US10404252B2
A bidirectional switch circuit is constituted of an FET group encompassing FETs of L stages (L≥3) connected in series to each other and includes an FET group configured to control electric conduction for a signal in both directions between one end and the other end of the above-mentioned FET group and a plurality of capacitance elements. The FET group includes a first FET closest to the one end and a second FET closest to the other end. The plurality of capacitance elements encompass a first capacitance element group including capacitance elements of M stages (1≤M
US10404248B2
A system may include a digital pulse width modulator subsystem, a first path coupled to an output of the digital pulse width modulator subsystem and configured to drive an open-loop driver stage, a second path coupled to the output of the digital pulse width modulator subsystem and configured to drive a closed-loop analog pulse width modulator, a controller to select between the first path and the second path for processing a signal based on one or more characteristics of the signal, and a calibration subsystem configured to calibrate at least one of a first gain of the first path and a second gain of the second path in order that the first gain and the second gain are at least approximately equal at the time of switching selection between the first path and the second path or vice versa, in order to minimize artifacts due to the switching.
US10404245B2
Systems, methods, and apparatus for use in biasing and driving high voltage semiconductor devices using only low voltage transistors are described. The apparatus and method are adapted to control multiple high voltage semiconductor devices to enable high voltage power control, such as power amplifiers, power management and conversion and other applications wherein a first voltage is large compared to the maximum voltage handling of the low voltage control transistors. Timing of control signals can be adjusted via internal and/or external components so as to minimize shoot trough currents in the high voltage devices. A DC/DC power conversion implementation from high input voltage to low output voltage using a novel level shifter which uses only low voltage transistors is also provided. Also presented is a level shifter in which floating nodes and high voltage capacitive coupling and control enable the high voltage control with low voltage transistors.
US10404244B2
An example device in accordance with an aspect of the present disclosure includes a first stage and an accumulator. The first stage is based on digital logic and integer arithmetic to scale a reference clock by a configurable ratio of integers according to a line drawing technique to obtain an output clock. The accumulator is to store an accumulated error of a variable used in the line drawing technique.
US10404242B1
A two-stage high-power RF limiter circuit for an RF signal receiver incorporates a heavy limiting stage to limit high energy pulses of a received RF signal to a desired power threshold over a sustained time period, while a light limiting stage reacts quickly to high energy pulses to reduce spike leakage associated with the slower reaction time of the heavy limiting stage. Both heavy and light limiting stages incorporate PIN diodes biased to a voltage just below the desired power threshold (the light limiter biased to a slightly higher voltage than the heavy limiter) so the PIN diodes do not activate until power levels are high enough to warrant limiting. The holdoff voltage across the PIN diodes is maintained by Zener diodes biased to a voltage corresponding to the power threshold, allowing the PIN diodes to self-bias once the power threshold is reached.
US10404241B2
An electronic device may include a ramp signal generator suitable for generating a ramp signal having a slope corresponding to an analog gain, and a slope correction circuit suitable for correcting the slope based on a correction code signal.
US10404240B2
Provided is a semiconductor device including low power retention flip-flop. The semiconductor device includes a first line to which a global power supply voltage is applied, a second line to which a local power supply voltage is applied, the second line being separated from the first line, a first operating circuit connected to the second line to use the local power supply voltage, a first power gating circuit determining whether the local power supply voltage is applied to the first operating circuit and a first retention flip-flop connected to the first line and the second line, wherein the first retention flip-flop comprises a first circuit including a master latch, a second circuit including a slave latch, and a first tri-state inverter connected between the master latch and the slave latch.
US10404232B2
A piezoelectric actuation platform (1) including piezoelectric substrate (3) formed from a single crystal piezoelectric material, and at least one simple electrode (5) in contact with the piezoelectric substrate for applying an electrical signal to the substrate such that a lamb or surface acoustic wave can be generated within said substrate.
US10404226B2
A power amplifier module includes a substrate, a power amplifier having a first surface on which an electrode is defined and a second surface opposite the first surface, the first surface faces a principal surface of the substrate, a surface acoustic wave duplexer having a first surface on which an electrode is defined and a second surface opposite the first surface, the first surface faces the principal surface of the substrate, a heat dissipation unit defined on another principal surface of the substrate, a heat dissipation path that connects a connecting portion between the power amplifier and the principal surface to the heat dissipation unit, an insulating resin that covers the power amplifier and the surface acoustic wave duplexer, a conductive shield that covers the insulating resin, and a first conductive unit defined on the second surface of the surface acoustic wave duplexer and electrically connected to the conductive shield.
US10404222B2
An amplifier circuit includes an input amplifier; an output unity gain buffer; and a second unity gain buffer. The output unity gain buffer and the second unity gain buffer are each configured to receive a signal from an input amplifier. The output unity gain buffer is configured to provide an output voltage to an amplifier output, and the second unity gain buffer is configured to provide a bootstrap signal to the input amplifier. A unity gain amplifier includes an input unity gain amplifier; and an output unity gain buffer and a second unity gain buffer. The buffers are configured to receive a signal from an input amplifier. The output unity gain buffer is configured to provide an output voltage to an amplifier output, and the second unity gain buffer is configured to provide a bootstrap signal to the input unity gain amplifier.
US10404216B2
An apparatus comprises an amplifier having a predefined linear range and a shunt load. The shunt load may be connected to an output, an input, or between gain stages of the amplifier. An impedance of the shunt load dynamically varies in response to a level of a signal presented at a node formed by interconnection of the shunt load and the amplifier, extending linearity of the amplifier beyond the predefined range.
US10404211B1
A spot noise generator includes a mask component, a polyphase synthesizer, a first signal channel and second signal channel. The mask component has a narrowband noise input, a desired frequency channels word input, a first channel output and a second channel output. The narrowband noise input signal is a digital narrowband noise signal sampled approximately at the Nyquist rate. The desired frequency channels word selects one of the group consisting of the first channel output, the second channel output and a combination of the first channel output and the second channel output. The polyphase synthesizer synthesizes the first channel output signal, synthesizes the second channel output signal and outputs a desired noise signal based on the synthesized first channel output signal and the synthesized second channel output signal.
US10404209B2
A temperature compensated crystal oscillator (TCXO) includes a crystal oscillator and a temperature sensor to provide a sensed temperature. A delay circuit has a selectable delay to delay the frequency compensation based on the sensed temperature. The delay compensates for a difference between when the temperature sensor reflects a change in temperature and when a frequency of a signal supplied by the crystal oscillator is affected by the change in temperature. The delay may be static or dynamic with respect to the current temperature sensed by the temperature sensor.
US10404208B2
Embodiments of the present disclosure are directed to a universal junction box for solar modules that comprises multiple sub-assemblies with a replaceable diode black and an open-IP plug sub-assembly. The universal junction box includes a first sub-assembly (junction box platform), a second sub-assembly (a replaceable diode block), and a third sub-assembly (an open sub-assembly or plug sub-assembly. If the electronics in the diode block becomes defective, a new replaceable diode block can be used to substitute into the defective diode black without having to replace the entire junction box. The open-IP plug sub-assembly provides the flexibility to couple a variety of cable sub-assembly or IMEs to the universal junction box as long as a particular selected cable sub-assembly fits with the dimension of the open-IP plug sub-assembly.
US10404198B2
A method, an arrangement and a computer program for controlling an energy flow to a grid, from an electrical alternating current machine with unbalanced impedance, in particular an electrical alternating current generator of a wind turbine, the method comprising: obtaining a first power signal representing a first power command.
US10404188B2
A power conversion device that includes an inverter circuit in which arms are connected in parallel to each other between a DC positive terminal and a DC negative terminal in accordance with a number of phases of alternating currents of the plurality of phases, the arms for respective phases each including two switch sections that are connected in series and to be brought into conduction in an on state and out of conduction in an off state, and a connection point between the two switch sections of each of the arms is set as an AC input or output point of each phase; and a controller that outputs switching control signals for performing switching control on the switch sections.
US10404187B2
A system comprises a plurality of inverter units having inputs connected to a power source and a coupled inductor comprising a plurality of windings and coupled between the plurality of inverter units and an output filter, wherein each winding of the plurality of windings has a first terminal connected to an output of a corresponding inverter unit and second terminals of the plurality of windings are connected together.
US10404169B2
The invention proposes a system and method for extending the maximum duty cycle of a step-down switching converter to nearly 100% while maintaining a constant switching frequency. The system includes a voltage mode or current mode step-down converter driven by a leading edge blanking (LEB) signal, which operates at the desired switching frequency. More particularly, the LEB signal is connected to a slope generator and/or a current sense network. In each switching cycle, the LEB signal forces the slope signal and/or current sense signal to reset, thereby achieving a constant switching frequency. Corresponding methods for how to extend the maximum duty cycle of a step-down switching converter while maintaining a constant frequency are also disclosed.
US10404168B2
A power converter comprises a first switch and a second switch connected in series between an input power source and ground, an inductor connected between a common node of the first switch and the second switch, and an output capacitor and a comparator having a first input connected to a reference, a second input configured to receive a sum of a first feedback signal and a second feedback signal and an output configured to generate a turn-on signal of the first switch, wherein the first feedback signal is proportional to an voltage across the output capacitor and the second feedback signal is generated by applying at least one low-pass filter to a switching ripple voltage.
US10404164B1
A system may include first and second node, switch, driver, capacitor, and second driver. The first node may be at first voltage. The second node may be at second voltage. The switch may be coupled to the second node and output of the second driver and configured to receive input at third voltage and voltage at fourth voltage and to provide the input to the second node when the fourth voltage is greater than the third voltage. The driver may be coupled to the first and second nodes and configured to receive driver input and to generate intermediate voltage based on the driver input. The capacitor may be coupled to the driver to shift the intermediate voltage. The second driver may be coupled to the second node and the driver and configured to receive second driver input and the shifted intermediate voltage to generate the voltage at the fourth voltage.
US10404155B2
A method for controlling an electrical converter system, including: determining a reference output (ωm*) and an estimated output (ωm) of the electrical converter system based on measurements in the electrical converter system; determining an optimized pulse pattern (ui,n) by selecting from a table of precalculated optimized pulse patterns, which is chosen based on the reference output (ωm*) and the estimated output (ωm), a pulse pattern including a sequence of switching instants (t*) applied to the electrical converter system; determining a resonant oscillation (ψs,h) in the electrical converter system, the resonant oscillation(ψs,h) is composed of an electrical machine and a LC filter of the electrical converter system; determining a sequence of future states of the electrical converter system by solving a mathematical model of the electrical converter system subject to optimizing a cost function and subject to a constraint that a modified pulse pattern (ui) is applied to the electrical converter system, which modified pulse pattern (ui) comprises time shifted switching instants with respect to the optimized pulse pattern (ui,n), wherein the cost function comprises a term compensating the resonant oscillation (ψs,h) with a pulse response oscillation caused by the time shifted switching instants of the modified pulse pattern (ui) and wherein the mathematical model is constrained such that the switching instants of the modified pulse pattern (ui) have the same order as the switching instants of the optimized pulse pattern (ui,n); applying the modified pulse pattern (ui) to the electrical converter system.
US10404153B2
A method for controlling a voltage regulator is receiving a voltage identification code which has a pulse width modulation signal, providing a duty signal via measuring a duty cycle of the pulse width modulation signal, calculating a target voltage based on the duty signal, providing a reference signal via filtering the duty signal by a first filter if the voltage identification code varies, and providing the reference signal via filtering the duty signal by a second filter if the reference signal is in a range determined by the target voltage.
US10404145B2
A wire winding gun head for winding conductive wiring to form electrical coils. The wire winding gun head having a body, a movable element and a needle. The body has a longitudinal axis. The movable element is coupled to the body, and the movable element has a profile therein. The needle is carried by the body, and the needle is extendable/retractable dependent upon the profile and a position of the movable element. The needle is configured to receive wire and to supply the wire out of an end of the needle.
