US10405470B2

A part feeding device of the present disclosure includes a main body; a conveyor; and a part detector. At a position further upstream than the part detector, the transporting passage includes a guide surface for guiding the lower surface of the part feeding tape, and a ceiling surface which faces the guide surface and is positioned at a position upwardly apart from the guide surface by the dimension larger than the thickness of the part feeding tape having the maximum thickness to be used in the part feeding device. The transporting passage includes a partial guide surface which supports the lower surface of the part feeding tape, and the partial guide surface includes an approaching portion approaching a ceiling surface in a downstream direction.
US10405467B2

A head mounted display (HMD) device for supporting virtual reality and augmented reality includes a frame and a thermal door component between which a mobile device may be sandwiched. The thermal door component includes a first portion that is substantially planar for reversibly coupling with a portion of a back surface of the mobile device and a heat sink. The heat sink includes a substantially planar portion coupled to a surface of the first portion of the thermal door component. The heat sink may be made of magnesium or other thermally conductive material. A second portion is coupled to the back of the first portion. An opening, channel, or recess that allows access to the interior of the thermal door component by ambient air to allow the thermal door component to draw heat away from the mobile device and the HMD device.
US10405463B2

A quad-rotor or other unmanned aerial drone having a planar vapor chamber mounted to a processor of the drone to cool the processor. The processor may be enclosed in a protective central housing. The vapor chamber is mounted, in some examples, with a perimeter of the vapor chamber extending from the processor through the housing into an airflow region near the rotors of the drone so that airflow, which may include propeller wash, serves to cool the perimeter of the vapor chamber. The planar vapor chamber cools the enclosed processor using both phase-change cooling/heat spreading (i.e. heat is dissipated from the processor via evaporation and subsequent condensation) and convection (i.e. airflow passing over the perimeter of the vapor chamber carries heat away).
US10405460B2

A circuit breaker arrangement includes a housing, a contact seated in the housing, and a lead in electrical communication with the at least one contact and disposed outside the housing. The circuit breaker arrangement includes a heat sink in thermal communication with the lead to transfer heat between the contact and the lead.
US10405456B2

An outdoor display apparatus having enhanced temperature stability comprises: a display panel having a driver board; a rear bracket having at least one opening for air circulation that is coupled to the display panel having the driver board; and a housing for accommodating a rear bracket coupled to the display panel, wherein: the inlet is formed at a lower portion of a rear surface of the housing, the outlet is formed at an upper portion of a rear surface of the housing, and air flows through a first clearance space existing between the front surface of the display panel and the transparent optical member, a second clearance space existing between the rear surface of the display panel and the rear bracket having the opening for air circulation, and a third clearance space existing between the rear bracket having the opening for air circulation and the housing.
US10405450B2

The disclosure is directed to a power module that includes at least one power substrate, a housing arranged on the at least one power substrate, and a first terminal electrically connected to the at least one power substrate. The first terminal includes a contact surface located above the housing at a first elevation. The power module includes a second terminal including a contact surface located above the housing at a second elevation different from the first elevation, a third terminal electrically connected to the at least one power substrate, and a plurality of power devices electrically connected to the at least one power substrate.
US10405444B2

A bicycle component can be attached to a bicycle body. The bicycle component basically includes a receiving part, a lid part and an electrical operating unit. The receiving part includes an opening that can receive an electrical connector. The lid part is configured to be capable of covering at least a portion of the opening. The electrical operating unit is provided to the lid part.
US10405439B2

A display panel assembly includes a support, a display panel, a cover plate, and a decorative ring. The support includes a bottom wall and a side wall bent from the bottom wall. A thickness of the side wall is less than a thickness of the bottom wall to form the support. The display panel is fixed to the bottom wall of the support. The cover plate is disposed on the display panel. The decorative ring is disposed on a top end of the side wall of the support away from the bottom wall of the support and joined to a side of the cover plate.
US10405432B2

The present invention relates to a method for producing a stretchable conductor and/or electrical connection including providing a stretchable substrate, a liquid metal, a conductive metal and an adhesion material in a same evaporator chamber; depositing the liquid metal; depositing the adhesion material; depositing the conductive metal; wherein the liquid metal, the conductive metal and the adhesion material are deposited by evaporation; and the deposition by evaporation is made in vacuum.
US10405426B2

A printed wiring board includes: a core substrate having a core layer, first and second conductor layers, and through-hole conductors penetrating through the core layer and connecting the conductor layers; and first and second build-up layers each including an insulating layer, an inner side conductor layer, an outermost insulating layer, an outermost conductor layer, and a solder resist layer. Each of the conductor layers includes conductor circuits having substantially a trapezoid cross-sectional shape, and spaces between adjacent conductor circuits, and includes a metal foil, a seed layer, and an electrolytic plating film. The inner side conductor layers have the smallest minimum circuit width, the smallest minimum space width and the largest base angle among the conductor layers. The insulating layers have the smallest ten-point average roughness rz3, rz7 among the ten-point average roughness rz3, rz7, rz1, rz2, rz5 and rz9 of the core layer, insulating layers and outermost insulating layers.
US10405420B2

Embodiments include devices and method related to a foldable printed circuit board that may be used in SSD applications. One embodiment relates to a foldable printed circuit board comprising a first rigid portion, a second rigid portion, and a first flexible region coupling the first rigid portion to the second rigid portion. The foldable printed circuit board also includes a third rigid portion and a second flexible region coupling the second rigid portion to the third rigid portion, wherein the first rigid portion and the third rigid portion each have a width that is less than that of the second rigid portion. Other embodiments are described and claimed.
US10405399B1

A street light device includes a light emitting module, a driving circuit, a sensing module, and a microcontroller. The light emitting module includes a first light emitting unit and a second light emitting unit. The sensing module obtains a temperature, a relative humidity, and a dust concentration. The microcontroller calculates a light attenuation rate according to the temperature, the relative humidity, and the dust concentration. The microcontroller controls the driving circuit according to the light attenuation rate to drive the first light emitting unit and the second light emitting unit, so that a color temperature ratio between the first light emitting unit and the second light emitting unit is determined according to the light attenuation rate.
US10405395B2

There is provided herein controllable power and lighting arrangement suitable for use in commercial and/or domestic applications. There is particularly provided a method for the arrangement and automatic control of light emitting diode (LED) lights, and optionally non-LED based devices, powered by low voltage AC power distributed on bus bars. In addition there is provided a power and lighting arrangement which is especially suitable for use in a uniform and safe manner in close proximity to living organisms, particularly organisms capable of growth, such as plants, in a domestic or commercial growth system.
US10405391B2

An improved LCD backlighting unit (“BLU”), preferably having white light emitting diode (“LED”) light sources, enhances a liquid crystal display's (“LCD's”) readability in sunlight. The improved BLU briefly increases a display screen's brightness, typically 2-6× greater than the BLU's maximum continuous operating brightness. The BLU brightness substantially increases brightness for a predefined and relatively short interval, typically 2 to 60 seconds, without damage. The LED driver control prevents boosting the display brightness too frequently or for too long thereby avoiding damaging the LEDs by adequately dissipating increased heat. The BLU may include a thermal sensor on or near the LEDs to provide real time temperature feedback to the LED driver control. The BLU preferably includes a thermal ballast that absorbs excess heat generated by the LEDs during intervals of increased brightness.
US10405385B2

An electronic driver for transforming an input voltage provided by an electrical ballast into an operating voltage for an LED lighting module is provided, comprising an input for connecting the electrical ballast to the electronic driver, an output for connecting the LED lighting module to the electronic driver, and an bypass circuit, wherein the bypass circuit is adapted for being connected in parallel to the output if a low input voltage is provided at the input and for being disconnected from the output if a high input voltage is provided at the input.
US10405378B2

High frequency electrical heating system is provided for heating electrically conductive parts as they are advanced, either for annealing or welding processes, and in which the electrical heating current is supplied by a solid state DC to AC inverter through a load matching and frequency control circuit that maintains the desired load current and frequency with changes in the load impedance caused by the electrically conductive parts as they are advanced. Load matching is achieved with high frequency variable reactors having a geometrically-shaped moveable insert core section and a stationary split-bus section with a complementary geometrically-shaped split bus section and a split electric terminal bus section where the insert core section can be moved relative to the stationary split-bus section to vary the inductance of the reactor pair.
US10405376B2

The inventive concepts relate to an apparatus for treating a substrate. The apparatus includes a container having a treatment space of which a top end is opened, a rotatable support unit supporting a substrate disposed within the treatment space, a heating unit heating the substrate supported by the support unit, and a fluid supply unit supplying a fluid to the substrate disposed on the support unit. The heating unit includes a plurality of heaters installed in a plurality of zones of the support unit, respectively, and a controller controlling the plurality of heaters. The controller controls the plurality of heaters by a first mode until the plurality of zones reach a target temperature, and the controller controls the plurality of heaters by a second mode different from the first mode after the plurality of zones reach the target temperature.
US10405363B2

A security method for D2D mode B discovery is disclosed in the embodiments of the present disclosure, in four processes of the D2D mode B discovery service, integrity protection is performed, by adding corresponding parameters, on a discovery response message of a passive terminal, a discovery response message of an active terminal, a query request message sent by the active terminal to the passive terminal, a query response message sent by the passive terminal to the active terminal, and the matching report message of the active terminal. A security system, terminal for D2D mode B discovery and a storage medium are further disclosed in the embodiments of the present disclosure.
US10405359B2

A terminal device is configured to establish a communication link with communication equipment through a base station device such that, upon establishing the communication link, part of the communication link is left for a certain base station while another part of the communication link is established with the terminal device through the other base station device according to a plurality of architectures, wherein the terminal device includes a wireless communication part configured to transmit support architecture information representing an architecture supported by the terminal device among a plurality of architectures to the base station device.
US10405354B2

A method of user equipment (UE) for random access operation in a wireless communication system is provided. The method comprises receiving, from a base station (BS), random access channel (RACH) configuration information including RACH chunk information corresponding to at least one antenna beam including a beam identifier (ID), determining a RACH chunk based on the RACH configuration information received from the BS, transmitting, to the BS, a RACH preamble on the determined RACH chunk according to the RACH configuration information associated with the beam ID, and receiving, from the BS, a RACH response (RAR) corresponding to the transmitted RACH preamble and a downlink channel for a RAR transmission, wherein a random access-radio network temporary identification (RA-RNTI) is calculated based on an index of a slot and an index of the RACH chunk on which the RACH preamble is transmitted.
US10405351B2

Disclosed are multi-user transmission methods in a wireless local access network (WLAN). An operation method performed in a first station may comprise generating a physical layer convergence procedure (PLCP) protocol data unit (PPDU) including a legacy preamble, a high efficiency (HE) preamble, and a payload; and transmitting the PPDU. Also, the HE preamble may include a HE signal A (HE-SIG-A) field, a HE signal B (HE-SIG-B) field, a HE short training field (HE-STF), and a HE long training field (HE-LTF), and the HE-SIG-A field may include information indicating the number of symbols of the HE-SIG-B field. Accordingly, a performance of the WLAN may be enhanced.
US10405347B2

Embodiments of the present disclosure relate to a method for listening-based transmission. The method is performed at a communications device of a first type with a plurality of beams and operable on an unlicensed spectrum. The method comprises identifying a beam direction for a communications device of a second type when there is data directed to the communications device of the second type and obtaining a backoff counter for the identified beam direction. The method also comprises selecting at least one beam direction for listening during. The beam in each of the at least one beam direction covers at least one communications device of the second type having data directed thereto. The method further comprises scheduling transmission to a communications device of the second type in the identified beam direction when the backoff counter corresponding to that beam direction reaches a certain threshold. Embodiments also relate to corresponding apparatus.
US10405335B2

Soft channel reservation in shared spectrum networks is discussed. In network areas where multiple wireless nodes, whether from the same or different network operators, share spectrum using a channel reservation signaling form of contention resolution, an aggressor transmitter listens for a neighbor receiver's receiver channel reservation signal to the neighbor transmitter the neighbor receiver is in communication with. The receiver channel reservation signal includes channel condition information that the aggressor transmitter can use to estimate an interference impact at the neighbor receiver should the aggressor transmitter performs its transmissions to its own receivers. Based on whether this estimated interference impact exceeds or remains within a particular threshold, the aggressor transmitter may decide whether or not to back off of its transmissions until a later time.
US10405332B2

A method of a user equipment (UE) operating with a new radio (NR) radio access technology (RAT). The method comprises receiving synchronization signals and a master information block (MIB) in a first bandwidth (BW) and receiving a physical downlink control channel (PDCCH) in a second BW, wherein the second BW is indicated by an offset in the MIB relative to the first BW and the PDCCH conveys a downlink control information (DCI) format that configures a reception of a first system information block (SIB).
US10405330B2

A User Equipment (UE), an evolved Node B (eNB), or a PDN Gateway (PGW) comprising a processing circuitry to comprise a user-plane multi-link data convergence element for modifying the IP header of a data packet to support transporting an EPS bearer over multiple radio (3GPP or Non-3GPP) access networks simultaneously, bearer splitting. The eNB or PGW may be configured to send a message to UE, requesting the candidate bits to be reused to support bearer splitting. The UE to be configured to send a message to eNB or PGW, indicating which bits of the IP header field (e.g. ToS, TTL). The eNB or PGW is configured to send a message to UE, confirming which bits of the internet protocol (IP) header field will be used, and a mapping rule between the bit value and the various bearer splitting mode that a data packet to be subject to. The eNB or PGW or UE to be configured to monitor incoming IP packets, and stop marking if default values of selected bits in the incoming IP packets have changed. The eNB or PGW or UE to send a message to notify the other side that the marking has stopped due to the change of the default, and the message may also include the sequence number of the last marked data packet. An IP header field of the data packet to comprise to be a Type of Service (ToS) field or a Time to Live (TTL) field.
US10405329B2

The present invention relates to a method and an apparatus for transmitting an acknowledgment/negative-acknowledgement (ACK/NACK) of a terminal in a wireless communication system. More specifically, the method comprises the steps of: receiving a wide area network (WAN)-based downlink signal; and transmitting the ACK/NACK in accordance with first hybrid automatic repeat request (HARQ) processes, based on third wireless resources except for at least one second wireless resource for device-to-device (D2D) among first wireless resources for WAN communication, wherein the HARQ processes are characterized in that WAN uplink transmission timing on the second wireless resource is set up to be shifted to the third wireless resource.
US10405328B2

The invention relates to methods and nodes for scheduling resource blocks in a wireless communications network. The invention further relates to computer programs performing the methods according to the invention, and computer program products comprising computer readable medium having the computer programs embodied therein. In a first aspect of the invention, a method of a Radio Resource Management (RRM) node (11) in a first cell (12) is provided for facilitating scheduling of resource blocks for at least one mobile terminal (UE4, UE5, UE6) in a neighboring second cell (15) of a wireless communications network (10). The method comprises predicting allocation of one or more resource blocks in a subsequent scheduling time interval to at least one mobile terminal (UE1, UE2, UE3) in the first cell, and sending information pertaining to the predicted allocation to an RRM node (14) of the neighboring second cell.
US10405324B2

A device and method for wirelessly communicating over a transmission channel with one or more wireless devices. The device comprises a wireless network interface and a controller. The controller is configured to receive a wireless signal via the wireless network interface, if strength of the received signal is greater than a first threshold, determine that the channel is busy, and, if the strength of the received signal is not greater than the first threshold, but is greater than a second threshold that is lower than the first threshold, determine whether the received signal is intended for the device and if so, determine that the channel is busy.
US10405322B2

Systems and methods relating to decoding a downlink channel that utilizes repetitions and, in particular, decoding the downlink channel when the number of repetitions utilized for transmission of the downlink channel is unknown. In some embodiments, a method of operation of a User Equipment device (UE) in a cellular communications network comprises identifying a Signal to Interference plus Noise (SINR) value for a signal received by the UE from a radio access node of the cellular communications network, identifying a number of repetitions estimated to be used for transmission of a downlink channel from the radio access node based on the SINR value, and attempting to decode the downlink channel based on the number of repetitions estimated to be used for transmission of the downlink channel from the radio access node.
US10405318B2

The present disclosure relates to a method for transmitting and receiving a beamformed data transmission transmitted from a radio base station to a user equipment over an unlicensed band. The data transmission is transmitted by the radio base station within one or more resource blocks of a subframe, each resource block being composed of a plurality of resource elements. The beamformed data transmission is generated by the radio base station by 1) applying a first precoding for generating a beam directionality towards the user equipment to a subset of all the resource elements used for transmitting the data transmission in the subframe, and 2) applying a second precoding, different from the first precoding, to the remaining resource elements used for transmitting the data transmission in the subframe so as to achieve a radiation pattern different from the beam directionality towards the user equipment.
US10405312B2

A method for transmitting with frequency diversity includes receiving scheduling information including a frequency diversity indication indicating usage of frequency diversity in a scheduled transmission, determining a first frequency resource and a second frequency resource in accordance with the scheduling information, and transmitting a first preamble and a first portion of a data payload over the first frequency resource and a second preamble and a second portion of the data payload over the second frequency resource.
US10405305B2

Various features related to design and implementation of a single slot sPUCCH are described. In an aspect, the single slot sPUCCH supports intra-sTTI frequency hopping. In some configurations where intra slot frequency hopping is supported, one or two hops per slot may be utilized. An apparatus, e.g., a UE, may be configured to transmit first UCI in a first set of resources within a first set of symbols of a sPUCCH within a slot, and transmit second UCI in a second set of resources within a second set of symbols of the sPUCCH within the slot, where the second set of symbols may be subsequent to the first set of symbols. In some configurations, a number of symbols in each of the first and second sets of symbols maybe based on whether the slot is a first slot of a subframe or a second slot of the subframe.
US10405304B2

When downlink data allocation is indicated in an ePDCCH, this terminal device can determine PUCCH resources to be used in notification of response signals indicating results of error detection of downlink data without imposing scheduling restrictions on future DL subframes. In this device, an extraction unit receives downlink data on multiple unit bands. A CRC unit detects errors in the downlink data. A response signal generation unit generates a response signal by using the results of error detection of the downlink data obtained by the CRC unit. The control unit arranges the response signal in the PUCCH resources corresponding to the current DL subframe.
US10405299B2

Methods, systems, and devices for wireless communication are described. A user equipment (UE) may determine that a reference signal (RS) transmission has been triggered. The UE may select a subset of antennas from a set of available antennas based on a signal property associated with each antenna of the subset of antennas. The UE may transmit the RS using the selected subset of antennas.
US10405298B2

Methods and systems described herein relate to broadcasting on a wireless channel. An example system includes a sensor and a transceiver coupled to the sensor, the transceiver including: an oscillator circuit including a thin-film bulk acoustic resonator (FBAR), and an antenna. The system also includes a controller with a processor programmed to: broadcast, by the antenna, a first data packet on a wireless channel, where the first data packet is a first packet of a broadcast event; receive, at the antenna, a second data packet transmitted on the wireless channel, where the second data packet is a second packet of the broadcast event; and responsive to receiving the second data packet, perform an action associated with the broadcast event; responsive to the action, transmit, by the antenna, a third data packet on the wireless channel, where the third data packet is a third packet of the broadcast event.
US10405296B2

An embodiment of the present disclosure provides a method for supporting paging of a low complexity UE, including: determining, by a target base station during handover of a UE, whether a source base station during the handover supports low complexity UE, and transmitting paging capability information of the UE to a Mobility Management Entity MME in response to determining that the source base station does not support low complexity UE, wherein the paging capability information of the UE is used by the MME for paging the UE. The method provided by embodiments of the present disclosure is able to enhance paging with respect to the low complexity UE.
US10405293B2

A method for measuring a reference signal for location determination in a wireless communication system, according to an embodiment of the present invention, is performed by means of a terminal. The method comprises the steps of: receiving assistant data related to neighbor cells and a reference cell for location determination; by means of the assistant data, receiving a positioning reference signal (PRS) of a cell-specific reference signal (CRS) of the reference cell or the neighbor cells and calculating a reference signal time difference (RSTD) measurement value; and reporting the measurement value to a location server, wherein the assistant data can comprise information about the number of CRS antenna ports of the reference cell and neighbor cells, CRS cyclic prefix (CP) length information, or configuration information about multicast broadcast single frequency network (MBSFN) subframes.
US10405290B2

Systems and methods for measuring end-to-end data path delays between a Radio Equipment Controller (REC) and a Radio Equipment (RE) of a base station are disclosed. In one embodiment, a system includes a RE configured to transmit an uplink chirped sine wave signal from the RE to a REC on an uplink data path from the RE to the REC via an asynchronous communication network. The REC is configured to correlate a reference chirped sine wave signal and a received signal from the RE. The REC is further configured to determine an uplink data path delay from the RE to the REC based on results of the correlation of the reference chirped sine wave signal and the received signal from the RE on the uplink data path. In another embodiment, a downlink data path delay is measured in a similar manner.
US10405289B2

A method of handling a multi-panel SS block transmission comprises the instructions of the BS transmitting a configuration set to the communication device, wherein the configuration set comprises a plurality of panel configurations; the BS configuring a primary panel with a primary SS block time index set and a primary time index order according to a first panel configuration; the BS configuring at least one secondary panel with at least one secondary SS block time index set and at least one secondary time index order according to at least one second panel configuration; the BS configuring the primary panel with a first association between a first beam index and a primary SS block time index; and the BS configuring the at least one secondary panel with at least one second association between at least one second beam index and at least one secondary SS block time index.
US10405276B2

A data transmission method and a device are disclosed and relate to the field of communications technologies, so that the technical solutions can reduce power consumption of the second device during the channel detection. The method includes: determining, by a first device, a candidate-moment set; determining, by the first device, a target candidate moment from the candidate-moment set; and sending, by the first device, data on a channel according to the target candidate moment. The method and the device are used for data transmission.
US10405245B2

A method of managing evolved universal mobile telecommunication system terrestrial radio access network (E-UTRAN) capability of a user equipment (UE) is provided that includes switching from a first radio access technology (RAT) to a second RAT if the first RAT fails to provide circuit switched (CS) services to the UE, the first RAT and the second RAT being associated with a first public landline mobile network (PLMN). The UE establishes a CS call session with the second RAT. In the meanwhile, the UE receives a network handover command to move to a second PLMN. The UE may also perform a movement from the first PLMN to the second PLMN and connect with a third RAT associated with the second PLMN to continue the CS call session. The UE enables the E-UTRAN capability after moving to the second PLMN to connect with a fourth RAT available in the second PLMN.
US10405244B2

A communication method is a communication method for communicating between first device and second device over one of first network and second network, and includes transmitting a common identifier from the first device to the second device over one of the first network and the second network, the common identifier being for uniquely specifying the first device in both the first network and the second network, receiving the common identifier at the second device, and communicating between the first device and the second device over one of the first network and the second network.
US10405243B2

There are provided measures for enabling/realizing decoupling of the control plane and the user plane in a radio access network. Such measures exemplarily comprise respective entities which are operable in a radio access network of a communication system and their respective operations, wherein a control/user plane entity provides control/user plane functionality in the radio access network for controlling control/user plane connectivity of at least one terminal to the core network of the communication system via the radio access network, and establish/provide a control/user plane connection to at least one user/control plane apparatus configured to provide user/control plane functionality in the radio access network for realizing user/control connectivity of the at least one terminal to the core network of the communication system via the radio access network.
US10405230B2

The embodiments of the disclosure provide a data transmission method. After determining multiple radio access technologies to be used, a sending device segments or concatenates data packets of a first service to be transmitted, so as to generate multiple segments of data packets. For the multiple radio access technologies, the sending device packages and numbers the multiple segments of data packets. The sending device sends the packaged data packets to a receiving device by using corresponding radio access technologies according to the numbers.
US10405224B2

A method of and an application server and user equipment for providing at least one of chat and Voice over Internet Protocol, chat/VoIP, services to the mobile user equipment in a mobile telecommunications network. The mobile user equipment comprises a chat/VoIP client for accessing a chat/VoIP service application interfacing the mobile telecommunications network. The chat/VoIP service application interfaces a plurality of proprietary chat/VoIP clients for accessing a plurality of proprietary chat/VoIP communication environments operated by a plurality of chat/VoIP service providers, for providing chat/VoIP services to the chat/VoIP client of the mobile user equipment. The chat/VoIP client and the chat/VoIP service application may be arranged such that privileged use of the mobile telecommunications network is enabled, providing a session between the user equipment and a communication environment with a predetermined or agreed Quality of Service.
US10405219B2

An example method may include a processing system including at least one processor determining a final weight set comprising weight factors to apply to each of a plurality of performance indicators for a predictive model associated with a target performance indicator using a genetic algorithm. The method may further include the processing system gathering a first plurality of measurements of the plurality of performance indicators for at least a portion of a cellular network, applying the predictive model to the first plurality of measurements of the plurality of performance indicators to generate a prediction for the target performance indicator, and adjusting at least one aspect of the cellular network in response to the prediction.
US10405216B2

A mobile terminal simulator for a wireless telecommunications network includes: a simulation engine, providing a bit stream, according to a communications standard; a conversion stage, which converts the bit stream into a baseband signal in the frequency domain; a mapping and transformation stage, which generates transmission samples in the time domain as a function of the baseband signal; and a transmission module, connectable to a Base Radio Station of a wireless telecommunications network by a communication port. A transmission channel simulator module is connected between the conversion stage and the mapping and transformation stage and processes the baseband signal in the frequency domain so as to simulate a transmission channel between the communication port and the Base Radio Station.
US10405208B2

Network traffic data associated with computer applications is collected based on static policies. First network parameter vectors are generated over a time period. Each network parameter vector of the first network parameter vectors comprises first optimal values, estimated by a Bayesian learning module using a generative model, for network parameters. Second network parameter vectors are generated over the same time period. Each network parameter vector of the second network parameter vectors comprises second optimal values, computed by a best parameter generator through optimizing an objective function, for the network parameters. It is determined whether the first network parameter vectors converge to the second network parameter vectors and whether network parameter optimization for the network parameters is performing normally.
US10405195B2

A system and method are disclosed for determining a location to position an RF signal repeater within a structure, based on the position having the highest probability of being the location of the highest probable RF signal strength.
US10405193B1

A framework of abstraction of new and existing 5G radios can enhance capabilities of new and existing micro radios and other short range radio technologies to enable intelligent service delivery, dynamic access learning capability, and network slicing over 5G access networks. Enhancing layer communication for both control and user plane can be tunneled through the hosting layer and exploit a common transport provided by the hosting layer. The tunneling through the hosting layer can also enable the enhance capabilities to access the same radio management functions and can be orchestrated by the same core function. The framework for abstraction of the resources can be used to provide dynamic sharing of the resources and then be divided amongst different carriers.
US10405190B2

Aspects of the present disclosure relate to methods and apparatus for assigning channels to networks in a group based on network coverage overlap and network weights. An example method generally includes determining whether channels are available for allocation at each network represented by a node in a network overlap graph, wherein each node in the graph is associated with an assigned channel in a shared spectrum, and for each network in the graph for which channels are available for allocation, identifying channels that are available for allocation to the network, and assigning at least one of the available channels to the network based, at least in part, on a weighting associated with the network.
US10405185B2

A radio communication system for an industrial automation system in which at least a first and a second communication device are redundantly linked to an industrial communication network, wherein the first and second communication devices are each connected indirectly or directly to a particular first radio subscriber station or radio base station and to a particular second radio subscriber station or radio base station via the first communication network connection and via the second communication network connection of the communication devices, where the radio subscriber stations interchange messages about available radio base stations among one another and use the messages to coordinate which of the radio subscriber stations has exclusive authorization for a radio link to a selected radio base station at present or within a definable period.
US10405184B2

A managed access system is for mobile wireless devices (MWDs) in a facility, with the facility being geographically within a wireless communications network of a communications carrier. The system may include antennas arranged at the facility, radio equipment coupled to the antennas, a network interface device configured to provide communications with the communications carrier, and a management access controller. The controller may be configured to communicate with the radio equipment and the network interface device to retrieve respective authenticated encryption keys from the communications carrier for each MWD, authenticate the MWDs to a local managed access network based upon respective encrypted keys, provide communications between authenticated MWDs on the local managed access network and the network interface device for communications with the communications carrier, and deny communications between un-authenticated MWDs on the local managed access network and the network interface device for communications with the communications carrier.
US10405179B2

In one embodiment, a server computer may receive, from a client device, a request to download an application, wherein the client device is logged-in to a session associated with a user account in a communications system. In response to the request, a downloader module executable file may be appended with the login information and the authentication information. The server computer may transmit the downloader module executable file to the client device. In response to a second request (from the downloader module executable file), the server computer may transmit the installer file to the client device.
US10405178B2

An event is detected at a first device. Responsive to the detection, at least some functionality of the first device is deactivated. The presence of a second device, cryptographically paired with the first device, is detected by the first device. Responsive to the detection, at least some functionality of the first device is activated or reactivated.
US10405172B2

Methods, systems, and devices for wireless communications are described. A source user equipment (UE) may determine which subscriber identity module (SIM) card to use based on information of the target UE. For example, the target UE may have poor call quality using a first SIM, but high call quality when using a second SIM. The target UE may indicate the call quality for each SIM in subscription information to the source UE. The source UE may determine to use the second SIM of the target UE instead of the first SIM, resulting in higher call quality for the target UE. The subscription information may include a variety of information related to the target UE, such as subscriptions of the target UE, RAT availabilities for the target UE, etc. The target UE may also configure settings for receiving or rejecting data calls. The target UE may configure whether to receive data calls based on connectivity parameters.
US10405167B2

In some examples, a wireless device includes a wireless interface to communicate wirelessly with wireless networks, and at least one processor configured to monitor discovery activities for identifying services or devices of the wireless networks, and provide, to a target entity, a notification containing information relating to the monitored discovery activities.
US10405165B2

A host device, such as a laptop or desktop computer, that supports wireless point-to-point connections with peripheral devices, such as a pair of headphones, mouse, etc., is configured with quick pair with which the host device can automatically surface a toast on the UI for the user to pair the host and peripheral devices when the peripheral device is within range. For example, a pattern within an advertisement payload can be transmitted, or beaconed, by the peripheral device to the host device, where the host device then identifies, based on the pattern, that the peripheral device is quick pair enabled. When the peripheral device is within range, the host device then automatically surfaces a toast for the user to pair the two devices, and moves the toast to a notification center in case the user wishes to pair the device at a later time.
US10405164B2

This invention relates to a method for transmitting a message to a wireless device, the wireless device comprising a set of at least two distinct logical entities, the wireless device being arranged for receiving a message during discontinuous reception opportunities, the method comprising, prior to transmission of the message, the steps of (a) selecting a transmission mode from a set of transmission modes comprising a first transmission mode and a second transmission mode, where, in the first transmission mode, the reception opportunities for the message are limited to the reception opportunities that are associated with a single selected logical entity of the set of at least two logical entities, and in the second transmission mode, the reception opportunities for the message correspond to combined reception opportunities associated with at least two logical entities; and (b) causing the transmission of the message during one of the reception opportunities corresponding to the selected transmission mode.
US10405163B2

A communication device and method can include one or more processors operatively coupled to memory, a sensor and an output device, where the one or more processors to perform operations of discovering neighboring short range communication enabled devices such as Bluetooth LE devices, creating presence lists from the discovered devices, and transferring biometric and personal data at least to or from the communication device or at least to or from one of the discovered devices. Other embodiments are disclosed.
US10405162B2

A method includes receiving, at a network control component, an enhanced subscriber profile identifier (E-SPID) associated with at least one machine type communications (MTC) user device from a home subscriber server (HSS). The method includes determining whether the E-SPID is in a first range of E-SPID values, wherein the first range of E-SPID values corresponds to a delay that exceeds a threshold, and interacting with a self-organizing network (SON) controller that interacts an operation administration maintenance (OAM) component to control and define a modified E-SPID based on network traffic and coverage in response to a determination that the E-SPID is in the first range of E-SPID values. The method further includes sending the modified E-SPID to at least one enhanced evolved node b (eNodeB) associated with the at least one MTC user device, wherein the at least one enhanced eNodeB is operable to perform access control and scheduling for the at least one MTC user device based on the E-SPID.
US10405156B2

Various examples for providing managed device migration and configuration are described. In one example, a device profile of a first client device is stored and, in response to authentication data associated with the client device being received from a second client device not enrolled with the management service, a migration from the first client device enrolled with the management service to the second client device is performed. The migration can include directing the first client device to disable at least one function of the first client device, unenrolling the first client device with the management service, enrolling the second client device with the management service, directing an installation of the data on the second client device, and configuring the second client device using the device profile.
US10405147B1

