the clusters. In some examples the cost related to sizes of the clusters comprises a convex function applied to each of the cluster sizes. In examples, computations on the graph data are carried out with reduced runtimes and communications cost.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating a final classification output for an image of eye tissue. The image is provided as input to each of one or more segmentation neural networks to obtain one or more segmentation maps of the eye tissue in the image. A respective classification input is generated from each of the segmentation maps. For each of the segmentation maps, the classification input for the segmentation map is provided as input to each of one or more classification neural networks to obtain, for each segmentation map, a respective classification output from each classification neural network. A final classification output for the image is generated from the respective classification outputs for each of the segmentation maps.
Implementations generally relate to object based image editing. In some implementations, a method includes segmenting an image into object data by identifying one or more object classifications in the image and storing at least one locator for one or more regions of the image corresponding to each instance of the object classification. The method further includes receiving a selection of a representative portion of the segmented image from a user, and matching the representative portion with the object data to determine at least one matched object classification associated with the representative portion. The method further includes presenting the user with one or more of the matched object classifications for the user to instruct one or more edit operations to be applied to at least one object represented by the matched object classification.
Systems, devices, media, and methods are presented for segmenting an image of a video stream with a client device, identifying an area of interest, generating a modified area of interest within one or more image, identifying a first set of pixels and a second set of pixels, and modifying a color value for the first set of pixels.
An image processing apparatus includes: a detecting unit that detects regions of interest that are estimated as an object to be detected, from a group of a series of images acquired by sequentially imaging a lumen of a living body, and to extract images of interest including the regions of interest; a neighborhood range setting unit that sets, as a time-series neighborhood range, a neighborhood range of the images of interest in the group of the series of images arranged in time series so as to be wider than an interval between images that are continuous in time series in the group of the series of images; an image-of-interest group extracting unit that extracts an image-of-interest group including identical regions of interest from the extracted images of interest, based on the time-series neighborhood range; and a representative-image extracting unit that extracts a representative image from the image-of-interest group.
A method of inspecting plants for contamination includes generating a first series of images of a plant using a camera mounted to a frame being moved along a planting bed by a harvester, identifying a region of interest displayed in the first series of images as a region of contamination on the plant based on a color criterion and a morphological criterion applied to the region of interest, and transmitting data including an instruction to increase a vertical distance between the plant and a cutter of the harvester to avoid harvesting the plant in response to identifying the region of interest as the region of contamination. The method further includes generating a second series of images of an additional plant as the frame continues to be moved along the planting bed by the harvester while the vertical distance between the plant and the cutter is being increased.
A method for detecting objects in a warehouse and/or for spatial orientation in a warehouse includes: acquiring image data with a 3-D camera which is fastened to an industrial truck so that a viewing direction of the 3-D camera has a defined horizontal angle, wherein the 3-D camera has an image sensor with sensor elements arranged matrix-like and the image data comprises a plurality of pixels, wherein distance information is assigned to each pixel, calculating angle information for a plurality of image elements, which each specify an angle between a surface represented by the image element and a vertical reference plane, determining a predominant direction based on the frequency of the calculated angle information, calculating the positions of the of the acquired pixels along the predominant direction, detecting at least one main plane of the warehouse based on a frequency distribution of the calculated positions.
A method is provided for representing a first structure of a body region by digital subtraction angiography. The method includes: receiving a filler image of the body region created by an angiography apparatus, which represents a second structure of the body region and the first structure with a first contrast medium concentration in the first structure; determining a mask image of the body region representing the second structure; determining a subtraction image by editing out of the second structure from the filler image by the mask image; determining a guidance image representing the first structure based on the subtraction image; reducing image noise of the subtraction image by the guidance image; and representing the first structure based on the noise-reduced subtraction image.
A method and system for rendering a graphic object that decouples shading from rasterization is disclosed. The method includes selecting a set of points of a graphic object for shading. At least one shading parameter is determined for application to the selected set of points of the graphic object. The selected points are shaded using the shading parameter image to produce a shaded graphic object image via a graphic processor at a first frequency relative to the frame rate. The shaded graphic object image is rasterized into a frame image in parallel at a second frequency relative to the frame rate. Multiple processors may be used for the shading and rasterization.