US10404136B2
A handheld grinder includes an elongated housing, an electric motor, an output shaft, a wall, a planar circuit board, and a motor drive circuit. The elongated housing defines a cavity therein and includes a motor case disposed at a front end and a handle portion to a rear end. The electric motor has a drive shaft that is mounted within the motor case. The output shaft is drivably coupled to the drive shaft of the electric motor. The wall separates the cavity between the motor case and the handle portion of the housing. The planar circuit board disposed in the handle portion of the housing. The motor drive circuit is accommodated entirely within the handle portion of the housing on the planar circuit board.
US10404135B2
An electric motor is disclosed, comprising a stator and a rotor mounted relative to the stator to form a gap between a surface of the stator and a surface of the rotor, the gap having a width. One of the stator and the rotor is mounted for movement relative to the other of the stator and the rotor about a central axis, and one of the stator and the rotor is mounted for movement relative to the other of the stator and the rotor along the central axis in response to thermal expansion of at least one of the stator and the rotor to maintain the width of the gap.
US10404129B2
An electric motor for a blower and the like has a commutator and a brush assembly for making electrical contact with the commutator. The brush assembly includes a brush holder and a brush slidably mounted to the brush holder. The brush holder includes a brush holder plate and a side portion extending from the brush holder plate. The brush is arc-shaped and includes a first surface contacting the brush holder plate and a second surface contacting the side portion of the brush holder. The side portion of the brush holder has a number of ribs contacting the second surface of the brush.
US10404127B2
Provided are a motor and method for producing the motor that automatically insert interphase insulation paper. Interphase insulation paper (7) has a parting strip (8) that partitions the boundary between windings (5) that are adjacent in the circumferential direction when inserted into coil ends (6). The parting strip (8) is sandwiched between the adjacent windings (5, 5).
US10404123B2
A stator is applied in an electrical motor. The stator includes a hollow iron core and a plurality of coil windings. The hollow iron core has two opposite surfaces and a plurality of accommodating spaces communicated with the surfaces. The accommodating spaces are arranged in an annular pattern. Each of the coil windings includes a plurality of wires winded via the accommodating spaces. Portions of the wires of the coil windings located in the accommodating spaces are radially concentrically arranged to form a plurality of winding layers. In at least one of the accommodating spaces, a wire cross-sectional area of the wire of the innermost one of the winding layers is smaller than a wire cross-sectional area of the wire of the outermost one of the winding layers.
US10404117B2
Methods, systems and apparatuses for mounting a motor rotor to a shaft of a compressor are disclosed. The shaft can include a rib region that is configured to form a press fit or a transition fit with the rotor bore. An end of the shaft can also include a plurality of crenulations that can be expanded outwardly in a radial direction relative to a centerline of the shaft. After the rotor is mounted onto the shaft, the crenulations can be expanded to eliminate the clearance between the shaft and the rotor to form a press fit with the rotor bore.
US10404105B2
A power storage adapter may include wireless power units for wireless power transmission of multiple portable information handling systems. In particular, when a wireless power unit wirelessly transmits a first wireless power to one of the portable information handling systems, another wireless power unit may wirelessly transmit a second wireless power to another portable information handling system. The transmission of the first wireless power may be simultaneous with the transmission of the second wireless power.
US10404102B2
A power feeding coil unit for wireless power transmission including a base portion with bottom having an opening on an upper end, a magnetic body having a plurality of magnetic plates disposed on a bottom surface of the base portion, a power feeding coil formed by winding a conductive wire on the magnetic body, a cover portion covering the opening of the base portion, and a rib extending from the base portion toward the cover portion between the plurality of magnetic plates and between the wires of the conductive wires, wherein, a distance between the rib and the cover portion is smaller than a distance between the power feeding coil and the cover portion.
US10404101B2
A contactless electric power transmission device includes a power transmission assembly, a first temperature sensor, a second temperature sensor, and an electronic control unit. The first temperature sensor is configured to detect a temperature of an inverter. The second temperature sensor is configured to detect a temperature of a resonance circuit. The electronic control unit is configured to adjust the frequency by controlling the inverter. The electronic control unit is configured to perform first control when the temperature of the inverter is higher than the temperature of the resonance circuit, and perform second control when the temperature of the resonance circuit is higher than the temperature of the inverter. The first control includes control for adjusting the frequency so as to reduce output current of the inverter. The second control includes control for adjusting the frequency so as to reduce current flowing through the resonance circuit.
US10404090B2
A wireless power transmitting method performed in a wireless power transmitting apparatus includes transmitting a long beacon signal via a transmitting coil; determining whether or not a response signal to the long beacon signal has been received at a wireless communicator; determining whether or not a degree of change in a level of impedance of the transmitting coil is within a reference range responsive to the determination that the response signal is not received; and wirelessly transmitting the power responsive to the determination: that the response signal has been received or that the degree of change is within the reference range.
US10404089B2
An electronic device and methods for inductively charging an electronic device using another external electronic device. The electronic device may include an enclosure, a battery positioned within the enclosure, and an inductive coil coupled to the battery. The inductive coil may have two or more operational modes, including a power receiving operational mode for wirelessly receiving power and a power transmitting operational mode for wirelessly transmitting power. The electronic device may also have a controller coupled to the inductive coil for selecting one of the operational modes.
US10404084B2
A self-charging device for mobile robots, which includes a charging cradle and a charging pin, the charging cradle includes a charging contact and a first elastic member connected with the charging contact. The charging pin is used to contact the charging contact for charging. Preferably, the charging cradle also includes a buffering block, a second elastic member and a mounting enclosure. The charging contact is connected with the buffering block through the first elastic member. The buffering block is provided encircling inside the mounting enclosure. One end of the second elastic member is connected with the buffering block, and the other end is connected with the mounting enclosure. The self-charging device for mobile robots is capable of counteracting the deviation angle due to the misalignment when the mobile robot is charging, and buffering the impact force produced when the charging contact docks with the charging pin.
US10404078B2
An energy storage system operable in a charging phase and in a discharging phase is disclosed. The energy storage system includes M energy storage units and N power converters, where M is at least two and N is at least one. The energy storage system also includes a switching fabric that reconfigurably couples the energy storage units to the power converters and a controller that reconfigures the switching fabric.
US10404077B2
Provided is a battery balancing apparatus and method including determining state information of a battery unit based on battery quantity data of the battery unit, determining a balancing parameter of the battery unit based on a range comprising the state information, and controlling a balancing unit based on the balancing parameter.
US10404071B2
A voltage booster allowing for increased utilization of low voltage, high current, unregulated DC power (“LVDC source”), such as, but not limited to, fuel cells, batteries, solar cells, wind turbines, and hydro-turbines. LVDC generation systems employing a variable low voltage DC-DC converter of the present disclosure may be used without a power inverter in applications requiring high voltage DC inputs and can also allow for the employment of common, low cost, reliable, low voltage energy storage chemistries (operating in the 12-48 VDC range) while continuing to employ the use of traditional inverters designed for high voltage power supplies. An embodiment of the DC boost converter includes a plurality of interleaved, isolated, full-bridge DC-DC converters arranged in a Delta-Wye configuration and a multi-leg bridge.
US10404070B2
Photovoltaic apparatus comprising an auxiliary power supply arrangement which is adapted to feed an electric load of the photovoltaic apparatus itself and comprises: first electronic means connected with a DC power source and comprising a first electronic unit adapted to receive a first feeding voltage and provide a first output voltage of DC type; second electronic means connected with an AC power source and comprising a second electronic unit adapted to receive a second feeding voltage and provide a second output voltage of DC type; and third electronic means connected with the first and second electronic means and adapted to reversibly switch among different operation states based on the status of the electric power sources.
US10404065B2
A distributed predictive control based voltage restoration scheme for microgrids, comprising: step 10) adopting a distributed finite time observer to acquire the global reference voltage for restoring the voltage of each local controller; step 20) each local controller adopts a droop control to acquire the local voltage value of each generation, and adds a secondary voltage compensation term into the droop characteristic formula to form the voltage reference value of a distributed generation; step 30) establishing a trended prediction model; step 40) acquiring a predictive control term at a current time as the secondary voltage compensation command, and acting on the local controllers; and step 50) determining, whether the local voltage of each distributed generation of the microgrid reaches the voltage reference value under the secondary voltage compensation command.
US10404062B2
Embodiments are directed to fault-tolerant power-distribution modules (PDM). A PDM is included in a power plant to provide a portion of the power generated by the plant as a direct current (DC) signal for the operation of the plant. A power-distribution system distributes a portion of the power generated by the plant to one or more PDMs, as an alternating current (AC) signal. The PDMs provide electrical power to various plant loads. The plant loads may be related to the safety of the operation of the power plant. At least one of the plant loads is a non-safety related load. A PDM may be a DC power supply. The power plant may include one or more power-generating module (PGM) assemblies. At least one of the PGM assemblies may include a nuclear reactor. Accordingly, the power plant may be a modular nuclear power plant.
US10404061B2
A system, method and apparatus of balancing a direct current load across a multiple direct current power sources includes receiving multiple direct current inputs to the inputs of a multiple input, single output DC to DC converter. The output current of each one of the direct current inputs is compared to a reference current. The direct current inputs are adjusted in corresponding DC to DC converter modules until the output current of each one of the direct current inputs is equal to the reference current. The adjusted output of the DC to DC converter modules is combined to a single output current that can be output to supply the single output current to a load.
US10404058B2
A circuit for detecting loss of phase in three-phase power systems. The circuit includes a current sensor and a microprocessor. The current sensors are coupled to respective phases of a three-phase power source configured to supply power to a load. The microprocessor is coupled to the current sensors to process current measurements and detect loss of phase in the three-phase power source.
US10404057B2
A control circuit controls power supplied via an electrical wire, by turning a FET provided on the electrical wire on/off. A control unit calculates the temperature difference between the ambient temperature of the electrical wire and the electrical wire temperature in time series, based on a previous temperature difference between the ambient temperature of the electrical wire 5 and the electrical wire temperature that was calculated previously, and the value of current flowing through the electrical wire. The control unit is configured to suspend this time-series calculation of the temperature difference, and clocks the elapsed time from suspension to resumption of calculation of the temperature difference. The control unit, in the case where calculation of the temperature difference is resumed, sets an initial temperature difference to be used as the previous temperature difference, based on the clocked elapsed time, in an initial calculation of the temperature difference after resumption.
US10404052B2
Systems, methods, and computer readable media for handling overcurrent and undercurrent conditions in subsea control subsystem components include determining, by a current sensor operatively coupled to a solenoid valve, that an input current to the solenoid is greater or lower than a predetermined threshold value, de-energizing, by a processor operatively coupled to the current sensor, the solenoid for a first period of time, re-energizing the solenoid at least three times after the first period of time, determining, by the current sensor, that during each of the at least three times the input current to the solenoid is greater or lower than the predetermined threshold value, and de-energizing the solenoid and transmitting a control signal to a control unit.
US10404049B2
A rigid joint assembly including a first and second cable core end sections of a first and second electric cables, including cores having a conductor, and an insulation system having a semi-conducting layer, an insulation layer and a semi-conducting layer. The assembly includes a joint connection, and a water tight metal casing. The casing assembly has a first and second cable entry parts for receiving the first and second cable cores having joint assembly includes first and second deformation preventing members that surround cable core end sections and includes a rigid pipe.
US10404047B2
This structure includes a transparent member. The transparent member has a first surface and a second surface arranged to face each other, and allows light entering from the first surface to propagate toward the second surface by reflection. The transparent member has a plurality of slopes inclined with respect to the first surface, in an optical path between the first surface and the second surface.
US10404034B1
A broad area quantum cascade laser subject to having high order transverse optical modes during operation includes a laser cavity at least partially enclosed by walls, and a perturbation in the laser cavity extending from one or more of the walls. The perturbation may have a shape and a size sufficient to suppress high order transverse optical modes during operation of the broad area quantum cascade laser, where a fundamental transverse optical mode is selected over the high order transverse optical modes. As a result, the fundamental transverse mode operation in broad-area quantum cascade lasers may be regained, when it could not otherwise be without such a perturbation.