A tracking device has a first transceiver, a second transceiver, and control logic. The first transceiver can transmit a first tracking signal for locating the tracking device to mobile devices via a first network. The mobile devices provide the first tracking signal to a tracking server. The second transceiver can transmit a second tracking signal for locating the tracking device to the tracking server via a second network. The control logic can configure the tracking device in a first state in which the first transceiver transmits the first tracking signal, and the second transceiver is disabled and does not transmit the second tracking signal. In response to determining that the tracking device cannot connect to the tracking server via the first network, the control logic configures the tracking device in a second state in which the second transceiver is enabled and transmits the second tracking signal.
US10405140B1

Systems and methods are disclosed for venue experience management. In one implementation, one or more inputs originating at one or more sensors of a first device are received at a communication interface of a location determination device, one or more inputs originating at one or more sensors of a second device are received at the communication interface of the location determination device, a processing device of the location determination device processes the one or more inputs originating at the one or more sensors of the first device in relation to the one or more inputs originating at the one or more sensors of the second device to determine a relative proximity of the first device in relation to the second device, and one or more actions are initiated based on the relative proximity of the first device in relation to the second device.
US10405137B2

A mobile application executable on at least one mobile device for associating actions with a plurality of independent geographic locations and a system for implementing the actions are provided. The system and mobile application carry out a method including the steps of configuring a graphical user interface to include a map and requesting the user to select a designated pin location. The system includes a main controller configured to communicate with the at least one mobile device and initiate the actions based on the location of the at least one mobile device relative to the plurality of independent geographic locations. At least one database is in communication with the main controller and accessible to the mobile and away services module for storing data related to the actions associated with the plurality of independent geographic locations and the at least one mobile device.
US10405136B2

In one embodiment, a method comprises receiving, via a mobile station, contextual information or geographic location data relating to a plurality of members of the population within the geographic region, identifying a common element in the received contextual information relating to at least two members of the population as a basis for defining a first boundary of the geofence to include the at least two members, wherein the common element is identified upon a comparison of the first and second contextual information, and defining the first boundary of the geofence.
US10405134B2

Tracking devices can be associated with safe zones, smart zones, and high risk zones. Safe zones correspond to regions where a likelihood that a tracking device is lost within the safe zone is lower than outside the safe zone. High risk zones correspond to regions where a likelihood that a tracking device is lost within the high risk zone is higher than outside the high risk zone. Smart zones correspond to an expected tracking device, mobile device, or user behavior. Home areas are geographic regions in which a user resides, and travel areas are geographic regions in which a user does not reside. A tracking device can be configured to operate in a mode selected based on a presence of the tracking device within a safe zone, a smart zone, a high risk zone, a home area, or a travel area.
US10405122B1

Provided is a stereophonic sound reproducing apparatus that applies a multi-rendering scheme to a channel sound signal and an object sound signal to enhance a stereophonic effect. A stereophonic sound reproducing method performed by the stereophonic sound reproducing apparatus may include receiving a channel sound signal based on a channel, an object sound signal based on an object, and metadata, and reproducing the channel sound signal based on a preset rendering scheme and reproducing, based on the metadata including a rendering scheme determined using the object sound signal, each object sound signal using the determined rendering scheme.
US10405114B2

An active audio output detection system and method that automatically determines the type of audio output being used on an audio playback device. Embodiments of the system and method include playing back audio content on the audio playback device (such as a mobile phone) and capturing sound during playback using an audio capture device (such as a microphone). The captured sound is analyzed to determine whether the audio playing back on the audio playback device is contained therein. If the captured sound matches the audio playing back on the audio playback device, then the active audio output is a loudspeaker. On the other hand, if the captured sound does not match the audio playing back on the audio playback device, then the active audio output is headphones.
US10405107B2

Provided is an acoustic transducer including: a semiconductor substrate; a vibrating membrane provided above the semiconductor substrate, including a vibrating electrode; and a fixed membrane provided above the semiconductor substrate, including a fixed electrode, the acoustic transducer detecting a sound wave according to changes in capacitances between the vibrating electrode and the fixed electrode, converting the sound wave into electrical signals, and outputting the electrical signals. At least one of the vibrating electrode and the fixed electrode is divided into a plurality of divided electrodes, and the plurality of divided electrodes outputting the electrical signals.
US10405097B1

In one or more embodiments, one or more systems, methods, and/or processes may receive, via multiple microphones, a first audio signal from a first sound producing source; may convert, via at least one analog to digital converter, the first audio signal to first multiple audio data; may determine a first angle, with respect to a reference, of the first sound producing source based at least on the first multiple of audio data; may determine a sound pressure level based at least on a distance to the first sound source and a type of the multiple speakers; may produce second multiple audio data based at least on the sound pressure level and the first angle; may convert, via at least one digital to analog converter, the second multiple audio data to multiple analog audio signals; and may provide, via the multiple speakers, output audio in a direction of the first angle.
US10405093B2

Example embodiments disclosed herein relate to separated audio analysis and processing. A system for processing an audio signal is disclosed. The system includes an audio analysis module configured to analyze an input audio signal to determine a processing parameter for the input audio signal, the input audio signal being represented in time domain. The system also includes an audio processing module configured to process the input audio signal in parallel with the audio analysis module. The audio processing module includes a time domain filter configured to filter the input audio signal to obtain an output audio signal in the time domain, and a filter controller configured to control a filter coefficient of the time domain filter based on the processing parameter determined by the audio analysis module. Corresponding method and computer program product of processing an audio signal are also disclosed.
US10405084B2

A loudspeaker comprising an acoustic package including an acoustic enclosure that defines an acoustic cavity, a loudspeaker component supported on the acoustic enclosure, a port arranged in the acoustic package and extending from a first open end portion acoustically coupled to the acoustic cavity, to a second end portion acoustically coupled to a region external to the acoustic cavity, the second end portion being arranged for directing air flow exiting the port generally towards the loudspeaker component, and a deflector located between the second end portion of the port and the loudspeaker component, the deflector being arranged for at least partially diverting air flow exiting the port away from the loudspeaker component, towards the region external to the acoustic cavity.
US10405077B2

A speaker including a case, a display configured to display an image, at least one vibrating element configured to actuate the display to move the display relative to the case to generate acoustic waves, a gasket interfacing the case and the display, and a transceiver located within a speaker internal volume.
US10405071B2

A system is disclosed for monitoring waste collected by a service vehicle. The system may include a lift actuator configured to cause lifting of the waste, a power takeoff driven by a powertrain of the service vehicle to power the lift actuator, and a sensor configured to generate a speed signal indicative of a speed of the powertrain. The system may also include an output device, and a controller in communication with the sensor and the output device. The controller may be configured to receive the speed signal from the sensor, determine an amount of waste lifted by the lift actuator based on the speed signal, and relay the amount of waste to the output device.
US10405070B2

A monitoring and response system is provided for monitoring and responding to environmental conditions at one or more sites. The monitoring system includes a plurality of base units, each base unit including at least a processor and a plurality of sensors configured to monitor environmental conditions at the site(s). A central controller is in communication with the base processors at the plurality of base units and is configured to receive and process sensor information from the base units. Base units are configured to be modular and contain customizable, swappable combinations of sensors, sensor arrays, and/or other connected peripherals, and are further configured to be mountable and/or attachable to a wide variety of surfaces and objects disposed around a site such as a construction site. The system further comprises a backend, analytic system for making predictions, taking action, and generating reports responsive to the information received from the base units.
US10405063B2

The invention relates to encapsulating tiled timed media data in a server and providing a timed media data bit-stream from encapsulated tiled timed media in a client device. The tiled timed media data comprises timed samples and each timed sample comprises a plurality of spatial subsamples. After having selected at least one spatial subsample from amongst the plurality of spatial subsamples of one of the timed samples, one tile track comprising the selected spatial subsample and one corresponding spatial subsample of each of the other timed samples is created for each selected spatial subsample. One composite track comprising at least one extractor identifying at least one of the created tile tracks is created. Each created track is independently encapsulated in at least one media segment file.
US10405062B2

Systems and methods for generating a set of custom keywords based on a media asset. The systems and methods may receive a media asset viewed by a user, receive a set of base keywords, and determine a character in the media asset. Further, the systems and methods may determine a set of custom keywords based on dialog in the media asset corresponding to the character and determine for a custom keyword, from the set of custom keywords, an equivalent base keyword from the set of base keywords. The systems and methods may determine a response to a received user request, wherein the response includes the base keyword from the set of base keywords, and generate a modified response to the user request based on the response to the user request, wherein the modified response replaces the base keyword with the custom keyword.
US10405042B2

Embodiments described herein provide various techniques for dynamically calibrating digital video recordings of television broadcasts based on analyzes of changes to time data and channel data associated with live television broadcasts. In various embodiments, television receivers may transmit sets of recording schedule data to television broadcast monitor devices, which may receive time data corresponding to live broadcast television programs from various data sources, such as satellite or cable television service providers, social media servers, user devices, and other data sources. Television broadcast monitor devices and/or television receivers may receive and analyze the live television broadcast time data and channel data, and may determine updated recording schedule data which may be used to dynamically reprogram the digital video recorders associated with one or more television receivers.
US10405039B2

Various embodiments disclose a system and methods for media content analysis based at least in part upon social media data. In some embodiments, a computer system may determine a viewership associated with a selected piece of televised content such as a television show or advertisement. The computer system may also identify social media data such as social media messages associated with the selected piece of televised content. The computer system may calculate an audience engagement measurement corresponding to the selected piece of televised content based upon the social media data and the viewership.
US10405038B2

Disclosed are systems, methods, and apparatus for communicating hardware generated video between two or more devices. The devices can operate to mimic chance interactions, or “stop-and-chats,” that normally occur when two or more persons are living together or otherwise in the same locations. For example, each computer or circuit can determine whether a person is proximate to the computer. If two persons that designate each other as connections are simultaneously proximate to their respective devices, a video hardware connection will be created between their computers. Furthermore, respective circuitry can be connected to a third device associated with a person who is proximate to their respective device and also indicated as a connection by both of the two persons who are already connected. A video hardware connection can disconnect when one person participating in the video is no longer proximate to their respective device.
US10405037B2

Television transmissions are received at multiple locations across a large area. Advertisements may be identified, harvested and tagged from within in the television transmissions. The advertisements may be assigned identifiers; media plans may be determined. Advertisement representations (e.g. fingerprints) may be used to identify advertisements in television content received by the smart TVs. The smart TVs may report the fingerprints along with other identifiers or samples thereof. Television content and advertisements therein as rendered by the smart TVs may be categorized as live, timeshifted, on-demand, over-the-top, and the like. The advertisements may be categorized as occurring in national or local/regional ad slots. The data from the smart TVs may be used to determine ad impressions, gross rating points, and target rating points. View rates for advertisements may also be determined and variations of advertisement may also be prepared.
US10405026B2

Methods, devices and systems are provided for provisioning an output device for use with a media device to produce synchronized audio and video portions of media content. An exemplary method involves a media device identifying a device type associated with the output device, obtaining synchronization settings for the device type from a server via a network, and presenting audiovisual content in accordance with the synchronization settings obtained from the server.
US10405023B2

A method embodying the disclosure includes facilitating communications with mobile user equipment (UE) devices to form a collaborative group that uses a local wireless network. A UE receives video content from a content provider via a first network, presents the video content, and predicts a degradation of presentation quality for a portion of the video content. The UE sends requests to other UEs in the group for subportions of the video content, and receives the subportions via the local wireless network. The requesting UE aggregates the received subportions to obtain an alternate video portion for presentation and thus mitigate the predicted degradation of presentation quality. Other embodiments are disclosed.
US10405022B2

Disclosed herein is a transmission apparatus for distributing a content to a client, including a script generation section configured to generate a script for obtaining user side answer information representative of an answer of a user of the client to a question regarding liking of the user, a trigger generation section configured to generate trigger information regarding execution of the script by the client, and a transmission section configured to transmit the trigger information and the script to the client in response to distribution of a first content to the client and transmitting, in response to distribution of a second content different from the first content to the client, provider side answer information representative of an answer set by a provider which provides the first or second content to the question regarding the liking of the user to the client.
US10405001B2

The present invention relates to a method for decoding a video signal, comprising the steps of: acquiring a transform size flag of the current macroblock from a video signal; checking the number of non-zero transform coefficients at each pixel position in a first transform block which corresponds to the transform size flag; changing a scan order of the first transform block by prioritizing the position of the pixel having the greatest number of the non-zero transform coefficients in the first transform block; determining the number of the non-zero transform coefficients at each pixel position in a second transform block, and setting the changed scan order of the first transform block as an initialized scan order of the second transform block; adding the number of the non-zero transform coefficients at each pixel position in the first transform block and the number of the non-zero transform coefficients at each pixel position in the second transform block, and changing the scan order of the second transform block by prioritizing the position of the pixel having the greatest number of the non-zero transform coefficients; and decoding the transform coefficients arranged in the scan order changed in the previous step, wherein the first transform block and the second transform block have sizes corresponding to the transform size flag, and are contained in the current macroblock.
US10405000B2

Methods and apparatus are provided for performing one-dimensional (1D) transform and coefficient scanning. An encoder may apply 1D transform in either a horizontal or a vertical direction. The encoder may then determine a coefficient scan order based on the 1D transform direction. The scan order may be determined to be in a direction orthogonal to the 1D transform direction. The encoder may further flip the coefficients prior to scanning. The flipping may also be in a direction orthogonal to the 1D transform direction. A decoder may receive indications from the encoder with respect to the 1D transform, coefficient scanning, and/or coefficient flipping. The decoder may perform functions inverse to those performed by the encoder based on the indications.
US10404965B2

A microscope system having a microscope forming an image of a specimen inserted onto an optical axis, an image-acquisition apparatus having an image-acquisition element which captures the image of the specimen, a purpose input unit with which an acquisition purpose of 3D image data is input, and a controller receiving the acquisition purpose, wherein the controller receives information about the numerical aperture of the microscope and information of a sampling pitch of the image-acquisition element, calculates a microscope resolution value and an image-acquisition-element resolution value on the basis of the received information, and sends at least one of the control signal for controlling the numeral aperture and the control signal for controlling the sampling pitch in response to the acquisition purpose to at least one of the microscope and the image-acquisition apparatus so that the calculated microscope resolution value and the calculated image-acquisition-element resolution value become the same.
US10404953B2

A multi-layer image sensor includes: a first image sensor including a first pixel and a second pixel; and a second image sensor including a third pixel and at least one of a fourth pixel and a fifth pixel. The second image sensor has a light receiving surface where the first image sensor is stacked. At least a portion of the fourth pixel is arranged at a position corresponding to a position of the first pixel and at a position overlapping with the first pixel in a stacking direction of the first sensor. At least a portion of the third pixel is arranged at a position corresponding to a position of the second pixel and at a position overlapping with the second pixel in the stacking direction of the first sensor.
US10404942B2

Embodiments include a computer program product for using a biosensor worn by a user to trigger an event and activate a camera worn by the user to begin streaming and/or recording video data. The biosensor trigger also initiates a real time multimedia collaboration session with the user wearing the biosensor and one or more designated parties. Through an interoperability gateway device, a voice communications device of the user is bridged with voice communications devices of the designated parties, and the video data is electronically transmitted to the designated parties. Thus, the designated parties may have real time voice communications among each other and with the user, and the designated parties may also view the video data in real time. Embodiments also determine when an event has ended and deactivates the camera worn by the user.
US10404928B2

The invention is directed to a method of operating an image sensor. A first integration is performed on a first photodiode of a pixel circuit to obtain at least one first image signal. A second integration is performed on a second photodiode of the pixel circuit to obtain a second image signal, the first photodiode having a photodiode area larger than the second photodiode. A third integration is performed by collecting blooming charge overflowing from the first photodiode to obtain an overflow image signal. The first integration has longest integration time and the third integration has shortest integration time among the first integration, the second integration and the third integration.
US10404927B2

A correlated double sampling (CDS) circuit includes a comparator and a first circuit. The comparator including, a first input terminal, a second input terminal, at least one output terminal, and a plurality of first transistors operably coupled between the at least one output terminal and the first and second input terminals. The first circuit includes at least one second transistor, the at least one second transistor operably coupled to the at least one output terminal and one of the first input terminal and the second input terminal, the at least one second transistor having at least one of (i) a different number of layers than the first transistors, and (ii) a different dimension than the first transistors.
US10404926B2

Systems and methods are disclosed for image signal processing. For example, methods may include receiving, by an image signal processor, one or more input image signals from one or more image sensors; determining a mapping based on the input image signal(s), wherein the mapping includes records that associate image portions of an output image with corresponding image portions of the input image signal(s); sorting the records of the mapping according to an order of the corresponding image portions of the input image signal(s); applying, by the image signal processor, image processing to image portions of the input image signal(s) to determine image portions of one or more processed images in the order; and determining, by the image signal processor, the image portions of the output image based at least in part on the mapping and the corresponding image portions of the processed image(s) in the order.
US10404925B2

A system for multispectral imaging and ranging is provided. The system comprises at least one light illumination source, and a focal plane detector array configured to support both passive imaging and active imaging at multiple wavelengths. The focal plane detector array includes a plurality of pixels, wherein each of the pixels comprises a plurality of detectors. The detectors are configured to collect passive light to support passive imaging; collect retro-reflected light, transmitted by the at least one light illumination source, to support active illuminated imaging; and collect retro-reflected light, transmitted by the at least one light illumination source, to support active illuminated ranging.
US10404922B2

An image capturing apparatus and a method of operating the same are provided. The image capturing apparatus includes: an imaging device configured to obtain, based on a previously set exposure condition, an imaging signal that corresponds to at least one frame; a flicker information determining circuitry configured to determine flicker information of a light source using the imaging signal that corresponds to the at least one frame; and a controller configured to control, based on the flicker information of the light source, an exposure start time of the imaging device in order to take into account flicker occurrence due to the light source.
US10404920B2

An image stabilization apparatus includes a correction lens, a movable member configured to hold the correction lens and to move on a spherical surface with a predetermined point as a center on an optical axis for an image stabilization, and a base member configured to movably hold the movable member and including a second surface that contacts a first surface on the movable member when the movable member moves. At least one of the first surface on the movable member and the second surface on the base member inclines to the predetermined point so as to approach to the optical axis.
US10404911B2

An image pickup apparatus includes an image data production unit which produces data of images of a plurality of resolutions, from an image frame obtained by picking up an image of a target object as a moving picture for each pixel string which configures a row, and an image sending unit which extracts, from the data of the images of the plurality of resolutions, pixel strings of a region requested from a host terminal and connect the extracted pixel strings for each number of pixels determined in accordance with a given rule to produce a stream and then transmit the stream to the host terminal. The image sending unit adjusts a connection pixel number of data of an image of a particular resolution such that, where N is an integer, data for 1/(N+1) frame are transmitted with respect to one frame of data of an image of the other resolution.
US10404909B1

A system for a vehicle comprises a camera configured to capture an image of a forward path of the vehicle; a screen configured to display the image; and a processor, configured to, responsive to an input to the screen identify two edges of at least one object of the image, measure a first distance between the two edges and output the first distance.
US10404907B2

An electronic device includes compressed sensing circuitry including an image sensor to capture an image and output compressed sensing image data. There is processing circuitry to reconstruct in real-time a preview image of the compressed sensing image data. A display screen displays the preview image which has been reconstructed.
US10404887B2

A readout controlling device includes a start time recording portion, a transmission controlling portion, an error determining portion, and a time changing portion. A start time of when a piece of information is read out from a storage device connected to the readout controlling device is recorded in the start time recording portion. The transmission controlling portion transmits a readout request to read out the piece of information, toward the storage device based on the start time. The error determining portion receives the piece of information readout from the storage device, and determines whether or not an error has occurred in the piece of information. If the error has been determined to have occurred, the time changing portion can change the start time recorded in the start time recording portion.
US10404885B2

Provided is an image forming system that prevents leakage of confidential data. In the image forming system, a terminal includes a confidential-data-transmitting unit, a code-image-acquiring unit, and a confidential-document-data-creating unit. The confidential-data-transmitting unit transmits confidential data specified for confidentiality inside a document of document data to a server. The code-image-acquiring unit acquires a code image for outputting the confidential data from the server. The confidential-document-data-creating unit creates confidential-document data in which the code image is added to the document data. A server includes a confidential-data-acquiring unit, a code-image-creating unit, a code-image-transmitting unit, and a code-confidential-data-transmitting unit. The confidential-data-acquiring unit acquires the confidential data that is transmitted from the terminal. The code-image-creating unit creates the code image for outputting the confidential data. The code-image-transmitting unit transmits the code image to the terminal. The code-confidential-data-transmitting unit transmits the confidential data to an image forming apparatus. An image forming apparatus includes a decoding unit, a code-confidential-data-acquiring unit and an output-data-creating unit. The decoding unit decodes the code image from the confidential-document data that includes the code image. The code-confidential-data-acquiring unit acquires the confidential data from the code-confidential-data-transmitting unit according to the contents of the code image. The output-data-creating unit creates output data in which the confidential data is included in the confidential-document data.
US10404884B2

A portable terminal has a memory having a program stored thereon and readably by a computer. The program causes the portable terminal to perform searching an image processing apparatus capable of executing an image processing operation by a first method, determining whether the image processing apparatus is detected in the searching by the first method, searching the image processing apparatus by a second method in a case where it is determined that the image processing apparatus is not detected as a result of the searching by the first method, storing apparatus information for identifying the image processing apparatus detected in the searching by the first method or the searching by the second method, and transmitting operation instruction information for instructing execution of the image processing operation to the image processing apparatus identified with the designated apparatus information stored.
US10404879B2

The present invention provides a mechanism by which an image forming apparatus notifies an apparatus that inputs an image forming job to the image forming apparatus that the image forming apparatus is during remote support service, and suitably restricts acceptance of image forming jobs.
US10404878B2

An image reading apparatus includes a pair of first detection sections disposed between first positions for the feeding rollers and the separation rollers for nipping and second positions for the transport roller pair for nipping, and a pair of second detection sections disposed between the first detection sections and the second positions in the medium transport direction. The second detection sections are disposed between the first detection sections in the medium width direction, and a controller determines whether to stop transporting the medium or continue transporting the medium based on the results of detection by the first detection sections and the second detection sections.
US10404873B2

An image forming apparatus includes: a schedule information generation unit that generates schedule information including an order of execution of received jobs; an acquisition unit that acquires resource information related to a resource used to execute a job; a prediction unit that predicts a timing of occurrence of an event that possibly occurs in the apparatus as the received jobs are executed in accordance with the order of execution on the basis of the schedule information and the resource information; a display information generation unit that generates display information for displaying a period of execution of the job to be executed and the timing of occurrence of the event along the same time axis, and for displaying a degree of influence of the event on execution of the job; and a display controller that controls display of the display information.
US10404859B1

A computer-implemented method for providing an objective evaluation to a customer service representative regarding his performance during an interaction with a customer may include receiving a digitized data stream corresponding to a spoken conversation between a customer and a representative; converting the data stream to a text stream; generating a representative transcript that includes the words from the text stream that are spoken by the representative; comparing the representative transcript with a plurality of positive words and a plurality of negative words; and generating a score that varies according to the occurrence of each word spoken by the representative that matches one of the positive words, and/or the occurrence of each word spoken by the representative that matches one of the negative words. Tone of voice, as well as response time, during the interaction may also be monitored and analyzed to adjust the score, or generate a separate score.
US10404849B2

Exchanging information via a designated application includes establishing a voice communication link with a client device; sending a launch command associated with a designated application to the client device via the voice communication link, wherein upon receiving the launch command, the client device is caused to launch the designated application; and exchanging information with the client device through the designated application.
US10404846B1

A communication system for a mobile computing device that provides for personal communication. A housing of the communication system provides a receiving aperture for accepting the mobile computing device. An upper wall and lower wall of the housing guide the mobile computing device into the housing towards an interior wall. An audio data transmission system enables communication between the mobile computing device with the audio input and the audio output. Insertion of the mobile computing device into the housing connects the mobile computing device with the communication system. Upon connection with the communication system, the mobile computing device outputs audio to the external audio output. The mobile computing device also receives audio captured by the audio input.
US10404843B2

The present disclosure describes a system, method, and computer-readable medium for providing audio announcement of communications to a called party in a communication network. The method includes receiving communication from a calling party and performing a lookup of information relating to the calling party in a database via an Internet Protocol connection based on an identifier of at least one of the calling party and the called party. The information comprises one or more audio files. The method then provides the audio announcement to a called party based on the audio files.
US10404840B1

The present invention extends to methods, systems, and computer program products for ingesting streaming signals. Signal ingestion modules sample a frame from a raw streaming signal. A preliminary severity or possible event type is computed from the sampled frame. A deeper inspection request is triggered of the raw streaming signal or of another raw streaming signal. Segments of content from the raw streaming signal or the other raw streaming signal are inspected. An actual severity or actual event type is computed from the inspected content. The actual severity or actual event type can be included in a normalized signal.
US10404837B2

The present disclosure relates to maintaining network services during kernel update operations. According to one embodiment, a server generates a second computing system executing a second system kernel. The second system kernel is updated in relation to a first system kernel executing on a first computing system. The server pauses network services operating on the first computing system. The server generates a snapshot of the network services operating on the first computing system. While the network services are paused on the first computing system, the server caches data packets received from client devices and destined for network services operating on the first system, migrates the network services to the second computing system, and restores the network service snapshot to the second computing system. Upon completing the migration, the server sends the cached data packets to the one or more network services operating on the second computing system.
US10404835B2

An implementation of a method for hybrid client-server data provision involves requesting, by an application executed by a client device from a plurality of content provider software development kits (SDKs) integrated with the application, an item of content for display by the client device. The method further involves processing, by a plurality of request adaptors of the content provider SDKs, the request for potential submission to a plurality of content provider servers, thereby generating a plurality of processed requests. The method further involves receiving, by an interceptor module of a mediation SDK integrated with the application from the plurality of content provider SDKs, a plurality of processed requests. The method further involves batching, by a consolidator module of the mediation SDK, the plurality of processed requests into a batch request, the batch request including content provider priority information. The method further involves transmitting, by the mediation SDK, the batch request to a mediation server for mediation of the batch request to the plurality of content provider servers based on the content provider priority information, and receiving, by the mediation SDK, at least one item of content from the mediation server for display by the client device.
US10404831B2

One embodiment relates to a method performed by a first object connected to a communications network. The method may comprise using the communications network to supply information representative of the capabilities of the first object, these capabilities comprising capabilities associated with an execution environment of the first object. The method may comprise receiving via the communications network information representative of the capabilities of a second object connected to the communications network, the information identifying at least one function performed by the second object. The method may also comprise obtaining a software module adapted to the first object and suitable for executing in the execution environment of the first object while using data exchanged with the second object a function performed by the second object.
US10404830B2

Disclosed are a service processing method and apparatus, and a service server. The method comprises: receiving an operation request, sent by a first client device, for requesting to perform a service operation; generating a target service random code for a first account according to the operation request; receiving an operation response that is sent by a second client device according to the target service random code; identifying the first account by using the operation response; and sending account information of the first account to the second client device, so that the second client device completes the service operation based on the account information. In embodiments of the present application, a service processing process is completed based on a service random code that is generated by a service server in real time; therefore, security is relatively high, and interference from the external natural environment is avoided, and reliability of service processing can be effectively improved.
US10404826B2

The present general inventive concept relates to systems and method for routing electronic messages depending on message content.
US10404822B2

In one aspect, a system for pre-fetching performance data in a monitored environment is disclosed. The system can include a processor; a memory; and one or more modules stored in the memory. The one or more modules are executable by the processor to perform operations including: record queries that request for application performance data with latencies longer than a threshold; learn access patterns in the recorded queries with latencies longer than the threshold; pre-fetch and cache the application performance data requested by the recorded queries before the same recorded queries are requested next time; and provide the pre-fetched application performance data from the cache when the same recorded queries are requested next time.
US10404819B2

A local server system and a method of relaying data in the local server system are disclosed. The local server system includes a database configured to store image data downloaded from a remote server, and a processor configured to request the image data from the remote server and download the image data. The processor requests first image data corresponding to first result data from the remote server. The processor downloads the first image data from the remote server. The processor generates second result data based on the downloaded first image data. The processor provides the second result data to the local client when the local client requests the second result data corresponding to the first image data from the remote server.
US10404817B2

Systems, methods, and non-transitory computer readable media can obtain a first event stream including one or more events of a first type, where each event of the first type is associated with a timestamp. A second event stream including one or more events of a second type can be obtained, where each event of the second type is associated with a timestamp. The first event stream and the second event stream can be merged to generate information associated with a metric relating to a system, based on the timestamps associated with the one or more events of the first type and the timestamps associated with the one or more events of the second type.
US10404811B2

Apparatuses, computer readable media, and methods are disclosed for supporting services at an application service layer (ASL). The method may include responding to receiving batched requests from an entity by processing the batched requests, and sending a response to the batched requests to the entity. The method may include sending a separate response to each request indicated in the batched request to the entity, or sending a batched response. Two or more batched requests may have the same operation and the operation may be only specified once. The operation may be determined based on a name of the batched requests or an attribute of the batched request. The request may be determined to be a batch request based on a name of the batched request, attributes associated with the batched request, or an address to which the batched request is addressed. The ASL may be a service capability layer.
US10404808B2

A client device may connect to a remote browsing server, which may browse to a Uniform Resource Identifier, render a web service or other content, and stream the content back to the client device. The client device may have a web browser through which the server may stream rendered images and which may capture various inputs, such as mouse operations, keyboard inputs, and other input. The remote browsing server may receive the inputs from the browser, then transmit the inputs to the web service through a server browser, which may render the images transmitted to the client device. The remote browsing server may be a virtual machine that may be created for a limited use, such that the virtual machine and browser may be wiped clean with each use.
US10404807B2

An example method, for implementation by an example notification system, comprises creating a TCP connection between a client device and a cloud device; sending, by the cloud device, a first UDP message to the client device; and waiting, by the client device, to receive the first UDP message until a predetermined time after the creation of the TCP connection. If the client device has not received the first UDP message by the predetermined time, the method comprises sending, by the client device, a second UDP message to the cloud device, wherein sending the second UDP message starts an open time period during which the client device is able to receive UDP messages from the cloud device.
US10404806B2

A method and a system are provided for segmenting a multimedia content. The method estimates a count of a plurality of multimedia segments in the multimedia content, and a duration of each of the plurality of multimedia segments in the multimedia content. The method determines a cost function associated with a multimedia segment from the plurality of multimedia segments, based on the count of the plurality of multimedia segments, and the duration of each of the plurality of multimedia segments. The method further determines an updated count of the plurality of multimedia segments, and an updated duration of each of the plurality of multimedia segments until the cost function satisfies a pre-defined criteria. Based on the updated count of the plurality of multimedia segments, and the updated duration of each of the plurality of multimedia segments, the method segments the multimedia content into the plurality of multimedia segments.
US10404804B2

A system and method for initiating a personalized virtual reality session via a virtual reality communication system in a controlled environment is disclosed. The system includes a profile subsystem configured to store an inmate profile of the inmate of the controlled environment. The system also includes a virtual reality subsystem that retrieves the inmate profile associated with the inmate from the profile subsystem, initiates the virtual reality session involving a first communication device used by the inmate of the controlled environment, and personalizes the virtual reality session based on the inmate profile. The system also includes a communication subsystem configured to transmit information related to the virtual reality session to a monitoring system.
US10404801B2

A control device transmits a first type of signal and a second type of signal as part of transmitting an instruction. An electronic device receives the first signal and determines the control device is paired with another device. The electronic device displays a notification indicating such as well as a prompt requesting confirmation to pair the control device. Upon receiving an affirmative response, the electronic device notifies the other device, which transmits unpairing information to the control device. The control device then unpairs from the other device. The other device also transmits pairing information to the control device via the electronic device and the control device utilizes the information to pair with the electronic device. In some implementations, the other device may receive a request to locate the control device. In response, the other device displays that the control device has been paired with the electronic device.
US10404794B2

Systems, methods, software and apparatus enable communication group discovery and formation that includes operating a group communication service that is linked to communication nodes and that receives a communication group formation request from a requesting node. The group communication service transmits discovery data that is provided to a relevant group of the communication nodes, such as those within a selected range of the request node. Other nodes that wish to form a communication group send election responses to the group communication service, which then establishes the communication group. In some implementations the requesting node transmits the discovery data received from the group communication service to other communication nodes using low-energy transmissions. In some implementations the group communication service transmits the discovery data to local communication nodes located within a proximity range of the requesting node.
US10404793B2

Methods and systems are disclosed for determining context information for one or more peers to be used in a peer discovery and/or peer association process(es) and/or to otherwise facilitate P2P proximity communications. For example, a method for determining peer context information may include receiving a context-aware identifier (CAID). The CAID may include one or more items of context information associated with the peer in addition to an indication of an identity of the peer. A first portion of the CAID may be decoded to determine a first item of context information associated with the peer. The first portion of the CAID may be decodable without having to process a payload portion of the message. It may be determined whether to continue processing one or more of the CAID or the message based on the first item of context information. The CAID may be used in discovery and/or association procedure(s).
US10404792B2