The techniques and systems described herein are directed to capturing commands in a multi-engine graphics processing unit (GPU). Captured commands can be played back by a developer to optimize software, hardware, and drivers. To accurately capture commands and memory associated with the commands during execution, dependencies between command buffer segments associated with the various GPU engines may be determined and used to divide a command buffer segment into atomic elements (which may also be referred to as seglets). Command buffer segments are analyzed to identify synchronization commands, which may represent a point in a command buffer segment that relies on an operation to be completed in another command buffer segment. The command buffer segment can be recursively divided into seglets based on the synchronization commands. The resulting seglets represent command segments that, upon execution, operate without synchronization interference from other command buffer segments.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for distributing content items. In one aspect, a method includes identifying a content item that is eligible to be provided in response to a content item request and is associated with a bid. It is determined that the identified content item includes two or more different interactive elements that each cause different actions to be initiated in response to user interaction with the different interactive elements. An auction score is determined for the content item based on a function of the bid, a bid modifier for each different interaction, and a probability that each interaction will be invoked. The content item is selected to be provided based on the auction score. Data that cause presentation of the selected content item at a user device are output.
Various embodiments of a system and method for message-based purchasing are described. The system and method for message-based purchasing may include a message-based purchase service configured to determine that a selection has been performed through a network-based interface. Such selection may be indicative of one or more items offered for sale via the network-based interface. The message-based purchase service may be configured to, in response to the selection of one or more items, send to a communication device, a message indicating a code corresponding to the selection. The message-based purchase service may receive from the communication device through a communication channel that does not include the network-based interface, a message including the code. The message-based purchase service may be configured to, in response to determining that the message received from the communication device includes the code, generate a purchase request for the one or more previously selected items.
An intelligent shopping guiding system comprising a guide robot and a workstation computer is disclosed. The guide robot is coupled to the workstation computer, preferably over a wireless system and information between the guide robot and the workstation computer is transferred via wireless communication. As the front-end equipment of the shopping guiding system, the guide robot interacts with the customer and provides assistance and guidance to the customer to enhance their shopping experience. As the back-end equipment of the shopping guiding system, the workstation computer builds, stores, and maintains a customized message associated with a customer's unique ID number. The unique ID number is associated with the customer's personal characteristics such as, for example, biometric information, physiological, or other information suitable for identifying the customer.
A computer-implemented method for determining a zone of relevance for locating a wireless end-user and making a user notification decision including: storing information related to the enterprise in an enterprise database; storing information related to the end-user in an end-user database; accessing said enterprise and user end databases to extract enterprise and end-user related information; accessing a geographical database to extract geographic information, based on information obtained from the enterprise database; extracting relevant dynamic inputs from external sources via a predefined application programming interface; determining a value for the user notification based on weighting of said extracted information and historical use information; determining a zone of relevance for the wireless end-user; and notifying a user, wherein notifying the user meets predetermined criteria for the determined value of notification.
Techniques for providing a number of items may be described. For example, a request for a delivery of an item within a time frame may be received. An additional item may be determined based at least in part on the item and the time frame. Both items may be scheduled for delivery based at least in part on the time frame. Information associated with the items and including an option to accept a delivery of the additional item may be provided. If the option may have been selected, a delivery of the additional item may be caused.
The primary consumer objection to digital advertising is solved when content providers grant users control of the quality and relevance of ads for preferred products and services, and when and how often these ads are displayed. The invention grants users control of all advertisements on digital media platforms, as the platforms do not display advertisements. However, they do permanently display a command button icon that is initiated by the user to display advertisements, and in response to only the indicated single action being performed, the user sends a request to display advertisements. In addition, the same command button icon may be initiated by the user to remove advertisements. The method prompts user to engage in advertising for preferred products and services through paradigm shifts in permission-based marketing, e-commerce, and gamification.
The relevance of advertisements to a user's interests is improved. In one implementation, the content of a web page is analyzed to determine a list of one or more topics associated with that web page. An advertisement is considered to be relevant to that web page if it is associated with keywords belonging to the list of one or more topics. One or more of these relevant advertisements may be provided for rendering in conjunction with the web page or related web pages.
Electronic correspondence that includes one or more promotions may be generated for presenting to a consumer. In order to determine whether to present the electronic correspondence to the consumer, the promotions included in the electronic correspondences may be analyzed in terms of a probability the consumer will accept the promotions, a relevance level between the promotions and attributes of the consumer, a relevance level between the promotions and the consumer, a relevance level between the promotions and a set of goals or rules, among other similar terms. After the analysis, a determination may be made whether to send the electronic correspondence to the consumer. Similarly, the analysis may compare multiple electronic correspondences, and determine, based on the comparison, which of the multiple electronic correspondences to send to the consumer.