US10404030B2
In at least one illustrative embodiment, a laser may include a ceramic body defining a chamber containing a laser gas. The chamber may include first and second slab waveguide sections extending along parallel first and second axes and a third slab waveguide section extending along a perpendicular third axis. Respective first ends of the first and second slab waveguide sections may be positioned adjacent opposite ends of the third slab waveguide section. The laser may also include first and second end mirrors positioned at respective second ends of the first and second slab waveguide sections, a first fold mirror positioned near an intersection of the first and third axes at a 45-degree angle to both the first and third axes, and a second fold mirror positioned near an intersection of the second and third axes at a 45-degree angle to both the second and third axes, such that the first, second, and third slab waveguide sections waveguide recirculating light that is polarized orthogonal to a plane defined by the first, second, and third axes.
US10404029B2
An introduction unit that introduces a pump light pulse having a first wavelength, a shaping unit that shapes a waveform of the pump light pulse, a nonlinear optical waveguide that generates a wavelength converted light pulse from a pump light pulse, the pump light pulse being a pulse that has been shaped in the shaping unit, through an optical parametric process, the wavelength converted light pulse including a second wavelength different from the first wavelength. The shaping unit shapes the waveform of the pump light pulse such that an absolute value of a time rate of change of the waveform at a peak area of the pump light pulse that has been shaped is smaller than an absolute value of a time rate of change of the waveform at a peak area of the pump light pulse before being shaped with the shaping unit.
US10404026B2
In a method for manufacturing a terminal-equipped electrical wire a core wire of an electrical wire is connected to a flat plate-shaped electrical wire connector portion of a terminal. An ultrasonic welding jig including an anvil and a welding horn is provided. After the electrical wire connector portion is placed on the anvil, the core wire of the electrical wire is placed on the electrical wire connector portion. By applying ultrasonic vibration along the axial direction of the core wire while pressing the core wire using the welding horn, the core wire is ultrasonically welded to the electrical wire connector portion. On the upper surface of the wire connection portions of the terminal, a positioning groove, into which the core wire is fit, is formed in advance, and the core wire is placed on the electrical wire connector portion while being fit into the positioning groove.
US10404021B2
Connector receptacles and connector inserts that may be reliable, may readily manufactured, and may provide high signal quality for high speed signals with minimized signal noise, distortion losses, radiation, and interference. An example may provide a reliable connector receptacle by including a plurality of contacts, where each contact includes a first bend angling a contacting portion away from a tongue and a second bend angling a contacting portion towards the tongue, where the second bend is between the first bend and a front of the connector receptacle. Another example may provide a connector receptacle that may be readily manufactured by providing a tongue having tapered lead-ins for receiving contacting portions of contacts during assembly. Another example may provide a connector receptacle that provides isolation among signals by arranging through-hole portions of signal contacts in lines that are separated from each other by intervening through-hole portions of ground contacts.
US10404005B2
A plug receptacle comprises a receptacle housing having a passage configured to receive at least a part of a plug of a plug connector, a front side having a first opening and a top side having a second, elongated opening that intersects the first opening, the passage opening to the front side via the first opening and to the top side via the second opening. The plug receptacle comprises at least one plug receptacle cover that is configured to move between a cover position and an elevated position. In the cover position, the at least one plug receptacle cover covers the second opening at least partially. In the elevated position, the at least one plug receptacle cover is elevated outwards along its entire length, so that the at least the part of the plug partially extends through the second opening.
US10404000B2
Spring-loaded contact pin having a sleeve (101); a spring arranged in the sleeve (101); a piston which is arranged at least partially in the sleeve (101); and a contact element which is arranged at least partially in the sleeve (101) and which is configured so as to contact the sleeve (101) and the piston (107).
US10403998B2
A female terminal comprises a main body, a main spring portion and an auxiliary spring portion. The main body forms a receiving portion. The receiving portion opens forward in a front-rear direction. The main spring portion has a first spring piece, a second spring piece and a contact portion. The contact portion is held between the first spring piece and the second spring piece in the front-rear direction. The auxiliary spring portion has a first support portion, a second support portion and a resilient supporting portion. The first support portion supports the first spring piece when a male terminal and the female terminal are connected with each other. The second support portion supports the second spring piece when the male terminal and the female terminal are connected with each other. The contact portion is positioned between the first support portion and the second support portion in the front-rear direction.
US10403995B2
An electrical connector comprises an interface element attachable to a circuit board and a plurality of peripheral connectors. The interface element has an inner contact electrically contacting the circuit board and a connecting interface. The peripheral connectors are each individually matable with the connecting interface. The peripheral connectors include a peripheral plug connector having a plurality of plug connector pins and a peripheral lead connector having a plurality of wires.
US10403994B2
An electrical plug-in connector for forming a printed circuit board connector on a printed circuit board includes: a housing body which, when in use, overlaps a printed circuit board contact side on an upper face or lower face of the printed circuit board vis-à-vis a housing portion and includes a plug-in connection side, for a mating plug-in connector, at an angle to the printed circuit board contact side; and an electrical connector element being accommodated in the housing body, which element provides, on the printed circuit board contact side, a first contact portion for contacting a conducting track of the printed circuit board and, on the plug-in connection side, a second contact portion for contacting a mating contact of the mating plug-in connector. The connector element is formed from a punched sheet-metal part such that a center of gravity of the electrical plug-in connector is arranged within the housing portion.
US10403993B2
A module can be configured to mate with a receptacle. The module includes a body with a thermal surface that is coupled to thermally active circuitry supported by the body. The receptacle is configured to allow air to flow over the thermal surface so as to dissipate thermal energy from the circuitry.
US10403985B2
A wire harness includes plural electric wires provided with a connecting unit at an end portion of the plural electric wires, a first antenna connected to the connecting unit and installed in a wireless terminal, and a second antenna connected to at least one of the plural electric wires. An interval between the first antenna and the second antenna is equal to or longer than 0.3λ.
US10403983B2
The present disclosure relates to a radar apparatus and an antenna system for the radar apparatus. A first transmitting antenna group and a first receiving antenna group are constituted by elongating some of a plurality of transmitting antennas and a plurality of receiving antennas in a first direction of vertical directions, a second transmitting antenna group and a second receiving antenna group are constituted by elongating the other antennas in a second direction opposite to the first direction, transmitting antennas to transmit transmission signals and receiving antennas to receive reflection signals reflected from an object are appropriately selected, thereby being able to improve horizontal and vertical angular resolving power in both of mid/long-range sensing and short-range sensing.
US10403978B2
A multiband radiating array according to the present invention includes a vertical column of lower band dipole elements and a vertical column of higher band dipole elements. The lower band dipole elements operate at a lower operational frequency band, and the lower band dipole elements have dipole arms that combine to be about one half of a wavelength of the lower operational frequency band midpoint frequency. The higher band dipole elements operate at a higher frequency band, and the higher band dipole elements have dipole arms that combine to be about three quarters of a wavelength of the higher operational frequency band midpoint frequency. The higher band radiating elements are supported above a reflector by higher band feed boards. A combination of the higher band feed boards and higher band dipole arms do not resonate in the lower operational frequency band.
US10403976B2
In order to provide an antenna that is small and resonates at a plurality of frequencies, an antenna according to the present invention is provided with: a first conductor of a ring shape, having an air gap; a second conductor arranged inside the ring, with both ends of the second conductor connected to the first conductor, having a first gap; and a third conductor arranged in a region surrounded by a part not including the air gap out of the first conductor, and the second conductor, with both ends connected to the first conductor, having a second gap, and a value obtained by multiplying a length of an outer periphery of a region surrounded by a part including the air gap out of the first conductor, and the third conductor, by capacitance of the air gap is different from a value obtained by multiplying a length of an outer periphery of a region surrounded by the second conductor, the third conductor, and the first conductor, by capacitance of the first gap.
US10403972B2
An antenna system for a global navigation satellite system reference base station is disclosed. The antenna system includes an antenna positioned above a high capacitive impedance surface (HCIS) ground plane. Over a specific range of the lateral dimension of the HCIS ground plane and the height of the antenna above the HCIS ground plane, a high level of multipath suppression and high sensitivity for low-elevated satellites can be simultaneously maintained. The HCIS ground plane can be fabricated as a flat conducting plate with an array of conducting elements such as pins, pins with expanded tips, or mushroom structures. Alternatively, the HCIS can be fabricated as a flat conducting plate with a concentric series of choke rings. The antenna system can provide a positioning accuracy of +/−1 mm, an order of magnitude improvement over previous designs.
US10403967B1
An electronic device includes a housing that includes a first plate, a second plate, and a side member, the side member including a first conductive portion, a second conductive portion, a third conductive portion, a first insulating portion, and a second insulating portion, a wireless communication circuitry that is electrically connected to a first point of the first conductive portion, wherein the first point is adjacent to the second insulating portion, a ground member that is included in the housing, a first switching circuitry that includes a first terminal electrically connected to a second point of the first conductive portion, which is more distant from the second insulating portion than the first point, and at least one second terminal electrically connected to the ground member through at least one first passive element, and a conductive pattern that is electrically connected to the second point and forms a closed loop.
US10403958B2
A method for making a composite substrate circulator comprising disposing a plurality of sleeves about a plurality of rods, disposing the plurality of rods and the plurality of sleeves in a plurality of openings in a block to form an assembly, and dividing the assembly to form a plurality of plates. Each plate includes a portion of the plurality of sleeves and the plurality of rods. The magnetic saturation (4PiMs) values of the rods and sleeves are chosen to decrease radially (rod has the highest 4PiMs).
US10403953B2
A tank arrangement including a guided wave radar level gauge installed in a tank, and having a single wire transmission line probe extending through a passage through a conducting structure in the tank. Along the section of the probe that extends through the passage, the arrangement comprises a propagation field limiting structure adapted to reduce a propagation field of an electromagnetic signal propagating along the probe. With this design, the radial extension of the propagating field can be locally reduced so that a sufficient portion of the signal power is allowed to pass through the passage.
US10403945B2
A vehicle battery coolant system includes a first battery module including a first plurality of cells and a second battery module including a second plurality of cells. A coolant plate is disposed between the first and second battery modules and in heat transfer relationship with the first and second battery modules, wherein the coolant plate has fluid passages therein.
US10403939B2
Disclosed are techniques for identifying battery pack types and by inference battery chemistries by measuring a transient response of the battery pack to signal applied to the battery pack.
US10403935B2
Provided is an electrolytic solution including a nonaqueous solvent and an alkali metal salt. The alkali metal salt is dissolved in the nonaqueous solvent. The nonaqueous solvent contains a perfluoropolyether having a weight-average molecular weight of 350 or more and less than 760. Also provided is a battery including the electrolytic solution, a positive electrode containing a positive electrode active material that can occlude and release an alkali metal cation, and a negative electrode containing a negative electrode active material that can occlude and release the alkali metal cation.
US10403934B2
The present invention relates to a non-aqueous electrolyte solution including a non-aqueous organic solvent, lithium bis(fluorosulfonyl)imide (LiFSI), and a pyridine-based compound represented by Formula 1, and a lithium secondary battery including the same.The lithium secondary battery of the present invention including the non-aqueous electrolyte solution of the present invention may exhibit excellent low-temperature and room-temperature output characteristics, high-temperature and room-temperature cycle characteristics, and capacity characteristics after high-temperature storage.