A data transfer method and system includes at least one switch device (102) configured, in use, to transfer data, directly or indirectly, between a plurality of computing devices (104). The at least one switch device is configured to provide a plurality of Virtual Local Area Networks (VLAN), each said VLAN being configured as a Virtual Channel (VC) by receiving data from a said computing device designated as a sole source of data over the VC. The VC data is transmitted from the sole source computing device as Ethernet frames (200) tagged with a VLAN tag (202). The VCs are routed through the at least one switch device according to a VLAN Id field of the VLAN tag of a said frame, with fixed and pre-determined routing of the frame being determined by configuration of the at least one switch device.
US10404789B2

A system for use in displaying a webpage is described herein. The system includes a database and a server computer. The database includes a plurality of software components associated with a webpage. The server computer is configured to access the database and retrieve the plurality of software components and execute a profiling operation including rendering each of the plurality of software components and determining a rendering period associated with each software component. The server computer is also configured to select a cacheable software component from the plurality of software components as a function of the associated rendering periods, generate rendered cache code for the selected cacheable software component, and store the rendered cache code in the database for use in generating the webpage.
US10404787B1

An apparatus in one embodiment comprises at least one processing device having a processor coupled to a memory. The processing device is configured to initiate distributed data streaming computations across data processing clusters associated with respective data zones, and in each of the data processing clusters, to separate a data stream provided by a data source of the corresponding data zone into a plurality of data batches and process the data batches to generate respective result batches. Multiple ones of the data batches across the data processing clusters are associated with a global data batch data structure, and multiple ones of the result batches across the data processing clusters are associated with a global result batch data structure based at least in part on the global data batch data structure. The result batches are processed in accordance with the global result batch data structure to generate one or more global result streams.
US10404781B2

In one embodiment, there is provided a device implementing a leecher peer, the device including a processor to request a list of seeder peers from a tracker, receive the list, select a first seeder peer from the list from which to download at least part of a content item, start downloading the at least part of the content item from the first seeder peer, receive a message from the first seeder peer indicating a deterioration in an upload flow characteristic of the first seeder peer, in response to receiving the message, request an updated list of seeder peers, receive the updated list, select a second one of the seeder peers from the updated list from which to download another part of the content item, cease downloading the content item from the first seeder peer, and start downloading the other part of the content item from the second seeder peer.
US10404780B2

Apparatuses, systems, and methods are disclosed for a computer desktop infrastructure. A desktop module is configured to execute a computer desktop environment on a hardware device. A local storage module is configured to store application data for a computer desktop environment in local non-volatile storage of a hardware device executing the computer desktop environment. A remote module is configured to provide a computer desktop environment to a user over a network.
US10404779B2

A managed device is provided that includes a network interface, a controller, and a module to provide manageable operations of the device. The controller communicates with at least one of a cloud service or an agent to send an identifier and to receive a token from the cloud service or the agent. The controller validates the token and receives management information from the cloud service.
US10404769B2

A method includes preparing images of a remote desktop including an open cloud-application window object corresponding to an instance of a network-hosted application executing on a network, encoding the images of the remote desktop as image frames in a video stream, and transmitting the video stream over the network to a computing device. The images the remote desktop are encoded such that when decoded, reconstructed, and displayed on a local desktop of the computing device, the open cloud-application window object corresponding to the instance of the network-hosted application executing on the network has the appearance and behavior of an open window corresponding to a natively-operating application on the local desktop of the computing device.
US10404757B1

Systems and methods for storing and accessing data according to privacy policies are described herein. Data elements may be associated annotations that encode one or more policies that define how the data element may be used. The data element may be stored in association with the annotation. Whether access to the stored data element should be granted may be evaluated based at least in part on an access scheme for the data element.
US10404754B2

A system, apparatus, method, and machine-readable medium are described for determining the authentication capabilities. For example, one embodiment of a method comprises: receiving a policy identifying a set of acceptable authentication capabilities; determining a set of client authentication capabilities; and filtering the set of acceptable authentication capabilities based on the determined set of client authentication capabilities to arrive at a filtered set of one or more authentication capabilities for authenticating a user of the client.
US10404739B2

A system for the categorization of interlinked information items, the system comprising: a trust flow module which is configured to receive a seed trust list of one or more first information items, the seed trust list associating the one or more first information items with one or more categories; and a trust flow module configured to: associate a respective trust value with each of the one or more categories for the one or more first information items; and iteratively pass at least part of the or each trust value to one or more further information items to generate, for each of the one or more further information items, at least one accumulated trust value associated with a category of the one or more categories, such that the one or more further information items can be categorized based on the at least one accumulated trust value and associated category.
US10404736B2

Systems, methods, and other embodiments associated with placing a virtual machine or workload on one of a plurality of hosts are described. In one embodiment, a method includes analyzing the hosts to identify a set of candidate hosts. Each candidate host is analyzed and a threat score is calculated for each candidate host that is indicative of a degree of vulnerability of the candidate host to information-security threats. The corresponding threat scores from the candidate hosts are compared and a host with a lowest threat score is selected, and the virtual machine is placed on the selected host. Thereafter, the selected host is reanalyzed to calculate an updated threat score based at least in part upon the placement of the virtual machine, and in response to determining that the updated threat score exceeds a threshold, the virtual machine is moved to a different host.
US10404734B2

Techniques for performing root cause analysis in dynamic software testing via probabilistic modeling are provided. In one example, a computer-implemented method includes initializing, by a system operatively coupled to a processor, a threshold value, a defined probability value, and a counter value. The computer-implemented method also includes, in response to determining, by the system, that a probability value assigned to a candidate payload of one or more candidate payloads exceeds the defined probability value, and in response to determining, by the system, that the counter value exceeds the threshold value: determining, by the system, that a match exists between the candidate payload and an input point based on an application of the candidate payload to the input point resulting in a defined condition, wherein the one or more candidate payloads are represented by population data accessed by the system.
US10404733B1

The present disclosure relates to initiating remediation of security risks on an endpoint system based on updated reputation data. According to one embodiment, a reputation service receives a request, from a first endpoint system, for reputation data about an object. A reputation service transmits, in response to the request, data indicating a current reputation of the object. The reputation service determines that the object presents a security risk and updates reputation data associated with the object to indicate that the object presents a security risk. Upon updating the reputation data, the reputation system transmits, to the first endpoint system, updated reputation data associated with the object and instructions to remedy the security risk.
US10404722B2

Systems and methods for providing security services during a power management mode are disclosed. In some embodiments, a method comprises detecting with a mobile security system a wake event on a mobile device, providing from the mobile security system a wake signal, the providing being in response to the wake event to wake a mobile device from a power management mode, and managing with the mobile security system security services of the mobile device. Managing security services may comprise scanning a hard drive of the mobile devices for viruses and/or other malware. Managing security services may also comprise updating security applications or scanning the mobile device for unauthorized data.
US10404703B1

Embodiments include methods and systems for enabling third-party data service interoperability, comprising receiving, from an electronic data server, a request for a low-value token, the low-value token being associated with a subset of sensitive data associated with a user; providing the low-value token to the electronic data server; receiving a request for the subset of sensitive data, from a third-party data service server, the request comprising the low-value token; de-tokenizing the low-value token to obtain the subset of sensitive data; providing the subset of sensitive data to the third-party data service server; receiving, from an electronic data server, the low-value token and a transaction authorization request; determining, based on the low-value token and authorization request, an authorization response; and providing the authorization response to the electronic data server.
US10404694B2

There is disclosed a mobile device comprising a processing unit for executing a host application, a user-interactive display and an authentication unit; wherein the authentication unit is arranged to receive an authentication request from the host application; wherein the authentication unit is arranged to cause the display to show a set of pictures in response to receiving the authentication request; wherein the authentication unit is further arranged to identify a selection of at least one picture from said set of pictures; and wherein the authentication unit is further arranged to initiate a verification of said identified selection. Furthermore, a corresponding method of authenticating a user is disclosed, as well as a corresponding computer program, an article of manufacture and a display.
US10404691B2

Aspects of the disclosure relate to providing information security and preventing unauthorized access to secured resources by implementing token-based authentication techniques. A computing platform may receive, from a client computing device, a request to authenticate a user to a user account associated with a client portal provided by a client portal server. In response to receiving the request to authenticate, the computing platform may generate a validation token for the user account. Subsequently, the computing platform may validate the request to authenticate based on the validation token generated for the user account. In response to validating the request to authenticate, the computing platform may generate and send one or more commands directing the client portal server to provide at least one client portal interface to the client computing device. In some instances, receiving the request to authenticate may include receiving a time-based one-time passcode generated by the client computing device.
US10404689B2

The description relates to password reset security. One example can receive a login request and a password for a cloud-based user account. The example can also retrieve stored authenticated user information associated with the password. The example can further send a notification of the login request to a contact address associated with the cloud-based user account. The notification can contain at least some of the stored authenticated user information.
US10404679B2

A system and method are described in which a document transaction management platform coordinates performance of trust actions across a plurality of trust service providers. For example, a method can include operations such as send a first transaction request, selecting a first trust provider, facilitating performance of a first trust action, sending a second transaction request, selecting a second trust provider, and facilitating performance of a second trust action. Sending the first transaction request can include a first trust action associated with an electronic document. Selecting the first trust provider to execute the first trust action occurs in response to a first user accepting the first transaction request. Performance of the first trust action is facilitated through the first trust provider. Sending the second transaction request can include a second trust action associated with the electronic document. Selecting the second trust provider to execute the second trust action occurs in response to acceptance of the second transaction request by a second recipient. Performance of the second trust action is facilitated through the second trust provider.
US10404678B2

A security object creation and validation system provides an additional factor of authentication. An authentication system as described herein provides secure two-factor authentication, such as for IT resources in an organization. The authentication system can perform generation of a security object (such as an X.509 object, Java object, persistent browser token, or other digital certificate); registration of the generated security object or of an existing security object (such as a near field communication identifier, smart card identifier, OATH token, etc.); validation of the security object as part of an authentication process; and assertion of the identity of the security object to native network resources (such as web resources, network resources, cloud resources, mobile applications, and the like) that may accept the security object. The authentication system may provide user interfaces to allow users and administrators to manage registered device inventory and revoke security objects.
US10404677B2

Upon receiving a triggering message from a MTC server (20), a network (10) verifies if the MTC server (20) is authorized to trigger a target MTC device (30) and also if the MTC device (30) is authorized to respond the triggering message, by comparing an MTC device ID and MTC server ID (and optionally information on subscription) which are include in the triggering message with authorized ones. Upon succeeding in the verification, the network (10) checks a trigger type included in the triggering message to verify if the triggering message is authorized to be sent to the MTC device (30). Upon succeeding in the check, the network (10) forwards the triggering message to the MTC device (30). The network (10) also validates a response from the MTC device (30), by checking whether the MTC device (30) is allowed to communicate with the addressed. MTC server (20).
US10404672B2

Systems and methods for reducing cyber security incidents in video surveillance and security systems with intelligent password management are provided. Some methods can include assessing a vulnerability of a current password for each of a plurality of cameras, responsive to detecting that the current password for at least one of the plurality of cameras is vulnerable, automatically generating an updated password for the at least one of the plurality of cameras, and assigning the updated password to the at least one of the plurality of cameras.
US10404667B2

The disclosure includes novel encryption and/or decryption methods and systems that provide various security benefits. More specifically, the disclosure includes a description of a file encryption process and its ability to dynamically control permissions on who is allowed to decrypt the file. Moreover, the disclosed process permits an encrypted file to be freely distributed without losing the ability to govern/regulate decryption.
US10404664B2

A machine implemented method for protecting at least one edge node in a network of nodes is provided. The method comprising: communicatively coupling said at least one edge node with a proxy node; providing an application for said at least one edge node in an isolated area associated with said at least one edge node at said proxy node; determining that an update for said at least one edge node is required; increasing a reboot frequency of said at least one edge node following said determination that an update is required; and increasing a reboot frequency of said proxy node following said determination that an update is required.
US10404657B2

A method and an apparatus for accessing a website. A specific implementation of the method includes: receiving an access request for the website, the access request comprising a source network address of the access request and a network address of the website; detecting whether the source network address and the network address of the website belong to a same Internet service provider; determining a target inter-network node from a preset inter-network node set in response to detecting the source network address and the network address of the website not belonging to the same Internet service provider, the target inter-network node being an inter-network node connecting a network of an Internet service provider to which the source network address belongs and a network of an Internet service provider to which the network address of the website belongs; and transmitting the access request to the target inter-network node. This implementation improves the speed for accessing a website.
US10404649B2

Systems, methods, and computer program products for determining network characteristics are provided. The network characteristics may be used to facilitate changes to how content is delivered over a network, such as to avoid network congestion, to provide improved throughput, or to provide a good (or better) user experience, such as when streaming media. For example, the network characteristics may be determined, in part, by tracking domain name resolution requests by using specially formulated domain names that require resolution at an authoritative name server.
US10404648B2

The present disclosure generally discloses an addressing mechanism adapted for extending a customer local area network of a customer premises of a customer outside of the customer premises and into a private data network with improved scalability and performance. The extension of a local area network of a customer premises of a customer outside of the customer premises and into a private data network may be provided using a customer bridge associated with the customer local area network of the customer, a customer bridging domain hosted on a network gateway device for the customer, and a switching element hosted in the private data network for the customer for one or more customer components hosted within the private data network for the customer. The addressing mechanism may include one or more of address announcement functions, address resolution functions, address translation functions, or the like, as well as various combinations thereof.
US10404644B2

Techniques for invitations for establishing relationships are described. In at least some embodiments, an architecture is implemented which provides simple and integrated ways for establishing relationships between various entities. The architecture includes invitations that can be used to invite users to establish relationships with entities. A user that receives an invitation can interact with the invitation, such as to accept or decline an invitation to establish a relationship with an entity. If a user accepts an invitation, a relationship can be established between the user and an inviting entity. In at least some embodiments, the relationship can enable the user to perform various actions and/or access resources associated with the entity.
US10404617B2

The present invention relates to a method and an apparatus for allocating resources in a communication system using an asset delivery characteristics (ADC) message so as to improve efficiency in network resource usage. A method for allocating network resources in a transmission unit of a communication system according to the present invention comprises the steps of: generating an ADC message that includes a parameter value representing a transmission characteristic of a single asset; and transmitting the generated ADC message, wherein the generated ADC message is updated periodically or aperiodically with respect to the asset.
US10404610B2

Disclosed is a method and system to transmit independent data by at least two transmitters to corresponding at least two receivers. The method includes obtaining, at a first transmitter, a first ternary sequence from a first base ternary sequence corresponding to a first set of data-symbols, and obtaining, at a second transmitter, a second ternary sequence from a second base ternary sequence corresponding to a second set of data-symbols. The method also includes transmitting, from the first transmitter, the first ternary sequence to a first set of receivers associated with the first transmitter. The method transmits, from the second transmitter, the second ternary sequence to a second set of receivers associated with the second transmitter.
US10404608B2

There is disclosed a network communication system that includes data sources and of switches. Each of the data sources and switches is interconnected by a packet-switched network, and is synchronized to a common clock. The system also includes a network controller that maintains records of network characteristics including a transmission delay for each of the data sources and switches, and a transmission delay for links in the packet-switched network. The network controller processes the network characteristics to generate, for each of a plurality of packets of a given type of traffic: a path from a particular data source, and through at least one particular switch, and a schedule of departure times at each of the particular data source and the at least one particular switch. The path and the schedule are optimized to meet jitter requirements for the given type of traffic.
US10404604B2

A telecommunications system is operable to provide a facility for a communications session to a mobile node using an internet protocol. When changing affiliation from one of a first and second packet data network to the other of the first and second packet data network, a mobile node is operable to generate a service level identifier representing a requested priority to be afforded to the internet packets communicated to and from the mobile node with respect to other internet packets communicated to and from other nodes. The mobile node is also operable to generate a binding update internet packet providing a care of address of the mobile and an indication of the service level identifier in the binding update internet packet and to communicate the binding update internet data packets to a home agent of the mobile node. The home agent is operable in response to the binding update to identify the service level identifier and to communicate the internet packets in accordance with the requested priority represented by the service level identifier. The telecommunications system can prioritise the transmission of internet packets according to a priority requested by the mobile node represented by the service level identifier thus reducing a likelihood that mobile node will experience delays or interruptions in the transmission of data.
US10404601B2

Disclosed herein are a variety of devices, methods, and systems for load balancing in the internet of things. Devices and other entities can be grouped together in a load balancing group and traffic for such devices balanced according to load balancing criteria. Groups may be discovered, created, manipulated, and deleted by various entities.
US10404600B2

Systems and methods of network traffic engineering are provided. The system includes a switch and a controller. The controller can maintain a monitoring segment identifier set defining a path for traffic intended for a destination device. The controller can maintain a forwarding segment identifier set representing a compressed version of the monitoring segment identifier set such that traffic, when labeled according to the forwarding segment identifier set, will follow the path defined by the monitoring segment identifier set. The controller can monitor a status of the path defined by the monitoring segment identifier set. The controller can, subject to determining that the path defined by the monitoring segment identifier set is invalid, cause the switch to not label a packet received at the switch according to the forwarding segment identifier set.
US10404597B2

Virtual horizontally-scalable packet broker systems and methods are disclosed for distribution of session-based network traffic. One or more distributors along with a plurality of ingress processors and egress processors are operated within a virtual processing environment to forward session-based network traffic to network tools. The session-based network traffic includes user packets and control packets associated with user sessions. In addition, one or more session controllers are also operated within the virtual processing environment to dynamically control numbers of virtual processing nodes operating as the distributors, the ingress processors, and the egress processors. User packets are processed and distributed by the distributors, ingress processors, and the egress processors. Control packets are processed and distributed by the distributors, session controllers, and egress processors. The egress processors can include initial and secondary egress processors. In one embodiment, the session-based network traffic can be GTP traffic including GTP-C and GTP-U packets.
US10404593B2

Techniques for stateful connection optimization over stretched networks are disclosed. In one embodiment, traffic of virtual machines (VMs) that are live-migrated from a data center to a cloud is temporarily tromboned back to the data center to preserve active sessions. In such a case, a stretched network is created that includes a network in the data center and two stub networks in the cloud, one of which is route optimized such that traffic does not trombone back to the data center and the other which is not so optimized. A VM that is live migrated to the cloud is first attached to the unoptimized network so that traffic tromboning occurs. Thereafter, when the VM is powered off (e.g., during a reboot), in a maintenance mode, or in a quiet period, the VM is switched to the route optimized network.
US10404592B2

A method is provided in one example embodiment and may include receiving a packet by a forwarder in an Information-Centric Networking (ICN) network; determining Bit Index Explicit Replication (BIER) information associated with the packet; and forwarding the packet based, at least in part, on the BIER information associated with the packet. The packet can be an interest packet or a data packet received by the forwarder in the ICN network.
US10404586B2

An information processing system includes a plurality of nodes; a plurality of first switches respectively including information on a node to which the first switch is coupled; and a plurality of second switches respectively including information on an aggregation which the second switch is in charge of, wherein a first node transmits a first packet including destination information indicating that a destination is a second node, to a first switch coupled to the first node, and the first switch coupled to the first node transmits the first packet to a second switch that is in charge of an aggregation to which the second node belongs, when the second node is not coupled to the first switch, and the second switch transmits the first packet to a first switch coupled to the second node, and the first switch coupled to the second node transmits the first packet to the second node.
US10404585B1

Segregating a node port experiencing ingress. A node that provides a service to a plurality of cable modems may have a plurality of node ports. The node may be a Remote PHY Node or a Remote MACPHY node. In response to detecting that a particular node port of the node is experiencing ingress, the assignment of node ports to upstream device ports are adjusted so that the particular node port experiencing ingress is not be assigned to the same upstream device port as any other node port. In further response to detecting ingress at the particular node port, all node ports assigned to the same upstream device port are caused to be assigned to the same downstream device port. By segregating the node port experiencing the ingress in this manner, the impact of that ingress can be mitigated or eliminated with respect to the other node ports of that node.
US10404573B2

A method is implemented by a network device functioning as a Border Gateway Protocol (BGP) speaker to transmit aggregated link-state information pertaining to a network in which the network device operates to a peer BGP speaker. The method includes storing, in a link-state database, node entries representing nodes in the network, fragment entries representing fragments received from nodes in the network, and link/prefix entries representing links/prefixes in the network. Each link/prefix entry is assigned a state from a possible set of states, where the possible set of states include a new entry state, a modified entry state, a deleted entry state, and an unmodified entry state. The method further includes determining link-state information to transmit to the peer BGP speaker based on a state assigned to a link/prefix entry, and transmitting the determined link-state information to the peer BGP speaker.
US10404572B1

A Spontaneous Area Network (SPAN) is formed by mobile and fixed nodes using wireless transmission links between nodes, usually in a nearby geographical area. Applications allow users to create, join, leave, and manage SPANs and groups in a SPAN. Automatic procedures allow nodes to join other SPANs. Transmission power of the wireless network interface is dynamic, varying depending on battery level, type of information to transmit, state and topology of the network. A delay tolerant object layer abstraction creates, modifies, deletes, publishes, and handles Delay Tolerant Distributed Objects (DTDOs). A Patient Transport Protocol (PTP) ensures a reliable transport of information through the network while avoiding congestion conditions. An aggressive and explosive network protocol (AGENET) has routing and forwarding capacities and uses datagrams to establish communication between different nodes of the SPAN. Cooperation and diversity are exploited to react to node mobility that causes frequent changes in network topology and disconnections.
US10404569B2

Some embodiments are directed to an Internet of Things (“IoT”) associate to facilitate implementation of a digital twin of a twinned physical system. The IoT associate may include a communication port to communicate with at least one component, the at least one component comprising a sensor or an actuator associated with the twinned physical system, and a gateway to exchange information via the IoT. A computer processor and local data storage, coupled to the communication port and gateway, may receive a digital twin model from a data warehouse via the IoT. The computer processor may be programmed to, for at least a selected portion of the twinned physical system, execute the digital twin model in connection with the at least one component and operation of the twinned physical system.
US10404564B2

Disclosed is a method for continuous in-line monitoring of data-centric traffic to guarantee application performance. The method includes, in each switch of a plurality of switches in a network fabric, grouping all packets entering each respective switch of the plurality of switches based on either 5-tuple applications or EPG based applications, collecting performance statistics at every hop in the network fabric across all flows in-line in a flow table maintained in each respective switch and periodically exporting the performance statistics to analysis module.
US10404563B2

The analyzer includes a path information obtainer that extracts a component that a first function among a plurality of functions sometimes uses and sometimes does not use as an undetermined component beforehand; a detector that detects whether the undetermined component is used during operation; and a specifier that specifies, when a problem arises during the operation, a problem component, as a problem point, among one or more components based on path information including the one or more components that each of the plurality of functions uses and being obtained for the function beforehand, operation information obtained during the operation, and a result of detecting using of the undetermined component. This configuration makes it possible to specify an exact problem point.
US10404561B2

In an embodiment, a computer-implemented method receives and monitors performance metrics from network element. The method also includes receiving periodic control metrics corresponding to object instances. Performance metrics and control metrics provide information about operation of object instances. By monitoring the metrics, a network server is able to detect an operational flaw in the network. Monitoring the performance and control metrics in real time increases the speed of detecting any operational flaw in the network.
US10404546B2

Concepts and technologies disclosed herein are directed to a multi-tier fault tolerant network design with Quality of Service (“QoS”) considerations. According to one aspect, a network planning system can identify at least one critical site of a plurality of sites. The critical site is considered to be critical for survivability of a network. The network planning system can construct a topology that connects the plurality of sites. The network planning system can determine a shortest path for each network link in the topology. The network planning system can check a service level agreement to determine a reliability requirement for each link in the topology that is not connected to the critical site. The network planning system can implement a reliable adaptive multipath provisioning algorithm to adaptively determine a bandwidth allocation on each link in the topology based, at least in part, upon the shortest path and the reliability requirement.
US10404540B2

A G.8032 misconfiguration detection method in a node includes receiving a mapped configuration from another node on a ring, wherein the mapped configuration includes a mapping of G.8032 instances to Virtual Local Area Network (VLAN) identifiers configured at the another node; comparing the mapped configuration with a local configuration on the node; and, responsive to a mismatch in the comparing, providing one of a trap and a notification based on the mismatch. The G.8032 misconfiguration can include one of a VLAN not mapped as protected to a node and a VLAN removed from a protected list at the node.
US10404535B2

A method for managing the configuration of a wireless connection used to transmit sensor readings from a sensor to a data collection facility, the method comprising receiving a sensor reading from the sensor, comparing the value of the sensor reading with a forecast value for the sensor reading, determining the value of a normality parameter for the sensor, wherein the value of the normality parameter defines the extent to which the value of the sensor reading differs from the forecast value; and determining whether to retain a current configuration of the wireless connection between the sensor and data collection facility or to change the configuration, wherein the determination to retain the current configuration or change configuration is based at least in part on the value of the normality parameter.
US10404533B2

Systems and methods are provided that facilitate multiple switching points within a slot. A slot format indication is conveyed to a user equipment which indicates which symbols within a slot are uplink, downlink or unknown. Some formats feature half-slot switching meaning that a switch from uplink to downlink transmission takes place twice within a slot. Switching on a more frequent basis can deliver improved latency.
US10404531B2

A network element of a software-defined network comprises a data transfer interface (210) for receiving and transmitting data and a processing system (215) for constructing a software-defined data path and a fixed-functionality data path such as for example an IP/MPLS or L2 switching path. The software-defined data path comprises look-up tables for selecting software-defined actions and the fixed-functionality data path defines fixed-functionality actions. The processing system is adapted to convert metadata associated with data managed by the software-defined data path to a data format suitable for the fixed-functionality data path when one or more of the fixed-functionality actions are needed in conjunction with forwarding the data. One of the fixed-functionality actions is selected at least partly on the basis of which one of the look-up tables was most recently accessed, and the determined fixed-functionality action is carried out so as to initiate the one or more needed fixed-functionality actions.
US10404529B2

A configurable, connectorized system for providing supervisory and distributed control dramatically reduces the number of wire connections that must be made to connect sensors and actuators to a control system, reducing the number of different control hardware components required to connect one or more sensors and actuators through use of a configurable I/O module.
US10404527B2

An electrical system having a master node, at least one slave node and a bus linked to both of the master node and the slave node is illustrated. The master node check whether a reception register of the slave node does not receives a new data for a first time period, and resets the slave node while the reception register of the slave node does not receives the new data for the first time period; and the slave node checks whether the reception register of the slave node does not receives the new data for a second time period, and resets the slave node itself while the reception register of the slave node does not receives the new data for the second time period. Therefore, the communication stability of the electrical system can be enhanced.
US10404524B2

The technology disclosed relates to differential analysis of sets of time series pairs. In particular, it relates to building estimators of magnitude of difference between two time series. After the basic estimators are built, they are combined into ensemble estimators using linear or nonlinear prediction models to improve their accuracy. In one application, the ensemble is used for estimating the magnitudes of difference over sets of metric pairs observed from distributed applications and systems running over a computer network. The metric pairs are then ranked in decreasing order of magnitude of difference to guide an operator in prioritizing his root cause analysis of faults, thereby reducing the time-to-resolution of problems.
US10404516B2

A data demodulation method, apparatus, and system are presented. The method includes obtaining notification information indicating that user equipment (UE) is in a high-speed moving state; performing time-frequency synchronization processing on first downlink data according to the notification information to obtain second downlink data; and performing demodulation processing on the second downlink data to obtain third downlink data, where in the demodulation processing, inter-transmission time intervals (TTIs) filtering for a channel estimation is not performed, or a filtering coefficient as a weight of a current TTI for a channel estimation is greater than a filtering coefficient as a weight of a TTI that is at the time when the UE is in the non-high-speed moving state for a channel estimation. The demodulation method is applicable to a high-speed scenario for improving a downlink data throughput of the UE.
US10404506B2

An interference variance estimation method includes receiving a composite sample comprising a sample of a first OFDM transmission scheme interfered by out-of-band interference of a second OFDM transmission scheme; determining for each of the resource elements of the first transmission scheme a power estimate of the out-of-band interference; and filtering the power estimates over subcarriers corresponding to a same symbol, wherein weights of the filtering are based on a correlation property of the power estimates with respect to the subcarriers. An interference cancellation method includes: receiving the composite sample; determining a first estimate of the out-of-band interference with respect to non-data bearing subcarriers; determining a second estimate of the out-of-band interference with respect to data bearing subcarriers based on the first estimate; and cancelling the out-of-band interference based on the composite signal and the second estimate.
US10404499B2

Embodiments of the present disclosure may relate to a transmitter that includes a baseband dispersion compensator to perform baseband dispersion compensation on an input signal. Embodiments may also include a receiver that includes a radio frequency (RF) dispersion compensator to perform RF dispersion compensation. Embodiments may also include a dielectric waveguide coupled with the transmitter and the receiver, the dielectric waveguide to convey the RF signal from the transmitter to the receiver. Other embodiments may be described and/or claimed.
US10404497B2

An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where in is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an in-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.
US10404495B2

A ringing suppression circuit is provided at one or more nodes each having a communication circuit executing communication with another node by transmitting a differential signal through a pair of communication lines connected to the nodes. The operation controller is configured to shift a mode of the suppressor to a normal-operation mode when the differential signal is transmitted through the pair of communication lines, and to shift the mode of the suppressor to a low-current operation mode when the differential signal is not transmitted through the pair of communication line. A current consumption of the suppressor is less in the low-current operation mode than the normal-operation mode. The suppressor and the operation controller are configured to receive permanent power from a DC power supply, and the communication circuit is configured to receive power from the DC power supply via a power supply switch.
US10404492B2

A device for mitigating a first group delay of a lowpass filter configured to lowpass filter a first channel coefficient of a set of channel coefficients with respect to time, includes a prediction filter configured to filter a data sequence derived from a lowpass filtered first channel coefficient to generate a prediction value of the lowpass filtered first channel coefficient; and an adjustment circuitry configured to adjust the prediction filter to generate the prediction value having a second group delay that is less than the first group delay.
US10404475B2

A computer-implemented method for establishing a secure communication tunnel between a device and a server is provided. The method comprises the server receiving a session request from the device to establish a secure tunnel. A handshake procedure is carried out to set up an encryption/decryption key for the secure tunnel. The handshake procedure uses a first communication channel from the server to the device. The method also includes sending a component of the handshake procedure to the device via a second communication channel. This component is required by the device to continue the handshake procedure or to commencing use of the secure tunnel established by the handshake procedure.
US10404474B1

Systems and methods for container orchestration security employ one or more processors that separate a lifecycle of one or more containers into a plurality of predefined container image lifecycle phases; segregates control of the plurality of predefined container image lifecycle phases into a plurality of control environments separately controlled by different enterprise control components isolated from one another. In addition, one or more external processors may generate one or more certificates that are based on the platform, state attributes and meta data for interaction of the container with one or more external nodes. The one or more processors may also control the promotion, update and deletion of container images between the plurality of lifecycle phases and registries in different control environments as well as between the enterprise registries and the plurality of other registries that are part of multiple external clouds.
US10404473B1

Systems and methods related to processing transaction verification operations in decentralized applications via a fixed pipeline hardware architecture are described herein. The fixed pipeline hardware architecture may include and/or support at least a crypto engine and a read set validation engine. The crypto engine may itself comprise a hardware architecture configured to perform cryptographic operations necessary to validate signatures for transactions in decentralized applications. In various implementations, the hardware architecture of a crypto engine may include a scheduler and a series of crypto execution units configured to operate in parallel. The read set validation engine may be configured to verify whether a transaction is valid based on a comparison of an incoming transaction state indicating transaction data for the transaction and a local state related to the transaction.
US10404470B2

Techniques for signature verification of field-programmable gate array (FPGA) programs are described herein. In one or more implementations, an FPGA virtualization manager of a host device receives a request from a virtual machine for an FPGA program to program FPGAs of the host. The FPGA program is configured to program the FPGAs to provide functionality of a hardware-implementation of a respective program (e.g., a machine-learning algorithm) or of a respective device (e.g., a graphics processing unit). Before allowing the FPGA program to program the FPGAs, however, the FPGA virtualization manager determines whether the FPGA program is trusted to do so. To do so, the FPGA virtualization manager verifies a digital signature associated with the FPGA program. When the signature is verified the FPGA program is determined to be trusted. Based on such a determination, the FPGA virtualization manager loads the FPGA program to program the FPGAs to provide the functionality.
US10404465B2

A sequential biometric cryptosystem includes: a registration terminal that extracts a set of feature data from each of multiple pieces of biological information acquired from each user, sequentially selects, out of these, a group of multiple sets of feature data, incrementing the number of combined sets, creates a protection template for each selected group of feature data, and stores the protection template into a storage apparatus. The sequential biometric cryptosystem also includes an authentication terminal that extracts feature data from a combination including one or more pieces of biological information of a specified user, acquired through a sensor on the user, verifies a combination of the extracted feature data against the protection template derived from the biological information having the same specified attribute, and performs, if the verification is successful, specified processing on the user.
US10404463B1