A method and apparatus are provided for presenting content to a caller and/or a called party in association with a telephone call or other communication connection. Content may be presented pre-ring (before the called party's telephone rings), in-call, and/or post-call, and may be related to a party participating in the call or may be related to a third party. Presentation of specified content may include assisted sharing, wherein both parties view the same content and one guides or assists the other. A received call may be split into signal and voice channels, with the signal channel used to notify a call controller of the call and the voice channel being directed to an agent selected by the call controller to handle the call.
The present invention pertains to systems and methods for managing, creating, and conducting online personal fundraising campaigns. An exemplary embodiment of the present invention sets forth a system, method and computer program product for creating and managing online personal fundraising campaigns. In an exemplary embodiment, the method may include, e.g., but not limited to, receiving a request to establish a personal fundraising campaign from an initiator for benefit of a beneficiary at a central controller; receiving a plurality of donations at the controller; and disbursing at least a portion of the funds to the beneficiary.
Various embodiments are related to apparatuses and methods for basing actions on a location of a card swipe. A computer system receives information indicative of a location of a mobile device associated with a customer at a time corresponding to a swipe of a payment card at a card reader of a merchant. The location information can indicate, for example, the location of the mobile device as being at a GPS coordinate, or at a merchant's place of business. When the location information indicates that the mobile device and the card swipe are located near to each other, or are both located at the same merchant's place of business, a reduced level of fraud analysis can be used when authorizing the purchase transaction. A targeted ad can be sent to a mobile device associated with the customer based on the location of the card reader used for the card swipe.
A non-transitory computer-readable medium stores instructions causing a processor to authorize a second party to use a financial account card. The instructions comprise instructions to receive, from a first wireless device associated with a first party, a selection of a financial account card from a user input device of the first wireless device; assign, to the selected financial account card, an identity of a second party that is authorized to use the selected financial account card; receive, from a second wireless device, a request to authorize a transaction using the selected financial account card; receive an indicator of an identity of a user of the second wireless device; and authorize the transaction, based on the received indicator, when the identity of the user of the second wireless device is the authorized second party.
A method and system for provisioning payment credentials usable by a mobile device in conducting a payment. The method is conducted at a provisioning system and comprises the steps of: receiving payment credentials from a receiving device, the payment credentials having been obtained from a portable payment device presented by a consumer at the receiving device; receiving, from the receiving device, an identifier entered by the consumer; identifying a mobile device or a secure element corresponding to the identifier; and communicating the payment credentials or a derivation of the payment credentials to the identified mobile device or the secure element to be securely stored in association with the mobile device. The method may include: encrypting the received payment credentials, the encrypted payment credentials having a unique decryption key; and wherein communicating a derivation of the payment credentials communicates the unique decryption key.
Assets are managed using policies. Locations of the assets are also determined. A policy may apply to an asset as determined based on the location of the asset. If a policy applies to the asset, a control function is performed.
In some embodiments, systems and methods are provided herein useful to enable delivery of commercial products to customers. In some embodiments, the system comprises an autonomous ground vehicle on a delivery route to deliver commercial products to a person of interest. The AGV comprises control circuits communicatively coupled to sensors. The control circuits, using sensor data, determines whether a person positioned within a threshold distance relative to the AGV is the PoI; allow the PoI to designate an intention of a second person positioned within the threshold distance as being friendly or adverse relative to the PoI; determine the intention of the second person; receive a command from the PoI overriding the determination that the second person's intention is adverse to the PoI; and allow the PoI to take possession of the commercial products when the designated intention is friendly relative to the PoI and the command is received.
A system for identifying and tracking performance of operators in a warehouse. The system comprises at least one robot configured to interact with the operators in the warehouse. The at least one robot includes a first transceiver, a proximity detector, and a memory. The first transceiver defines a zone surrounding the robot and the proximity detector is coupled to the first transceiver. The proximity detector is configured to detect entry, into the zone, of an operator and to detect exit of the operator from the zone. The memory contains information identifying said operators who have entered and exited the zone.
A device may provide a user interface for receiving project information for a software implementation project. The project information may be associated with a set of requirements defining the software implementation project. The project information may be associated with a set of deliverables describing results of the software implementation project. The device may generate an initial project plan based on the project information. The device may receive information regarding the initial project plan during fulfillment of the project plan. The device may selectively provide an alert associated with the initial project plan based on receiving the information regarding the initial project plan. The device may selectively generate a modified project plan based on receiving the information regarding the project plan.