US10403930B2
An electro-chemical energy conversion and storage device includes an enclosure, a first electrode operatively connected to the enclosure, a second electrode operatively connected to the enclosure, a nanofluid or particle suspension in the enclosure, a heat transfer unit, and a circulation system for circulating the nanofluid or particle suspension to the heat transfer unit. The nanofluid includes nanoparticles plus a dielectric or ionic fluid. The particle suspension includes particles plus a dielectric or ionic fluid. A wide range of nanoparticles or particles can be used. For example the following nanoparticles or particles can be used: metal and metal alloy particles for anodic dissolution and thermal transport; hydrides as source of hydrogen ions; lithium and lithium alloys; intercalated graphite and carbon aerogel as Li source (anodic material); intercalated transition metal oxide as Li sink (cathodic material); and semiconductors for photovoltaic conversion in photo-electrochemical or hybrid electrochemical cell.
US10403921B2
The invention relates to an electricity generating electrochemical device of the solid-oxide fuel-cell stack type. The device includes a planar assembly having at least one electrochemical cell comprised between first and second gas diffusing plates made of ceramic of expansion coefficient between 8×10−6 K−1 and 10×10−6 K−1 and drilled with equidistant holes. First and second current conductive metal grids each are connected to a conductive wire allowing current to flow out of the device. The grilles are placed on either side of the at least one electrochemical cell between this cell and each of the first and second gas diffusing plates. A clamping device mechanically holds the planar assembly together.
US10403920B2
Provided is a fuel battery cell capable of suppressing absorption of water discharged from a manifold by a porous body disposed between a membrane electrode assembly and a separator, and so improving drainage performance. This fuel battery cell 1 includes: a porous passage 20c that is disposed to be opposed to a membrane electrode assembly 10m on a cathode side, and a separator 30 sandwiching the membrane electrode assembly 10m and the porous passage 20c, the separator including a cathode off-gas discharging through hole 32b through which cathode off-gas discharged from the porous passage 20c flows. The porous passage 20c has a sticking-out part 201 when viewed in the thickness direction of the separator 30, and the sticking-out part sticks out into the cathode off-gas discharging through hole 32b from a side of the membrane electrode assembly 10m, and a length of the sticking-out part 201 in a longer direction of the separator 30 is shorter than one side of the cathode off-gas discharging through hole 32b on the membrane electrode assembly 10m side.
US10403918B2
A system has a fuel cell. The fuel cell has a source of hydrogen and a source of oxygen containing gas. The hydrogen is connected for passage across the anode. The source of oxygen containing gas is connected to pass across a cathode. The fuel cell produces electricity. A catalytic oxidizer oxidizes hydrogen within the system. A cooling water circuit passes across cooling water passages in the fuel cell and cools the cathode. Cooling water downstream of the cooling water passages passes across the catalytic oxidizer to heat the catalytic oxidizer. An enclosed vehicle is also disclosed.
US10403915B2
An electric power supply system includes first and second fuel cell stacks, a plurality of fuel tanks, a determination unit configured to determine the state of the first fuel cell stack during operation stop of the first and second fuel cell stacks, and a purging execution unit configured to execute purging by activating the first and second fuel cell stacks according to a determination result and opening on-off valves of the plurality of fuel tanks to supply fuel to the first and second fuel cell stacks.
US10403908B2
Provided is a fuel cell stack structure. The fuel cell stack structure includes first and second cell modules and first and second separation plates. In each of the first and second cell modules, one or more fuel cells generating electricity are stacked, and each of the fuel cells includes an electrolyte layer, and a cathode layer and an anode layer formed on both surfaces of the electrolyte layer, respectively, and generates electricity. The first and second separation plates are electrically connected to the first and second cell modules, respectively, and each separation plate has an air hole and a fuel hole at edges to provide an air including oxygen and a fuel gas including hydrogen to the cathode layer and the anode layer, respectively. At least one separation plate has a sealing unit for sealing the air hole and the fuel hole, and has a protruded convex at a different part from the sealing unit to improve an electrical contact with the other separation plate.
US10403903B2
An electrochemical cell comprising a cathode and an anode residing within a casing, the anode being positioned distal of the cathode. The cathode having a cathode current collector having an angled configuration that encourages the cathode active material to move in an axial distal direction during cell discharge. The cathode current collector may be configured having at least one fold thereby dividing the current collector into at least two portions having an angle therebetween. The cathode current collector may comprise a wire having a helical configuration or the cathode current collector may comprise a post with a thread having a helical orientation about the post exterior. A preferred chemistry is a lithium/CFx activated with a nonaqueous electrolyte.
US10403902B2
An electrically active electrode material for use with a lithium ion cell, a lithium ion cell, and a method for forming the electrochemically active material electrode material are described. The electrode material is in the form of a sheet or mat formed of a valve metal material formed of filaments of a valve metal not larger than about 10 microns in cross section, and coated with an electrochemically active material such as silicon nanoparticles.
US10403901B2
Apparatus and techniques are described herein for providing a battery plate assembly including a silicon current collector. The silicon current collector can include apertures. A lead layer or lead alloy layer can be formed on the silicon current collector. A monopolar battery assembly can be provided, such as including monopolar battery plate assemblies comprising silicon current collectors. The silicon can include a conductive metallurgical grade silicon, such as cast and cut to provide individual current collector substrates.
US10403898B2
A high strength electrolytic copper foil preventing generation of folds, wrinkles, pleats, and breaks during a roll-to-roll (RTR) process, a method of manufacturing the same, and an electrode and a secondary battery which allow high productivity to be secured by being manufactured with such an electrolytic copper foil. The electrolytic copper foil includes a copper film including 99 weight % or more of copper and a protective layer on the copper film, wherein the electrolytic copper foil has a tensile strength of 45 to 65 kgf/mm2.
US10403896B2
An electrical storage device electrode binder composition exhibits an excellent binding capability, and makes it possible to produce an electrical storage device electrode that exhibits excellent charge-discharge durability characteristics. The electrical storage device electrode binder composition includes a polymer (A) and a liquid medium (B), wherein the polymer (A) is polymer particles, and the ratio (DA/DB) of the average particle size (DA) of the polymer particles measured by using a dynamic light scattering method to the average particle size (DB) of the polymer particles measured by TEM observation is 2 to 10.
US10403890B2
A negative electrode active material which has a ternary alloy composition represented by Si—Sn-M (M is one or two or more transition metal elements) and has a microstructure which has a first phase (silicide phase) having a silicide of a transition metal as a main component and a second phase partially containing Sn and having amorphous or low crystalline silicon as a main component, and further has partially a plurality of independent first phases and partially a eutectic structure of the first phase and the second phase is used for an electric device. The negative electrode active material improves cycle durability of an electric device such as a lithium ion secondary battery.
US10403884B2
A structure for use in an energy storage device, the structure comprising a backbone system extending generally perpendicularly from a reference plane, and a population of microstructured anodically active material layers supported by the lateral surfaces of the backbones, each of the microstructured anodically active material layers having a void volume fraction of at least 0.1 and a thickness of at least 1 micrometer.
US10403881B2
A method for producing a ceramic cathode layer on an electrically conductive substrate includes applying a coating to the electrically conductive substrate, the coating being in a form of a suspension including at least one suspending agent and at least one ceramic material. The method further includes heating the coating in a reducing atmosphere such that the ceramic material is completely or in part reduced to a fusible reaction product, heating the coating in a reducing atmosphere to temperatures above the melting point of the reaction product so as to form a melt, densifying or sintering the coating in a reducing atmosphere at temperatures that are 100° C. greater than a melting temperature of the reaction product, and reoxidizing the densified or sintered coating in an oxidizing atmosphere in a temperature range of between 400° C. and 1,200° C.
US10403879B2
To provide a method of manufacturing a lithium-ion secondary battery having stable charge characteristics and lifetime characteristics. A positive electrode is subjected to an electrochemical reaction in a large amount of electrolytic solution in advance before a secondary battery is completed. In this manner, the positive electrode can have stability. The use of the positive electrode enables manufacture of a highly reliable secondary battery. Similarly, a negative electrode is subjected to an electrochemical reaction in a large amount of electrolytic solution in advance. The use of the negative electrode enables manufacture of a highly reliable secondary battery.
US10403870B2
A battery module is provided and includes an array body in which a plurality of battery cells are arrayed, an elastic member disposed on at least one side in an array direction of the array body, a pair of end plates holding the array body and the elastic member therebetween, a resin middle plate disposed between the array body and the elastic member, and a metal joining member joining the pair of the end plates each other, in which the middle plate is provided with a through hole through which the joining member is inserted, and a metal collar is inserted through the through hole.
US10403862B2
This battery is provided with a power generating element, a battery case main body, a battery case lid, an electrode terminal member which is connected electrically to the power generating element inside of the battery case body and which extends outside of the battery case lid, and an outer insulation member which is arranged on the battery case lid and insulates the electrode terminal member from the battery case lid. The battery case lid is fitted inside of the opening and welded to the battery case main body by irradiating a laser from above the battery case lid towards the boundary section between the battery case lid and the battery case main body. Furthermore, this battery is provided with a plume control portion which prevents the plume that rises from the boundary portion during welding from rising towards the outer insulating member.
US10403861B2
The present disclosure relates to a top-emissive organic light-emitting diode display. The organic light-emitting diode comprises a substrate, an auxiliary cathode, a passivation film, a planarization film, an under-cut opening, a connecting terminal, an under-area, a bank, an organic emission layer, and a cathode. The auxiliary cathode is placed on the substrate. The connecting terminal makes contact with the top surface of the one end exposed through the under-cut opening and protrudes into the under-cut opening, being longer in length than the one end of the auxiliary cathode. The under-area is formed between the end of the connecting terminal and the one end of the auxiliary cathode. The cathode is stacked on the organic emission layer, makes contact with the side of the connecting terminal not covered by the organic emission layer, and extends all the way to the under-area.
US10403858B2
According to a method for manufacturing an organic electronic device, a sealing member (19) that includes a sealing substrate (15), an adhesive part (13) exhibiting adhesiveness and is provided on the sealing substrate (15), and a hygroscopic part (11) being a hygroscopic cured product provided on the adhesive part (13) is bonded to an organic electronic element (17).
US10403856B2
The present invention provides a novel organic EL panel adapted to be color tunable by a user, for example. An organic EL panel 10 of the present invention includes: a first substrate 11; a second substrate 12; an organic EL element 13; and a sealing layer 14. One surface of the first substrate 11 is a mounting surface on which the organic EL element 13 is disposed. The first substrate 11 and the second substrate 12 are laminated in such a manner that the mounting surface of the first substrate 11 and one surface of the second substrate 12 face each other with the sealing layer 14 interposed therebetween. The sealing layer 14 seals a gap between the first substrate 11 and the second substrate 12 along an entire periphery of a region where the first substrate 11 and the second substrate 12 face each other. The first substrate 11 includes a light incident section 15 on which laser light is incident and a light guide section 16 that directs the incident laser light in an in-plane direction.
US10403849B2
The present application provides a flexible display panel and a flexible display device containing the flexible display panel. The flexible display panel includes: a flexible substrate, a light-emitting element layer located on a side of the flexible substrate, a packaging layer located on a side of the light-emitting element layer away from the flexible substrate, and a conduction adhering layer located on a side of the flexible substrate away from the packaging layer; the conduction adhering layer being an adhesive layer having electrical conductivity, the conduction adhering layer being connected with an external potential. The conduction adhering layer has a double-side adhering function, and can shield external electromagnetic signal interference to the circuit in the light-emitting element layer, thereby alleviating the picture scintillation phenomenon caused by the external electromagnetic signal interference, improving display effect of the flexible display device, and reducing the module thickness of the flexible display device.
US10403847B2
A display substrate including a base substrate including a plurality of pixel areas, each of the plurality of pixel areas including an emission area and a transmission area, a pixel circuit layer disposed in the emission area and including at least one transistor, a pixel electrode disposed on the pixel circuit layer and connected to the pixel circuit layer, a hole injection layer selectively disposed on the pixel electrode in the emission area, an emission layer disposed on the hole injection layer of the emission area, an electron injection layer disposed on the base substrate on which the emission layer is disposed; and a common electrode disposed on the base substrate on which the electron injection layer is disposed.