A cryptographic ASIC and method for autonomously storing a unique internal identifier into a one-time programmable memory in isolation, by a foundry or a user. When later powered on, the ASIC calculates the value of the unique internal identifier from a predetermined input and compares the calculated identifier value to the stored identifier value. A match indicates the stored value is valid, while a mismatch indicates the stored value is invalid, whether due to natural memory component aging or damage by unauthorized access attempts. The ASIC may compare the calculated identifier to another copy or copies of the stored identifier, and disregard unreliable copies of the stored identifier. The ASIC may compare multiple copies of the stored identifier in a voting scheme to determine their validity. The confirmed valid lifetime of the ASIC thus extends far beyond the useful lifetime of a single copy of the stored identifier.
US10404455B2

A system includes circuitry for rewriting blockchains in a non-tamper-evident or tamper-evident operation by a trusted party during a rewrite-permissive phase. During a rewrite-embargoed phase, at least one trusted party with rewrite access during the rewrite-permissive phase may have rewrite access revoked. In some implementations, rewrite access may be implemented by controlling access to a key secret for the blockchain. In some cases, access to the key secret may be changed by deleting the key secret or by changing access permissions for a particular device.
US10404451B2

There are provided a message communication device and method. A message communication device according to an exemplary embodiment includes a header modifying unit configured to modify a message header by adding additional information used together with an identity when a public key corresponding to the identity of a recipient is generated to be the message header, and a message transmitting unit configured to transmit a message including data encrypted based on the public key and the modified message header.
US10404448B2

A communication device includes a sampler configured to sample an input signal, wherein the sampler is configured to generate a sampled value for each sampling time of a sequence of sampling times, a sequence value generator configured to generate an output value for each sampling time of the sequence of sampling times based on the sampled values, wherein the sequence value generator is configured to set the output value for a sampling time based on the sampled value for the sampling time and based on a limitation of the difference between the output value for the sampling time and the output value for the preceding sampling time in the sequence of sampling times, and an edge detector configured to detect an edge in the input signal based on the output values.
US10404443B2

Methods, systems, and devices for half-duplex frequency division duplexing (HD-FDD) hybrid automatic repeat request (HARQ) operation are described. The base station may receive a message from a user equipment (UE) indicative of a duplexing capability of the UE. The base station may then select a HARQ process limit based on the duplexing capability. In some examples, the base station may anticipate a collision between an uplink (UL) transmission and a downlink (DL) subframe based on the selected HARQ process limit. The base station may then schedule a transmission to avoid the anticipated collision. In some examples, the base station may limit a number of configurations available for channel quality indicator (CQI) or a precoding matrix indicator (PMI).
US10404440B2

A method, a user equipment, and a base station for transmitting channel state information (CSI) are disclosed. First, a scheduling grant command is sent by a base station. A CSI location label is obtained according to information of a resource occupied by the scheduling grant command and information of a resource occupied by a data channel that is indicated by the scheduling grant command. CSI of a carrier corresponding to the CSI location label is sent to the base station through the data channel. The CSI location label may be obtained through the scheduling grant command and the CSI of the carrier corresponding to the CSI location label may be sent or received without changing a length of an aperiodic CSI request field.
US10404435B2

Embodiments of the present invention provide a pilot signal generation method and apparatus, so as to implement sharing of one pilot by multiple UEs when it is ensured that each of the multiple UEs can correctly obtain a data stream, thereby reducing pilot overheads. The method includes: determining a first pilot signal shared by multiple UEs, where the multiple UEs are multiple UEs transmitting data streams on a same time-frequency resource; determining a pilot precoding vector of first UE and a data stream receiving gain of the first UE according to current downlink channel information of the multiple UEs, where the first UE is one of the multiple UEs; and generating, according to the first pilot signal, the data stream receiving gain of the first UE, and the pilot precoding vector of the first UE, a second pilot signal that is to be sent to the first UE.
US10404428B2

Interference is mitigated by effective knowledge and/or effective information about an interference signal. A higher layer in which a base station apparatus configures first interference information used for the terminal apparatus to mitigate interference from a cell-specific reference signal and/or second interference information used for the terminal apparatus to mitigate interference at least from a downlink shared channel; and a signal detection unit configured to mitigate the interference from the cell-specific reference signal based on the first interference information and to mitigate the interference at least from the downlink shared channel based on the second interference information.
US10404417B2

The disclosure relates to a method for providing, by a UE, feedback information of a retransmission protocol to a radio base station, the UE being configured with at least two cells. A least one cell bundling group is defined for the UE such that one of the at least one cell bundling group is associated with at least two out of the at least two cells. The UE communicates with the radio base station to receive downlink transmissions via at least one of the at least two cells. The UE operates a retransmission protocol with the radio base station to provide feedback information for the downlink communication. For each cell bundling group, the UE bundles feedback information generated in connection with those cells being associated with the respective cell bundling group so as to generate bundled feedback information per cell bundling group. The UE transmits the bundled feedback information of each cell bundling group to the radio base station.
US10404400B2

An optical WDM system configured to use direct detection of communication signals that is compatible with electronic CD compensation on a per-channel basis. In an example embodiment, to enable full (e.g., amplitude and phase) electric-field reconstruction at the receiver, the optical WDM system uses a carrier-frequency plan according to which the carrier-frequency comb used at one end of the WDM link and the carrier-frequency comb used at the other end of the WDM link are offset with respect to one another by one half of the bandwidth of an individual WDM component transmitted therethrough. This frequency offset places each local carrier frequency at a roll-off edge of the corresponding incoming data-modulated signal. As a result, the corresponding combined optical signal beneficially lends itself to direct detection that can be followed by full electric-field reconstruction using a known self-coherent Kramers-Kronig method and then by conventional electronic CD compensation.
US10404386B1

A mobile radio communication test system is provided. The mobile radio communication test system comprises a mobile radio test device, a device under test adapted to establish a communication with the mobile radio test device, and a message modification engine configured to monitor at least one message exchanged between the mobile radio test device and the device under test, wherein depending on the content of the at least one message, the message modification engine is further configured to modify the at least one message and/or at least one parameter thereof in both directions.
US10404369B2

Systems and methods for: suggesting network topologies for a wireless communication network such as a millimeter-wave network; using drones for determining a line-of-sight condition between pairs of geospatial locations where communication nodes in the network are to be placed; and wirelessly interconnecting pairs of nodes in the network according to the a line-of-sight conditions previously determined using the drones. The drones may test for a line-of-sight condition using any number of methods, including laser range-finding, signaling between two of the drones, and pattern matching of visual imagery. A network planning tool may be used to suggest the network topologies, communicate and control the drones, and come to a final conclusion regarding the actual network topology selected, the placement of the communication nodes, and the specific wireless links to be used in interconnecting the nodes in the final network.
US10404368B2

A system for troubleshooting signals in a cellular communications network, and in particular, for determining the cause of distortion or corruption of such signals, includes a robotic or other type of switch. The robotic switch can tap into selected uplink fiber-optic lines and selected downlink fiber-optic lines between radio equipment and radio equipment controllers in a wireless (e.g., cellular) network to extract therefrom the I and Q data. The selected I and Q data, in an optical form, is provided to an optical-to-electrical converter forming part of the system. The system includes an FPGA (Field Programmable Gate Array) or the like, and an analytic computer unit, or web server, and SSD (Solid State Drive) and magnetic disk storage, among other components of the system. The system analyzes the I and Q data provided to it, and determines the cause, or at least narrows the field of possible causes, of impairment to transmitted signals. The system includes a display which provides the troubleshooting information thereon for a user of the system to review, or other form of a report, and may communicate the analytical findings to a remote location over a public or private internet protocol network.
US10404366B2

An optical signal monitor, including: a storage that holds a threshold value set for each of determination areas having a bandwidth set in accordance with an average grid of dummy light; a measurement section that sequentially measures an optical intensity of an inputted wavelength-multiplexed optical signal with respect to each of measurement areas obtained by dividing the determination area into areas with a bandwidth sufficiently smaller than a grid width of a monitoring-target optical signal composing the wavelength-multiplexed optical signal, and output measured values; and a section that determines that dummy light corresponding to the determination area needs introducing if each of measured values in the determination area is smaller than a threshold value, and, determines that dummy light corresponding to the determination area does not need introducing if at least one of the measured values in the determination area is equal to or larger than the threshold value.
US10404362B1

In general, a system and method consistent with the present disclosure provides automated line monitoring using a machine learning fault classifier for determining whether a signature associated with the high loss loopback (HLLB) data matches a predetermined fault signature. The fault classifier may be applied to signatures generated in response to line monitoring signals of two different wavelengths. A fault may be reported only if the fault classifier indicates a fault in response to the signature for both wavelengths. A second fault classifier may also be used and a fault may be reported only if both the first and second fault classifiers indicate a fault in response to the signature for both wavelengths. A system consistent with the present disclosure may also, or alternatively, be configured to report the value of a pump degradation, span loss, or repeater failure fault, and may also, or alternatively, report the directionality of a span loss fault or the location of a fiber break fault.
US10404356B2

Vessel communications systems and methods are described. According to one aspect, a vessel communications method includes receiving a first inbound wireless communication within a subject vessel, the first inbound wireless communication comprising positional data regarding a location of a first vessel, receiving a second inbound wireless communication within the subject vessel, the second inbound wireless communication comprising positional data regarding a location of a second vessel, selecting the positional data of the first vessel but not the positional data of the second vessel and after the selecting, outputting an outbound wireless communication comprising the positional data of the first vessel but not the positional data of the second vessel.
US10404355B2

Systems and methods for providing mobility across satellite beams, are described. The system includes a first core node, a second core node in communication with the first core node at layer-2 of the OSI model (L2), and a first gateway in communication, at L2, with the first core, the first gateway configured to provide access to a first spot beam at a first location. The system further includes a second gateway in communication, at L2, with the second core node, the second gateway configure to provide access to a second spot beam at a second location, and a mobile device, at the first location, in communication with the first gateway via the first spot beam, wherein the mobile device is assigned an IP address by the first core node. The mobile device moves from the first location to the second location. Further, the first gateway, in response to the mobile device moving from the first location to the second location, notifies the second gateway, through the first core node and the second core node, that the mobile device is moving to the second location, and transmit the session information to the second gateway, and the second gateway, in response to the notification, maintains connectivity with the mobile device using the IP address.
US10404353B2

A geostationary platform is held afloat by a superpressure balloon. A suitable altitude is 25 km. The craft carries electrohydrodynamic thrusters, to overcome winds, held within a scaffold. Sensors determine position, velocity, acceleration and vector. A CPU performs instructions for station-keeping or navigation. A communication system is included to, inter alia, receive instructions from the ground. The craft carries a payload for observation and transmission, cradled in a temperature-controlled chamber. Power to the platform is transmitted in the form of electromagnetic waves (with suitable frequencies including microwaves of 2.45 GHz or 5.8 GHz) from a ground-based transmitter to a receiving antenna on, or affixed to, the balloon which converts the electromagnetic energy to direct current. A step-up voltage converter increases the voltage as required. A ground station monitors craft position and operational efficiency by radar to help ensure safe takeoff, operation, and landing of the craft.
US10404352B2

According to an aspect of the inventive concept, there is provided an interference cancellation repeater includes: a signal transceiver configured to cancel an interference signal from an RF input signal and to output an RF output signal from which the interference signal has been canceled; and a controller configured to control a power mode of the signal transceiver by measuring traffic of a first signal in the signal transceiver.
US10404346B2

A mobile terminal includes circuitry, a transmitter and a receiver. The circuitry, in operation, generates a CQI for each subcarrier (SC) group of multiple subcarrier groups, a plurality of subcarriers consecutive in a frequency domain being grouped into the multiple subcarrier groups. The transmitter, in operation, reports first respective CQIs of the multiple SC groups in inconsecutive time resources based on a first period, and reports, based on a second period, second respective CQIs of the multiple SC groups in inconsecutive time resources based on the first period, the second period being longer than the first period. The receiver, in operation, receives information indicative of the first period.
US10404336B1

Embodiments described herein methods and systems for channel correlation based user detection in an uplink multiuser transmission of a multiple-input multiple-output (MIMIO) network. In some embodiments, the channel correlation based user detection may be used in 802.11 UL MUMIMO systems. For example, an access point may detect whether a client station responds to a trigger frame and then adjust a channel matrix accordingly to reflect whether the client station is responsive. The access point may then decode received data signals based on the adjusted channel matrix that reflects whether a client station has transmitted.
US10404333B2

The disclosure relates to a device for controlling a plurality of antenna elements of an antenna array of a multi-input multi-output (MIMO) communication system, the device comprising: a communication handler configured to receive channel information from a first user equipment of a plurality of user equipments, the channel information indicating a communication channel quality of the first user equipment, and configured to receive quality of service (QoS) information indicating a QoS requirement for the first user equipment; and a controller configured to generate a plurality of weights for beamforming the plurality of antenna elements based on the channel information and based on the QoS information.
US10404329B2

A system for transporting IP data in a Distributed Antenna System includes at least one Digital Access Units (DAU) having a plurality of optical input/output ports and at least one Ethernet port and a plurality of Digital Remote Units (DRUs) coupled to the at least one DAU. Each of the plurality of DRUs has a plurality of optical input/output ports and at least one Ethernet port. The at least one DAU includes a Framer/Deframer operable to separate cellular payload data from IP data and a network switch operable to buffer the cellular payload data and the IP data and to route the IP data received from the plurality of DRUs to the at least one Ethernet port of the DAU.
US10404324B1

A system is disclosed comprising a near field communication tag that is transformable from a first state to a second state. The system also comprises a server program stored on a non-transitory storage medium that, when executed by a server apparatus, receives a first tag report from a user device in response to the tag being tapped while being in the first state, sends a first response to the user device or to another user device in response to the first tag report being received, receives a second tag report from the user device in response to the tag being tapped while being in the second state, and sends a second response to the user device or to another user device in response to the second tag report being received.
US10404321B2

Aspects of the subject disclosure may include, for example, a system for receiving first electromagnetic waves via a transmission medium without utilizing an electrical return path, and inducing second electromagnetic waves at an interface of the transmission medium without the electrical return path. In an embodiment, the first and second electromagnetic waves have a non-optical frequency range. Other embodiments are disclosed.
US10404320B2

A method and apparatus for transmitting data to a machine type communication user equipment (MTC UE) in a wireless communication system is provided. A base station (BS) configures a frequency hopping in every specific number of subframes which corresponds to a frequency hopping granularity, and transmits data to the MTC UE by using the configured frequency hopping.
US10404317B2

This disclosure relates to techniques for synchronization signals. The synchronization signal comprise a primary synchronization signal (PSS) generated based on a PSS sequence and a secondary synchronization signal (SSS) generated based on an SSS sequence. The SSS sequence may be generated based on a first sequence corresponding to a first cyclic shift and a second sequence corresponding to a second cyclic shift. The first cyclic shift and the second cyclic shift are associated with Cell ID. The Cell ID can be determined from the first cyclic shift and the second cyclic shift.
US10404313B1

Low noise amplifiers (LNAs) with output limiting are provided herein. In certain implementations, a gallium nitride (GaN) LNA includes LNA amplification circuitry and an output limiter that is connected to an output of the LNA amplification circuitry and operable to limit an output power of the GaN LNA. By limiting the output signal power, a number of benefits are achieved, including protection of downstream circuitry receiving the GaN LNA's output signal. For example, such downstream circuitry can be fabricated using silicon or other fabrication technology associated with a lower signal power handling capability relative to that of the GaN LNA.
US10404299B1

Described is a cognitive signal processor (CSP) for signal denoising. In operation, the CSP receives a noisy signal as a time-series of data points from a mixture of both noise and one or more desired waveform signals. The noisy signal is linearly mapped to reservoir states of a dynamical reservoir. A high-dimensional state-space representation is then generated of the noisy signal by combining the noisy signal with the reservoir states. A delay-embedded state signal is generated from the reservoir states. The reservoir states are denoised by removing noise from each reservoir state signal, resulting in a real-time denoised spectrogram of the noisy signal. A denoised waveform signal is generated combining the denoised reservoir states. Additionally, the signal denoising process is implemented in software or digital hardware by converting the state-space representation of the dynamical reservoir to a system of delay difference equations and then applying a linear basis approximation.
US10404297B2

A system for interference mitigation including a transmit coupler that samples the RF transmit signal to create a sampled RF transmit signal; a transmit analog canceller that transforms the RF transmit signal to an RF interference cancellation signal, according to a first configuration state; a first receive coupler that combines the RF interference cancellation signal and the RF receive signal to generate a composite RF receive signal; a sampling analog interference filtering system that, in order to remove interference in the transmit band, filters the sampled RF transmit signal to generate a cleaned transmit signal; a first frequency downconverter that converts the transmit signal to a BB transmit signal; a second frequency downconverter that converts the composite RF receive signal to a composite BB receive signal; and an analog-to-digital converter that converts the transmit signal to a digital transmit signal.
US10404296B2

An approach to digital compensation uses a particular structure for a digital pre-distorter (DPD) which acts as a relatively accurate pre-inverse of a non-linear circuit (e.g., a non-linear transmit chain involving digital-to-analog converter (DAC), lowpass filter, modulator, bandpass filter, and power amplifier) while making use of a relatively small number of parameters that characterize the non-linearity and/or parameters that provide accurate linearization without requiring continual updating.
US10404294B1

A wireless communications device may include an RF transmitter having an operating frequency range, an RF antenna having an electrical length less than or equal to one-tenth of a wavelength of a lowest operating frequency of the operating frequency range, and an RF matching network coupled between the RF transmitter and the RF antenna. The RF matching network may include a first RF matching transformer, a first inductor coupled between a first reference terminal and a reference voltage, a first resistor coupled across a first output terminal and the first reference terminal and configured to dissipate heat that would otherwise be dissipated by the first RF matching transformer to reduce an operating temperature of the first RF matching transformer, and a heat sink coupled to the first resistor.
US10404291B2

A systematic polar encoder with data checks includes a data mapper receiving input data containing information to be polar coded for transmission and generating modified data, and a nonsystematic polar encoder implementing a transform matrix encoding the modified data to produce a codeword x such that, for some sub-sequence of coordinates S, xS=d. For nonsystematic encoding, a transform input u includes first and second parts for words independent of the data, the second part for an inverse puncture word, a third part carrying the modified data, and a non-null part carrying a check word derived from the modified data. A transform output includes a punctured part for a puncture word, a part carrying the data, and a part serving as redundant symbols, with the codeword x related to the transform output by x=zQ where Q is the complement of the punctured part P.
US10404290B2

A method and data storage system receives a confidence vector for a non-binary symbol value read from a memory cell of a non-volatile memory device, where the confidence vector includes a first plurality of confidence values and transforms the first plurality of confidence values into a first plurality of likelihood values using a forward tensor-product transform. A respective binary message passing decoding operation is performed with each of the first plurality of likelihood values to generate a second plurality of likelihood values, and the second plurality of likelihood values are transformed into a second plurality of confidence values of the confidence vector using a reverse tensor-product transform.
US10404283B2

A method for decoding an error correction code and an associated decoding circuit are provided, where the method includes the steps of: calculating a set of error syndromes of the error correction code, where the error correction code is a t-error correcting code and has capability of correcting t errors, and a number s of the set of error syndromes is smaller than t; sequentially determining a set of coefficients within a plurality of coefficients of an error locator polynomial of the error correction code according to at least one portion of error syndromes within the set of error syndromes for building a roughly-estimated error locator polynomial; performing a Chien search to determine a plurality of roots of the roughly-estimated error locator polynomial; and performing at least one check operation to selectively utilize a correction result of the error correction code as a decoding result of the error correction code.
US10404278B2

CRC generation circuitry includes a lookup-table storing N-bit CRC values for M one-hot data frames. N AND gates for each bit of a M-bit data frame receive that bit of the M-bit data frame and a different bit of a N-bit CRC value from the lookup-table corresponding to a position of the bit in the M-bit data frame. N exclusive-OR gates each receive output from one of the N AND gates for each bit of the M-bit data frame. The N exclusive-OR gates generate a final N-bit CRC value for the M-bit data frame. The CRC value is therefore generated with a purely combinational circuit, without clock cycle latency. Area consumption is small due to the small lookup-table, which itself permits use of any generator polynomial, and is independent of the width of the received data frame. This device can also generate a combined CRC for multiple frames.
US10404276B1

The present disclosure generally relates to an encoding scheme, and more specifically to a stable encoding scheme that is both variable-length and order-preserving. The present disclosure further describes a decoding scheme to decode and encoding generated by the encoding scheme. The encoding scheme may be parameterized by a single parameter k which remains constant across encoding and corresponding decoding operations. The output encodings generated by the encoding scheme are variable-length while maintaining order.
US10404275B2

An information processing apparatus encodes text data by using a dynamic dictionary in which codes and words appearing multiple times are associated with the text data. A registration destination area, in the dynamic dictionary, of each of the codes registered in the dynamic dictionary at the encoding is associated with a position, in the text data, of each of the words associated with the codes.
US10404274B2

A computer-implemented method according to one embodiment includes receiving a text document for storage within a storage device. The text document includes a plurality of words which are separated by spaces. Further, each word includes a last letter. The computer-implemented method also includes replacing the last letter of each word in the text document with a replacement symbol and removing the space after each word so as to reduce the file size of the text document to create a reduced file size text document. The computer-implemented method further includes storing the reduced file size text document within the storage device.
US10404270B2

A semiconductor device includes; a loop filter that receives a differential analog signal and generates a residue signal indicating an error between an analog input signal and an feedback signal, a first ADC that receives the residue signal and generates a first digital representation, a second ADC that receives the analog input signal and generates a second digital representation corresponding to the analog input signal, and a digital to analog converter (DAC) that receives a sum of the first digital representation and the second digital representation and generates the analog feedback signal. At least the first ADC is a multi-bit Successive Approximation Register ADC.
US10404269B2

An analog-to-digital converter has a switched capacitor comprising a capacitor to perform charging and discharging by switching a switch, the switched capacitor varying a charge amount of the capacitor in accordance with a frequency of an oscillation signal in accordance with a differential signal between an input signal and a feedback signal, capacitance of the capacitor, and a predetermined bias voltage, a feedback signal generator to generate the feedback signal based on an output signal of the switched capacitor, and a digital converter to generate a digital signal by digital conversion of the input signal based on the oscillation signal.
US10404262B2

Methods and apparatuses featuring a multiplying injection-locked oscillator are described. Some embodiments include a pulse-generator-and-injector and one or more injection-locked oscillators. The outputs of the pulse-generator-and-injector can be injected into corresponding injection points of an injection-locked oscillator. In embodiments that include multiple injection-locked oscillators, the outputs of each injection-locked oscillator can be injected into the corresponding injection points of the next injection-locked oscillator. Some embodiments reduce deterministic jitter by dynamically modifying the loop length of an injection-locked oscillator, and/or by using a duty cycle corrector, and/or by multiplexing/blending the outputs from multiple delay elements of an injection-locked oscillator.
US10404252B2

A bidirectional switch circuit is constituted of an FET group encompassing FETs of L stages (L≥3) connected in series to each other and includes an FET group configured to control electric conduction for a signal in both directions between one end and the other end of the above-mentioned FET group and a plurality of capacitance elements. The FET group includes a first FET closest to the one end and a second FET closest to the other end. The plurality of capacitance elements encompass a first capacitance element group including capacitance elements of M stages (1≤M
US10404248B2

A system may include a digital pulse width modulator subsystem, a first path coupled to an output of the digital pulse width modulator subsystem and configured to drive an open-loop driver stage, a second path coupled to the output of the digital pulse width modulator subsystem and configured to drive a closed-loop analog pulse width modulator, a controller to select between the first path and the second path for processing a signal based on one or more characteristics of the signal, and a calibration subsystem configured to calibrate at least one of a first gain of the first path and a second gain of the second path in order that the first gain and the second gain are at least approximately equal at the time of switching selection between the first path and the second path or vice versa, in order to minimize artifacts due to the switching.
US10404245B2

Systems, methods, and apparatus for use in biasing and driving high voltage semiconductor devices using only low voltage transistors are described. The apparatus and method are adapted to control multiple high voltage semiconductor devices to enable high voltage power control, such as power amplifiers, power management and conversion and other applications wherein a first voltage is large compared to the maximum voltage handling of the low voltage control transistors. Timing of control signals can be adjusted via internal and/or external components so as to minimize shoot trough currents in the high voltage devices. A DC/DC power conversion implementation from high input voltage to low output voltage using a novel level shifter which uses only low voltage transistors is also provided. Also presented is a level shifter in which floating nodes and high voltage capacitive coupling and control enable the high voltage control with low voltage transistors.
US10404244B2

An example device in accordance with an aspect of the present disclosure includes a first stage and an accumulator. The first stage is based on digital logic and integer arithmetic to scale a reference clock by a configurable ratio of integers according to a line drawing technique to obtain an output clock. The accumulator is to store an accumulated error of a variable used in the line drawing technique.
US10404242B1

A two-stage high-power RF limiter circuit for an RF signal receiver incorporates a heavy limiting stage to limit high energy pulses of a received RF signal to a desired power threshold over a sustained time period, while a light limiting stage reacts quickly to high energy pulses to reduce spike leakage associated with the slower reaction time of the heavy limiting stage. Both heavy and light limiting stages incorporate PIN diodes biased to a voltage just below the desired power threshold (the light limiter biased to a slightly higher voltage than the heavy limiter) so the PIN diodes do not activate until power levels are high enough to warrant limiting. The holdoff voltage across the PIN diodes is maintained by Zener diodes biased to a voltage corresponding to the power threshold, allowing the PIN diodes to self-bias once the power threshold is reached.
US10404241B2

An electronic device may include a ramp signal generator suitable for generating a ramp signal having a slope corresponding to an analog gain, and a slope correction circuit suitable for correcting the slope based on a correction code signal.
US10404240B2

Provided is a semiconductor device including low power retention flip-flop. The semiconductor device includes a first line to which a global power supply voltage is applied, a second line to which a local power supply voltage is applied, the second line being separated from the first line, a first operating circuit connected to the second line to use the local power supply voltage, a first power gating circuit determining whether the local power supply voltage is applied to the first operating circuit and a first retention flip-flop connected to the first line and the second line, wherein the first retention flip-flop comprises a first circuit including a master latch, a second circuit including a slave latch, and a first tri-state inverter connected between the master latch and the slave latch.
US10404232B2

A piezoelectric actuation platform (1) including piezoelectric substrate (3) formed from a single crystal piezoelectric material, and at least one simple electrode (5) in contact with the piezoelectric substrate for applying an electrical signal to the substrate such that a lamb or surface acoustic wave can be generated within said substrate.
US10404226B2

A power amplifier module includes a substrate, a power amplifier having a first surface on which an electrode is defined and a second surface opposite the first surface, the first surface faces a principal surface of the substrate, a surface acoustic wave duplexer having a first surface on which an electrode is defined and a second surface opposite the first surface, the first surface faces the principal surface of the substrate, a heat dissipation unit defined on another principal surface of the substrate, a heat dissipation path that connects a connecting portion between the power amplifier and the principal surface to the heat dissipation unit, an insulating resin that covers the power amplifier and the surface acoustic wave duplexer, a conductive shield that covers the insulating resin, and a first conductive unit defined on the second surface of the surface acoustic wave duplexer and electrically connected to the conductive shield.
US10404222B2

An amplifier circuit includes an input amplifier; an output unity gain buffer; and a second unity gain buffer. The output unity gain buffer and the second unity gain buffer are each configured to receive a signal from an input amplifier. The output unity gain buffer is configured to provide an output voltage to an amplifier output, and the second unity gain buffer is configured to provide a bootstrap signal to the input amplifier. A unity gain amplifier includes an input unity gain amplifier; and an output unity gain buffer and a second unity gain buffer. The buffers are configured to receive a signal from an input amplifier. The output unity gain buffer is configured to provide an output voltage to an amplifier output, and the second unity gain buffer is configured to provide a bootstrap signal to the input unity gain amplifier.
US10404216B2

An apparatus comprises an amplifier having a predefined linear range and a shunt load. The shunt load may be connected to an output, an input, or between gain stages of the amplifier. An impedance of the shunt load dynamically varies in response to a level of a signal presented at a node formed by interconnection of the shunt load and the amplifier, extending linearity of the amplifier beyond the predefined range.
US10404211B1

A spot noise generator includes a mask component, a polyphase synthesizer, a first signal channel and second signal channel. The mask component has a narrowband noise input, a desired frequency channels word input, a first channel output and a second channel output. The narrowband noise input signal is a digital narrowband noise signal sampled approximately at the Nyquist rate. The desired frequency channels word selects one of the group consisting of the first channel output, the second channel output and a combination of the first channel output and the second channel output. The polyphase synthesizer synthesizes the first channel output signal, synthesizes the second channel output signal and outputs a desired noise signal based on the synthesized first channel output signal and the synthesized second channel output signal.
US10404209B2

A temperature compensated crystal oscillator (TCXO) includes a crystal oscillator and a temperature sensor to provide a sensed temperature. A delay circuit has a selectable delay to delay the frequency compensation based on the sensed temperature. The delay compensates for a difference between when the temperature sensor reflects a change in temperature and when a frequency of a signal supplied by the crystal oscillator is affected by the change in temperature. The delay may be static or dynamic with respect to the current temperature sensed by the temperature sensor.
US10404208B2

Embodiments of the present disclosure are directed to a universal junction box for solar modules that comprises multiple sub-assemblies with a replaceable diode black and an open-IP plug sub-assembly. The universal junction box includes a first sub-assembly (junction box platform), a second sub-assembly (a replaceable diode block), and a third sub-assembly (an open sub-assembly or plug sub-assembly. If the electronics in the diode block becomes defective, a new replaceable diode block can be used to substitute into the defective diode black without having to replace the entire junction box. The open-IP plug sub-assembly provides the flexibility to couple a variety of cable sub-assembly or IMEs to the universal junction box as long as a particular selected cable sub-assembly fits with the dimension of the open-IP plug sub-assembly.
US10404198B2

A method, an arrangement and a computer program for controlling an energy flow to a grid, from an electrical alternating current machine with unbalanced impedance, in particular an electrical alternating current generator of a wind turbine, the method comprising: obtaining a first power signal representing a first power command.
US10404188B2

A power conversion device that includes an inverter circuit in which arms are connected in parallel to each other between a DC positive terminal and a DC negative terminal in accordance with a number of phases of alternating currents of the plurality of phases, the arms for respective phases each including two switch sections that are connected in series and to be brought into conduction in an on state and out of conduction in an off state, and a connection point between the two switch sections of each of the arms is set as an AC input or output point of each phase; and a controller that outputs switching control signals for performing switching control on the switch sections.
US10404187B2

A system comprises a plurality of inverter units having inputs connected to a power source and a coupled inductor comprising a plurality of windings and coupled between the plurality of inverter units and an output filter, wherein each winding of the plurality of windings has a first terminal connected to an output of a corresponding inverter unit and second terminals of the plurality of windings are connected together.
US10404169B2

The invention proposes a system and method for extending the maximum duty cycle of a step-down switching converter to nearly 100% while maintaining a constant switching frequency. The system includes a voltage mode or current mode step-down converter driven by a leading edge blanking (LEB) signal, which operates at the desired switching frequency. More particularly, the LEB signal is connected to a slope generator and/or a current sense network. In each switching cycle, the LEB signal forces the slope signal and/or current sense signal to reset, thereby achieving a constant switching frequency. Corresponding methods for how to extend the maximum duty cycle of a step-down switching converter while maintaining a constant frequency are also disclosed.
US10404168B2

A power converter comprises a first switch and a second switch connected in series between an input power source and ground, an inductor connected between a common node of the first switch and the second switch, and an output capacitor and a comparator having a first input connected to a reference, a second input configured to receive a sum of a first feedback signal and a second feedback signal and an output configured to generate a turn-on signal of the first switch, wherein the first feedback signal is proportional to an voltage across the output capacitor and the second feedback signal is generated by applying at least one low-pass filter to a switching ripple voltage.
US10404164B1

A system may include first and second node, switch, driver, capacitor, and second driver. The first node may be at first voltage. The second node may be at second voltage. The switch may be coupled to the second node and output of the second driver and configured to receive input at third voltage and voltage at fourth voltage and to provide the input to the second node when the fourth voltage is greater than the third voltage. The driver may be coupled to the first and second nodes and configured to receive driver input and to generate intermediate voltage based on the driver input. The capacitor may be coupled to the driver to shift the intermediate voltage. The second driver may be coupled to the second node and the driver and configured to receive second driver input and the shifted intermediate voltage to generate the voltage at the fourth voltage.
US10404155B2