Systems and methods for using a mathematical model based on historical natural language inputs to automatically complete form fields are disclosed. An incident report may be defined with a set of required parameter fields such as category, priority, assignment, and classification. Incident report submission forms may also have other free text input fields providing information about a problem in the natural vocabulary of the person reporting the problem. Automatic completion of these so-called parameter fields may be based on analysis of the natural language inputs and use of machine learning techniques to determine appropriate values for the parameter fields. The machine learning techniques may include parsing the natural language input to determine a mathematical representation and application of the mathematical representation to “match” historically similar input. Once matched the parameter values from the historically similar input may be used instead of generic default values.
A system and method for identifying an unknown person based on a static posture of the unknown person is described. The method includes receiving data of N skeleton joints of the unknown person from a skeleton recording device. The method further includes identifying the static posture of the unknown person. The method includes dividing a skeleton structure of the unknown person in a plurality of body parts based on joint types of the skeleton structure. In addition, the method includes extracting feature vectors for each of the joint type from each of the plurality of body parts. The method further includes identifying the unknown person based on comparison of the feature vectors for the unknown person with one of a constrained feature dataset and an unconstrained feature dataset for a plurality of known persons.
Embodiments of the invention relate to a scalable neural hardware for the noisy-OR model of Bayesian networks. One embodiment comprises a neural core circuit including a pseudo-random number generator for generating random numbers. The neural core circuit further comprises a plurality of incoming electronic axons, a plurality of neural modules, and a plurality of electronic synapses interconnecting the axons to the neural modules. Each synapse interconnects an axon with a neural module. Each neural module receives incoming spikes from interconnected axons. Each neural module represents a noisy-OR gate. Each neural module spikes probabilistically based on at least one random number generated by the pseudo-random number generator unit.
A payment card (e.g., credit and/or debit card) is provided with a magnetic emulator operable of communicating information to a magnetic stripe reader. Information used in validating a financial transaction is encrypted based on time such that a validating server requires receipt of the appropriate encrypted information for a period of time to validate a transaction for that period of time. Such dynamic information may be communicated using such an emulator such that a card may be swiped through a magnetic stripe reader—yet communicate different information based on time. An emulator may receive information as well as communicate information to a variety of receivers (e.g., an RFID receiver).
A circuit includes an antenna circuit including a number of capacitors and an inductor. The antenna circuit is configured to transmit an output signal upon receiving an input transmit signal. A first control block is configured to transmit an enabling signal upon detecting a presence of a supply voltage at a feeding terminal of the actively transmitting tag in response to the actively transmitting tag being inserted into a host device. A VCO is configured to generate the input transmit signal with the frequency of the interrogator carrier signal upon receiving the enabling signal from the first control block and upon receiving the control voltage from the memory. A second control block is configured to enable a subset of the plurality of capacitors of the antenna circuit upon receiving the enabling signal from the first control block.
An RFID tag is disclosed that is formed as part of a printed fabric label (PFL). Generally, foil is adhered to a fabric material with a releasable adhesive, the foil is then cut, such as by a laser to define the antenna pattern and a removable portion. The removable portion is then manually stripped away, and a strap is then attached with adhesive to the antenna. A small square of hot melt over-laminate may be placed over the strap and bonded, and then a top layer of fabric is added and secured with an adhesive from a transfer tape.
What is disclosed is a system and method for isolating blood vessels in a thermographic image of a patient's breast or any other muscular region of the body. A thermographic image of a patient is received. A temperature-based analysis is performed on the image to detect vessel pixels. An intensity-based method analysis is performed on the image. A shape-based analysis is also performed to detect pixels of vessel-like structures. Candidate pixels which satisfy one or more of intensity-based or temperature-based or shaped-based criterion are identified. A constraint of local maximallity is thereafter imposed on each candidate pixel that satisfies both criterion to eliminate spurious non-vessel pixels. Candidate pixels which satisfy both criterion are then marked with a different color such that the vessel structures in the breast tissue can be visually differentiated. The vessel structures are provided to a classifier system which classifies the tissue in the thermal image as malignant and non-malignant otherwise, based on a tortuosity of the vessel structures.