US10403843B2
Light-emitting elements in which an increase of driving voltage can be suppressed are provided. Light-emitting devices whose power consumption is reduced by including such light-emitting elements are also provided. In a light-emitting element having an EL layer between an anode and a cathode, a first layer in which carriers can be produced is formed between the cathode and the EL layer and in contact with the cathode, a second layer which transfers electrons produced in the first layer is formed in contact with the first layer, and a third layer which injects the electrons received from the second layer into the EL layer is formed in contact with the second layer.
US10403841B2
An organic EL element is provided that has a high light emission efficiency and that emits a plurality of light beams having respective wavelength ranges different from one another, the light beams including short wavelength light having a high chromaticity. An organic EL element (1) includes an exciton generating layer (7) and a guest layer (8) that are adjacent to each other.
US10403840B2
The invention describes a device for emitting or detecting electromagnetic radiation. The device has a first and a second electrode which are connected to each other via an electrically conductive nanostructure. The electrically conductive nanostructure is configured to receive electrons and holes from the first and second electrode or transport same to the first and second electrode. In addition, the device has a radiation molecule arranged at a circumferential surface of the electrically conductive nanostructure. The radiation molecule is configured to absorb electrons and holes or electromagnetic radiation and emit the electromagnetic radiation with recombination of electrons absorbed and holes absorbed, or emit electrons and holes based on the electromagnetic radiation absorbed. The electrically conductive nanostructure is, in the region of a circumferential surface, surrounded at least partly by the first or second electrode at an end arranged at the first or second electrode in order to provide electrical contact of the first or second electrode and the electrically conductive nanostructure.
US10403836B2
According to some embodiments of the present invention, a method of producing an organic-inorganic perovskite thin film includes depositing a layer of inorganic material on a substrate to form an inorganic film, and performing an organic vapor treatment of the inorganic film to produce an organic-inorganic perovskite thin film. The layer of inorganic material comprises an inorganic anion layer having a metal-ligand framework, and the organic vapor treatment provides organic cations capable of becoming inserted into the metal-ligand framework of the inorganic anion layer to form a perovskite structure.
US10403835B2
In a display device including a flexible display panel, the risk of disconnection of a wiring due to bending is reduced. A display panel includes a display function layer including display elements and a wiring on one major surface of a base material having flexibility. The display panel includes, on the one major surface of the base material, an organic-film-covered wiring area where the surface of the wiring is covered with an organic planarization film that is an organic insulating film in direct contact with the wiring. The display panel includes, in the plane thereof, a display area where the display elements are arranged and a component mounting area that is a peripheral area located outside the display area. As the organic-film-covered wiring area, a curved area is provided in the peripheral area.
US10403830B2
An organic light emitting device (OLED) is provided. The OLED has an anode, a cathode, and an emission layer, disposed between the anode and the cathode, including a first emitting compound; wherein the first emitting compound is capable of functioning as a blue phosphorescent emitter in the OLED at room temperature; wherein the first emitting compound has PLQY of less than 90% at room temperature; wherein the OLED has an external quantum efficiency of between 8% and 20% at 1 mA/cm2.
US10403826B2
The present invention includes organic compounds with two substituted triazine, pyridine, pyrimidine or pyrazine rings attached to an aromatic or heteroaromatic ring system. The compounds are expected to improve OLED performance.
US10403819B2
A pixel define layer and manufacturing method thereof and the related light emitting display are disclosed. The pixel define layer is arranged on a conductive layer of a substrate and comprises a base film layer. The base film layer has a plurality of openings each of which corresponds to a light-emitting region of a sub-pixel unit. A spacing base body is formed between the adjacent openings. An upper surface of each spacing base body is coated with a hydrophobic quantum dot material and a side wall of each opening is coated with a hydrophilic quantum dot material. With the pixel define layer and manufacturing method thereof and the related light emitting display according to embodiments of the disclosure, the ink within the sub-pixel would not ooze to the outside of the sub-pixel to result in color mixture between the adjacent sub-pixels, and the light emitting region within the pixel would not be decreased. By selecting suitable quantum dot materials, the photochromic efficiency can be improved. The process is simple and suitable for large size.
US10403814B2
A method of cleaning a substrate processing apparatus that etches a film including a metal, the method include a first cleaning step of providing a gas containing a hydrogen-containing gas, and removing a carbon-containing deposition by plasma generated from the gas containing the hydrogen-containing gas; a second cleaning step of, after the first cleaning step, providing an inert gas, and removing a metal-containing deposition by plasma generated from the inert gas; and a third cleaning step of, after the second cleaning step, providing a gas containing a fluorine-containing gas and an oxygen-containing gas, and removing a silicon-containing deposition by plasma generated from the gas containing the fluorine-containing gas and the oxygen-containing gas.
US10403807B2
The present invention provides a thermoelectric conversion material having a reduced thermal conductivity and having an improved figure of merit, and a method for producing the material. The thermoelectric conversion material has, as formed on a resin substrate having recesses, a thermoelectric semiconductor layer formed of a thermoelectric semiconductor material, wherein the resin substrate comprises one formed by curing a resin layer of a curable resin composition. The production method for the thermoelectric conversion material comprises a resin substrate formation step of transcribing a protruding structure from an original plate having the protruding structure onto a resin layer of a curable resin composition and curing the layer, and a film formation step of forming a thermoelectric semiconductor layer of a thermoelectric semiconductor material on the resin substrate.
US10403803B2
A method of manufacturing a plurality of light emitting devices includes providing a collective substrate including a plurality of packages, each of the packages including: a recess defined by lateral surfaces and a bottom surface, a first electrode and a second electrode that are disposed at the bottom surface of the recess, and a light-reflective first resin member surrounding an element-mounting region of the bottom surface of the recess, the first resin member having an upper surface located at a position higher than the element-mounting region; mounting a light emitting element in the element-mounting region; forming a light-reflective second resin member having a light reflective surface; and singulating the collective substrate to obtain the plurality of light emitting devices.
US10403800B1
Systems including light-emitting diodes (LEDs) are provided. The systems include one or more wavelength-converting member(s) that is/are remote from the emission surface of one or more LED-based light source(s). The wavelength-converting member may be separated from the emission surface of a first LED and positioned such that light emitted from the first LED is absorbed by the wavelength-converting material. The wavelength-converting material emits secondary light having a different wavelength than the wavelength of the light emitted from the first LED. The systems may include a second light source comprising a second LED configured to emit light having a wavelength from an emission surface and a wavelength-combining element configured to combine the secondary light from the wavelength-converting member and the light emitted from the second light source to form a co-axial light beam.
US10403798B2
A device and associated method are provided for a light emitting diode device (LED) with suppressed quantum dot (QD) photobrightening. The QD surfaces, with a maximum cross-sectional dimension of 10 nanometers, are treated with a solution including a multi-valent cation salt. In response to heating the solution, multi-valent cations become attached to the surface of the QD nanocrystals, forming treated QDs that are deposited overlying a top surface of an LED. The LED device emits a non-varying intensity of first wavelength light in the visible spectrum from the treated QDs, when subjected to a continuous exposure of a second wavelength of LED light having an intensity of greater than 50 watts per square centimeter. For example, blue, green, or red color light may be emitted when exposed to LED light in the ultraviolet (UV) spectrum, or a green or red color light when exposed to a blue color LED light.
US10403795B2
A light-emitting device includes a semiconductor layered structure; an upper electrode disposed on a portion of an upper surface of the semiconductor layered structure; a lower electrode disposed on a lower surface of the semiconductor layered structure in a region spaced from a region directly under the upper electrode, the lower electrode being reflective; and a protective film disposed continuously on a surface of the upper electrode and the upper surface of the semiconductor layered structure. A thickness of a first portion of the protective film, which is disposed at least in a region directly above the lower electrode, is smaller than a thickness of a second portion of the protective film, which is disposed continuously on the surface of the upper electrode and the upper surface of the semiconductor layered structure adjacent to the portion on which the upper electrode is disposed.
US10403775B2
A solar cell module is disclosed. The solar cell module includes a plurality of solar cells, a front transparent substrate located in a front surface of the plurality of solar cells, a back transparent substrate located on a back surface of the plurality of solar cells, a front protection unit located between the front transparent substrate and the plurality of solar cells, and a back protection unit located between the back transparent substrate and the plurality of solar cells. The back transparent substrate includes an anti-reflection layer.
US10403774B2
Described herein is an apparatus and method used to provide power or photovoltaic functionality to a display or device containing a display without impacting the visual perception of the display. The wavelength-selective photovoltaic (WPV) element is visibly transparent, in that it absorbs selectively around the visible emission (or reflection) peaks generated by the display. The photovoltaic material is able to cover a portion or the entire surface area of the display, without substantially blocking or perceptually impacting the emission (or reflection) of content from the display. The incident light that is absorbed by the photovoltaic element is then converted into electrical energy to provide power to the device, for example.
US10403769B2
The invention relates to an electro-conductive paste comprising Ag nano-particles and spherical Ag micro-particles in the preparation of electrodes, particularly in electrical devices, particularly in temperature sensitive electrical devices or solar cells, particularly in HIT (Heterojunction with Intrinsic Thin-layer) solar cells. In particular, the invention relates to a paste, a process for preparing a paste, a precursor, a process for preparing an electrical device and a module comprising electrical devices. The invention relates to a paste comprising the following paste constituents: a. Ag particles, b. a polymer system; wherein the Ag particles have a multi-modal distribution of particle diameter with at least a first maximum in the range from about 1 nm to about less than 1 μm and at least a further maximum in the range from about 1 μm to about less than 1 mm; wherein the difference between the first and the further maximum is at least about 0.3 μm; wherein at least 50 wt. % of the Ag particles with a diameter in the range from 1 μm to 1 mm are spherical.
US10403767B2
A far-field radiative thermal rectification device uses a phase change material to achieve a high degree of asymmetry in radiative heat transfer. The device has a multilayer structure on one side and a blackbody on other side. The multilayer structure can consist of a transparent thin film of KBr sandwiched between a thin film of VO2 and a reflecting layer of gold. When VO2 is in its insulating phase, the structure is highly reflective due to the two transparent layers on highly reflective gold. When VO2 is in the metallic phase, Fabry-Perot type of resonance occurs and the tri-layer structure acts like a wide-angle antireflection coating achieved by destructive interference of partially reflected waves making it highly absorptive for majority of spectral range of thermal radiation. The instant structure can form the active part of a configuration that acts like a far-field radiative thermal diode.
US10403764B2
Provided is a thin film transistor including an active layer including a first silicon active layer, a second silicon active layer, and an oxide active layer in a space between the first silicon active layer and the second silicon active layer, a gate electrode on the active layer with a gate insulating layer disposed therebetween, and a source electrode and a drain electrode with an interlayer insulating layer disposed between the gate electrode and the source and drain electrodes, the source and drain electrodes being in contact with the first silicon active layer and the second silicon active layer, respectively.
US10403763B2
It is an object to provide an oxide semiconductor which is suitable for use in a semiconductor device. Alternatively, it is another object to provide a semiconductor device using the oxide semiconductor. Provided is a semiconductor device including an In—Ga—Zn—O based oxide semiconductor layer in a channel formation region of a transistor. In the semiconductor device, the In—Ga—Zn—O based oxide semiconductor layer has a structure in which crystal grains represented by InGaO3(ZnO)m (m=1) are included in an amorphous structure represented by InGaO3(ZnO)m (m>0).
US10403761B2
An array substrate and a manufacturing method thereof, and a display device are provided. The manufacturing method comprises: forming a first gate metal pattern on a base substrate; forming a gate insulating layer, a first active layer pattern and a source-drain metal pattern on the base substrate on which the first gate metal pattern is formed; forming a first protective layer pattern and a through hole pattern on the base substrate on which the source-drain metal pattern is formed; and forming a second active layer pattern and a pixel electrode pattern on the base substrate on which the first protective layer pattern is formed. Embodiments of the present disclosure solve problems of poor display performance and high cost of the array substrate and achieve effects of improving the display performance and reducing the cost.