A method for controlling an electrical converter system, including: determining a reference output (ωm*) and an estimated output (ωm) of the electrical converter system based on measurements in the electrical converter system; determining an optimized pulse pattern (ui,n) by selecting from a table of precalculated optimized pulse patterns, which is chosen based on the reference output (ωm*) and the estimated output (ωm), a pulse pattern including a sequence of switching instants (t*) applied to the electrical converter system; determining a resonant oscillation (ψs,h) in the electrical converter system, the resonant oscillation(ψs,h) is composed of an electrical machine and a LC filter of the electrical converter system; determining a sequence of future states of the electrical converter system by solving a mathematical model of the electrical converter system subject to optimizing a cost function and subject to a constraint that a modified pulse pattern (ui) is applied to the electrical converter system, which modified pulse pattern (ui) comprises time shifted switching instants with respect to the optimized pulse pattern (ui,n), wherein the cost function comprises a term compensating the resonant oscillation (ψs,h) with a pulse response oscillation caused by the time shifted switching instants of the modified pulse pattern (ui) and wherein the mathematical model is constrained such that the switching instants of the modified pulse pattern (ui) have the same order as the switching instants of the optimized pulse pattern (ui,n); applying the modified pulse pattern (ui) to the electrical converter system.
US10404153B2

A method for controlling a voltage regulator is receiving a voltage identification code which has a pulse width modulation signal, providing a duty signal via measuring a duty cycle of the pulse width modulation signal, calculating a target voltage based on the duty signal, providing a reference signal via filtering the duty signal by a first filter if the voltage identification code varies, and providing the reference signal via filtering the duty signal by a second filter if the reference signal is in a range determined by the target voltage.
US10404145B2

A wire winding gun head for winding conductive wiring to form electrical coils. The wire winding gun head having a body, a movable element and a needle. The body has a longitudinal axis. The movable element is coupled to the body, and the movable element has a profile therein. The needle is carried by the body, and the needle is extendable/retractable dependent upon the profile and a position of the movable element. The needle is configured to receive wire and to supply the wire out of an end of the needle.
US10404136B2

A handheld grinder includes an elongated housing, an electric motor, an output shaft, a wall, a planar circuit board, and a motor drive circuit. The elongated housing defines a cavity therein and includes a motor case disposed at a front end and a handle portion to a rear end. The electric motor has a drive shaft that is mounted within the motor case. The output shaft is drivably coupled to the drive shaft of the electric motor. The wall separates the cavity between the motor case and the handle portion of the housing. The planar circuit board disposed in the handle portion of the housing. The motor drive circuit is accommodated entirely within the handle portion of the housing on the planar circuit board.
US10404135B2

An electric motor is disclosed, comprising a stator and a rotor mounted relative to the stator to form a gap between a surface of the stator and a surface of the rotor, the gap having a width. One of the stator and the rotor is mounted for movement relative to the other of the stator and the rotor about a central axis, and one of the stator and the rotor is mounted for movement relative to the other of the stator and the rotor along the central axis in response to thermal expansion of at least one of the stator and the rotor to maintain the width of the gap.
US10404129B2

An electric motor for a blower and the like has a commutator and a brush assembly for making electrical contact with the commutator. The brush assembly includes a brush holder and a brush slidably mounted to the brush holder. The brush holder includes a brush holder plate and a side portion extending from the brush holder plate. The brush is arc-shaped and includes a first surface contacting the brush holder plate and a second surface contacting the side portion of the brush holder. The side portion of the brush holder has a number of ribs contacting the second surface of the brush.
US10404127B2

Provided are a motor and method for producing the motor that automatically insert interphase insulation paper. Interphase insulation paper (7) has a parting strip (8) that partitions the boundary between windings (5) that are adjacent in the circumferential direction when inserted into coil ends (6). The parting strip (8) is sandwiched between the adjacent windings (5, 5).
US10404123B2

A stator is applied in an electrical motor. The stator includes a hollow iron core and a plurality of coil windings. The hollow iron core has two opposite surfaces and a plurality of accommodating spaces communicated with the surfaces. The accommodating spaces are arranged in an annular pattern. Each of the coil windings includes a plurality of wires winded via the accommodating spaces. Portions of the wires of the coil windings located in the accommodating spaces are radially concentrically arranged to form a plurality of winding layers. In at least one of the accommodating spaces, a wire cross-sectional area of the wire of the innermost one of the winding layers is smaller than a wire cross-sectional area of the wire of the outermost one of the winding layers.
US10404117B2

Methods, systems and apparatuses for mounting a motor rotor to a shaft of a compressor are disclosed. The shaft can include a rib region that is configured to form a press fit or a transition fit with the rotor bore. An end of the shaft can also include a plurality of crenulations that can be expanded outwardly in a radial direction relative to a centerline of the shaft. After the rotor is mounted onto the shaft, the crenulations can be expanded to eliminate the clearance between the shaft and the rotor to form a press fit with the rotor bore.
US10404105B2

A power storage adapter may include wireless power units for wireless power transmission of multiple portable information handling systems. In particular, when a wireless power unit wirelessly transmits a first wireless power to one of the portable information handling systems, another wireless power unit may wirelessly transmit a second wireless power to another portable information handling system. The transmission of the first wireless power may be simultaneous with the transmission of the second wireless power.
US10404102B2

A power feeding coil unit for wireless power transmission including a base portion with bottom having an opening on an upper end, a magnetic body having a plurality of magnetic plates disposed on a bottom surface of the base portion, a power feeding coil formed by winding a conductive wire on the magnetic body, a cover portion covering the opening of the base portion, and a rib extending from the base portion toward the cover portion between the plurality of magnetic plates and between the wires of the conductive wires, wherein, a distance between the rib and the cover portion is smaller than a distance between the power feeding coil and the cover portion.
US10404101B2

A contactless electric power transmission device includes a power transmission assembly, a first temperature sensor, a second temperature sensor, and an electronic control unit. The first temperature sensor is configured to detect a temperature of an inverter. The second temperature sensor is configured to detect a temperature of a resonance circuit. The electronic control unit is configured to adjust the frequency by controlling the inverter. The electronic control unit is configured to perform first control when the temperature of the inverter is higher than the temperature of the resonance circuit, and perform second control when the temperature of the resonance circuit is higher than the temperature of the inverter. The first control includes control for adjusting the frequency so as to reduce output current of the inverter. The second control includes control for adjusting the frequency so as to reduce current flowing through the resonance circuit.
US10404090B2

A wireless power transmitting method performed in a wireless power transmitting apparatus includes transmitting a long beacon signal via a transmitting coil; determining whether or not a response signal to the long beacon signal has been received at a wireless communicator; determining whether or not a degree of change in a level of impedance of the transmitting coil is within a reference range responsive to the determination that the response signal is not received; and wirelessly transmitting the power responsive to the determination: that the response signal has been received or that the degree of change is within the reference range.
US10404089B2

An electronic device and methods for inductively charging an electronic device using another external electronic device. The electronic device may include an enclosure, a battery positioned within the enclosure, and an inductive coil coupled to the battery. The inductive coil may have two or more operational modes, including a power receiving operational mode for wirelessly receiving power and a power transmitting operational mode for wirelessly transmitting power. The electronic device may also have a controller coupled to the inductive coil for selecting one of the operational modes.
US10404084B2

A self-charging device for mobile robots, which includes a charging cradle and a charging pin, the charging cradle includes a charging contact and a first elastic member connected with the charging contact. The charging pin is used to contact the charging contact for charging. Preferably, the charging cradle also includes a buffering block, a second elastic member and a mounting enclosure. The charging contact is connected with the buffering block through the first elastic member. The buffering block is provided encircling inside the mounting enclosure. One end of the second elastic member is connected with the buffering block, and the other end is connected with the mounting enclosure. The self-charging device for mobile robots is capable of counteracting the deviation angle due to the misalignment when the mobile robot is charging, and buffering the impact force produced when the charging contact docks with the charging pin.
US10404078B2

An energy storage system operable in a charging phase and in a discharging phase is disclosed. The energy storage system includes M energy storage units and N power converters, where M is at least two and N is at least one. The energy storage system also includes a switching fabric that reconfigurably couples the energy storage units to the power converters and a controller that reconfigures the switching fabric.
US10404077B2

Provided is a battery balancing apparatus and method including determining state information of a battery unit based on battery quantity data of the battery unit, determining a balancing parameter of the battery unit based on a range comprising the state information, and controlling a balancing unit based on the balancing parameter.
US10404071B2

A voltage booster allowing for increased utilization of low voltage, high current, unregulated DC power (“LVDC source”), such as, but not limited to, fuel cells, batteries, solar cells, wind turbines, and hydro-turbines. LVDC generation systems employing a variable low voltage DC-DC converter of the present disclosure may be used without a power inverter in applications requiring high voltage DC inputs and can also allow for the employment of common, low cost, reliable, low voltage energy storage chemistries (operating in the 12-48 VDC range) while continuing to employ the use of traditional inverters designed for high voltage power supplies. An embodiment of the DC boost converter includes a plurality of interleaved, isolated, full-bridge DC-DC converters arranged in a Delta-Wye configuration and a multi-leg bridge.
US10404070B2

Photovoltaic apparatus comprising an auxiliary power supply arrangement which is adapted to feed an electric load of the photovoltaic apparatus itself and comprises: first electronic means connected with a DC power source and comprising a first electronic unit adapted to receive a first feeding voltage and provide a first output voltage of DC type; second electronic means connected with an AC power source and comprising a second electronic unit adapted to receive a second feeding voltage and provide a second output voltage of DC type; and third electronic means connected with the first and second electronic means and adapted to reversibly switch among different operation states based on the status of the electric power sources.
US10404065B2

A distributed predictive control based voltage restoration scheme for microgrids, comprising: step 10) adopting a distributed finite time observer to acquire the global reference voltage for restoring the voltage of each local controller; step 20) each local controller adopts a droop control to acquire the local voltage value of each generation, and adds a secondary voltage compensation term into the droop characteristic formula to form the voltage reference value of a distributed generation; step 30) establishing a trended prediction model; step 40) acquiring a predictive control term at a current time as the secondary voltage compensation command, and acting on the local controllers; and step 50) determining, whether the local voltage of each distributed generation of the microgrid reaches the voltage reference value under the secondary voltage compensation command.
US10404062B2

Embodiments are directed to fault-tolerant power-distribution modules (PDM). A PDM is included in a power plant to provide a portion of the power generated by the plant as a direct current (DC) signal for the operation of the plant. A power-distribution system distributes a portion of the power generated by the plant to one or more PDMs, as an alternating current (AC) signal. The PDMs provide electrical power to various plant loads. The plant loads may be related to the safety of the operation of the power plant. At least one of the plant loads is a non-safety related load. A PDM may be a DC power supply. The power plant may include one or more power-generating module (PGM) assemblies. At least one of the PGM assemblies may include a nuclear reactor. Accordingly, the power plant may be a modular nuclear power plant.
US10404061B2

A system, method and apparatus of balancing a direct current load across a multiple direct current power sources includes receiving multiple direct current inputs to the inputs of a multiple input, single output DC to DC converter. The output current of each one of the direct current inputs is compared to a reference current. The direct current inputs are adjusted in corresponding DC to DC converter modules until the output current of each one of the direct current inputs is equal to the reference current. The adjusted output of the DC to DC converter modules is combined to a single output current that can be output to supply the single output current to a load.
US10404058B2

A circuit for detecting loss of phase in three-phase power systems. The circuit includes a current sensor and a microprocessor. The current sensors are coupled to respective phases of a three-phase power source configured to supply power to a load. The microprocessor is coupled to the current sensors to process current measurements and detect loss of phase in the three-phase power source.
US10404057B2

A control circuit controls power supplied via an electrical wire, by turning a FET provided on the electrical wire on/off. A control unit calculates the temperature difference between the ambient temperature of the electrical wire and the electrical wire temperature in time series, based on a previous temperature difference between the ambient temperature of the electrical wire 5 and the electrical wire temperature that was calculated previously, and the value of current flowing through the electrical wire. The control unit is configured to suspend this time-series calculation of the temperature difference, and clocks the elapsed time from suspension to resumption of calculation of the temperature difference. The control unit, in the case where calculation of the temperature difference is resumed, sets an initial temperature difference to be used as the previous temperature difference, based on the clocked elapsed time, in an initial calculation of the temperature difference after resumption.
US10404052B2

Systems, methods, and computer readable media for handling overcurrent and undercurrent conditions in subsea control subsystem components include determining, by a current sensor operatively coupled to a solenoid valve, that an input current to the solenoid is greater or lower than a predetermined threshold value, de-energizing, by a processor operatively coupled to the current sensor, the solenoid for a first period of time, re-energizing the solenoid at least three times after the first period of time, determining, by the current sensor, that during each of the at least three times the input current to the solenoid is greater or lower than the predetermined threshold value, and de-energizing the solenoid and transmitting a control signal to a control unit.
US10404049B2

A rigid joint assembly including a first and second cable core end sections of a first and second electric cables, including cores having a conductor, and an insulation system having a semi-conducting layer, an insulation layer and a semi-conducting layer. The assembly includes a joint connection, and a water tight metal casing. The casing assembly has a first and second cable entry parts for receiving the first and second cable cores having joint assembly includes first and second deformation preventing members that surround cable core end sections and includes a rigid pipe.
US10404047B2

This structure includes a transparent member. The transparent member has a first surface and a second surface arranged to face each other, and allows light entering from the first surface to propagate toward the second surface by reflection. The transparent member has a plurality of slopes inclined with respect to the first surface, in an optical path between the first surface and the second surface.
US10404034B1

A broad area quantum cascade laser subject to having high order transverse optical modes during operation includes a laser cavity at least partially enclosed by walls, and a perturbation in the laser cavity extending from one or more of the walls. The perturbation may have a shape and a size sufficient to suppress high order transverse optical modes during operation of the broad area quantum cascade laser, where a fundamental transverse optical mode is selected over the high order transverse optical modes. As a result, the fundamental transverse mode operation in broad-area quantum cascade lasers may be regained, when it could not otherwise be without such a perturbation.
US10404030B2

In at least one illustrative embodiment, a laser may include a ceramic body defining a chamber containing a laser gas. The chamber may include first and second slab waveguide sections extending along parallel first and second axes and a third slab waveguide section extending along a perpendicular third axis. Respective first ends of the first and second slab waveguide sections may be positioned adjacent opposite ends of the third slab waveguide section. The laser may also include first and second end mirrors positioned at respective second ends of the first and second slab waveguide sections, a first fold mirror positioned near an intersection of the first and third axes at a 45-degree angle to both the first and third axes, and a second fold mirror positioned near an intersection of the second and third axes at a 45-degree angle to both the second and third axes, such that the first, second, and third slab waveguide sections waveguide recirculating light that is polarized orthogonal to a plane defined by the first, second, and third axes.
US10404029B2

An introduction unit that introduces a pump light pulse having a first wavelength, a shaping unit that shapes a waveform of the pump light pulse, a nonlinear optical waveguide that generates a wavelength converted light pulse from a pump light pulse, the pump light pulse being a pulse that has been shaped in the shaping unit, through an optical parametric process, the wavelength converted light pulse including a second wavelength different from the first wavelength. The shaping unit shapes the waveform of the pump light pulse such that an absolute value of a time rate of change of the waveform at a peak area of the pump light pulse that has been shaped is smaller than an absolute value of a time rate of change of the waveform at a peak area of the pump light pulse before being shaped with the shaping unit.
US10404026B2

In a method for manufacturing a terminal-equipped electrical wire a core wire of an electrical wire is connected to a flat plate-shaped electrical wire connector portion of a terminal. An ultrasonic welding jig including an anvil and a welding horn is provided. After the electrical wire connector portion is placed on the anvil, the core wire of the electrical wire is placed on the electrical wire connector portion. By applying ultrasonic vibration along the axial direction of the core wire while pressing the core wire using the welding horn, the core wire is ultrasonically welded to the electrical wire connector portion. On the upper surface of the wire connection portions of the terminal, a positioning groove, into which the core wire is fit, is formed in advance, and the core wire is placed on the electrical wire connector portion while being fit into the positioning groove.
US10404021B2

Connector receptacles and connector inserts that may be reliable, may readily manufactured, and may provide high signal quality for high speed signals with minimized signal noise, distortion losses, radiation, and interference. An example may provide a reliable connector receptacle by including a plurality of contacts, where each contact includes a first bend angling a contacting portion away from a tongue and a second bend angling a contacting portion towards the tongue, where the second bend is between the first bend and a front of the connector receptacle. Another example may provide a connector receptacle that may be readily manufactured by providing a tongue having tapered lead-ins for receiving contacting portions of contacts during assembly. Another example may provide a connector receptacle that provides isolation among signals by arranging through-hole portions of signal contacts in lines that are separated from each other by intervening through-hole portions of ground contacts.
US10404005B2

A plug receptacle comprises a receptacle housing having a passage configured to receive at least a part of a plug of a plug connector, a front side having a first opening and a top side having a second, elongated opening that intersects the first opening, the passage opening to the front side via the first opening and to the top side via the second opening. The plug receptacle comprises at least one plug receptacle cover that is configured to move between a cover position and an elevated position. In the cover position, the at least one plug receptacle cover covers the second opening at least partially. In the elevated position, the at least one plug receptacle cover is elevated outwards along its entire length, so that the at least the part of the plug partially extends through the second opening.
US10404000B2

Spring-loaded contact pin having a sleeve (101); a spring arranged in the sleeve (101); a piston which is arranged at least partially in the sleeve (101); and a contact element which is arranged at least partially in the sleeve (101) and which is configured so as to contact the sleeve (101) and the piston (107).
US10403998B2

A female terminal comprises a main body, a main spring portion and an auxiliary spring portion. The main body forms a receiving portion. The receiving portion opens forward in a front-rear direction. The main spring portion has a first spring piece, a second spring piece and a contact portion. The contact portion is held between the first spring piece and the second spring piece in the front-rear direction. The auxiliary spring portion has a first support portion, a second support portion and a resilient supporting portion. The first support portion supports the first spring piece when a male terminal and the female terminal are connected with each other. The second support portion supports the second spring piece when the male terminal and the female terminal are connected with each other. The contact portion is positioned between the first support portion and the second support portion in the front-rear direction.
US10403995B2

An electrical connector comprises an interface element attachable to a circuit board and a plurality of peripheral connectors. The interface element has an inner contact electrically contacting the circuit board and a connecting interface. The peripheral connectors are each individually matable with the connecting interface. The peripheral connectors include a peripheral plug connector having a plurality of plug connector pins and a peripheral lead connector having a plurality of wires.
US10403994B2

An electrical plug-in connector for forming a printed circuit board connector on a printed circuit board includes: a housing body which, when in use, overlaps a printed circuit board contact side on an upper face or lower face of the printed circuit board vis-à-vis a housing portion and includes a plug-in connection side, for a mating plug-in connector, at an angle to the printed circuit board contact side; and an electrical connector element being accommodated in the housing body, which element provides, on the printed circuit board contact side, a first contact portion for contacting a conducting track of the printed circuit board and, on the plug-in connection side, a second contact portion for contacting a mating contact of the mating plug-in connector. The connector element is formed from a punched sheet-metal part such that a center of gravity of the electrical plug-in connector is arranged within the housing portion.
US10403993B2

A module can be configured to mate with a receptacle. The module includes a body with a thermal surface that is coupled to thermally active circuitry supported by the body. The receptacle is configured to allow air to flow over the thermal surface so as to dissipate thermal energy from the circuitry.
US10403985B2

A wire harness includes plural electric wires provided with a connecting unit at an end portion of the plural electric wires, a first antenna connected to the connecting unit and installed in a wireless terminal, and a second antenna connected to at least one of the plural electric wires. An interval between the first antenna and the second antenna is equal to or longer than 0.3λ.
US10403983B2

The present disclosure relates to a radar apparatus and an antenna system for the radar apparatus. A first transmitting antenna group and a first receiving antenna group are constituted by elongating some of a plurality of transmitting antennas and a plurality of receiving antennas in a first direction of vertical directions, a second transmitting antenna group and a second receiving antenna group are constituted by elongating the other antennas in a second direction opposite to the first direction, transmitting antennas to transmit transmission signals and receiving antennas to receive reflection signals reflected from an object are appropriately selected, thereby being able to improve horizontal and vertical angular resolving power in both of mid/long-range sensing and short-range sensing.
US10403978B2

A multiband radiating array according to the present invention includes a vertical column of lower band dipole elements and a vertical column of higher band dipole elements. The lower band dipole elements operate at a lower operational frequency band, and the lower band dipole elements have dipole arms that combine to be about one half of a wavelength of the lower operational frequency band midpoint frequency. The higher band dipole elements operate at a higher frequency band, and the higher band dipole elements have dipole arms that combine to be about three quarters of a wavelength of the higher operational frequency band midpoint frequency. The higher band radiating elements are supported above a reflector by higher band feed boards. A combination of the higher band feed boards and higher band dipole arms do not resonate in the lower operational frequency band.
US10403976B2

In order to provide an antenna that is small and resonates at a plurality of frequencies, an antenna according to the present invention is provided with: a first conductor of a ring shape, having an air gap; a second conductor arranged inside the ring, with both ends of the second conductor connected to the first conductor, having a first gap; and a third conductor arranged in a region surrounded by a part not including the air gap out of the first conductor, and the second conductor, with both ends connected to the first conductor, having a second gap, and a value obtained by multiplying a length of an outer periphery of a region surrounded by a part including the air gap out of the first conductor, and the third conductor, by capacitance of the air gap is different from a value obtained by multiplying a length of an outer periphery of a region surrounded by the second conductor, the third conductor, and the first conductor, by capacitance of the first gap.
US10403972B2

An antenna system for a global navigation satellite system reference base station is disclosed. The antenna system includes an antenna positioned above a high capacitive impedance surface (HCIS) ground plane. Over a specific range of the lateral dimension of the HCIS ground plane and the height of the antenna above the HCIS ground plane, a high level of multipath suppression and high sensitivity for low-elevated satellites can be simultaneously maintained. The HCIS ground plane can be fabricated as a flat conducting plate with an array of conducting elements such as pins, pins with expanded tips, or mushroom structures. Alternatively, the HCIS can be fabricated as a flat conducting plate with a concentric series of choke rings. The antenna system can provide a positioning accuracy of +/−1 mm, an order of magnitude improvement over previous designs.
US10403967B1

An electronic device includes a housing that includes a first plate, a second plate, and a side member, the side member including a first conductive portion, a second conductive portion, a third conductive portion, a first insulating portion, and a second insulating portion, a wireless communication circuitry that is electrically connected to a first point of the first conductive portion, wherein the first point is adjacent to the second insulating portion, a ground member that is included in the housing, a first switching circuitry that includes a first terminal electrically connected to a second point of the first conductive portion, which is more distant from the second insulating portion than the first point, and at least one second terminal electrically connected to the ground member through at least one first passive element, and a conductive pattern that is electrically connected to the second point and forms a closed loop.
US10403958B2

A method for making a composite substrate circulator comprising disposing a plurality of sleeves about a plurality of rods, disposing the plurality of rods and the plurality of sleeves in a plurality of openings in a block to form an assembly, and dividing the assembly to form a plurality of plates. Each plate includes a portion of the plurality of sleeves and the plurality of rods. The magnetic saturation (4PiMs) values of the rods and sleeves are chosen to decrease radially (rod has the highest 4PiMs).
US10403953B2

A tank arrangement including a guided wave radar level gauge installed in a tank, and having a single wire transmission line probe extending through a passage through a conducting structure in the tank. Along the section of the probe that extends through the passage, the arrangement comprises a propagation field limiting structure adapted to reduce a propagation field of an electromagnetic signal propagating along the probe. With this design, the radial extension of the propagating field can be locally reduced so that a sufficient portion of the signal power is allowed to pass through the passage.
US10403945B2

A vehicle battery coolant system includes a first battery module including a first plurality of cells and a second battery module including a second plurality of cells. A coolant plate is disposed between the first and second battery modules and in heat transfer relationship with the first and second battery modules, wherein the coolant plate has fluid passages therein.
US10403939B2

Disclosed are techniques for identifying battery pack types and by inference battery chemistries by measuring a transient response of the battery pack to signal applied to the battery pack.
US10403935B2

Provided is an electrolytic solution including a nonaqueous solvent and an alkali metal salt. The alkali metal salt is dissolved in the nonaqueous solvent. The nonaqueous solvent contains a perfluoropolyether having a weight-average molecular weight of 350 or more and less than 760. Also provided is a battery including the electrolytic solution, a positive electrode containing a positive electrode active material that can occlude and release an alkali metal cation, and a negative electrode containing a negative electrode active material that can occlude and release the alkali metal cation.
US10403934B2

The present invention relates to a non-aqueous electrolyte solution including a non-aqueous organic solvent, lithium bis(fluorosulfonyl)imide (LiFSI), and a pyridine-based compound represented by Formula 1, and a lithium secondary battery including the same.The lithium secondary battery of the present invention including the non-aqueous electrolyte solution of the present invention may exhibit excellent low-temperature and room-temperature output characteristics, high-temperature and room-temperature cycle characteristics, and capacity characteristics after high-temperature storage.
US10403930B2

An electro-chemical energy conversion and storage device includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanofluid or particle suspension in the enclosure, a heat transfer unit, and a circulation system for circulating the nanofluid or particle suspension to the heat transfer unit. The nanofluid includes nanoparticles plus a dielectric or ionic fluid. The particle suspension includes particles plus a dielectric or ionic fluid. A wide range of nanoparticles or particles can be used. For example the following nanoparticles or particles can be used: metal and metal alloy particles for anodic dissolution and thermal transport; hydrides as source of hydrogen ions; lithium and lithium alloys; intercalated graphite and carbon aerogel as Li source (anodic material); intercalated transition metal oxide as Li sink (cathodic material); and semiconductors for photovoltaic conversion in photo-electrochemical or hybrid electrochemical cell.
US10403921B2

The invention relates to an electricity generating electrochemical device of the solid-oxide fuel-cell stack type. The device includes a planar assembly having at least one electrochemical cell comprised between first and second gas diffusing plates made of ceramic of expansion coefficient between 8×10−6 K−1 and 10×10−6 K−1 and drilled with equidistant holes. First and second current conductive metal grids each are connected to a conductive wire allowing current to flow out of the device. The grilles are placed on either side of the at least one electrochemical cell between this cell and each of the first and second gas diffusing plates. A clamping device mechanically holds the planar assembly together.
US10403920B2

Provided is a fuel battery cell capable of suppressing absorption of water discharged from a manifold by a porous body disposed between a membrane electrode assembly and a separator, and so improving drainage performance. This fuel battery cell 1 includes: a porous passage 20c that is disposed to be opposed to a membrane electrode assembly 10m on a cathode side, and a separator 30 sandwiching the membrane electrode assembly 10m and the porous passage 20c, the separator including a cathode off-gas discharging through hole 32b through which cathode off-gas discharged from the porous passage 20c flows. The porous passage 20c has a sticking-out part 201 when viewed in the thickness direction of the separator 30, and the sticking-out part sticks out into the cathode off-gas discharging through hole 32b from a side of the membrane electrode assembly 10m, and a length of the sticking-out part 201 in a longer direction of the separator 30 is shorter than one side of the cathode off-gas discharging through hole 32b on the membrane electrode assembly 10m side.
US10403918B2

A system has a fuel cell. The fuel cell has a source of hydrogen and a source of oxygen containing gas. The hydrogen is connected for passage across the anode. The source of oxygen containing gas is connected to pass across a cathode. The fuel cell produces electricity. A catalytic oxidizer oxidizes hydrogen within the system. A cooling water circuit passes across cooling water passages in the fuel cell and cools the cathode. Cooling water downstream of the cooling water passages passes across the catalytic oxidizer to heat the catalytic oxidizer. An enclosed vehicle is also disclosed.
US10403915B2

An electric power supply system includes first and second fuel cell stacks, a plurality of fuel tanks, a determination unit configured to determine the state of the first fuel cell stack during operation stop of the first and second fuel cell stacks, and a purging execution unit configured to execute purging by activating the first and second fuel cell stacks according to a determination result and opening on-off valves of the plurality of fuel tanks to supply fuel to the first and second fuel cell stacks.
US10403908B2

Provided is a fuel cell stack structure. The fuel cell stack structure includes first and second cell modules and first and second separation plates. In each of the first and second cell modules, one or more fuel cells generating electricity are stacked, and each of the fuel cells includes an electrolyte layer, and a cathode layer and an anode layer formed on both surfaces of the electrolyte layer, respectively, and generates electricity. The first and second separation plates are electrically connected to the first and second cell modules, respectively, and each separation plate has an air hole and a fuel hole at edges to provide an air including oxygen and a fuel gas including hydrogen to the cathode layer and the anode layer, respectively. At least one separation plate has a sealing unit for sealing the air hole and the fuel hole, and has a protruded convex at a different part from the sealing unit to improve an electrical contact with the other separation plate.
US10403903B2

An electrochemical cell comprising a cathode and an anode residing within a casing, the anode being positioned distal of the cathode. The cathode having a cathode current collector having an angled configuration that encourages the cathode active material to move in an axial distal direction during cell discharge. The cathode current collector may be configured having at least one fold thereby dividing the current collector into at least two portions having an angle therebetween. The cathode current collector may comprise a wire having a helical configuration or the cathode current collector may comprise a post with a thread having a helical orientation about the post exterior. A preferred chemistry is a lithium/CFx activated with a nonaqueous electrolyte.
US10403902B2

An electrically active electrode material for use with a lithium ion cell, a lithium ion cell, and a method for forming the electrochemically active material electrode material are described. The electrode material is in the form of a sheet or mat formed of a valve metal material formed of filaments of a valve metal not larger than about 10 microns in cross section, and coated with an electrochemically active material such as silicon nanoparticles.
US10403901B2

Apparatus and techniques are described herein for providing a battery plate assembly including a silicon current collector. The silicon current collector can include apertures. A lead layer or lead alloy layer can be formed on the silicon current collector. A monopolar battery assembly can be provided, such as including monopolar battery plate assemblies comprising silicon current collectors. The silicon can include a conductive metallurgical grade silicon, such as cast and cut to provide individual current collector substrates.
US10403898B2

A high strength electrolytic copper foil preventing generation of folds, wrinkles, pleats, and breaks during a roll-to-roll (RTR) process, a method of manufacturing the same, and an electrode and a secondary battery which allow high productivity to be secured by being manufactured with such an electrolytic copper foil. The electrolytic copper foil includes a copper film including 99 weight % or more of copper and a protective layer on the copper film, wherein the electrolytic copper foil has a tensile strength of 45 to 65 kgf/mm2.
US10403896B2

An electrical storage device electrode binder composition exhibits an excellent binding capability, and makes it possible to produce an electrical storage device electrode that exhibits excellent charge-discharge durability characteristics. The electrical storage device electrode binder composition includes a polymer (A) and a liquid medium (B), wherein the polymer (A) is polymer particles, and the ratio (DA/DB) of the average particle size (DA) of the polymer particles measured by using a dynamic light scattering method to the average particle size (DB) of the polymer particles measured by TEM observation is 2 to 10.
US10403890B2

A negative electrode active material which has a ternary alloy composition represented by Si—Sn-M (M is one or two or more transition metal elements) and has a microstructure which has a first phase (silicide phase) having a silicide of a transition metal as a main component and a second phase partially containing Sn and having amorphous or low crystalline silicon as a main component, and further has partially a plurality of independent first phases and partially a eutectic structure of the first phase and the second phase is used for an electric device. The negative electrode active material improves cycle durability of an electric device such as a lithium ion secondary battery.
US10403884B2

A structure for use in an energy storage device, the structure comprising a backbone system extending generally perpendicularly from a reference plane, and a population of microstructured anodically active material layers supported by the lateral surfaces of the backbones, each of the microstructured anodically active material layers having a void volume fraction of at least 0.1 and a thickness of at least 1 micrometer.
US10403881B2

A method for producing a ceramic cathode layer on an electrically conductive substrate includes applying a coating to the electrically conductive substrate, the coating being in a form of a suspension including at least one suspending agent and at least one ceramic material. The method further includes heating the coating in a reducing atmosphere such that the ceramic material is completely or in part reduced to a fusible reaction product, heating the coating in a reducing atmosphere to temperatures above the melting point of the reaction product so as to form a melt, densifying or sintering the coating in a reducing atmosphere at temperatures that are 100° C. greater than a melting temperature of the reaction product, and reoxidizing the densified or sintered coating in an oxidizing atmosphere in a temperature range of between 400° C. and 1,200° C.
US10403879B2

To provide a method of manufacturing a lithium-ion secondary battery having stable charge characteristics and lifetime characteristics. A positive electrode is subjected to an electrochemical reaction in a large amount of electrolytic solution in advance before a secondary battery is completed. In this manner, the positive electrode can have stability. The use of the positive electrode enables manufacture of a highly reliable secondary battery. Similarly, a negative electrode is subjected to an electrochemical reaction in a large amount of electrolytic solution in advance. The use of the negative electrode enables manufacture of a highly reliable secondary battery.
US10403870B2