To accurately determine whether there is a sharp change in a frame.Provided is an image processing device including: a histogram generating unit configured to generate a previous histogram showing a distribution of pixel values in a previous frame that is generated before a predetermined frame and a current histogram showing a distribution of pixel values in the predetermined frame; a normalizing unit configured to perform normalization to match variations of the pixel values of the previous histogram and the current histogram; and a similarity determining unit configured to acquire a degree of similarity of shapes of the previous histogram and the current histogram after the normalization and determine whether the degree of similarity is greater than a predetermined similarity determining threshold value.
In various example embodiments, a system and method are provided for automated estimation of a saliency map for an image based on a graph structure comprising nodes corresponding to respective superpixels on the image, the graph structure including boundary-connecting nodes that connects each non-boundary node to one or more boundary regions. Each non-boundary node is in some embodiments connected to all boundary nodes by respective boundary-connecting edges forming part of the graph. Edge weights are calculated to generate a weighted graph. Saliency map estimation comprises bringing respective nodes for similarity to a background query. The edge weights of at least some of the edges are in some embodiments calculated as a function of a geodesic distance or shortest path between the corresponding nodes.
The electric pen device includes an optical system including a lens and an image sensor configured to convert an image signal of light that has passed through the optical system to an electrical signal. The electric pen device includes a control board configured to interact with an electronic device and a communication module configured to communicate by wire or wirelessly with the electronic device, so that an image or a picture taken by a camera is confirmed and an optical zoom is controlled from the external electronic device.
System and techniques for preventing face-based authentication spoofing are described herein. A visible light emitter may be controlled to project a pattern into a camera's field of view during an authentication attempt. An image may be obtained from the camera for the authentication attempt. A potential spoofing region on image may be identified by finding the pattern. An authentication attempt based on a face found in the potential spoofing region may be prevented.
Aspects of the disclosure relate to classifying the status of objects. For examples, one or more computing devices detect an object from an image of a vehicle's environment. The object is associated with a location. The one or more computing devices receive data corresponding to the surfaces of objects in the vehicle's environment and identifying data within a region around the location of the object. The one or more computing devices also determine whether the data within the region corresponds to a planar surface extending away from an edge of the object. Based on this determination, the one or more computing devices classify the status of the object.
A measuring device includes a data acquisition unit that acquires measurement data, including width direction acceleration of a road surface on which a moving object moves, from an acceleration sensor provided on a structure having the road surface, and a moving object information acquisition unit that acquires information relating to the moving object moving on the road surface, on the basis of the width direction acceleration.
Systems and methods for replacing original media bookmarks of at least a portion of a digital media file with replacement bookmarks is described. A media fingerprint engine detects the location of the original fingerprints associated with the portion of the digital media file and a region analysis algorithm characterizes regions of media file spanning the location of the original bookmarks by data class types. The replacement bookmarks are associated with the data class types and are overwritten or otherwise are substituted for the original bookmarks. The replacement bookmarks then are subjected to a fingerprint matching algorithm that incorporates media timeline and media related metadata.
Augmented reality (AR) based component replacement and maintenance may include receiving a first wireless signal from a pair of AR glasses worn by a user. An image of a component viewed by the user may be analyzed and compared to a plurality of images of components stored in a database that includes information associated with the plurality of images of the components. Based on a match of the image of the component viewed by the user to one of the plurality of images of the components stored in the database, the component viewed by the user may be identified. An inventory of the identified component may be analyzed to determine whether a supplier includes the identified component in stock, and in response to a determination that the supplier includes the identified component in stock, an estimated time of delivery of the identified component to the user may be determined.
An acoustic imaging system includes multiple acoustic transducers disposed to circumscribe a portion of imaging surface. An acoustic imaging system also includes a controller and an image resolver. The acoustic transducers convert electrical signals into mechanical energy and/or mechanical energy into electrical signals. The controller is adapted to apply an electrical signal to the acoustic transducers which, in response, induce a mechanical wave, such as a surface wave, into the circumscribed portion. The controller is also adapted to receive electrical signals from the acoustic transducers. The image resolver uses the electrical signals received by the controller in order to construct an image of an object in physical contact with the imaging surface.
An information recording medium according to one embodiment includes a substrate, a first image, and a second image. The first image is provided on the substrate, emits light when irradiated with first excitation light having a first wavelength, and includes phase-modulated first information. The second image is provided on the substrate, emits light when irradiated with second excitation light having a second wavelength different from the first wavelength, and includes phase-modulated second information.