US10403759B2
Disclosed is a logic circuit using three-dimensionally stacked dual-gate thin-film transistors, including a substrate, a first dual-gate thin-film transistor on the substrate, a second dual-gate thin-film transistor on the first dual-gate thin-film transistor, and a third dual-gate thin-film transistor on the second dual-gate thin-film transistor, wherein the first dual-gate thin-film transistor, the second dual-gate thin-film transistor and the third dual-gate thin-film transistor are electrically connected to each other. The logic circuit of the invention is configured such that dual-gate thin-film transistors are three-dimensionally stacked, whereby the advantages of the dual-gate structure and of thin-film transistors can be exhibited together and the degree of integration can be drastically increased, and a logic gate is made in the area of a single transistor, thereby remarkably simplifying wire and circuit designs.
US10403758B2
A vertical MOS transistor includes a substrate having therein a first source/drain region and a first ILD layer. A nanowire is disposed in the first ILD layer. A lower end of the nanowire is in direct contact with the first source/drain region, and an upper end of the nanowire is coupled with a second source/drain region. The second source/drain region includes a conductive layer. A gate electrode is disposed in the first ILD layer. The gate electrode surrounds the nanowire. A contact hole is disposed in the first ILD layer. The contact hole exposes a portion of the first source/drain region. A contact plug is disposed in the contact hole. A second ILD layer covers the first ILD layer.
US10403750B2
A Lateral Diffusion Metal Oxide Semiconductor (LDMOS) device and its manufacturing method are presented. The LDMOS device comprises a first region that has a first conductivity type; a drift region that has a second conductivity type in the first region, wherein the second conductivity type is opposite to the first conductivity type; and a plurality of second regions that have the first conductivity type in the drift region, wherein the second regions are separated from each other and extend to the first region along a depth direction of the drift region. This LDMOS device has an higher Breakdown Voltage and thus better performance than conventional LDMOS devices.
US10403749B2
In a first main surface side of a silicon carbide semiconductor base, a trench is formed. A second base region of a second conductivity type is arranged at a position facing the trench in a depth direction. An end (toward a drain electrode) of the second base region of the second conductivity type, and an end (toward the drain electrode) of a first base region of the second conductivity type reach a position deeper than an end (toward the drain electrode) of a region of a first conductivity type. Thus, the electric field at a gate insulating film at the trench bottom is mitigated, suppressing the breakdown voltage of the active region and enabling breakdown voltage design of the edge termination region to be facilitated. Further, such a semiconductor device may be formed by an easy method of manufacturing.
US10403747B2
A semiconductor device and a method of making the same is disclosed. The device includes a substrate having an AlGaN layer located on a GaN layer for forming a two dimensional electron gas at an interface between the AlGaN layer and the GaN layer. The device also includes a plurality of contacts. At least one of the contacts includes an ohmic contact portion located on a major surface of the substrate. The ohmic contact portion comprises a first electrically conductive material. The at least one of the contacts also includes a trench extending down into the substrate from the major surface. The trench passes through the AlGaN layer and into the GaN layer. The trench is at least partially filled with a second electrically conductive material. The second electrically conductive material is a different electrically conductive material to the first electrically conductive material.
US10403743B2
A manufacturing method of an oxide semiconductor device includes the following steps. A first oxide semiconductor layer is formed on a substrate. A gate insulation layer is formed on the first oxide semiconductor layer. A first flattening process is performed on a top surface of the first oxide semiconductor layer before the step of forming the gate insulation layer. A roughness of the top surface of the first oxide semiconductor layer after the first flattening process is smaller than the roughness of the top surface of the first oxide semiconductor layer before the first flattening process.
US10403732B2
A method is provided for fabricating stripe structures. The method includes providing a substrate; and forming a to-be-etched layer on the substrate. The method also includes forming a hard mask pattern having a first stripe on the to-be-etched layer; and forming a photoresist pattern having a stripe opening on the to-be-etched layer and the hard mask pattern having the first stripe. Further, the method includes forming a polymer layer on a top surface and side surfaces of the photoresist pattern to reduce a width of the stripe opening; forming hard mask patterns having a second stripe by etching the hard mask pattern having the first stripe using the photoresist pattern having the polymer layer as an etching mask; and forming the stripe structures by etching the to-be-etching layer using the hard mask pattern having the second stripe as an etching mask until the substrate is exposed.
US10403722B2
A semiconductor die and a process for fabricating the semiconductor die are disclosed. The semiconductor die has a substrate and a silicon carbide (SiC) epitaxial structure on the substrate. The SiC epitaxial structure includes at least a first N-type SiC layer, at least a first P-type SiC layer, and carbon vacancy reduction material, which has been implanted into a surface of the SiC epitaxial structure. Further, the SiC epitaxial structure has been annealed to mobilize the carbon vacancy reduction material to diffuse carbon atoms substantially throughout the SiC epitaxial structure, thereby increasing an average carrier lifetime in the SiC epitaxial structure.
US10403719B2
A three-dimensional semiconductor memory device includes common source regions, an electrode structure between the common source regions, first channel structures penetrating the electrode structure, and second channel structures between the first channel structures and penetrating the electrode structures. The electrode structure includes electrodes vertically stacked on a substrate. The first channel structures include a first semiconductor pattern and a first vertical insulation layer. The second channel structures include a second vertical insulation layer surrounding a second semiconductor pattern. The second vertical insulation layer has a bottom surface lower than a bottom surface of the first vertical insulation layer.
US10403711B2
In one embodiment, a method of manufacturing a silicon-carbide (SiC) device includes receiving a selection of a specific terrestrial cosmic ray (TCR) rating at a specific applied voltage, determining a breakdown voltage for the SiC device based at least on the specific TCR rating at the specific applied voltage, determining drift layer design parameters based at least on the breakdown voltage. The drift layer design parameters include doping concentration and thickness of the drift layer. The method also includes fabricating the SiC device having a drift layer with the determined drift layer design parameters. The SiC device has the specific TCR rating at the specific applied voltage.
US10403710B2
A 3D-capacitor structure that is based on a trench network etched from a top face of a substrate to form an array of separated pillars. The 3D-capacitor structure includes a double capacitor layer stack that extends continuously on top faces of the pillars at the substrate top face, on trench sidewalls and also on a trench bottom. The trench network is modified locally for contacting a second electrode of the double capacitor layer stack while ensuring that no unwanted short-circuit may occur between the second electrode and a third electrode of the double capacitor layer stack. The 3D-capacitor structure provides an improved trade-off between high capacitor density and certainty of no unwanted short-circuit.
US10403699B2
In a method of manufacturing a transparent display device, a substrate including a pixel region and a transmission region may be provided. A first electrode may be formed on the substrate in the pixel region, and a display layer may be formed on the first electrode. A second electrode facing the first electrode may be formed on the display layer, and a capping structure including a first capping layer and a second capping layer may be formed on the second electrode. The first capping layer may be formed on the second electrode in the pixel region and a first region of the transmission region by using a mask that has an opening, the mask may be shifted, and the second capping layer may be formed on the second electrode in the pixel region and a second region of the transmission region by using the shifted mask.
US10403693B2
A display apparatus and a method for producing the same are disclosed. The display apparatus includes a display panel, a first antistatic pattern, and an electronic component. The electronic component has a second antistatic pattern. The first antistatic pattern and the electronic component are provided at a side of the display panel away from the light-emitting side thereof in an inlaid manner.
US10403692B2
An electroluminescent device includes a lower structure including an emission area and a peripheral area, a flexible encapsulating multilayer, and a touch panel including a touch electrode. The emission area includes an electroluminescent unit including a lower electrode disposed directly on an insulating film, an intermediate film, and an upper electrode disposed on the intermediate film. The peripheral area includes an inorganic surface portion substantially surrounding the emission area, various terminals, and wires. A lower surface of the flexible encapsulating multilayer and an upper surface of the inorganic surface portion each include only one or more inorganic materials in direct contact with each other.
US10403682B2
A phase-change memory includes a strip of phase-change material that is coated with a conductive strip and surrounded by an insulator. The strip of phase-change material has a lower face in contact with tips of a resistive element. A connection network composed of several levels of metallization coupled with one another by conducting vias is provided above the conductive strip. At least one element of a lower level of the metallization is in direct contact with the upper surface of the conductive strip.
US10403680B2
A switch device according to an embodiment of the technology includes a first electrode, a second electrode that is disposed to face the first electrode, and a switch layer that is provided between the first electrode and the second electrode. The switch layer contains a chalcogen element. The switch layer includes a first region and a second region which have different composition ratios of one or more of chalcogen elements or different types of the one or more of chalcogen elements. The first region is provided close to the first electrode. The second region is provided closer to the second electrode than the first region.
US10403675B2
The present technology relates to a semiconductor device that suppresses scattering dusts caused by dicing, chipping due to clogging, and further suppresses peel-off of an undercoat from a passivation film, thereby improving yields in manufacturing to realize cost reduction and a method for manufacturing the semiconductor device, a solid-state image pickup element, an image pickup device, and an electronic apparatus. In a step of exposing a pad by etching, when etching a lens material layer as an uppermost layer and a passivation layer, a pad portion and a blade region to be cut by a blade at the time of dicing are simultaneously etched, while a part of a region including both portions and a part therebetween or all the region on the lump, is simultaneously etched. Thereafter, in a layer of the semiconductor substrate under the lens material layer, only the pad portion is etched to expose the pad.
US10403674B2
Device and method of forming the devices are disclosed. The method includes providing a substrate prepared with transistor and sensor regions. The substrate is processed by forming a lower sensor cavity in the substrate, filling the lower sensor cavity with a sacrificial material, forming a dielectric membrane in the sensor region, forming a transistor in the transistor region and forming a micro-electrical mechanical system (MEMS) component on the dielectric membrane in the sensor region. The method continues by forming a back-end-of-line (BEOL) dielectric having a plurality of interlayer dielectric (ILD) layers with metal and via levels disposed on the substrate for interconnecting the components of the device. The metal lines in the metal levels are configured to define an upper sensor cavity over the lower sensor cavity, and metal lines of a first metal level of the BEOL dielectric are configured to define a geometry of the MEMS component.
US10403671B2
The method for manufacturing a plurality of optical modules each comprising a first (C1) and a second (C2) optical component comprises the steps of a) providing a first substrate wafer (S1) on which a plurality of the first optical components (C1) is present on a top side of the first substrate wafer; b) providing a second substrate wafer (S2) having a material region which is a continuous laterally defined region in which material of the second substrate is present, wherein a plurality of the second optical components (C2) is present in said material region; c) achieving a lateral alignment of the first (S1) and second (S2) substrate wafers such that each of the first optical components (C1) is present in a laterally defined region not overlapping said material region; d) interconnecting the first and second substrate wafers in said lateral alignment such that the top side of the first substrate wafer faces a bottom side of the second substrate wafer with no further wafer in between. This way, first and second optical components may be placed particularly close to each other.
US10403669B2
The present disclosure relates to a semiconductor device, an electronic device, and a manufacturing method that can maintain the mounting reliability of an underfill. A chip is formed by a circuit of an imaging element being produced on a Si substrate that is a first substrate and a second substrate being produced on an adhesive formed on the circuit. In this event, a photosensitive material is formed around the chip after the chip is mounted on a mounting substrate by a solder ball or in the state of the chip, then an underfill is formed, and then only the photosensitive material is dissolved. The present disclosure can be applied to, for example, a CMOS solid-state imaging sensor used for an imaging device such as a camera.
US10403658B2
An image sensing device includes pixels forming rows and columns, sets of control lines respectively assigned to the rows such that one set of control lines is connected to one of the rows, a row drive circuit configured to drive the sets of control lines, and an assist circuit. Each set includes a first control line and a second control line. The row drive circuit includes a first drive circuit connected to a first end of the first control line and a second drive circuit connected to first end of the second control line. The assist circuit includes an assist drive circuit connected to a second end of the first control line so as to drive the first control line in accordance with a control signal supplied to the second control line.