A battery module is provided and includes an array body in which a plurality of battery cells are arrayed, an elastic member disposed on at least one side in an array direction of the array body, a pair of end plates holding the array body and the elastic member therebetween, a resin middle plate disposed between the array body and the elastic member, and a metal joining member joining the pair of the end plates each other, in which the middle plate is provided with a through hole through which the joining member is inserted, and a metal collar is inserted through the through hole.
US10403862B2

This battery is provided with a power generating element, a battery case main body, a battery case lid, an electrode terminal member which is connected electrically to the power generating element inside of the battery case body and which extends outside of the battery case lid, and an outer insulation member which is arranged on the battery case lid and insulates the electrode terminal member from the battery case lid. The battery case lid is fitted inside of the opening and welded to the battery case main body by irradiating a laser from above the battery case lid towards the boundary section between the battery case lid and the battery case main body. Furthermore, this battery is provided with a plume control portion which prevents the plume that rises from the boundary portion during welding from rising towards the outer insulating member.
US10403861B2

The present disclosure relates to a top-emissive organic light-emitting diode display. The organic light-emitting diode comprises a substrate, an auxiliary cathode, a passivation film, a planarization film, an under-cut opening, a connecting terminal, an under-area, a bank, an organic emission layer, and a cathode. The auxiliary cathode is placed on the substrate. The connecting terminal makes contact with the top surface of the one end exposed through the under-cut opening and protrudes into the under-cut opening, being longer in length than the one end of the auxiliary cathode. The under-area is formed between the end of the connecting terminal and the one end of the auxiliary cathode. The cathode is stacked on the organic emission layer, makes contact with the side of the connecting terminal not covered by the organic emission layer, and extends all the way to the under-area.
US10403858B2

According to a method for manufacturing an organic electronic device, a sealing member (19) that includes a sealing substrate (15), an adhesive part (13) exhibiting adhesiveness and is provided on the sealing substrate (15), and a hygroscopic part (11) being a hygroscopic cured product provided on the adhesive part (13) is bonded to an organic electronic element (17).
US10403856B2

The present invention provides a novel organic EL panel adapted to be color tunable by a user, for example. An organic EL panel 10 of the present invention includes: a first substrate 11; a second substrate 12; an organic EL element 13; and a sealing layer 14. One surface of the first substrate 11 is a mounting surface on which the organic EL element 13 is disposed. The first substrate 11 and the second substrate 12 are laminated in such a manner that the mounting surface of the first substrate 11 and one surface of the second substrate 12 face each other with the sealing layer 14 interposed therebetween. The sealing layer 14 seals a gap between the first substrate 11 and the second substrate 12 along an entire periphery of a region where the first substrate 11 and the second substrate 12 face each other. The first substrate 11 includes a light incident section 15 on which laser light is incident and a light guide section 16 that directs the incident laser light in an in-plane direction.
US10403849B2

The present application provides a flexible display panel and a flexible display device containing the flexible display panel. The flexible display panel includes: a flexible substrate, a light-emitting element layer located on a side of the flexible substrate, a packaging layer located on a side of the light-emitting element layer away from the flexible substrate, and a conduction adhering layer located on a side of the flexible substrate away from the packaging layer; the conduction adhering layer being an adhesive layer having electrical conductivity, the conduction adhering layer being connected with an external potential. The conduction adhering layer has a double-side adhering function, and can shield external electromagnetic signal interference to the circuit in the light-emitting element layer, thereby alleviating the picture scintillation phenomenon caused by the external electromagnetic signal interference, improving display effect of the flexible display device, and reducing the module thickness of the flexible display device.
US10403847B2

A display substrate including a base substrate including a plurality of pixel areas, each of the plurality of pixel areas including an emission area and a transmission area, a pixel circuit layer disposed in the emission area and including at least one transistor, a pixel electrode disposed on the pixel circuit layer and connected to the pixel circuit layer, a hole injection layer selectively disposed on the pixel electrode in the emission area, an emission layer disposed on the hole injection layer of the emission area, an electron injection layer disposed on the base substrate on which the emission layer is disposed; and a common electrode disposed on the base substrate on which the electron injection layer is disposed.
US10403843B2

Light-emitting elements in which an increase of driving voltage can be suppressed are provided. Light-emitting devices whose power consumption is reduced by including such light-emitting elements are also provided. In a light-emitting element having an EL layer between an anode and a cathode, a first layer in which carriers can be produced is formed between the cathode and the EL layer and in contact with the cathode, a second layer which transfers electrons produced in the first layer is formed in contact with the first layer, and a third layer which injects the electrons received from the second layer into the EL layer is formed in contact with the second layer.
US10403841B2

An organic EL element is provided that has a high light emission efficiency and that emits a plurality of light beams having respective wavelength ranges different from one another, the light beams including short wavelength light having a high chromaticity. An organic EL element (1) includes an exciton generating layer (7) and a guest layer (8) that are adjacent to each other.
US10403840B2

The invention describes a device for emitting or detecting electromagnetic radiation. The device has a first and a second electrode which are connected to each other via an electrically conductive nanostructure. The electrically conductive nanostructure is configured to receive electrons and holes from the first and second electrode or transport same to the first and second electrode. In addition, the device has a radiation molecule arranged at a circumferential surface of the electrically conductive nanostructure. The radiation molecule is configured to absorb electrons and holes or electromagnetic radiation and emit the electromagnetic radiation with recombination of electrons absorbed and holes absorbed, or emit electrons and holes based on the electromagnetic radiation absorbed. The electrically conductive nanostructure is, in the region of a circumferential surface, surrounded at least partly by the first or second electrode at an end arranged at the first or second electrode in order to provide electrical contact of the first or second electrode and the electrically conductive nanostructure.
US10403836B2

According to some embodiments of the present invention, a method of producing an organic-inorganic perovskite thin film includes depositing a layer of inorganic material on a substrate to form an inorganic film, and performing an organic vapor treatment of the inorganic film to produce an organic-inorganic perovskite thin film. The layer of inorganic material comprises an inorganic anion layer having a metal-ligand framework, and the organic vapor treatment provides organic cations capable of becoming inserted into the metal-ligand framework of the inorganic anion layer to form a perovskite structure.
US10403835B2

In a display device including a flexible display panel, the risk of disconnection of a wiring due to bending is reduced. A display panel includes a display function layer including display elements and a wiring on one major surface of a base material having flexibility. The display panel includes, on the one major surface of the base material, an organic-film-covered wiring area where the surface of the wiring is covered with an organic planarization film that is an organic insulating film in direct contact with the wiring. The display panel includes, in the plane thereof, a display area where the display elements are arranged and a component mounting area that is a peripheral area located outside the display area. As the organic-film-covered wiring area, a curved area is provided in the peripheral area.
US10403830B2

An organic light emitting device (OLED) is provided. The OLED has an anode, a cathode, and an emission layer, disposed between the anode and the cathode, including a first emitting compound; wherein the first emitting compound is capable of functioning as a blue phosphorescent emitter in the OLED at room temperature; wherein the first emitting compound has PLQY of less than 90% at room temperature; wherein the OLED has an external quantum efficiency of between 8% and 20% at 1 mA/cm2.
US10403826B2

The present invention includes organic compounds with two substituted triazine, pyridine, pyrimidine or pyrazine rings attached to an aromatic or heteroaromatic ring system. The compounds are expected to improve OLED performance.
US10403819B2

A pixel define layer and manufacturing method thereof and the related light emitting display are disclosed. The pixel define layer is arranged on a conductive layer of a substrate and comprises a base film layer. The base film layer has a plurality of openings each of which corresponds to a light-emitting region of a sub-pixel unit. A spacing base body is formed between the adjacent openings. An upper surface of each spacing base body is coated with a hydrophobic quantum dot material and a side wall of each opening is coated with a hydrophilic quantum dot material. With the pixel define layer and manufacturing method thereof and the related light emitting display according to embodiments of the disclosure, the ink within the sub-pixel would not ooze to the outside of the sub-pixel to result in color mixture between the adjacent sub-pixels, and the light emitting region within the pixel would not be decreased. By selecting suitable quantum dot materials, the photochromic efficiency can be improved. The process is simple and suitable for large size.
US10403814B2

A method of cleaning a substrate processing apparatus that etches a film including a metal, the method include a first cleaning step of providing a gas containing a hydrogen-containing gas, and removing a carbon-containing deposition by plasma generated from the gas containing the hydrogen-containing gas; a second cleaning step of, after the first cleaning step, providing an inert gas, and removing a metal-containing deposition by plasma generated from the inert gas; and a third cleaning step of, after the second cleaning step, providing a gas containing a fluorine-containing gas and an oxygen-containing gas, and removing a silicon-containing deposition by plasma generated from the gas containing the fluorine-containing gas and the oxygen-containing gas.
US10403807B2

The present invention provides a thermoelectric conversion material having a reduced thermal conductivity and having an improved figure of merit, and a method for producing the material. The thermoelectric conversion material has, as formed on a resin substrate having recesses, a thermoelectric semiconductor layer formed of a thermoelectric semiconductor material, wherein the resin substrate comprises one formed by curing a resin layer of a curable resin composition. The production method for the thermoelectric conversion material comprises a resin substrate formation step of transcribing a protruding structure from an original plate having the protruding structure onto a resin layer of a curable resin composition and curing the layer, and a film formation step of forming a thermoelectric semiconductor layer of a thermoelectric semiconductor material on the resin substrate.
US10403803B2

A method of manufacturing a plurality of light emitting devices includes providing a collective substrate including a plurality of packages, each of the packages including: a recess defined by lateral surfaces and a bottom surface, a first electrode and a second electrode that are disposed at the bottom surface of the recess, and a light-reflective first resin member surrounding an element-mounting region of the bottom surface of the recess, the first resin member having an upper surface located at a position higher than the element-mounting region; mounting a light emitting element in the element-mounting region; forming a light-reflective second resin member having a light reflective surface; and singulating the collective substrate to obtain the plurality of light emitting devices.
US10403800B1

Systems including light-emitting diodes (LEDs) are provided. The systems include one or more wavelength-converting member(s) that is/are remote from the emission surface of one or more LED-based light source(s). The wavelength-converting member may be separated from the emission surface of a first LED and positioned such that light emitted from the first LED is absorbed by the wavelength-converting material. The wavelength-converting material emits secondary light having a different wavelength than the wavelength of the light emitted from the first LED. The systems may include a second light source comprising a second LED configured to emit light having a wavelength from an emission surface and a wavelength-combining element configured to combine the secondary light from the wavelength-converting member and the light emitted from the second light source to form a co-axial light beam.
US10403798B2

A device and associated method are provided for a light emitting diode device (LED) with suppressed quantum dot (QD) photobrightening. The QD surfaces, with a maximum cross-sectional dimension of 10 nanometers, are treated with a solution including a multi-valent cation salt. In response to heating the solution, multi-valent cations become attached to the surface of the QD nanocrystals, forming treated QDs that are deposited overlying a top surface of an LED. The LED device emits a non-varying intensity of first wavelength light in the visible spectrum from the treated QDs, when subjected to a continuous exposure of a second wavelength of LED light having an intensity of greater than 50 watts per square centimeter. For example, blue, green, or red color light may be emitted when exposed to LED light in the ultraviolet (UV) spectrum, or a green or red color light when exposed to a blue color LED light.
US10403795B2

A light-emitting device includes a semiconductor layered structure; an upper electrode disposed on a portion of an upper surface of the semiconductor layered structure; a lower electrode disposed on a lower surface of the semiconductor layered structure in a region spaced from a region directly under the upper electrode, the lower electrode being reflective; and a protective film disposed continuously on a surface of the upper electrode and the upper surface of the semiconductor layered structure. A thickness of a first portion of the protective film, which is disposed at least in a region directly above the lower electrode, is smaller than a thickness of a second portion of the protective film, which is disposed continuously on the surface of the upper electrode and the upper surface of the semiconductor layered structure adjacent to the portion on which the upper electrode is disposed.
US10403775B2

A solar cell module is disclosed. The solar cell module includes a plurality of solar cells, a front transparent substrate located in a front surface of the plurality of solar cells, a back transparent substrate located on a back surface of the plurality of solar cells, a front protection unit located between the front transparent substrate and the plurality of solar cells, and a back protection unit located between the back transparent substrate and the plurality of solar cells. The back transparent substrate includes an anti-reflection layer.
US10403774B2

Described herein is an apparatus and method used to provide power or photovoltaic functionality to a display or device containing a display without impacting the visual perception of the display. The wavelength-selective photovoltaic (WPV) element is visibly transparent, in that it absorbs selectively around the visible emission (or reflection) peaks generated by the display. The photovoltaic material is able to cover a portion or the entire surface area of the display, without substantially blocking or perceptually impacting the emission (or reflection) of content from the display. The incident light that is absorbed by the photovoltaic element is then converted into electrical energy to provide power to the device, for example.
US10403769B2

The invention relates to an electro-conductive paste comprising Ag nano-particles and spherical Ag micro-particles in the preparation of electrodes, particularly in electrical devices, particularly in temperature sensitive electrical devices or solar cells, particularly in HIT (Heterojunction with Intrinsic Thin-layer) solar cells. In particular, the invention relates to a paste, a process for preparing a paste, a precursor, a process for preparing an electrical device and a module comprising electrical devices. The invention relates to a paste comprising the following paste constituents: a. Ag particles, b. a polymer system; wherein the Ag particles have a multi-modal distribution of particle diameter with at least a first maximum in the range from about 1 nm to about less than 1 μm and at least a further maximum in the range from about 1 μm to about less than 1 mm; wherein the difference between the first and the further maximum is at least about 0.3 μm; wherein at least 50 wt. % of the Ag particles with a diameter in the range from 1 μm to 1 mm are spherical.
US10403767B2

A far-field radiative thermal rectification device uses a phase change material to achieve a high degree of asymmetry in radiative heat transfer. The device has a multilayer structure on one side and a blackbody on other side. The multilayer structure can consist of a transparent thin film of KBr sandwiched between a thin film of VO2 and a reflecting layer of gold. When VO2 is in its insulating phase, the structure is highly reflective due to the two transparent layers on highly reflective gold. When VO2 is in the metallic phase, Fabry-Perot type of resonance occurs and the tri-layer structure acts like a wide-angle antireflection coating achieved by destructive interference of partially reflected waves making it highly absorptive for majority of spectral range of thermal radiation. The instant structure can form the active part of a configuration that acts like a far-field radiative thermal diode.
US10403764B2

Provided is a thin film transistor including an active layer including a first silicon active layer, a second silicon active layer, and an oxide active layer in a space between the first silicon active layer and the second silicon active layer, a gate electrode on the active layer with a gate insulating layer disposed therebetween, and a source electrode and a drain electrode with an interlayer insulating layer disposed between the gate electrode and the source and drain electrodes, the source and drain electrodes being in contact with the first silicon active layer and the second silicon active layer, respectively.
US10403763B2

It is an object to provide an oxide semiconductor which is suitable for use in a semiconductor device. Alternatively, it is another object to provide a semiconductor device using the oxide semiconductor. Provided is a semiconductor device including an In—Ga—Zn—O based oxide semiconductor layer in a channel formation region of a transistor. In the semiconductor device, the In—Ga—Zn—O based oxide semiconductor layer has a structure in which crystal grains represented by InGaO3(ZnO)m (m=1) are included in an amorphous structure represented by InGaO3(ZnO)m (m>0).
US10403761B2

An array substrate and a manufacturing method thereof, and a display device are provided. The manufacturing method comprises: forming a first gate metal pattern on a base substrate; forming a gate insulating layer, a first active layer pattern and a source-drain metal pattern on the base substrate on which the first gate metal pattern is formed; forming a first protective layer pattern and a through hole pattern on the base substrate on which the source-drain metal pattern is formed; and forming a second active layer pattern and a pixel electrode pattern on the base substrate on which the first protective layer pattern is formed. Embodiments of the present disclosure solve problems of poor display performance and high cost of the array substrate and achieve effects of improving the display performance and reducing the cost.
US10403759B2

Disclosed is a logic circuit using three-dimensionally stacked dual-gate thin-film transistors, including a substrate, a first dual-gate thin-film transistor on the substrate, a second dual-gate thin-film transistor on the first dual-gate thin-film transistor, and a third dual-gate thin-film transistor on the second dual-gate thin-film transistor, wherein the first dual-gate thin-film transistor, the second dual-gate thin-film transistor and the third dual-gate thin-film transistor are electrically connected to each other. The logic circuit of the invention is configured such that dual-gate thin-film transistors are three-dimensionally stacked, whereby the advantages of the dual-gate structure and of thin-film transistors can be exhibited together and the degree of integration can be drastically increased, and a logic gate is made in the area of a single transistor, thereby remarkably simplifying wire and circuit designs.
US10403758B2

A vertical MOS transistor includes a substrate having therein a first source/drain region and a first ILD layer. A nanowire is disposed in the first ILD layer. A lower end of the nanowire is in direct contact with the first source/drain region, and an upper end of the nanowire is coupled with a second source/drain region. The second source/drain region includes a conductive layer. A gate electrode is disposed in the first ILD layer. The gate electrode surrounds the nanowire. A contact hole is disposed in the first ILD layer. The contact hole exposes a portion of the first source/drain region. A contact plug is disposed in the contact hole. A second ILD layer covers the first ILD layer.
US10403750B2

A Lateral Diffusion Metal Oxide Semiconductor (LDMOS) device and its manufacturing method are presented. The LDMOS device comprises a first region that has a first conductivity type; a drift region that has a second conductivity type in the first region, wherein the second conductivity type is opposite to the first conductivity type; and a plurality of second regions that have the first conductivity type in the drift region, wherein the second regions are separated from each other and extend to the first region along a depth direction of the drift region. This LDMOS device has an higher Breakdown Voltage and thus better performance than conventional LDMOS devices.
US10403749B2

In a first main surface side of a silicon carbide semiconductor base, a trench is formed. A second base region of a second conductivity type is arranged at a position facing the trench in a depth direction. An end (toward a drain electrode) of the second base region of the second conductivity type, and an end (toward the drain electrode) of a first base region of the second conductivity type reach a position deeper than an end (toward the drain electrode) of a region of a first conductivity type. Thus, the electric field at a gate insulating film at the trench bottom is mitigated, suppressing the breakdown voltage of the active region and enabling breakdown voltage design of the edge termination region to be facilitated. Further, such a semiconductor device may be formed by an easy method of manufacturing.
US10403747B2

A semiconductor device and a method of making the same is disclosed. The device includes a substrate having an AlGaN layer located on a GaN layer for forming a two dimensional electron gas at an interface between the AlGaN layer and the GaN layer. The device also includes a plurality of contacts. At least one of the contacts includes an ohmic contact portion located on a major surface of the substrate. The ohmic contact portion comprises a first electrically conductive material. The at least one of the contacts also includes a trench extending down into the substrate from the major surface. The trench passes through the AlGaN layer and into the GaN layer. The trench is at least partially filled with a second electrically conductive material. The second electrically conductive material is a different electrically conductive material to the first electrically conductive material.
US10403743B2

A manufacturing method of an oxide semiconductor device includes the following steps. A first oxide semiconductor layer is formed on a substrate. A gate insulation layer is formed on the first oxide semiconductor layer. A first flattening process is performed on a top surface of the first oxide semiconductor layer before the step of forming the gate insulation layer. A roughness of the top surface of the first oxide semiconductor layer after the first flattening process is smaller than the roughness of the top surface of the first oxide semiconductor layer before the first flattening process.
US10403732B2

A method is provided for fabricating stripe structures. The method includes providing a substrate; and forming a to-be-etched layer on the substrate. The method also includes forming a hard mask pattern having a first stripe on the to-be-etched layer; and forming a photoresist pattern having a stripe opening on the to-be-etched layer and the hard mask pattern having the first stripe. Further, the method includes forming a polymer layer on a top surface and side surfaces of the photoresist pattern to reduce a width of the stripe opening; forming hard mask patterns having a second stripe by etching the hard mask pattern having the first stripe using the photoresist pattern having the polymer layer as an etching mask; and forming the stripe structures by etching the to-be-etching layer using the hard mask pattern having the second stripe as an etching mask until the substrate is exposed.
US10403722B2

A semiconductor die and a process for fabricating the semiconductor die are disclosed. The semiconductor die has a substrate and a silicon carbide (SiC) epitaxial structure on the substrate. The SiC epitaxial structure includes at least a first N-type SiC layer, at least a first P-type SiC layer, and carbon vacancy reduction material, which has been implanted into a surface of the SiC epitaxial structure. Further, the SiC epitaxial structure has been annealed to mobilize the carbon vacancy reduction material to diffuse carbon atoms substantially throughout the SiC epitaxial structure, thereby increasing an average carrier lifetime in the SiC epitaxial structure.
US10403719B2

A three-dimensional semiconductor memory device includes common source regions, an electrode structure between the common source regions, first channel structures penetrating the electrode structure, and second channel structures between the first channel structures and penetrating the electrode structures. The electrode structure includes electrodes vertically stacked on a substrate. The first channel structures include a first semiconductor pattern and a first vertical insulation layer. The second channel structures include a second vertical insulation layer surrounding a second semiconductor pattern. The second vertical insulation layer has a bottom surface lower than a bottom surface of the first vertical insulation layer.
US10403711B2

In one embodiment, a method of manufacturing a silicon-carbide (SiC) device includes receiving a selection of a specific terrestrial cosmic ray (TCR) rating at a specific applied voltage, determining a breakdown voltage for the SiC device based at least on the specific TCR rating at the specific applied voltage, determining drift layer design parameters based at least on the breakdown voltage. The drift layer design parameters include doping concentration and thickness of the drift layer. The method also includes fabricating the SiC device having a drift layer with the determined drift layer design parameters. The SiC device has the specific TCR rating at the specific applied voltage.
US10403710B2

A 3D-capacitor structure that is based on a trench network etched from a top face of a substrate to form an array of separated pillars. The 3D-capacitor structure includes a double capacitor layer stack that extends continuously on top faces of the pillars at the substrate top face, on trench sidewalls and also on a trench bottom. The trench network is modified locally for contacting a second electrode of the double capacitor layer stack while ensuring that no unwanted short-circuit may occur between the second electrode and a third electrode of the double capacitor layer stack. The 3D-capacitor structure provides an improved trade-off between high capacitor density and certainty of no unwanted short-circuit.
US10403699B2

In a method of manufacturing a transparent display device, a substrate including a pixel region and a transmission region may be provided. A first electrode may be formed on the substrate in the pixel region, and a display layer may be formed on the first electrode. A second electrode facing the first electrode may be formed on the display layer, and a capping structure including a first capping layer and a second capping layer may be formed on the second electrode. The first capping layer may be formed on the second electrode in the pixel region and a first region of the transmission region by using a mask that has an opening, the mask may be shifted, and the second capping layer may be formed on the second electrode in the pixel region and a second region of the transmission region by using the shifted mask.
US10403693B2

A display apparatus and a method for producing the same are disclosed. The display apparatus includes a display panel, a first antistatic pattern, and an electronic component. The electronic component has a second antistatic pattern. The first antistatic pattern and the electronic component are provided at a side of the display panel away from the light-emitting side thereof in an inlaid manner.
US10403692B2

An electroluminescent device includes a lower structure including an emission area and a peripheral area, a flexible encapsulating multilayer, and a touch panel including a touch electrode. The emission area includes an electroluminescent unit including a lower electrode disposed directly on an insulating film, an intermediate film, and an upper electrode disposed on the intermediate film. The peripheral area includes an inorganic surface portion substantially surrounding the emission area, various terminals, and wires. A lower surface of the flexible encapsulating multilayer and an upper surface of the inorganic surface portion each include only one or more inorganic materials in direct contact with each other.
US10403682B2

A phase-change memory includes a strip of phase-change material that is coated with a conductive strip and surrounded by an insulator. The strip of phase-change material has a lower face in contact with tips of a resistive element. A connection network composed of several levels of metallization coupled with one another by conducting vias is provided above the conductive strip. At least one element of a lower level of the metallization is in direct contact with the upper surface of the conductive strip.
US10403680B2

A switch device according to an embodiment of the technology includes a first electrode, a second electrode that is disposed to face the first electrode, and a switch layer that is provided between the first electrode and the second electrode. The switch layer contains a chalcogen element. The switch layer includes a first region and a second region which have different composition ratios of one or more of chalcogen elements or different types of the one or more of chalcogen elements. The first region is provided close to the first electrode. The second region is provided closer to the second electrode than the first region.
US10403675B2

The present technology relates to a semiconductor device that suppresses scattering dusts caused by dicing, chipping due to clogging, and further suppresses peel-off of an undercoat from a passivation film, thereby improving yields in manufacturing to realize cost reduction and a method for manufacturing the semiconductor device, a solid-state image pickup element, an image pickup device, and an electronic apparatus. In a step of exposing a pad by etching, when etching a lens material layer as an uppermost layer and a passivation layer, a pad portion and a blade region to be cut by a blade at the time of dicing are simultaneously etched, while a part of a region including both portions and a part therebetween or all the region on the lump, is simultaneously etched. Thereafter, in a layer of the semiconductor substrate under the lens material layer, only the pad portion is etched to expose the pad.
US10403674B2

Device and method of forming the devices are disclosed. The method includes providing a substrate prepared with transistor and sensor regions. The substrate is processed by forming a lower sensor cavity in the substrate, filling the lower sensor cavity with a sacrificial material, forming a dielectric membrane in the sensor region, forming a transistor in the transistor region and forming a micro-electrical mechanical system (MEMS) component on the dielectric membrane in the sensor region. The method continues by forming a back-end-of-line (BEOL) dielectric having a plurality of interlayer dielectric (ILD) layers with metal and via levels disposed on the substrate for interconnecting the components of the device. The metal lines in the metal levels are configured to define an upper sensor cavity over the lower sensor cavity, and metal lines of a first metal level of the BEOL dielectric are configured to define a geometry of the MEMS component.
US10403671B2

The method for manufacturing a plurality of optical modules each comprising a first (C1) and a second (C2) optical component comprises the steps of a) providing a first substrate wafer (S1) on which a plurality of the first optical components (C1) is present on a top side of the first substrate wafer; b) providing a second substrate wafer (S2) having a material region which is a continuous laterally defined region in which material of the second substrate is present, wherein a plurality of the second optical components (C2) is present in said material region; c) achieving a lateral alignment of the first (S1) and second (S2) substrate wafers such that each of the first optical components (C1) is present in a laterally defined region not overlapping said material region; d) interconnecting the first and second substrate wafers in said lateral alignment such that the top side of the first substrate wafer faces a bottom side of the second substrate wafer with no further wafer in between. This way, first and second optical components may be placed particularly close to each other.
US10403669B2

The present disclosure relates to a semiconductor device, an electronic device, and a manufacturing method that can maintain the mounting reliability of an underfill. A chip is formed by a circuit of an imaging element being produced on a Si substrate that is a first substrate and a second substrate being produced on an adhesive formed on the circuit. In this event, a photosensitive material is formed around the chip after the chip is mounted on a mounting substrate by a solder ball or in the state of the chip, then an underfill is formed, and then only the photosensitive material is dissolved. The present disclosure can be applied to, for example, a CMOS solid-state imaging sensor used for an imaging device such as a camera.
US10403658B2

An image sensing device includes pixels forming rows and columns, sets of control lines respectively assigned to the rows such that one set of control lines is connected to one of the rows, a row drive circuit configured to drive the sets of control lines, and an assist circuit. Each set includes a first control line and a second control line. The row drive circuit includes a first drive circuit connected to a first end of the first control line and a second drive circuit connected to first end of the second control line. The assist circuit includes an assist drive circuit connected to a second end of the first control line so as to drive the first control line in accordance with a control signal supplied to the second control line.
US10403656B2

An image sensor is provided, the image sensor comprising a plurality of photo-diode pixels arranged in a two-dimensional array, an energy harvesting output bus connected to the plurality of photo-diode pixels, an image sensing output bus connected to the plurality of photo-diode pixels, and a plurality of switching buses connected to the plurality of photo-diode pixels to direct output of a varying percentage of the pixels to either the energy harvesting output bus or the image sensing output bus.
US10403655B2

The number of masks and photolithography processes used in a manufacturing process of a semiconductor device are reduced. A first conductive film is formed over a substrate; a first insulating film is formed over the first conductive film; a semiconductor film is formed over the first insulating film; a semiconductor film including a channel region is formed by etching part of the semiconductor film; a second insulating film is formed over the semiconductor film; a mask is formed over the second insulating film; a first portion of the second insulating film that overlaps the semiconductor film and second portions of the first insulating film and the second insulating film that do not overlap the semiconductor film are removed with the use of the mask; the mask is removed; and a second conductive film electrically connected to the semiconductor film is formed over at least part of the second insulating film.
US10403650B2

An electronic device and a manufacturing method thereof are disclosed. The manufacturing method of an electronic device includes following steps: forming a flexible substrate on a rigid carrier plate; forming at least a thin-film device on the flexible substrate; forming a conductive line on the flexible substrate, wherein the conductive line is electrically connected with the thin-film device; forming at least an electrical connection pad on the flexible substrate, wherein the electrical connection pad is electrically connected with the conductive line, and the thickness of the electrical connection pad is between 2 and 20 microns; disposing at least a surface-mount device (SMD) on the flexible substrate, wherein the SMD is electrically connected with the thin-film device through the electrical connection pad and the conductive line; and removing the rigid carrier plate.
US10403642B2

A semiconductor device includes a semiconductor layer, a first conductive layer, a tunneling insulating film, and a charge trapping film. The tunneling insulating film is provided between the semiconductor layer and the first conductive layer. The charge trapping film is provided between the first conductive layer and the tunneling insulating film. The charge trapping film includes a first separation layer, a first trapping layer, and a second trapping layer. The first trapping layer is positioned between the tunneling insulating film and the first separation layer. The second trapping layer is positioned between the first conductive layer and the first separation layer. A trapping efficiency of charge in the first trapping layer is higher than a trapping efficiency of charge in the second trapping layer.
US10403641B2

A semiconductor device may include a plurality of conductive patterns and an insulation pattern. The plurality of conductive patterns may be formed on a substrate. The plurality of conductive patterns may be spaced apart from each other in a vertical direction perpendicular to an upper surface of the substrate. Each of the plurality of conductive patterns may have an extension portion and a step portion. The step portion may be disposed at an edge of the corresponding conductive pattern. The insulation pattern may be formed between the plurality of conductive patterns in the vertical direction. A lower surface and an upper surface of the step portion of each of the plurality of conductive patterns may be bent upwardly.
US10403637B2

A memory device includes a plurality of stacks of conductive strips alternating with insulating strips, the insulating strips having first and second sides, and the conductive strips having first sidewalls recessed relative to the first sides of the insulating strips which define first recessed regions in sides of the stacks. Vertical channel pillars are disposed between the stacks, the vertical channel pillars having first and second channel films disposed on adjacent stacks and a dielectric material between and contacting the first and second channel films. Data storage structures at cross points of the vertical channel pillars and the conductive strips include tunneling layers in contact with the vertical channel pillars, discrete charge trapping elements in the first recessed regions in contact with the tunneling layers and blocking layers between the discrete charge trapping elements and the first sidewalls of the conductive strips.
US10403631B1

Embodiments of three-dimensional (3D) ferroelectric memory devices and methods for forming the ferroelectric memory devices are disclosed. In an example, a 3D ferroelectric memory device includes a substrate and a plurality of ferroelectric memory cells each extending vertically above the substrate. Each of the ferroelectric memory cells includes a capacitor and a transistor electrically connected to the capacitor. The capacitor includes a first electrode, a second electrode, and a ferroelectric layer disposed laterally between the first electrode and the second electrode. The transistor includes a channel structure, a gate conductor, and a gate dielectric layer disposed laterally between the channel structure and the gate conductor.
US10403629B2

One illustrative 6T SRAM cell structure disclosed herein includes a first active region with a first N-type pass gate transistor, a first N-type pull-down transistor and a first P-type pull-up transistor, each of which are formed in and above the first active region, wherein the first N-type pull-down transistor is positioned laterally between the first N-type pass gate transistor and the first P-type pull-up transistor, and a second active region with a second N-type pass gate transistor, a second N-type pull-down transistor and a second P-type pull-up transistor, each of which are formed in and above the second active region, wherein the second N-type pull-down transistor is positioned laterally between the second N-type pass gate transistor and the second P-type pull-up transistor.
US10403627B2

The disclosed technology relates to a memory device for a dynamic random access memory, or DRAM. In one aspect, the memory device includes a substrate supporting a semiconductor device layer in which a plurality of semiconductor devices are formed. The memory device may further include an interconnection portion formed above the substrate and including a number of metallization levels and dielectric layers, the interconnection portion being adapted to interconnect said semiconductor devices. The memory device may further include a plurality of bit cell stacks arranged in the interconnection portion, each bit cell stack including a plurality of bit cells. Further, such bit cells may include elements such as a charge storage element, a write transistor, and a read transistor.
US10403621B2