Systems and methods for detecting unauthorized tags are provided. A tag transmission report is received from a tag reader that receives wireless transmissions from a plurality of tags. A tag ID is determined for each tag of the plurality of tags in the tag transmission report. The determined tag IDs are compared to association information indicating associations between tag IDs. A notification is generated responsive to a comparison indicating that ones of the plurality of tags are not associated with other tags of the plurality of tags.
A system, exhibiting a communication station for communicating with a number of radio tags in a time slot communication process, in which a number of time slots per time slot cycle in a repeating sequence are available for communication, and each time slot is characterized by a distinct time slot symbol, wherein the communication station is designed to send out a synchronization data signal exhibiting the time slot symbol for the currently present time slot, and wherein a radio tag is designed for changing from a sleep state into an active state at a wakeup instant, and for receiving the synchronization data signal in the active state and, if the received time slot symbol indicates a time slot intended for it, for defining a new wakeup instant corresponding to the next appearance of the time slot intended for it in a time slot cycle that follows the currently present time slot cycle.
A card processing device with which a user operates a card by hand may include a card-inserting section at which the card is inserted; a card-storing section structured to store the card while a rear end portion of the inserted card is exposed from the card-inserting section; a reading section structured to read recorded information on the card stored in the card-storing section; a first detecting section structured to detect that the card is inserted to the card-storing section from the card-inserting section; a second detecting section, arranged on the farther side than the first detecting section in the inserting direction of the card, structured to detect that the card is inserted; and a status-monitoring section structured to detect fraud from the relation of the detections of the card at the first detecting section and the second detecting section.
The present disclosure deals with a system and a method to determine if an unauthorized user is attempting to access securely stored data. A user enters and stores sensitive data on a user device using a first computing system. The first computing system gathers sensitive data from the user device and stores the data on a second computing system. If the first computing system detects a potential data breach when trying to access the securely stored data, the first computing system may request the user to enter a subset of the securely stored data to confirm that the user has access to the securely stored data. The second computing system verifies the subset against the securely stored data and the securely stored data is made accessible to the user. If the second computing system is unable to verify the subset the second computing system triggers an event.
A method for managing data by an electronic device is provided. The method includes receiving first data inputted from a user, generating second data by encrypting the first data using a public key, generating a query comprising the second data, transmitting the query to a server, receiving third data corresponding to the query from the server, generating fourth data by decrypting the third data using a secret key corresponding to the public key, and outputting the fourth data.
Techniques to manage mobile devices are disclosed. In various embodiments, a request to perform a management action with respect to a mobile device is received from a mobile device management (MDM) authority. A scope of authority of the MDM authority with respect to the mobile device is determined. The management action is caused to be performed with respect to the mobile device based at least in part on the determined scope of authority of the MDM authority with respect to the mobile device.
Methods and devices for processing web content are disclosed. The method may include receiving a webpage with a browser and parsing the webpage with the browser to obtain subcomponents from the webpage. The browser identifies whether there is an indication that one or more subcomponents of the webpage are potentially malicious, and when there is an indication that the one or more subcomponents of the webpage are malicious, the browser loads the one or more of the subcomponents of the webpage in an auto-sandbox instance for isolated execution by the browser.
A virtual machine manager facilitates selective code integrity enforcement. A virtual machine manager (or other higher privileged entity) can verify the integrity of code in memory pages, and a virtual processor running in kernel mode executes the code on a memory page only if the virtual machine manager (or other higher privileged entity) has verified the code integrity of that code. However, the virtual machine manager need not verify the integrity of code in memory pages when the virtual processor is running in user mode. Rather, an operating system running on the virtual processor can apply any of a variety of policies (e.g., optionally perform any of a variety of different checks or verifications of the code) to determine whether the code can be executed in user mode.
A functionality of an accessible device such as a set-top box, computer, mobile device, media device, is unlocked or otherwise made available to a user by a security system dependent on an external paired device, such as a mobile device, a key fob or radio frequency identification (RFID) device paired to the accessible device being in a particular wireless communication range of the accessible device. When an authorized user carries the external paired device, this provides the authorized user of the accessible device the ability to conveniently restrict the use of the accessible device and access to various functionalities of the accessible device, such as access to particular television programming or streaming media at times when the authorized user is not in close proximity or in the same general area of the accessible device.