US10403656B2
An image sensor is provided, the image sensor comprising a plurality of photo-diode pixels arranged in a two-dimensional array, an energy harvesting output bus connected to the plurality of photo-diode pixels, an image sensing output bus connected to the plurality of photo-diode pixels, and a plurality of switching buses connected to the plurality of photo-diode pixels to direct output of a varying percentage of the pixels to either the energy harvesting output bus or the image sensing output bus.
US10403655B2
The number of masks and photolithography processes used in a manufacturing process of a semiconductor device are reduced. A first conductive film is formed over a substrate; a first insulating film is formed over the first conductive film; a semiconductor film is formed over the first insulating film; a semiconductor film including a channel region is formed by etching part of the semiconductor film; a second insulating film is formed over the semiconductor film; a mask is formed over the second insulating film; a first portion of the second insulating film that overlaps the semiconductor film and second portions of the first insulating film and the second insulating film that do not overlap the semiconductor film are removed with the use of the mask; the mask is removed; and a second conductive film electrically connected to the semiconductor film is formed over at least part of the second insulating film.
US10403650B2
An electronic device and a manufacturing method thereof are disclosed. The manufacturing method of an electronic device includes following steps: forming a flexible substrate on a rigid carrier plate; forming at least a thin-film device on the flexible substrate; forming a conductive line on the flexible substrate, wherein the conductive line is electrically connected with the thin-film device; forming at least an electrical connection pad on the flexible substrate, wherein the electrical connection pad is electrically connected with the conductive line, and the thickness of the electrical connection pad is between 2 and 20 microns; disposing at least a surface-mount device (SMD) on the flexible substrate, wherein the SMD is electrically connected with the thin-film device through the electrical connection pad and the conductive line; and removing the rigid carrier plate.
US10403642B2
A semiconductor device includes a semiconductor layer, a first conductive layer, a tunneling insulating film, and a charge trapping film. The tunneling insulating film is provided between the semiconductor layer and the first conductive layer. The charge trapping film is provided between the first conductive layer and the tunneling insulating film. The charge trapping film includes a first separation layer, a first trapping layer, and a second trapping layer. The first trapping layer is positioned between the tunneling insulating film and the first separation layer. The second trapping layer is positioned between the first conductive layer and the first separation layer. A trapping efficiency of charge in the first trapping layer is higher than a trapping efficiency of charge in the second trapping layer.
US10403641B2
A semiconductor device may include a plurality of conductive patterns and an insulation pattern. The plurality of conductive patterns may be formed on a substrate. The plurality of conductive patterns may be spaced apart from each other in a vertical direction perpendicular to an upper surface of the substrate. Each of the plurality of conductive patterns may have an extension portion and a step portion. The step portion may be disposed at an edge of the corresponding conductive pattern. The insulation pattern may be formed between the plurality of conductive patterns in the vertical direction. A lower surface and an upper surface of the step portion of each of the plurality of conductive patterns may be bent upwardly.
US10403637B2
A memory device includes a plurality of stacks of conductive strips alternating with insulating strips, the insulating strips having first and second sides, and the conductive strips having first sidewalls recessed relative to the first sides of the insulating strips which define first recessed regions in sides of the stacks. Vertical channel pillars are disposed between the stacks, the vertical channel pillars having first and second channel films disposed on adjacent stacks and a dielectric material between and contacting the first and second channel films. Data storage structures at cross points of the vertical channel pillars and the conductive strips include tunneling layers in contact with the vertical channel pillars, discrete charge trapping elements in the first recessed regions in contact with the tunneling layers and blocking layers between the discrete charge trapping elements and the first sidewalls of the conductive strips.
US10403631B1
Embodiments of three-dimensional (3D) ferroelectric memory devices and methods for forming the ferroelectric memory devices are disclosed. In an example, a 3D ferroelectric memory device includes a substrate and a plurality of ferroelectric memory cells each extending vertically above the substrate. Each of the ferroelectric memory cells includes a capacitor and a transistor electrically connected to the capacitor. The capacitor includes a first electrode, a second electrode, and a ferroelectric layer disposed laterally between the first electrode and the second electrode. The transistor includes a channel structure, a gate conductor, and a gate dielectric layer disposed laterally between the channel structure and the gate conductor.
US10403629B2
One illustrative 6T SRAM cell structure disclosed herein includes a first active region with a first N-type pass gate transistor, a first N-type pull-down transistor and a first P-type pull-up transistor, each of which are formed in and above the first active region, wherein the first N-type pull-down transistor is positioned laterally between the first N-type pass gate transistor and the first P-type pull-up transistor, and a second active region with a second N-type pass gate transistor, a second N-type pull-down transistor and a second P-type pull-up transistor, each of which are formed in and above the second active region, wherein the second N-type pull-down transistor is positioned laterally between the second N-type pass gate transistor and the second P-type pull-up transistor.
US10403627B2
The disclosed technology relates to a memory device for a dynamic random access memory, or DRAM. In one aspect, the memory device includes a substrate supporting a semiconductor device layer in which a plurality of semiconductor devices are formed. The memory device may further include an interconnection portion formed above the substrate and including a number of metallization levels and dielectric layers, the interconnection portion being adapted to interconnect said semiconductor devices. The memory device may further include a plurality of bit cell stacks arranged in the interconnection portion, each bit cell stack including a plurality of bit cells. Further, such bit cells may include elements such as a charge storage element, a write transistor, and a read transistor.
US10403621B2
A circuit layout includes a first device having a first set of fingers, wherein the first set of fingers is separated into a first finger group and a second finger group, the first finger group comprising a first number of fingers, and the second finger group comprising a second number of fingers. The circuit layout further includes a second device having a second set of fingers, wherein the second set of fingers includes a third finger group having a third number of fingers. The first finger group, the second finger group and the third finger group extend across a first doped region, and the third finger group is between the first finger group and the second finger group.
US10403620B2
To provide a semiconductor device capable of restricting the substrate bias effect of a high-side transistor while enhancing the heat radiation property of a low-side transistor.A high-side NMOS transistor 101 is formed in a region S1 on the surface of a SOI substrate 30. A trench 41 surrounds the high-side NMOS transistor 101. SiO2 (first insulator) embeds the trench 41. A low-side NMOS transistor 102 is formed in a region S2 on the surface of the SOI substrate 30 around the trench 41. The side face Sf connecting the region S2 forming the low-side NMOS transistor 102 therein and the backside of the SOI substrate 30 is exposed.
US10403606B2
A method for fabricating a semiconductor package including mounting a first semiconductor chip on a first substrate, disposing a first connector on the first substrate, placing a molding control film on the first semiconductor chip to horizontally extend over the first substrate, filling a space between the molding control film and the first substrate with a molding compound such that the molding compound contacts side surfaces of the first semiconductor chip and covers the first connector and does not cover a top surface of the first semiconductor chip, detaching the molding control film, forming an opening through the molding compound to expose a portion of the first connector, disposing a second connector and a second semiconductor chip on opposite surfaces of a second substrate, respectively, and placing the second substrate on the first substrate such that the second connector contacts the first connector may be provided.
US10403605B2
A semiconductor device comprising a plurality of semiconductor chips and a plurality of electric wirings. The plurality of semiconductor chips are stacked in a first direction, each semiconductor chip of the plurality of semiconductor chips including a plurality of conductive pads that are aligned in an aligning direction, orthogonal to the first direction. The plurality of semiconductor chips are stacked such that each semiconductor chip is shifted from an adjacent semiconductor chip of the plurality of semiconductor chips by a first predetermined interval in the aligning direction and shifted from the adjacent semiconductor chip by a second predetermined interval in a second direction orthogonal to both the first direction and the aligning direction. The plurality of electric wirings electrically connect the plurality of conductive pads of every other semiconductor chip of the plurality of semiconductor chips, respectively.
US10403592B2
Semiconductor packages and methods for forming a semiconductor package are disclosed. The method includes providing a package substrate having first and second major surfaces. The package substrate includes a base substrate having a mold material and a plurality of interconnect structures including via contacts extending through the first to the second major surface of the package substrate. A die having conductive contacts on its first or second surface is provided. The conductive contacts of the die are electrically coupled to the interconnect structures. A cap is formed over the package substrate to encapsulate the die.
US10403591B2
An integrated circuit interconnects are described herein that are suitable for forming integrated circuit chip packages. In one example, an integrated circuit interconnect is provided that includes a first substrate containing first circuitry, a first contact pad, a first pillar, a first pillar protection layer, a second substrate containing second circuitry, and a solder ball disposed on the first pillar and electrically and mechanically coupling the first substrate to the second substrate. The first contact pad is disposed on the first substrate and coupled to the first circuitry. The first pillar electrically disposed over the first contact pad. The first pillar protection layer is hydrophobic to solder and is disposed on a side surface of the first pillar.
US10403590B2
A multi-layer pillar and method of fabricating the same is provided. The multi-layer pillar is used as an interconnect between a chip and substrate. The pillar has at least one low strength, high ductility deformation region configured to absorb force imposed during chip assembly and thermal excursions.
US10403583B2
A fan-out semiconductor package includes: a semiconductor chip; a first connection member including a plurality of redistribution layers and one or more layer of vias; an encapsulant; and a second connection member, wherein the encapsulant has first openings exposing at least portions of the first connection member, the first connection member has second openings exposing at least portions of a redistribution layer disposed at an uppermost portion among the plurality of redistribution layers, at least portions of the first openings and the second openings overlap each other, and a content of a metal constituting the plurality of redistribution layers and the one or more layer of vias is higher in a lower portion of the first connection member than in an upper portion of the first connection member.
US10403577B1
Dielets on flexible and stretchable packaging for microelectronics are provided. Configurations of flexible, stretchable, and twistable microelectronic packages are achieved by rendering chip layouts, including processors and memories, in distributed collections of dielets implemented on flexible and/or stretchable media. High-density communication between the dielets is achieved with various direct-bonding or hybrid bonding techniques that achieve high conductor count and very fine pitch on flexible substrates. An example process uses high-density interconnects direct-bonded or hybrid bonded between standard interfaces of dielets to create a flexible microelectronics package. In another example, a process uses high-density interconnections direct-bonded between native interconnects of the dielets to create the flexible microelectronics packages, without the standard interfaces.
US10403566B2
A power module (10) having a leadframe (20), a power semiconductor (30) arranged on the leadframe (20), a base plate (40) for dispersing heat generated by the power semiconductor (30) and a potting compound (50) surrounding the leadframe (20) and the power semiconductor (30), that physically connects the power semiconductor (30) and/or the leadframe (20) to the base plate (40).
US10403565B1
A lead frame module of an electrical connector includes a ground lead frame, signal conductors, a dielectric holder, and a ground plate. The ground lead frame includes multiple ground conductors and a tie bar that extends between and connects the ground conductors. The signal conductors are interleaved with the ground conductors. The signal conductors have jogged segments that extend across the tie bar around an outer side of the tie bar without engaging the tie bar. The dielectric holder at least partially surrounds the signal conductors and the ground lead frame to secure the signal conductors relative to the ground lead frame. The ground plate is disposed along an interior side of the dielectric holder and engages an inner side of the tie bar, which is opposite the outer side, to electrically connect the ground plate to the ground lead frame.
US10403559B2
In a power semiconductor device, the thickness dimension of a protective film of a semiconductor element is made smaller than that of an upper electrode, so a protective film is not pressed by being pressurized from upward when bonded by a metal sintered body, and the force of tearing off the upper electrode riding on an inclined surface of the protective film does not act, so that no crack of the upper electrode occurs, thus maintaining the soundness of the semiconductor element. Also, a lead bonded by a solder to the upper electrode of the semiconductor element is made of a copper-Invar clad material, the linear expansion coefficient of which is optimized, and thereby it is possible to realize a durability superior to that of a heretofore known wire-bonded aluminum wiring.