A circuit layout includes a first device having a first set of fingers, wherein the first set of fingers is separated into a first finger group and a second finger group, the first finger group comprising a first number of fingers, and the second finger group comprising a second number of fingers. The circuit layout further includes a second device having a second set of fingers, wherein the second set of fingers includes a third finger group having a third number of fingers. The first finger group, the second finger group and the third finger group extend across a first doped region, and the third finger group is between the first finger group and the second finger group.
US10403620B2

To provide a semiconductor device capable of restricting the substrate bias effect of a high-side transistor while enhancing the heat radiation property of a low-side transistor.A high-side NMOS transistor 101 is formed in a region S1 on the surface of a SOI substrate 30. A trench 41 surrounds the high-side NMOS transistor 101. SiO2 (first insulator) embeds the trench 41. A low-side NMOS transistor 102 is formed in a region S2 on the surface of the SOI substrate 30 around the trench 41. The side face Sf connecting the region S2 forming the low-side NMOS transistor 102 therein and the backside of the SOI substrate 30 is exposed.
US10403606B2

A method for fabricating a semiconductor package including mounting a first semiconductor chip on a first substrate, disposing a first connector on the first substrate, placing a molding control film on the first semiconductor chip to horizontally extend over the first substrate, filling a space between the molding control film and the first substrate with a molding compound such that the molding compound contacts side surfaces of the first semiconductor chip and covers the first connector and does not cover a top surface of the first semiconductor chip, detaching the molding control film, forming an opening through the molding compound to expose a portion of the first connector, disposing a second connector and a second semiconductor chip on opposite surfaces of a second substrate, respectively, and placing the second substrate on the first substrate such that the second connector contacts the first connector may be provided.
US10403605B2

A semiconductor device comprising a plurality of semiconductor chips and a plurality of electric wirings. The plurality of semiconductor chips are stacked in a first direction, each semiconductor chip of the plurality of semiconductor chips including a plurality of conductive pads that are aligned in an aligning direction, orthogonal to the first direction. The plurality of semiconductor chips are stacked such that each semiconductor chip is shifted from an adjacent semiconductor chip of the plurality of semiconductor chips by a first predetermined interval in the aligning direction and shifted from the adjacent semiconductor chip by a second predetermined interval in a second direction orthogonal to both the first direction and the aligning direction. The plurality of electric wirings electrically connect the plurality of conductive pads of every other semiconductor chip of the plurality of semiconductor chips, respectively.
US10403592B2

Semiconductor packages and methods for forming a semiconductor package are disclosed. The method includes providing a package substrate having first and second major surfaces. The package substrate includes a base substrate having a mold material and a plurality of interconnect structures including via contacts extending through the first to the second major surface of the package substrate. A die having conductive contacts on its first or second surface is provided. The conductive contacts of the die are electrically coupled to the interconnect structures. A cap is formed over the package substrate to encapsulate the die.
US10403591B2

An integrated circuit interconnects are described herein that are suitable for forming integrated circuit chip packages. In one example, an integrated circuit interconnect is provided that includes a first substrate containing first circuitry, a first contact pad, a first pillar, a first pillar protection layer, a second substrate containing second circuitry, and a solder ball disposed on the first pillar and electrically and mechanically coupling the first substrate to the second substrate. The first contact pad is disposed on the first substrate and coupled to the first circuitry. The first pillar electrically disposed over the first contact pad. The first pillar protection layer is hydrophobic to solder and is disposed on a side surface of the first pillar.
US10403590B2

A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
US10403583B2

A fan-out semiconductor package includes: a semiconductor chip; a first connection member including a plurality of redistribution layers and one or more layer of vias; an encapsulant; and a second connection member, wherein the encapsulant has first openings exposing at least portions of the first connection member, the first connection member has second openings exposing at least portions of a redistribution layer disposed at an uppermost portion among the plurality of redistribution layers, at least portions of the first openings and the second openings overlap each other, and a content of a metal constituting the plurality of redistribution layers and the one or more layer of vias is higher in a lower portion of the first connection member than in an upper portion of the first connection member.
US10403577B1

Dielets on flexible and stretchable packaging for microelectronics are provided. Configurations of flexible, stretchable, and twistable microelectronic packages are achieved by rendering chip layouts, including processors and memories, in distributed collections of dielets implemented on flexible and/or stretchable media. High-density communication between the dielets is achieved with various direct-bonding or hybrid bonding techniques that achieve high conductor count and very fine pitch on flexible substrates. An example process uses high-density interconnects direct-bonded or hybrid bonded between standard interfaces of dielets to create a flexible microelectronics package. In another example, a process uses high-density interconnections direct-bonded between native interconnects of the dielets to create the flexible microelectronics packages, without the standard interfaces.
US10403566B2

A power module (10) having a leadframe (20), a power semiconductor (30) arranged on the leadframe (20), a base plate (40) for dispersing heat generated by the power semiconductor (30) and a potting compound (50) surrounding the leadframe (20) and the power semiconductor (30), that physically connects the power semiconductor (30) and/or the leadframe (20) to the base plate (40).
US10403565B1

A lead frame module of an electrical connector includes a ground lead frame, signal conductors, a dielectric holder, and a ground plate. The ground lead frame includes multiple ground conductors and a tie bar that extends between and connects the ground conductors. The signal conductors are interleaved with the ground conductors. The signal conductors have jogged segments that extend across the tie bar around an outer side of the tie bar without engaging the tie bar. The dielectric holder at least partially surrounds the signal conductors and the ground lead frame to secure the signal conductors relative to the ground lead frame. The ground plate is disposed along an interior side of the dielectric holder and engages an inner side of the tie bar, which is opposite the outer side, to electrically connect the ground plate to the ground lead frame.
US10403559B2

In a power semiconductor device, the thickness dimension of a protective film of a semiconductor element is made smaller than that of an upper electrode, so a protective film is not pressed by being pressurized from upward when bonded by a metal sintered body, and the force of tearing off the upper electrode riding on an inclined surface of the protective film does not act, so that no crack of the upper electrode occurs, thus maintaining the soundness of the semiconductor element. Also, a lead bonded by a solder to the upper electrode of the semiconductor element is made of a copper-Invar clad material, the linear expansion coefficient of which is optimized, and thereby it is possible to realize a durability superior to that of a heretofore known wire-bonded aluminum wiring.
US10403550B2

In a method, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. The first semiconductor layers are etched at a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, thereby forming a first source/drain space in which the second semiconductor layers are exposed. A dielectric layer is formed at the first source/drain space, thereby covering the exposed second semiconductor layers. The dielectric layer and part of the second semiconductor layers are etched, thereby forming a second source/drain space. A source/drain epitaxial layer is formed in the second source/drain space. At least one of the second semiconductor layers is in contact with the source/drain epitaxial layer, and at least one of the second semiconductor layers is separated from the source/drain epitaxial layer.
US10403549B2

A method for fabricating a semiconductor structure includes forming a plurality of initial fin structures on a substrate, each including a first region used as a first fin structure, a second region on the first region, and a third region on the second region; forming a first isolation layer on the substrate; removing each third region to form a first opening in the first isolation layer; forming a second isolation layer on sidewall surfaces of each first opening; and removing each second region to form an initial second opening; performing an etching process on the first isolation layer on sidewall surfaces of each initial second opening to form a second opening; forming a second fin structure in each first opening and the second opening; and removing a portion of the first isolation layer and the second isolation layer to expose a portion of sidewall surfaces of each second fin structure.
US10403548B2

The disclosure relates to integrated circuit (IC) structures with a single diffusion break (SDB) and end isolation regions, and methods of forming the same after forming a metal gate. A structure may include: a plurality of fins positioned on a substrate; a plurality of metal gates each positioned on the plurality of fins and extending transversely across the plurality of fins; an insulator region positioned on and extending transversely across the plurality of fins between a pair of the plurality of metal gates; at least one single diffusion break (SDB) positioned within the insulator region and one of the plurality of fins; an end isolation region positioned laterally adjacent to a lateral end of one of the plurality of metal gates; and an insulator cap positioned on an upper surface of at least a portion of one of the plurality of metal gates.
US10403530B2

A control device is configured to make a robot arm and a substrate holding device execute a blade member advancing operation for advancing a pair of blade members into a substrate placing structure, a substrate receiving operation for receiving a substrate placed on an upper stage of the substrate placing structure by the blade member in a substrate non-holding state, and a substrate placing operation for placing the substrate on the blade member in a substrate holding state onto a lower stage. A timing of receiving a substrate by the substrate receiving operation is shifted from a timing of placing a substrate by the substrate placing operation. A substrate conveying robot capable of shortening the tact time upon conveying substrates regardless of the kind of substrate fixing method in the substrate holding device can be provided.
US10403526B2

The system, method and apparatus described relates generally to a device related to substrate storage and processing. In one example embodiment to methods, apparatus, and systems of a substrate storage and processing module improving upon existing devices used in one or more instances for substrate transportation, sorting, and cleaning. The single piece design system may contain and support substrates in a method, reducing strain on its contents by utilizing an innovative support system without the use of standard clamping techniques and, in this or other iterations, such stacking methods may minimize chaffing of surfaces. Thus the device is vastly improved in its ability to preserve pristine conditions of contained substrates.
US10403520B2

A multi blade that processes semiconductor packages into a desired shape while dividing a package substrate includes plural cutting blades that divide the package substrate into the individual semiconductor packages and a spacer provided between two cutting blades adjacent to each other, and is configured in such a manner that the cutting blades and the spacer have the same rotation axis center. The outer surface of the spacer is formed into a transfer shape of the semiconductor package and is covered by an abrasive grain layer, and the upper surface of the package substrate is ground by the outer surface of the spacer simultaneously with cutting of the package substrate by the plural cutting blades.
US10403513B2

In a manufacturing method of a semiconductor device, by arranging a lead in the vicinity of a gate portion serving as a resin injection port of a mold, a void is prevented from remaining within an encapsulation body when two semiconductor chips arranged so as to overlap in the Y direction are encapsulated with resin. Further, a length of an inner lead portion of the lead in the Y direction is greater than a length of an inner lead portion of another lead overlapping a chip mounting portion in the Y direction.
US10403499B2

A laser polycrystallization apparatus including: a light source for emitting a laser beam; a diffraction grating for receiving the laser beam from the light source, changing a path and a magnitude of the received laser beam, and outputting the changed laser beam; a light split portion for splitting the laser beam received from the diffraction grating; and a light superposition portion for superposing the split laser beams received from the light split portion and irradiating the superposed split laser beams to a substrate. An angle between the laser beam irradiated to an incidence surface of the diffraction grating from the light source and a line substantially perpendicular to an emission surface of the diffraction grating is an acute angle.
US10403488B2

Methods, systems and devices that provide fluid devices with at least one SPE bed adjacent (upstream of) a separation channel which may be in communication with an inlet of a Mass Spectrometer. The fluid device can be configured to operate using independently applied pressures to a BGE reservoir and a sample reservoir for pressure-driven injection that can inject a discrete sample plug into a separation channel that does not require voltage applied to the sample reservoir and can allow for in-channel focusing methods to be used. The methods, systems and devices are particularly suitable for use with a mass spectrometer but optical or other electronic detectors may also be used with the fluidic devices.
US10403487B2

A method for generating a mass spectrum of sample ions using a multi-collector mass spectrometer is disclosed. The mass spectrometer includes a spatially dispersive mass analyser to direct the sample ions into a detector chamber. The method includes generating sample ions of a first ion species A, a second ion species B, and a third ion species C, wherein the ions of species A have a different nominal mass to the ions of species B and C, and further wherein the ions of species B have the same nominal mass as the ions of species C. The sample ions of the species A, B and C are directed to travel through the mass analyser and towards detectors in the detector chamber, the sample ions being deflected during their travel. The ions of species B and C are scanned across a master aperture defined in a master mask of a master detector, while the ions of species A pass through a lead aperture defined in a lead mask of a lead detector. A lead signal is generated representing the ion intensity received at the lead detector from the ions of species A, and generating a master signal representing the ion intensity received at the master detector whilst the ions of species B and C are scanned across the master aperture. During scanning, ions of the species A are detected by the lead detector while ions of the species B but not C, then both species B and species C, and then species C but not B are detected by the master detector.
US10403484B2

A photonic electron emission device includes an emitter, a photonic energy conduit evanescently coupled to the emitter, and an anode. The emitter includes a component selected from the group consisting of a metal, a semimetal, a semiconductor having a bandgap that is less than about 3.5 eV. The anode is positively biased with respect to the emitter, the anode directing electrons emitted from the emitter.
US10403483B2

The invention is directed at sputter targets including 50 atomic % or more molybdenum, a second metal element of titanium, and a third metal element of chromium or tantalum, and deposited films prepared by the sputter targets. In a preferred aspect of the invention, the sputter target includes a phase that is rich in molybdenum, a phase that is rich in titanium, and a phase that is rich in the third metal element.
US10403470B2

A system for analyzing an analogue signal comprising randomly spaced events, the event having an event height, comprises: Converting the signal to a series of samples S(t), with t the moment of sampling, thereby forming a sampled, discrete time signal, Detecting the presence of an event, the event detected at t=T, Estimating the event height Using a model (412, FIG. 5) to estimate a noise contribution N(t) for t=(T−Δ1) to t=(T+Δ2), the noise contribution derived from samples S(t) with t≤(T−Δ1) and/or samples S(t) with t≥(T+Δ2), with Δ1 and Δ2 predetermined or preset time periods having a value such that the event has a negligible contribution to samples taken before (T−Δ1) or after (T+Δ2), Estimating the event height E by integrating the series of samples from (T−Δ1) to (T+Δ2) minus the noise contribution for said samples, E=Σt=(T−Δ1)t=(T+Δ2)S(t)−Σt=(T−Δ1)t=(T+Δ2)N(t)=Σt=(T−Δ1)t=(T+Δ2)[S(t)−N(t)].
US10403466B1

A gas switch includes a gas-tight housing containing an ionizable gas, an anode disposed within the gas-tight housing, and a cathode disposed within the gas-tight housing, where the cathode includes a conduction surface. The gas switch also includes a control grid positioned between the anode and the cathode, where the control grid is arranged to receive a bias voltage to establish a conducting plasma between the anode and the cathode. In addition, the gas switch includes a plurality of magnets selectively arranged to generate a magnetic field proximate the conduction surface that reduces the kinetic energy of charged particles striking the conduction surface and raises the conduction current density at the cathode surface to technically useful levels.
US10403465B2

Embodiments include a vacuum device, comprising: an enclosure configured to enclose a vacuum, comprising an external base forming at least a portion of the enclosure; an internal base within the enclosure; and at least one thermal dissipative strap assembly, comprising: an internal base thermal conductive base in contact with the internal base, an external base thermal conductive base in contact with the external base, and a flexible thermal dissipative strap coupling the internal base thermal conductive base to the external base thermal conductive base.
US10403463B2

The present invention is directed to a method for the fabrication of electron field emitter devices, including carbon nanotube (CNT) field emission devices. The method of the present invention involves depositing one or more electrically conductive thin-film layers onto a electrically conductive substrate and performing lithography and etching on these thin film layers to pattern them into the desired shapes. The top-most layer may be of a material type that acts as a catalyst for the growth of single- or multiple-walled carbon nanotubes (CNTs). Subsequently, the substrate is etched to form a high-aspect ratio post or pillar structure onto which the previously patterned thin film layers are positioned. Carbon nanotubes may be grown on the catalyst material layer. The present invention also described methods by which the individual field emission devices may be singulated into individual die from a substrate.
US10403462B2

A fuse assembly includes an insulating block having an upper surface, a lower surface, and a side surface therebetween. The insulating block defines cavities extending therethrough. Each cavity defines a resilient lock arm. A fuse assembly also includes a first terminal stud secured within a first cavity by a first lock arm, a second terminal stud secured within a second cavity by a second lock arm, and a bus bar disposed parallel to the bottom surface of the insulating block. The bus bar is interconnected to the first terminal stud by a lower terminal connected to the bus bar and an upper terminal disposed parallel to the upper surface. The bus bar is interconnected to the second terminal stud by a fusible link having a lower fuse terminal connected to the bus bar and an upper fuse terminal disposed generally parallel to the upper surface.
US10403461B2

An electromagnetic relay includes an electromagnet device, a contactor, and a trip device turning the contactor into an open state in which the contactor opens when an abnormal current flows. The electromagnet device includes a first excitation coil, a fixed element, first and second movable elements, and a permanent magnet. The contactor includes a fixed contact and a movable contact. In the electromagnetic relay, while the permanent magnet causes the first movable element to attractingly contact the second movable element, the fixed element attracts the first movable element due to a magnetic flux generated by the first excitation coil so as to move the second movable element together with the first movable element from a normal position to an attracted position. In the contactor, the movable contact moves, as the second movable element moves, so as to switch between a closed state in which the movable contact contacts the fixed contact and the open state in which the movable contact is removed from the fixed contact. The contactor is turned into the closed state when the second movable element is located at the attracted position. The trip device includes a second excitation coil connected in series to the contactor and a spring for acting a force on the second movable element in a direction away from the first movable element.
US10403459B1

The present invention provides a heat destructive disconnecting switch, which is composed of a first conductive member, a second conductive member, a movable conductive member, an overheating destructive member, an operating component, and a second elastic member. The movable conductive member enables conducting electricity to the first conductive member and the second conductive member. The overheating destructive member butts against a limiting member, which causes a first elastic member to be compressed to between a contact member and the overheating destructive member, thereby providing the first elastic member with a first elastic force and providing the second elastic member with a second elastic force. When the overheating destructive member is destructed due to overheating, the first elastic force is smaller than the second elastic force, which causes the movable conductive member to disconnect the first conductive member from the second conductive member, thereby achieving a protective effect from overheating.
US10403446B2

Disclosed are a dye-sensitized solar cell including a polymer/graphene composite gel electrolyte and methods of preparing the dye-sensitized solar cell.
US10403439B2

A capacitor device includes a plurality of capacitors arranged into a shape. Each capacitor of the plurality of capacitors has a first external electrode on a first side of the capacitor and a second external electrode on a second side of the capacitor opposing the first side. A first plate is proximate and electrically coupled to the first external electrodes of the capacitors. A second plate is proximate and electrically coupled to the second external electrodes of the capacitors.
US10403438B2

In an embodiment, a multilayer ceramic capacitor 10 has supplementary dielectric layers 11d covering the spaces between two first base conductor films 11c on both height-direction faces of a capacitive element 11′, respectively, in such a way that clearances CL are left between the first base conductor films 11c and the supplementary dielectric layers 11d in the length direction. External electrodes 12, 13 each have a second base conductor film 12a, 13a and a surface conductor film 12b, 13b, and the wraparound locations 12b1, 13b1 of each surface conductor film 12b, 13b have insertion parts 12b2, 13b2 that fill in the clearances CL. The multilayer ceramic capacitor can mitigate deterioration in moisture resistance.
US10403433B2

A multilayer electronic component includes a first capacitor including a first multilayer body having a structure in which a plurality of internal electrodes and a plurality of dielectric layers are alternately stacked, a second capacitor including a second multilayer body disposed adjacent the first multilayer body, the second multilayer body connected to the first multilayer body in parallel, and the second multilayer body having a structure in which a plurality of internal electrodes and a plurality of dielectric layers are alternately stacked, a fixing member fixing the first and second multilayer bodies, a first lead terminal connected to a first end portion of the fixing member, and a second lead terminal connected to a second end portion of the fixing member.
US10403431B2

A coil component that includes a coil having a thick coil core and good inductance characteristics and is able to narrow the pitch of a coil electrode is provided. The wiring of a coil electrode in a direction across the direction of a winding axis of the coil electrode includes a plurality of first metal pins and a plurality of second metal pins. By elongating each metal pin, the wiring of the coil electrode is easily elongated in a metal pin direction. Thus, a coil core is easily thickened in the metal pin direction. The wiring of the coil electrode can be formed in the metal pin direction only by arranging the metal pins. Thus, it is possible to provide a coil component that includes a coil having the thick coil core and good inductance characteristics and is able to narrow the pitch of the coil electrode.
US10403415B2

In a transparent electrode based on a metal material having reduced light reflectance, a light absorbing layer having black characteristic is formed on a lower surface, a partition wall, and/or an upper surface of a metal wire, and thus, light reflectance of transparent electrode is minimized. In a method of manufacturing a transparent electrode, the light absorbing layer can be selectively formed on the upper and lower surfaces and the partition wall of the metal wire having a fine line width by using self-aligning and a spontaneous pattern effect. A conductive wire is implemented by using an imprinting process using an elastic body-based stamp, and thus, conductive wires having a fine line width and an excellent aspect ratio can be formed, so that it is possible to improve electric conductivity and transmittance.
US10403401B2

A medical system includes a medical apparatus, a computer, a user input device, and at least one feature in communication with and controlled by the computer. The computer is in communication with the user input device, which is configured and arranged to allow a user to purchase the use of the feature. The computer is configured to enable the use of the feature after the user purchases use of the feature.
US10403395B2

A system is disclosed to provide a user the ability to obtain an objective medical second opinion generated by the system and approved by a licensed physician on the web through the Internet. The system enables the user to upload all available medical records. The system generates a current user medical status report in a comprehensive form with proper hyperlinks to the appropriate medical records including diagnostic images and results of other diagnostic procedures up loaded to the system in a digital or in a paper form such that the current status report is available to a consultant physician with all the proper hyperlinked attachments for review. The system generates a suggested second opinion consultant report by processing an evidence based diagnosis method incorporated into the system by utilizing all the data relevant to the user that is available to the system.
US10403393B2

Methods, systems, and computer-readable media are provided for facilitating the voice-assisted creation of a shorthand clinical note on a mobile or tablet device. A microphone on the device is used to capture a conversation between a clinician and a patient. Clinically-relevant concepts in the conversation are identified, extracted, and temporarily presented on the device's touch screen interface. The concepts are selectable, and upon selection, the selected concept is populated into a clinical note display area of the touch screen interface. The shorthand clinical note may be used as a memory prompt for the later creation of a more comprehensive clinical note.
US10403389B2

Methods, systems, techniques, and devices for operating a ferroelectric memory cell or cells are described. Groups of cells may be operated in different ways depending, for example, on a relationship between cell plates of the group of cells, pages of cells, and/or sections of cells. Cells may be selected in pairs or in larger multiples in order to accommodate an electric current relationship (such as a short) between two or more cells within a group, a page, and/or a section. When performing an access based on a smaller page size, a larger page size of cells may be selected to accommodate a short between plates within the smaller page, the larger page, and/or a section of memory that includes the smaller page or the larger page.
US10403386B2

A method for screening bad columns in a data storage medium includes steps of: writing predetermined data into at least one sample block; comparing the written data with the predetermined data to calculate numbers of error bits in the plurality of columns; defining an inspection window covering a portion of the columns; summing the numbers of error bits in the portion of columns in the inspection window to obtain a total number of error bits and determining whether the total number of error bits is greater than a number of correctable bits; if yes, determining a start point and a terminal point of a bad column interval in the inspection window, wherein the numbers of error bits in the columns between the start point and the terminal point are greater than a threshold of error bits; and labeling the columns in the bad column interval as bad columns.
US10403380B2

A semiconductor device with an anti-fuse element includes a semiconductor substrate, a well region of a first conductivity type formed in the semiconductor substrate, and a gate electrode formed over the semiconductor substrate through a gate insulating film, and source regions of a second conductivity type opposite to the first conductivity type formed within the well region at the both ends of the gate electrode. When writing in the fuse element, a first writing potential is applied to the gate electrode, a first reference potential is applied to the well region, an intermediate potential is supplied to the source regions, and the intermediate potential is lower than the first writing potential and higher than the first reference potential.
US10403372B2

Adaptive read-threshold schemes for a memory system determine read-threshold with the lowest BER/UECC failure-rates while continuing to serve the host-reads with the required QoS. When it is determined that the QoS or other quality metric is not met for a particular read-threshold, which may be an initial, default, read-threshold, the performance of other read-thresholds are estimated. These estimates may then be used to determine an optimal read-threshold. During the iterative process, selection variables, e.g., how many times, and for which read commands, to use each of the non-default read-thresholds in future read-attempts may be determined on-the-fly.
US10403368B2

A non-volatile memory device includes a matrix memory plane with columns of memory words respectively formed on each row of the memory plane by groups of memory cells and control elements respectively associated with the memory words of each row. At least some of the control elements associated with the memory words of the corresponding row form at least one control block of B control elements disposed next to one another, adjacent to a memory block containing the B memory words disposed next to one another and associated with these B control elements, a first electrically-conducting link connecting one of the B control elements to all the control electrodes of the state transistors of the corresponding group of memory cells and B-1 second electrically-conducting link(s) respectively connecting the B-1 control element(s) to all the control electrodes of the state transistors of the B-1 corresponding group(s) of memory cells.
US10403366B1

In general, embodiments of the technology relate to a method for adjusting solid state memory write parameters. The method includes obtaining a performance goal for the solid state memory, receiving a client write request for data from a client, where the client write request comprises a logical address and data to be written. The method further includes determining a physical address corresponding to the logical address, where the physical address comprises a page number for a physical page in the persistent storage, obtaining at least one verify threshold value using the performance goal, issuing a control module program request including the data to be written and the at least one verify threshold value to a storage module, where the storage module comprises the physical page, and programming the data into the physical page of the storage module using the at least one verify threshold value.
US10403362B2

A split memory bank may comprise a number of memory matrices forming a memory bank and a shift register in which the shift register physically separates the matrices. An integrated circuit may comprise a number of shift registers and a plurality of memory matrices forming a memory bank in which the matrices are spatially separated by the shift register. An integrated printhead may comprise a number of memory banks each comprising a plurality of memory matrices and a number of shift registers in which each shift register spatially separates a number of the matrices.
US10403361B2

A semiconductor memory cell and arrays of memory cells are provided In at least one embodiment, a memory cell includes a substrate having a top surface, the substrate having a first conductivity type selected from a p-type conductivity type and an n-type conductivity type; a first region having a second conductivity type selected from the p-type and n-type conductivity types, the second conductivity type being different from the first conductivity type, the first region being formed in the substrate and exposed at the top surface; a second region having the second conductivity type, the second region being formed in the substrate, spaced apart from the first region and exposed at the top surface; a buried layer in the substrate below the first and second regions, spaced apart from the first and second regions and having the second conductivity type; a body region formed between the first and second regions and the buried layer, the body region having the first conductivity type; a gate positioned between the first and second regions and above the top surface; and a nonvolatile memory configured to store data upon transfer from the body region.
US10403355B2

A phase change memory device may include a plurality of word lines, a plurality of bit lines, a phase change memory cell, and a discharging circuit. The word lines and the bit lines may intersect each other. The phase change memory cell may be positioned at an intersection point between the word lines and the bit lines. The discharging circuit may be configured to apply a ground voltage to a non-selected word line adjacent to a selected word line or a non-selected bit line adjacent to a selected bit line.
US10403341B2

A semiconductor integrated circuit includes a register, a detection circuit, and a generation circuit. The register stores a detection start timing of a reference delay amount based on a first clock during a first period. The first period is a period in which the first clock starts to be input. The detection circuit has a plurality of delay stages. The detection circuit detects the reference delay amount at the start timing during the first period and obtains the number of delay stages corresponding to the reference delay amount. The generation circuit adjusts a duty ratio of the first clock based on the number of delay stages obtained by the detection circuit and generates a second clock during a second period. The second period is a period continuing from the first period.
US10403335B1

An apparatus may include a first pad and a first input circuit coupled to the first pad. The first input circuitry may include a first signal propagation path that couples to the first pad, a latch circuit, a second signal propagation path that couples to the latch circuit, and a gate circuitry coupling between the first and second signal propagation paths. The first signal propagation path may have first signal propagation time and the second signal propagation path may have second signal propagation time that is greater than the first propagation time.
US10403324B2

A card recognition system comprises an imaging device configured to capture a raw image of at least a portion of a card, and a processor operably coupled with the imaging device. The processor is configured to perform an image processing analysis of the raw image to identify measurements of at least one of a rank area around a rank of the card, and a suit area around a suit of the card, and automatically generate a calibration file based, at least in part, on the image processing analysis. A card handling device comprises a card infeed, a card output, and a card recognition system. A method for tuning a card handling device comprises capturing a plurality of images from a deck of cards, storing the images in memory, analyzing the plurality of images for card identification information, and generating a calibration file including parameters associated with the card identification information.
US10403321B2

A method for manufacturing a glass substrate according to which surface roughnesses of main surfaces of a glass substrate can be reduced more than with currently available methods is provided. After the main surfaces of the glass substrate used in a magnetic disk are mirror-polished (final finishing-polished) using a polishing liquid containing organic-based particles made of, for example, a styrene-based resin, an acrylic resin, or a urethane-based resin as polishing abrasive particles, by cleaning the glass substrate using an organic-based cleaning agent, surface roughnesses of the main surfaces of the substrate can be reduced more than with currently available methods.
US10403320B2

The magnetic tape device includes: a magnetic tape; and a reproducing head, in which the reproducing head is a magnetic head including a tunnel magnetoresistance effect type element as a reproducing element, the magnetic tape includes a non-magnetic support, and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, and logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding the surface of the magnetic layer is equal to or smaller than 0.050.
US10403317B2

The magnetic tape device includes a magnetic tape and a TMR head, in which the magnetic tape includes a non-magnetic support, and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, an intensity ratio of a peak intensity Int(110) of a diffraction peak of a (110) plane with respect to a peak intensity Int(114) of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, and a vertical direction squareness ratio of the magnetic tape is 0.65 to 1.00.
US10403316B2

The magnetic tape includes a magnetic layer including ferromagnetic powder and a binding agent, in which a magnetic tape total thickness is equal to or smaller than 5.30 μm, the magnetic layer has a servo pattern, a center line average surface roughness Ra measured regarding a surface of the magnetic layer is equal to or smaller than 1.8 nm, the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, an intensity ratio of a peak intensity of a diffraction peak of a (110) plane with respect to a peak intensity of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, and a vertical direction squareness ratio of the magnetic tape is 0.65 to 1.00, and a magnetic tape device including this magnetic tape.
US10403315B2

Embodiments disclosed herein generally relate to a HAMR head. The HAMR head includes a main pole, a waveguide and a NFT disposed between the main pole and the waveguide. The NFT includes an antenna, and the antenna includes a first portion and a second portion. The second portion may be made of a material having a higher melting point than the material of the first portion. Having the second portion helps reduce the temperature rise of the NFT and reduce the laser power applied to the NFT.
US10403310B1

An apparatus comprises a slider configured for heat-assisted magnetic recording. A near-field transducer comprising a peg is situated at or near an air bearing surface of the slider, and an optical waveguide of the slider is configured to couple light from a light source to the near-field transducer. The peg comprises a hyperbolic metamaterial, and the near-field transducer may further include an enlarged portion from which the peg extends, where the enlarged portion may also comprise a hyperbolic metamaterial.
US10403306B2

A method for fast recognition of a hearing aid wearer's own voice, and a corresponding apparatus for carrying out the method. The hearing aid receives audio signals from at least two acoustoelectric transducers. The hearing aid has an apparatus with a first filter and a second filter for spatial separation. First filter parameters of the first filter are ascertained and used to attenuate the own voice of the hearing aid wearer of the hearing aid. In addition, second filter parameters of the second filter are ascertained. The second filter parameters are used to attenuate an external audio source. The apparatus is then operated with the first and second parameters, and the wearer's own voice is recognized on the basis of an output signal from the first filter and the second filter.
US10403304B1

Methods and apparatus are disclosed for generating predictions of tendencies of a waveform segment to induce frisson. In one example, a method includes producing Mel-frequency cepstral coefficients corresponding to an audio waveform, dividing the waveform into a plurality of segments that have been tagged with a value indicating a likelihood that the segment will produce a frisson response in a listener, and training a neural network with the Mel-frequency cepstral coefficients and the segment tag values to generate predictions of a tendency of a waveform segment to induce frisson. In some examples, the method further includes displaying a visualization of the waveform, wherein the visualization indicates how likely portions of the visualized waveform are to induce frisson.
US10403303B1

Audio content may have a duration. The audio content may be segmented into audio segments. Individual audio segments may correspond to a portion of the duration. Mel frequency spectral power features, Mel frequency cepstral coefficient features, and energy features of the audio segments may be determined. Feature vectors of the audio segments may be determined based on the Mel frequency spectral power features, the Mel frequency cepstral coefficient features, and the energy features. The feature vectors may be processed through a support vector machine. The support vector machine may output predictions on whether the audio segments contain speech. One or more of the audio segments may be identified as containing speech based on filtering the predictions and comparing the filtered predictions to a threshold. Storage of the identification of the one or more of the audio segments as containing speech in one or more storage media may be effectuated.
US10403295B2