Methods, systems, computer-readable media, and apparatuses for enforcing licensing policies using an application wrapper are presented. In one or more embodiments, a computing device may monitor, using a first application wrapper of a first application on the computing device, usage of the first application. The first application wrapper of the first application may provide a policy enforcement layer between the first application and an operating system of the computing device, and the policy enforcement layer may control execution of the first application based on one or more mobile device management policies. Subsequently, the computing device may enforce, using the first application wrapper of the first application, one or more licensing policies on the first application at runtime based on the usage of the first application. In some embodiments, the policy enforcement layer may control execution of the first application by intercepting input to the first application, intercepting output from the first application, and intercepting function calls made by the first application.
Methods, systems, and computer program for implementing data source security cluster are provided. Security tokens may be generated for a plurality of data sources. Clients may request a security token from each data source. The client may send the security tokens and a data query to a federation engine. The federation engine may generate a plurality of sub-queries from the query. The federation engine may match a sub-query and particular security token to a data source. The federation engine may validate each security token and send, to each data source, the matching sub-query for that data source. Each data source may send a result to a sub-query to the federation engine, which may join all of the results into a virtual view.
When automatically populating medical report templates, insertable macros are indexed and searched not only my name or title but also by contents, such as keywords times, pre-defined terms for key information included in the macro, free texts in the macros, etc. When a unique macro is found, the system inserts the text of the macro into the report being generated. If multiple related macros are found, the system highlights the macros for user review. After the insertion of the macro into the template, the system identifies pre-defined terms and fills in the key information value(s). The system thus facilitates, e.g., radiologists' observation reporting procedure through an intelligent matching algorithm that facilitates finding a unique macro, which in turn aids in filling in report field instance values and optimizes radiology workflow.
The invention relates to a medicament dispensing device and system. In particular, the invention relates to a system having multiple containers capable of dispensing multiple medicaments. A center dispensing mechanism then actuates the containers release tray based on prscribed computer controlled settings.
A method and apparatus implements patient data downloading for multiple different meter types, such as multiple different blood glucose meters. A plurality of serial ports is provided, each arranged for connection to a respective meter of the multiple different meter types. Information is displayed and user selections are identified. Responsive to user entry identifying a particular meter type, a connection port/cable number for the meter connection is displayed for viewing by the user. Predefined instructions for the particular meter type are displayed. A data collection computer system is provided as an integral unit including a unitary housing containing a processor device, a printer, and a display touch screen. When a meter connection is identified, information is displayed, patient data is downloaded from the meter and is printed in a selected format together with selected reports generated from the downloaded patient data.
Systems, methods, media, and other such embodiments described herein relate to trimming cell lists prior to generation of a routing tree for a circuit design. One embodiment involves accessing a cell library including cell data and a cell list for a plurality of cells. Specialized delay cells are removed from the cell list, and remaining cells are analyzed to identify a set of cell characteristics. Cells are then trimmed from the cell list based on comparisons between the cell characteristics of the remaining cells. If certain cells are sufficiently similar, secondary characteristics can be used to further trim the cell list. The trimmed cell list can then be used to generate a routing tree for the circuit design according to associated design criteria.
Embodiments of the disclosure provide a method including: identifying a target feature in an integrated circuit (IC) layout not represented in a library, the library including a plurality of sub-resolution assist feature (SRAF) usefulness maps corresponding to a plurality of features and SRAFs in the IC layout; generating a usefulness map for the target feature with an artificial neural network (ANN), the generating being based on the target feature and the plurality of SRAF usefulness maps in the library; adding the target feature and the generated usefulness map to the library; selecting an SRAF insertion site for the target feature based on the generated usefulness map; and inserting an SRAF for the target feature into the IC layout at the selected SRAF insertion site.
A circuit modeling system includes a store a first net list. The first net list includes a plurality of semiconductor devices, a first power distribution network (PDN) connected to the plurality of semiconductor devices, and a signal network connected to the plurality of semiconductor devices that transmits signals to the plurality of semiconductor devices. A circuit simulation unit is configured to identify first semiconductor devices and second semiconductor devices from among the plurality of semiconductor devices. The first semiconductor devices are activated by receiving a signal through the signal network, and the second semiconductor devices are inactive. The circuit simulation unit is configured to reduce the first PDN to a second PDN based on the identified first semiconductor devices, and to generate a second net list including the signal network, the second PDN, and the first semiconductor devices.
There is provided a method for modeling a hydrocarbon reservoir that includes generating a reservoir model comprising a plurality of sub regions. At least one of the sub regions is simulated using a training simulation to obtain a set of training parameters comprising state variables and boundary conditions of the at least one sub region. A machine learning algorithm is used to approximate, based on the set of training parameters, an inverse operator of a matrix equation that provides a solution to fluid flow through a porous media. The hydrocarbon reservoir can be simulated using the inverse operator approximated for the at least one sub region. The method also includes generating a data representation of a physical hydrocarbon reservoir can be generated in a non-transitory, computer-readable, medium based, at least in part, on the results of the simulation.
A method of determining a registration between Scanworlds may include determining a first viewpoint of a setting based on first point data of a first Scanworld. The first Scanworld may include information about the setting as taken by a first laser scanner at a first location. The method may further include determining a second viewpoint of the setting based on second point data of a second Scanworld. The second Scanworld may include information about the setting as taken by a second laser scanner at a second location. The method may further include generating a first rectified image based on the first viewpoint and generating a second rectified image based on the second viewpoint. Additionally, the method may include determining a registration between the first Scanworld and the second Scanworld based on the first viewpoint and the second viewpoint.
Disclosed herein are systems, methods, and apparatus for improving the delivery of web content that has been authored for multiple devices. In certain embodiments, an intermediary device such as a proxy server determines the characteristics of a client device requesting multi-device content, obtains and examines the multi-device content, and in view of the particular requesting client device removes portions that are irrelevant for that device. Doing so can accelerate delivery of the content by reducing payload and relieving the client device of the processing burden associated with parsing the content to make that determination itself, among other things.
Disclosed herein, among other things, is a system comprising a content repository, a communication portal developer, a content manager, and an analytic engine. The content repository is adapted to store electronic content in a computer-readable storage medium. The communication portal developer includes at least one wizard to create a plurality of customizable portals without coding software. Each customizable portal is accessible to one or more selected visitors through a web browser. The content manager is adapted to publish selectable electronic content to selectable portals. The content manager includes at least one wizard to populate and manage the electronic content within the content repository. The analytic engine analyzes electronic content use and visitor behavior while logged into their customizable portal. In various embodiments, the analytics are provided in real time or near real time. Other embodiments are disclosed herein.
A system, a method, and a computer program product for providing an asset intelligence network to maintain information about various assets are provided. At least one server generates a first information based on a first data received from at least one first party using at least one template. The server uses the template to generate a second information based on a second data received from at least one second party. The second data is related to the first data. Based on the template, the server creates a uniform record containing a combination of the first information and the second information, and stores the created uniform record.
According to certain aspects, a computer system may be configured to aggregate and analyze data from a plurality of data sources. The system may obtain data from a plurality of data sources, each of which can include various types of data, including email data, system logon data, system logoff data, badge swipe data, employee data, job processing data, etc. associated with a plurality of individuals. The system may also transform data from each of the plurality of data sources into a format that is compatible for combining the data from the plurality of data sources. The system can resolve the data from each of the plurality of data sources to unique individuals of the plurality of individuals. The system can also determine an efficiency indicator based at least in part on a comparison of individuals of the unique individuals that have at least one common characteristic.
This disclosure describes systems, methods, and computer program products that may be used to provide crowd-based scores for experiences, which are computed based on measurements of affective response of multiple users who had the experiences. The measurements of affective response may be collected using a wide array of sensors that measure physiological signals and/or behavioral cues. Additionally, the scores may be personalized for a certain user based on similarities between a profile of the certain user and profiles of the multiple users.
Generally described, the present disclosure is directed to an eventually consistent replicated data store that uses, for its underlying storage, a computer software library that provides a high-performance embedded database for data. The replicated data store employs a plurality of hosts interconnected to one another, allowing for writes to any host and full awareness of membership across all hosts. With the data replication framework disclosed herein, various modes are allowed to be built up on top of the core system.
Disclosed are examples of systems, apparatus, methods and computer program products for displaying reduced and detailed visual representations of calendar items based on mouse cursor movement. A database storing data objects identifying calendar items can be maintained. Each calendar item can comprise a subject, a date, and a time range. A reduced visual representation of a first calendar item can be displayed in a first region of a user interface on a display of a device. The reduced visual representation of the first calendar item can comprise an at least partially obscured presentation of the subject, the date, and/or the time range of the first calendar item. Mouse cursor movement in the first region of the user interface can be detected. A detailed visual representation of the first calendar item can be displayed in the first region of the user interface in response to detecting the mouse cursor movement.
In one embodiment, a user of a social networking system requests to look up an address book maintained by the social networking system. The social networking system improves the look up search results by ranking one or more contacts in the address book based on social graph, social relationship and communication history information.