The present invention proposes a new method and a new apparatus for enhancement of audio source coding systems utilizing high frequency reconstruction (HFR). It utilizes a detection mechanism on the encoder side to assess what parts of the spectrum will not be correctly reproduced by the HFR method in the decoder. Information on this is efficiently coded and sent to the decoder, where it is combined with the output of the HFR unit.
US10403294B2

In general, techniques are described for signaling layers for scalable coding of higher order ambisonic audio data. A device comprising a memory and a processor may be configured to perform the techniques. The memory may be configured to store the bitstream. The processor may be configured to obtain, from the bitstream, an indication of a number of layers specified in the bitstream, and obtain the layers of the bitstream based on the indication of the number of layers.
US10403287B2

A method for identifying and managing users within a group during a teleconference. The method includes a computer processor determining that a group of users are sharing a first client device to communicate, via a teleconference with one or more other users. The method further includes identifying a first user, of the group of user that are sharing the first client device, that is speaking during a first portion of the teleconference. The method further includes determining an action corresponding to the first user, where an action affects managing content of the teleconference at a client device. The method further includes initiating the determined action corresponding to the first user.
US10403281B1

Systems and methods for provisioning optimized resources in a cloud environment are described. The system receives voice-based user input for accessing resources in the cloud environment. The voice input is converted into textual data from which one or more keywords are identified. Further, the system automatically determine one or more parameters and corresponding one or more values of the one or more parameters required for accessing the resources based on the one or more keywords. These one or more values are populated in one or more fields corresponding to the one or more parameters. The one or more values indicates an optimal machine configuration of the resource. Further, the system provisions the optimized resource based on the populating of the one or more values in the one or more fields.
US10403278B2

Systems and processes for operating an intelligent automated assistant to provide media items based on phonetic matching techniques are provided. An example method includes receiving a speech input from a user and determining whether the speech input includes a user request for a media item. The method further includes, in accordance with a determination that the speech input includes a user request for obtaining a media item, determining a candidate media item from a plurality of media items. The method further includes determining, based on a difference between a phonetic representation of the candidate media item and a phonetic representation of the speech input, whether the candidate media item is to be provided to the user. The method further includes, in accordance with a determination that the candidate media item is to be provided to the user, providing the candidate media item to the user.
US10403270B1

Techniques are described for automatically distributing validated user safety alerts from a networked computing device. The networked computing device may be configured to operate as an autonomous agent to perform actions on behalf of a user without receiving direct instructions from the user. For example, the autonomous agent computing device may be configured to make certain purchases, send alerts or reminders, or perform other functions in accordance with preprogrammed rules. According to the disclosed techniques, the autonomous agent computing device is configured to automatically generate and send an alert to one or more computing devices associated with the user upon detecting a safety concern for the user. The autonomous agent also uses a signing key associated with its digital certificate, which verifies the identity of the autonomous agent, to sign the alert such that a third-party server may validate the alert prior to distribution to the destination computing devices.
US10403265B2

An object is to provide a technique that allows voice recognition of voice including a plurality of languages while suppressing a data size of a voice recognition dictionary. A voice recognition dictionary includes a plurality of place name dictionaries and a plurality of house number dictionaries in which phonemes in a different language are mapped to phonemes in a corresponding language. Out of the plurality of place name dictionaries, one place name dictionary is set, which a language-specific voice recognition unit set by a voice recognition language setting unit may perform voice recognition in phonemes of the corresponding language, and out of the plurality of house number dictionaries, one house number dictionary is set, which the language-specific voice recognition unit may perform voice recognition by substituting phonemes in a different language for the phonemes in the corresponding language.
US10403249B2

An interchangeable drum slip that may be quickly installed to change the appearance of a drum and to provide protection to the drum shell. The drum slip is a rectangular piece of material that is pre-cut to precisely fit specific models of drums. Openings are cut into the material that correspond with hardware that is attached to the drum shell. A user installs the drum slip by placing the drum slip around the drum shell and securing the ends of the drum slip together. The openings in the drum slip fit over and around any hardware that is attached to the drum shell and any apertures formed in the drum shell. The ends of the drum slip are pulled together and secured with an adhesive. For some drums, the drum slip may be installed without disassembling any parts of the drum. For other drums, one or more drum heads and retaining hoops must be removed to install the drum slip. The drum slip may be transparent, and the drum slip may be made in any color and messages, designs, or information may be printed on or molded into the drum slip. Anyone can quickly and easily change drum slips to change the appearance of a drum.
US10403248B2

A drum head includes: a first film including a striking surface; a second film disposed opposed to a back surface of the first film which is back from the striking surface; and a sensor disposed between the first film and the second film and configured to output a signal related to vibration. The sensor includes: a first contact surface configured to contact the back surface of the first film without being secured to the back surface; and a second contact surface configured to contact a front surface of the second film without being secured to the front surface. A sensor tail of the sensor is secured to at least one of the first film and the second film located outside the shell when the first film and the second film are stretched over an open end of a shell.
US10403247B2

This invention involves the field of tactile control of electronic devices using a sensor that transduces both air pressure and device positional orientation into a set of digitally encoded commands. The invention involves using as input the physical action taken on a musical instrument and generating control information using that input.
US10403245B1

A musical instrument slide for a stringed instrument and a method of manufacturing the same includes a slide body defining an outer wall, the outer wall configured to affect sound produced by the instrument when applied to one or more strings of the instrument. The slide includes an insert within the slide body defining an inner wall and creating a space between the slide body and the insert and further includes liquid within the space between the slide body and the insert to further affect the sound produced by the instrument when the outer wall is applied to the strings. A removable collar may be included with an aperture or opening that may vary in size to accommodate multiple users. Liquid may be selectively sealed between the slide body and the insert and be changed as required.
US10403226B2

A source driver is disclosed, including a data exchanger configured to receive a predetermined number of units of data and store the data corresponding to a predetermined number of channels, and a latch unit configured to store the data output from the data exchanger. The data exchanger mutually exchanges data corresponding to two channels included in each of a plurality of groups, and independently exchanges data for each of the plurality of groups, in which each of the plurality of groups includes two adjacent channels.
US10403217B2

The present invention discloses a display panel and the driving method thereof. It divides the pixel electrodes of the display panel into multiple groups according to the light color allowed passing through. That is, each said pixel electrode allows the light with the same color to pass through; during one frame display, the data driver applies independent Gamma voltage to each said pixel electrode. After the gate driver drives the gate line connected with a group of the pixel electrodes, it drives the gate line connected with next group of the pixel electrodes in sequence, so that it can independently adjust the Gamma voltage applied to the pixels with different colors.
US10403214B2

An electronic device may be provided with a display. Standard and high dynamic range content may be produced by content generators operating on control circuitry. In a first mode of operation, standard dynamic range content is displayed. In a second mode of operation, high dynamic range content is displayed. In a third mode of operation, standard dynamic range content and high dynamic range content are simultaneously displayed. Tone mapping parameters may be produced by a tone mapping engine for use in displaying the standard and high dynamic range content. The tone mapping parameters may be selected based on factors such as ambient light level, user brightness setting, content statistics, and display characteristics. Tone mapping parameters may be selected to accommodate simultaneous display of standard and high dynamic range content and to accommodate transitions between standard and high dynamic range content.
US10403207B2

A display device includes a plurality of pixel circuits and a gate driver including a plurality of stages configured to output a gate signal to a plurality of gate lines, respectively, to provide the gate signal to the pixel circuits. Each of the stages is divided into a plurality of sub-blocks. At least one of the pixel circuits is located between two adjacent sub-blocks of the sub-blocks.
US10403203B2

The present disclosure relates to an organic light emitting display device which is implemented to reduce or suppress the residual image and the flicker. According to an embodiment, a circuit includes an organic light emitting diode disposed between a first node and a first power source, a driving transistor disposed between the first node and a second power source and driving the organic light emitting device, a first transistor transmitting a data signal to the driving transistor, and a first control transistor disposed between the first node and a second node. The first control transistor applies a reverse current to the driving transistor during a first period and holes accumulated on the active layer of the driving transistor are removed during the first period, whereby a current path efficiency is improved.
US10403195B2

Embodiments of the disclosure provide a shift register, a method for driving the same, and a display device, and the shift register includes: a first input module and a second input module, connected respectively with an input signal terminal and a first clock signal terminal; a first control module and a second control module connected with a second clock signal terminal; a third control module connected with a first reference signal terminal; and an output module and a plurality of capacitors, connected respectively with the first reference signal terminal, the second reference signal terminal, and the output signal terminal.
US10403184B2

A freestanding exhibit display for supporting a banner includes a base, an upright support structure, and a transverse support arm. The upright support structure extends from the base. The transverse support arm is mounted on the upright support structure and includes a cradle defining a cradle space. The cradle is configured to retain a furled portion of the banner in the cradle space with only gravity.
US10403182B2

A solar-powered advertising kiosk can include a frame configured to divide the solar-powered advertising kiosk into one or more sections. The solar-powered advertising kiosk can also include a roof configured to convert sunlight to electricity to power one or more advertising displays, wherein the roof includes a first portion of the frame, and wherein the roof includes one or more solar tents each including one or more solar modules. The solar-powered advertising kiosk can further include a body configured to display one or more images on the one or more advertising displays, wherein the body includes a second portion of the frame.
US10403174B2

A processor device has an executable implementation of a cryptographic algorithm implemented thereon that is white-box-masked by a function f. The implementation comprises an implemented computation step S by which input values x are mapped to output values s=S[x], and which is masked to a white-box-masked computation step T′ by means of an invertible function f. As a mapping f there is provided a combination (f=(c1, c2, . . . )*A) of an affine mapping A having an entry width BA and a number of one or several invertible mappings c1, c2, . . . having an entry width Bc1, Bc2, . . . respectively, wherein BA=Bc1+Bc2+ . . . . Output values w are generated altogether by the mapping f. The affine mapping A is constructed by a construction method coordinated with the invertible mappings c1, c2, and etc.
US10403173B2

NADO Cryptography Using One-way Functions is a symmetric cryptography for encrypting and decrypting information. The NADO process introduces some novel concepts and methods to cryptography: (1) The notion of a key generator is presented that eliminates the dependence of the cryptographic security on a single, static cryptography key. (2) A key generator updating method built with one-way functions exhibiting the avalanche effect that generates an unpredictable sequence of keys as the encryption or decryption algorithm executes; (3) An sequence of unpredictable permutations that diffuse the informations across the whole block. (4) An sequence of unpredictable permutations that act as substitution boxes. (4) The use of key generator updating and one-way functions that exploit the avalanche effect to update the permutations in (3) and (4). NADO using one-way functions can be implemented efficiently in hardware or in software.
US10403169B1

An apparatus for negotiating a work role relationship between two participants, comprising a Dialog and Agreement Board with multiple in-dialog areas where participants place one or more cards representing elements or parts of the work role relationship or personal characteristics related to the work role, and with a commitment area upon which cards can be taken from the in-dialog areas and placed to represent agreed-upon commitments by the participants. An agreement between the participants may be documented manually or automatically, in whole or in part. Components marked with bar codes can be read for entry into a computer program for documenting agreements.
US10403168B1

Systems and methods improve call center performance. A system can include a motor training component and a communication training component. A composite training component can determine a composite accuracy based on both motor training and communication training. A method can train motor skills, communication skills, and develop a composite training metric reflecting at least performance with respect to these aspects.
US10403164B2

A self-propelled driving simulator has a machine frame which can be moved by three, preferably four or more, wheel assemblies on an underlying surface. The wheel assemblies each contain at least one wheel which can move on the underlying surface and which is arranged so as to be rotatable about a steering axle. The machine frame is coupled to a cockpit which contains a seat for a person as well as operator control elements for controlling the driving simulator. The cockpit has a degree of freedom of rotational movement with respect to the machine frame, with the result that the cockpit can be rotated with respect to the machine frame about a main rotational axis, and/or wherein the main rotational axis is preferably a normal vector of the plane spanned by the wheel contact faces of the wheels on the underlying surface.
US10403161B1

A process is described that includes the generation and transmission of collision avoidance data and/or collision avoidance instructions based on data from 3-D radar scans of an airspace. The transmitted data and/or instructions could facilitate collision avoidance by aerial vehicles operating in the airspace. The transmitted data could be limited to protect the security, privacy, and/or safety of other aerial vehicles, airborne objects, and/or individuals within the airspace. The transmitted data could be limited such that only information pertaining to a region of the airspace proximate to a particular aerial vehicle was transmitted. The transmitted data could be limited such that it included instructions that could be executed by a particular aerial vehicle to avoid collisions and such that the transmitted data did not include location or other data associated with other aerial vehicles or airborne objects in the airspace.
US10403160B2

Devices, methods and systems for minimizing the probability of a collision between an aircraft and a floating platform are described. The device may include a processor in communication with a memory. The processor is configured to obtain a flight-path vector of an aircraft; determine a probability related to a plurality of flight-paths of a floating platform over a period of time based on operating parameters for the floating platform and weather data; and determine, based on the flight-path vector and the probability related to the plurality of flight-paths of the floating platform, a time and/or a location for launch or recovery of the floating platform that minimizes a probability of a collision between the aircraft and the floating platform while the floating platform is in flight.
US10403144B1

Tracking movements of mobile devices may provide insight into parking space availability for transports deemed to be associated with those mobile devices. One example method of operation may include tracking movements of mobile devices within a predefined geographical area, identifying a first movement of a first mobile device as being limited to a predetermined threshold distance, identifying a second movement of the first mobile device as having a movement speed that is greater than a movement speed of the first movement, and designating the mobile device as being inside a transport leaving a parking spot.
US10403131B2

A method and apparatus may include determining that a triggering has occurred. The triggering corresponds to a triggering of a formation of a multiple-input and multiple-output arrangement. The multiple-input and multiple-output arrangement comprises a grouping of user antennas and an antenna of the apparatus, and the apparatus is located at an existing infrastructure. The method may also include receiving data traffic information. The data traffic information comprises information that indicates an amount of data traffic that is requested by users of the user antennas. The method may also include forming the multiple-input and multiple-output arrangement based on the received data traffic information.
US10403130B2

Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads, as well as in some situations data from one or more other sources (such as physical sensors near to or embedded in the roads). The assessment of road traffic conditions based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics from the data samples. In some situations, the filtering of the data samples includes identifying data samples that are inaccurate or otherwise unrepresentative of actual traffic condition characteristics, such as data samples that are not of interest based at least in part on roads with which the data samples are associated and/or that otherwise reflect vehicle locations or activities that are not of interest.
US10403127B2

Hazardous or dangerous conditions may be monitored. A mode may be set to a state indicative of the condition being present. It may then be determined that the hazardous or dangerous condition has eased. An indication of the hazardous or dangerous condition easing may be output in response to the determination. Such an indication may be output as synthesized speech.
US10403123B2

The present disclosure provides details of a system and method for a communication device for guards in a controlled environment. The communication device is established based on a wireless infrastructure in the controlled environment, receiving wireless positioning signals to calculate and determine the real-time location of personnel carrying the device. The indoor wireless positioning can be combined with other available positioning methods to provide highly accurate positioning information of the personnel. The communication device detects and records activities of the personnel during a period of time, and is controlled by the control center. The status of personnel is monitored by control center. Meanwhile, the communication device has AR functions that allow physical objects and augmented reality element to be displayed to the personnel at the same time. The personnel can thus have improved awareness of the surrounding environment and can respond to various potential dangers more effectively.
US10403115B2

A method for geo-location services is described. In one embodiment, the method includes tracking incidents that occur within a predetermined geographic area in relation to a subscription service, upon receiving a request for a list of incidents in relation to the predetermined geographic area, generating a notification comprising the requested list of incidents, and sending the notification to one or more subscribers within the predetermined geographic area.
US10403111B2

Embodiments relate generally to systems and methods for detecting obscuration of a window of a flame detector. A flame detector may comprise a housing; a window attached to the housing, wherein the window allows radiation to pass through to the interior of the housing; a transmitter configured to emit electromagnetic radiation; a receiver configured to receive electromagnetic radiation emitted by the transmitter; and a plurality of angled surfaces configured to direct the electromagnetic radiation from the transmitter through at least a portion of the window and toward the receiver.
US10403109B2

Disclosed is a system for detecting information of assets stored in communication tags and communicating assets information over a communication network. The system includes a bi-directional communication reader and a server. The bi-directional communication reader has at least one antenna with associated signal strength and antenna number. The bi-directional communication reader processes the received assets information from the communication tags. The server includes a database for storing asset information and further the server communicates with the bi-directional communication reader. The server stores asset information using a software application. The software application includes a front end application module for configuration, an event module, a back end application module and a communication module. The front end application module configured to receive at least one operational mode from a user. The operational mode relates to setting of operation of the bi-directional communication reader. The event module reads the asset information from the database and alerts the user if a certain event occurs. The event module sets a specific rule that triggers an event. Further the back end application module configures the bi-directional communication reader as per the selected operational mode to process the required information from the communication tags read by the bi-directional communication reader. The communication module receives processed assets information from the communication tags via the bi-directional communication reader from the specific antenna. Further, the communication module communicates the processed assets information over the communication network via a proprietary protocol.
US10403107B2

A system, method, and apparatus are discussed for a passive optical camera-based system to detect a presence of one or more vehicles with one or more cameras. A detection algorithm is applied to recognize of the presence of the one or more vehicles using one or more imaging processors and the one or more cameras to detect fluctuations in light intensity from scattered light and/or reflections off of that vehicle. Those scattered light and/or reflections are captured in images contained in a set of frames from the one or more cameras.
US10403102B2

Methods and systems are described for determining operation of an openable barrier into a building. A method for determining a state of a barrier includes identifying, based at least in part on a barrier sensor, a first position of the barrier. In one embodiment, the barrier sensor may be positioned at a first side of the barrier, and a magnet may be positioned adjacent to the barrier sensor at the first side of the barrier. The magnet may be positioned at an angle with respect to the barrier sensor. The method may further include determining, based at least in part on the barrier sensor and the magnet, when the barrier changes position from the first position to a second position; and wirelessly transmitting data concerning the change in position of the barrier.
US10403098B2

A slot machine device providing a unique operation, payout scheme, and structure. This slot machine provides optional, unique game play features. These features may include a Notice feature which informs a player if the next cycle will be a win or a loss; a Flush feature allowing a player to discard a losing cycle; a Do-Over feature, allowing a player to replay a cycle if they do not like the results of the prior cycle; a skill-based feature that requires the player to display an element of skill; and a social feature that requires the player to perform a social task. These features may be turned on and off, and the slot machine may be configured to automatically adjust a payout option depending on what features are activated.
US10403085B2

Examples disclosed herein relate to a gaming device including a memory, a processor, a display, and a call tower including a first plate, a second plate, a third plate, and a call tower display screen and/or a plurality of external lights located at an outer area of a front surface of the gaming device, forming a u-shape with a left side, a right side, and a bottom each comprising a light column. The gaming device includes a processor which presents a game via the display.
US10403079B2

One or more techniques and/or systems are provided for evaluating dispenser functionality of a dispenser for dispensing a material. In an example, a non-loaded electrical characteristic and/or a loaded electrical characteristic of the dispenser may be measured and evaluated to determine whether to perform a dispense event. In another example, current measurements, such as peak current, may be measured during a dispense event. The current measurements may be evaluated to determine whether a problem exists, such as a mechanical stall, a gear train problem, an actuator problem, a pump problem (e.g., a clogged pump), a mechanical impedance, and/or other issue. Such information may be collected, stored as historical data, and/or used to determine whether to perform subsequent dispense events.
US10403078B2

Disclosed herein is an apparatus for processing a medium, including: a accepting unit in which the medium is loaded; a dispending unit from which the medium is withdrawn; a medium discriminator configured to discriminate a denomination of the medium loaded into the accepting unit; a plurality of medium storage boxes configured to each discriminate and store the medium by denomination of the medium discriminated by the medium discriminator; and a controller configured to store the medium loaded through the accepting unit by the same denomination in the medium storage box and withdraw the loaded medium from the medium storage box according to a predetermined withdrawal criterion.
US10403070B2

Digital certificates are signed by a server's private key and installed at lock controllers that restrict access to physical resources. The server's public key is distributed to lock controllers and to mobile electronic devices operated by users who are given access to the physical resources. Lock-access data is digitally signed by the server's private key and provided to mobile electronic devices to facilitate access. The lock controller validates lock-access data and grants access conditionally based on time, version, and/or identity data provided within lock-access data. The use of certificates reduces the need to rely on a security scheme specific to the network. Lock controllers can also broadcast status notifications, so that updates and log data can be securely communicated with the server using mobile electronic devices as a proxy. The system is highly scalable, as each lock controller need not track the full scope of access permissions.
US10403066B2

A system and method for a portable device analyzing user information broadcast from target user devices is disclosed. The portable device includes a commodity user device (e.g. iPhone, smart phone) and a directional antenna system fastened to the commodity user device for receiving the user information broadcast from the target user devices. An application program executing on the portable device can then be used to disable a user account on an access control system, for example.
US10403060B2

A control system including a detection device and a control host is provided. The detection device is configured to detect a biometric characteristic to accordingly identify a user ID, and output an ID signal according to the user ID. The control host is configured to receive the ID signal to accordingly perform an individualized control associated with the user ID.
US10403058B2

A system and method to preserve the integrity of data being extracted from an electronic data recorder (“EDR”) of an electronic control module (“ECM”) makes use of a forensic link adapter (20) and, optionally, a sensor simulator (10) (when the ECM is out of the vehicle). The forensic link adapter (20) has one or more first microprocessors (23) and associated first software which prevent any message being sent by an external network from corrupting the previously recorded data measurements. The data measurements are then extracted, verified, and stored in a separate file. The sensor simulator (10) has one or more second microprocessors (23), associated second software, and a bank of resistors (21) that mimic sensors normally in communication with the ECM. The simulator “tricks” the ECM into thinking it is still in the vehicle by using the replicating vehicle system values the ECM normally sees when in the vehicle.
US10403055B2

Provided is an incoming and outgoing vehicle management method and an incoming and outgoing vehicle management system that are based on a vehicle number and a vehicle type identified therefrom, the method and system including: receiving incoming vehicle information including a vehicle number recognized from a vehicle image, and incoming time or an incoming gate identifier; determining a vehicle type by using the vehicle number of the incoming vehicle information; and generating an incoming vehicle message for directing the incoming vehicle to an incoming gate and transmitting the generated incoming vehicle message to a portable terminal designated to a user of the vehicle, wherein the incoming vehicle message includes incoming identification information that indicates the recognized vehicle number, and the incoming time or the incoming gate identifier.
US10403046B2

In an AR environment in which the pointing direction of the video camera is slaved to field technician motion to capture a video signal within a camera FOV of an object at arm's length from the technician and remotely-generated hand gestures for manipulation of the object are overlaid on the video signal to instruct the technician in manipulation of the object, a customer-defined key code and FOV limitations are used to exclude portions of a scene for data capture and transmission compliance. If the video camera pointing direction does not satisfy an alignment condition to a marker in the scene, the camera is controlled to exclude at least a portion of the camera FOV that lies outside a user-defined allowable FOV from capture within the video signal. The customer-defined key code includes at least technician identification, marker pairing and specified tolerance fields that define the allowable FOV. The key code allows the technician to control the FOV exclusions to protect the technician from capturing and/or transmitting data in the scene that would violate customer or country policies or legal requirements.
US10403042B2

Computerized systems and methods are provided for generating and providing augmented video content to viewers. In one implementation, a media player executed by a user device obtains playlist data identifying underlying video content and elements of overlay content. The media player may generate augmented video content by merging an element of the overlay content into the underlying video content at a temporal position within the underlying video content that is relevant to the overlay content element, and further, may present the augmented video content to a viewer. The media player may detect a triggering event during the presentation of the augmented video content, and may modify the augmented video content in response to the triggering event.
US10403036B2

Rendering glasses with shadows is disclosed, including: generating a face image corresponding to an image of a set of images based at least in part on a face model, wherein the set of images is associated with a user's face; generating a face with shadows image corresponding to the image based at least in part on shadows casted by a glasses model on the face model; generating a shadow transform based at least in part on a difference determined based at least in part on the face image and the face with shadows image; generating a shadowed image based at least in part on applying the shadow transform to the image; and presenting the shadowed image including by overlaying a glasses image associated with the glasses model over the shadowed image.
US10403032B2

An example system includes a first computing device comprising a first graphics processing unit (GPU) implemented in circuitry, and a second computing device comprising a second GPU implemented in circuitry. The first GPU is configured to perform a first portion of an image rendering process to generate intermediate graphics data and send the intermediate graphics data to the second computing device. The second GPU is configured to perform a second portion of the image rendering process to render an image from the intermediate graphics data. The first computing device may be a video game console, and the second computing device may be a virtual reality (VR) headset that warps the rendered image to produce a stereoscopic image pair.
US10403029B2

Systems and methods for multistage post-rendering image transformation are provided. The system may include a transform generation module arranged to dynamically generate an image transformation. The system may include a transform data generation module arranged to generate first and second transformation data by applying the generated image transformation for first and second sampling positions and storing the transformation data in a memory. The system may include a first image transformation stage that selects the first and second transformation data for a destination image position and calculates an estimated source image position based on the selected first and second transformation data. The system may include a second image transformation stage that selects the first and second transformation data for the destination image position, retrieves the first and second transformation data from the memory, and recalculates an estimated source image position based on the selected first and second transformation data.
US10403028B2

A system and method for geometric warping correction in projection mapping is provided. A lower resolution mesh is applied to A mesh model, at least in a region of the mesh model misaligned with a corresponding region of a real-world object. One or more points of the lower resolution mesh are moved. In response, one or more corresponding points of the mesh model are moved to increase alignment between the region of the mesh model and the corresponding region of the real-world object. An updated mesh model is stored in a memory. And one or more projectors are controlled to projection map images corresponding to the updated mesh model onto the real-world object.
US10402981B2

Systems and methods are provided for segmenting tissue within a computed tomography (CT) scan of a region of interest into one of a plurality of tissue classes. A plurality of atlases are registered to the CT scan to produce a plurality of registered atlases. A context model representing respective likelihoods that each voxel of the CT scan is a member of each of the plurality of tissue classes is determined from the CT scan and a set of associated training data. A proper subset of the plurality of registered atlases is selected according to the context model and the registered atlases. The selected proper subset of registered atlases are fused to produce a combined segmentation.
US10402980B2

A method and system for using one or more sensors configured to capture two-dimensional and/or three dimensional image data of one or more objects. In particular, the method and system combine one or more digital sensors with visible and near infrared illumination to capture visible and non-visible range spectral image data for one or more objects. The captured spectral image data can be used to separate and identify the one or more objects. Additionally, the three-dimensional image data can be used to determine a volume for each of the one or more objects. The identification and volumetric data for one or more objects can be used individually or in combination to obtain characteristics about the objects. The method and system provide the user with the ability to capture images of one or more objects and obtain related characteristics or information about each of the one or more objects.
US10402973B2

An image processing apparatus includes: a luminal shooting situation analysis unit configured to analyze a luminal shooting situation determined based on a relationship between a subject and an imaging unit that shoots the subject in a luminal image obtained by shooting an inside of a lumen; and a specific region detection unit configured to detect a specific region in accordance with the luminal shooting situation.
US10402968B2

An image processing apparatus comprising an image producing unit 101 for producing an axial image of a body part to be imaged including an aorta and an esophagus; a map generating unit 102 for generating a map M2 for locating a region in which a probability that the aorta lies is high in the axial image; a detecting unit 103 for detecting a temporary position of the aorta based on the map M2; and a deciding unit 104 for making a decision on whether or not the temporary position of the aorta falls within the region of the aorta in the axial image based on a distribution model DM containing information representing a reference position (xe, ye) of the esophagus and information representing a range over which the aorta distributes relative to the reference position (xe, ye) of the esophagus, and on the map M2.
US10402961B2

An inspection apparatus, system, and method, each of which: acquires a master image serving as an inspection reference, the master image being generated based on image data to be printed as a printed image; acquires a read image read from the printed image; extracts a neighboring region neighboring an edge region of the master image; determines whether a change amount of density of pixels in the neighboring region falls within a predetermined range; based on a determination that the change amount of density of pixels in the neighboring region falls within the predetermined range, calculates a statistic of density of pixels in a corresponding region of the read image, which corresponds to the neighboring region of the master image; and determines existence or non-existence of a defect in the corresponding region of the read image based on the statistic of the corresponding region.
US10402957B2

A method of analyzing a defect comprising analyzing a digital image of the defect on a portable device using software contained in the device or an associated processor by virtue of a downloaded app. The method can be used for glass, for example, windscreen defects, in automobiles, for bodywork defects and for alloy wheel scuffs. The app can send details to a repair facility to get a quote for repair.
US10402956B2

Dimensioning systems may automate or assist with determining the physical dimensions of an object without the need for a manual measurement. A dimensioning system may project a light pattern onto the object, capture an image of the reflected pattern, and observe changes in the imaged pattern to obtain a range image, which contains 3D information corresponding to the object. Then, using the range image, the dimensioning system may calculate the dimensions of the object. In some cases, a single range image does not contain 3D data sufficient for dimensioning the object. To mitigate or solve this problem, the present invention embraces capturing a plurality of range images from different perspectives, and then combining the range images (e.g., using image-stitching) to form a composite range-image, which can be used to determine the object's dimensions.
US10402952B2

Systems, methods, and computer readable media to improve the operation of electronic display systems. Techniques for inverse tone mapping operations for selected standard dynamic range (SDR) images are described. The converted images may be presented on high dynamic range (HDR) displays so as to increase a user's viewing experience (through an expanded dynamic range) while preserving the artistic content of the displayed information. Techniques disclosed herein selectively transform SDR images to HDR images by determining if the SDR images were created from HDR images (e.g., through the fusion of multiple SDR images) and if their quality is such as to permit the conversion without introducing unwanted visual artifacts. The proposed techniques apply a sigmoidal inverse tone mapping function configured to provide a perceptual-based tone mapping. Values for the function's tuning parameters may be set based on what may be determined about the original HDR-to-SDR mapping operation.
US10402950B1

Methods for quantifying pupil swim are disclosed in order to compensate for the same. A target image, in one embodiment, is displayed on a display of a head mounted display (HMD). Images of the target image are captured from a plurality of positions relative to an optical axis of an optics block of the HMD at an exit pupil of the HMD. The target image includes features and differences between observed locations of the features and their expected locations absent the optics block are determined. From these differences, a wavefront of the optics block is reconstructed and distortion corrections for the optics block are generated using the wavefront. The distortion corrections, when applied to a virtual scene, add pre-distortion that is canceled by the optical imperfections of the optics block as light of the virtual scene with the pre-distortion passes through the optics block.
US10402927B2

Structures and protocols are presented for signaling a decision (processing or transmitting a medical record or other resource, e.g.) conditionally, at least partly based on one or more performance indicia (excess hospital readmissions, e.g.) or therapeutic determinants (prior success, e.g.) or privacy considerations (patient consent, e.g.).
US10402925B2

A method managing wellness of employees is presented. A computer system receives a group of health factors for activities and group of preferences for activities of the employees. The computer system identifies a recommendation for an activity for a portion of the employees based on the group health factors, the group of preferences, and information for locations where recommended activities are to occur. The computer system then sends the recommendation for the activity to the portion of the employees.
US10402919B2

A method for estimating growth stage threshold values for a specific hybrid seed at a specific geo-location using historical growth stage data and observed growth stage data comprises using a server computer system, storing a historical crop growth model of one or more hybrid seeds measured from one or more fields over a particular period of time. The historical crop growth model includes growth stage threshold estimates for one or more hybrid seeds. The server computer system receives, via a network, one or more digital measurement values specifying one or more observed growth stage values for a particular hybrid seed at a particular field over a particular period of time. The server computer system transforms the growth stage thresholds into growth stage duration values for the historical crop data and the observed crop data. The server computer system then generates a posterior distribution of growth stage duration values for the particular hybrid seed using a multivariate distribution of growth stage duration value data, which is comprised of historical and observed growth stage data, a covariate matrix describing correlations between different growth stages, and an error matrix used to represent variations in the multivariate distribution. The server computer system estimates mean duration values and variance values for the different growth stages for the particular hybrid seed and then calculates estimated crop growth threshold values for the particular hybrid seed. The server computer system then sends the estimated crop growth threshold values to one or more external computer systems for the purposes of updating and programming crop management instructions.
US10402917B2

Systems and methods are provided for generating social networking recommendations. A color preference of a first user may be determined from a color palette of a first image associated with the user and/or a color palette of an item associated with the user. Other users may be identified that have a similar color preference as the first user based at least in part on the determined color preference of the first user. Interactions between the first user and one or more other users having similar color preferences with respect to the first user may be facilitated. A social networking recommendation may be generated with respect to the one or more other users having similar color preferences with respect to the first user.
Patent Agency Ranking