US10403550B2
In a method, a fin structure, in which first semiconductor layers and second semiconductor layers are alternately stacked, is formed. A sacrificial gate structure is formed over the fin structure. The first semiconductor layers are etched at a source/drain region of the fin structure, which is not covered by the sacrificial gate structure, thereby forming a first source/drain space in which the second semiconductor layers are exposed. A dielectric layer is formed at the first source/drain space, thereby covering the exposed second semiconductor layers. The dielectric layer and part of the second semiconductor layers are etched, thereby forming a second source/drain space. A source/drain epitaxial layer is formed in the second source/drain space. At least one of the second semiconductor layers is in contact with the source/drain epitaxial layer, and at least one of the second semiconductor layers is separated from the source/drain epitaxial layer.
US10403549B2
A method for fabricating a semiconductor structure includes forming a plurality of initial fin structures on a substrate, each including a first region used as a first fin structure, a second region on the first region, and a third region on the second region; forming a first isolation layer on the substrate; removing each third region to form a first opening in the first isolation layer; forming a second isolation layer on sidewall surfaces of each first opening; and removing each second region to form an initial second opening; performing an etching process on the first isolation layer on sidewall surfaces of each initial second opening to form a second opening; forming a second fin structure in each first opening and the second opening; and removing a portion of the first isolation layer and the second isolation layer to expose a portion of sidewall surfaces of each second fin structure.
US10403548B2
The disclosure relates to integrated circuit (IC) structures with a single diffusion break (SDB) and end isolation regions, and methods of forming the same after forming a metal gate. A structure may include: a plurality of fins positioned on a substrate; a plurality of metal gates each positioned on the plurality of fins and extending transversely across the plurality of fins; an insulator region positioned on and extending transversely across the plurality of fins between a pair of the plurality of metal gates; at least one single diffusion break (SDB) positioned within the insulator region and one of the plurality of fins; an end isolation region positioned laterally adjacent to a lateral end of one of the plurality of metal gates; and an insulator cap positioned on an upper surface of at least a portion of one of the plurality of metal gates.
US10403530B2
A control device is configured to make a robot arm and a substrate holding device execute a blade member advancing operation for advancing a pair of blade members into a substrate placing structure, a substrate receiving operation for receiving a substrate placed on an upper stage of the substrate placing structure by the blade member in a substrate non-holding state, and a substrate placing operation for placing the substrate on the blade member in a substrate holding state onto a lower stage. A timing of receiving a substrate by the substrate receiving operation is shifted from a timing of placing a substrate by the substrate placing operation. A substrate conveying robot capable of shortening the tact time upon conveying substrates regardless of the kind of substrate fixing method in the substrate holding device can be provided.
US10403526B2
The system, method and apparatus described relates generally to a device related to substrate storage and processing. In one example embodiment to methods, apparatus, and systems of a substrate storage and processing module improving upon existing devices used in one or more instances for substrate transportation, sorting, and cleaning. The single piece design system may contain and support substrates in a method, reducing strain on its contents by utilizing an innovative support system without the use of standard clamping techniques and, in this or other iterations, such stacking methods may minimize chaffing of surfaces. Thus the device is vastly improved in its ability to preserve pristine conditions of contained substrates.
US10403520B2
A multi blade that processes semiconductor packages into a desired shape while dividing a package substrate includes plural cutting blades that divide the package substrate into the individual semiconductor packages and a spacer provided between two cutting blades adjacent to each other, and is configured in such a manner that the cutting blades and the spacer have the same rotation axis center. The outer surface of the spacer is formed into a transfer shape of the semiconductor package and is covered by an abrasive grain layer, and the upper surface of the package substrate is ground by the outer surface of the spacer simultaneously with cutting of the package substrate by the plural cutting blades.
US10403513B2
In a manufacturing method of a semiconductor device, by arranging a lead in the vicinity of a gate portion serving as a resin injection port of a mold, a void is prevented from remaining within an encapsulation body when two semiconductor chips arranged so as to overlap in the Y direction are encapsulated with resin. Further, a length of an inner lead portion of the lead in the Y direction is greater than a length of an inner lead portion of another lead overlapping a chip mounting portion in the Y direction.
US10403499B2
A laser polycrystallization apparatus including: a light source for emitting a laser beam; a diffraction grating for receiving the laser beam from the light source, changing a path and a magnitude of the received laser beam, and outputting the changed laser beam; a light split portion for splitting the laser beam received from the diffraction grating; and a light superposition portion for superposing the split laser beams received from the light split portion and irradiating the superposed split laser beams to a substrate. An angle between the laser beam irradiated to an incidence surface of the diffraction grating from the light source and a line substantially perpendicular to an emission surface of the diffraction grating is an acute angle.
US10403488B2
Methods, systems and devices that provide fluid devices with at least one SPE bed adjacent (upstream of) a separation channel which may be in communication with an inlet of a Mass Spectrometer. The fluid device can be configured to operate using independently applied pressures to a BGE reservoir and a sample reservoir for pressure-driven injection that can inject a discrete sample plug into a separation channel that does not require voltage applied to the sample reservoir and can allow for in-channel focusing methods to be used. The methods, systems and devices are particularly suitable for use with a mass spectrometer but optical or other electronic detectors may also be used with the fluidic devices.
US10403487B2
A method for generating a mass spectrum of sample ions using a multi-collector mass spectrometer is disclosed. The mass spectrometer includes a spatially dispersive mass analyser to direct the sample ions into a detector chamber. The method includes generating sample ions of a first ion species A, a second ion species B, and a third ion species C, wherein the ions of species A have a different nominal mass to the ions of species B and C, and further wherein the ions of species B have the same nominal mass as the ions of species C. The sample ions of the species A, B and C are directed to travel through the mass analyser and towards detectors in the detector chamber, the sample ions being deflected during their travel. The ions of species B and C are scanned across a master aperture defined in a master mask of a master detector, while the ions of species A pass through a lead aperture defined in a lead mask of a lead detector. A lead signal is generated representing the ion intensity received at the lead detector from the ions of species A, and generating a master signal representing the ion intensity received at the master detector whilst the ions of species B and C are scanned across the master aperture. During scanning, ions of the species A are detected by the lead detector while ions of the species B but not C, then both species B and species C, and then species C but not B are detected by the master detector.
US10403484B2
A photonic electron emission device includes an emitter, a photonic energy conduit evanescently coupled to the emitter, and an anode. The emitter includes a component selected from the group consisting of a metal, a semimetal, a semiconductor having a bandgap that is less than about 3.5 eV. The anode is positively biased with respect to the emitter, the anode directing electrons emitted from the emitter.
US10403483B2
The invention is directed at sputter targets including 50 atomic % or more molybdenum, a second metal element of titanium, and a third metal element of chromium or tantalum, and deposited films prepared by the sputter targets. In a preferred aspect of the invention, the sputter target includes a phase that is rich in molybdenum, a phase that is rich in titanium, and a phase that is rich in the third metal element.
US10403470B2
A system for analyzing an analogue signal comprising randomly spaced events, the event having an event height, comprises: Converting the signal to a series of samples S(t), with t the moment of sampling, thereby forming a sampled, discrete time signal, Detecting the presence of an event, the event detected at t=T, Estimating the event height Using a model (412, FIG. 5) to estimate a noise contribution N(t) for t=(T−Δ1) to t=(T+Δ2), the noise contribution derived from samples S(t) with t≤(T−Δ1) and/or samples S(t) with t≥(T+Δ2), with Δ1 and Δ2 predetermined or preset time periods having a value such that the event has a negligible contribution to samples taken before (T−Δ1) or after (T+Δ2), Estimating the event height E by integrating the series of samples from (T−Δ1) to (T+Δ2) minus the noise contribution for said samples, E=Σt=(T−Δ1)t=(T+Δ2)S(t)−Σt=(T−Δ1)t=(T+Δ2)N(t)=Σt=(T−Δ1)t=(T+Δ2)[S(t)−N(t)].
US10403466B1
A gas switch includes a gas-tight housing containing an ionizable gas, an anode disposed within the gas-tight housing, and a cathode disposed within the gas-tight housing, where the cathode includes a conduction surface. The gas switch also includes a control grid positioned between the anode and the cathode, where the control grid is arranged to receive a bias voltage to establish a conducting plasma between the anode and the cathode. In addition, the gas switch includes a plurality of magnets selectively arranged to generate a magnetic field proximate the conduction surface that reduces the kinetic energy of charged particles striking the conduction surface and raises the conduction current density at the cathode surface to technically useful levels.
US10403465B2
Embodiments include a vacuum device, comprising: an enclosure configured to enclose a vacuum, comprising an external base forming at least a portion of the enclosure; an internal base within the enclosure; and at least one thermal dissipative strap assembly, comprising: an internal base thermal conductive base in contact with the internal base, an external base thermal conductive base in contact with the external base, and a flexible thermal dissipative strap coupling the internal base thermal conductive base to the external base thermal conductive base.
US10403463B2
The present invention is directed to a method for the fabrication of electron field emitter devices, including carbon nanotube (CNT) field emission devices. The method of the present invention involves depositing one or more electrically conductive thin-film layers onto a electrically conductive substrate and performing lithography and etching on these thin film layers to pattern them into the desired shapes. The top-most layer may be of a material type that acts as a catalyst for the growth of single- or multiple-walled carbon nanotubes (CNTs). Subsequently, the substrate is etched to form a high-aspect ratio post or pillar structure onto which the previously patterned thin film layers are positioned. Carbon nanotubes may be grown on the catalyst material layer. The present invention also described methods by which the individual field emission devices may be singulated into individual die from a substrate.
US10403462B2
A fuse assembly includes an insulating block having an upper surface, a lower surface, and a side surface therebetween. The insulating block defines cavities extending therethrough. Each cavity defines a resilient lock arm. A fuse assembly also includes a first terminal stud secured within a first cavity by a first lock arm, a second terminal stud secured within a second cavity by a second lock arm, and a bus bar disposed parallel to the bottom surface of the insulating block. The bus bar is interconnected to the first terminal stud by a lower terminal connected to the bus bar and an upper terminal disposed parallel to the upper surface. The bus bar is interconnected to the second terminal stud by a fusible link having a lower fuse terminal connected to the bus bar and an upper fuse terminal disposed generally parallel to the upper surface.
US10403461B2
An electromagnetic relay includes an electromagnet device, a contactor, and a trip device turning the contactor into an open state in which the contactor opens when an abnormal current flows. The electromagnet device includes a first excitation coil, a fixed element, first and second movable elements, and a permanent magnet. The contactor includes a fixed contact and a movable contact. In the electromagnetic relay, while the permanent magnet causes the first movable element to attractingly contact the second movable element, the fixed element attracts the first movable element due to a magnetic flux generated by the first excitation coil so as to move the second movable element together with the first movable element from a normal position to an attracted position. In the contactor, the movable contact moves, as the second movable element moves, so as to switch between a closed state in which the movable contact contacts the fixed contact and the open state in which the movable contact is removed from the fixed contact. The contactor is turned into the closed state when the second movable element is located at the attracted position. The trip device includes a second excitation coil connected in series to the contactor and a spring for acting a force on the second movable element in a direction away from the first movable element.
US10403459B1
The present invention provides a heat destructive disconnecting switch, which is composed of a first conductive member, a second conductive member, a movable conductive member, an overheating destructive member, an operating component, and a second elastic member. The movable conductive member enables conducting electricity to the first conductive member and the second conductive member. The overheating destructive member butts against a limiting member, which causes a first elastic member to be compressed to between a contact member and the overheating destructive member, thereby providing the first elastic member with a first elastic force and providing the second elastic member with a second elastic force. When the overheating destructive member is destructed due to overheating, the first elastic force is smaller than the second elastic force, which causes the movable conductive member to disconnect the first conductive member from the second conductive member, thereby achieving a protective effect from overheating.
US10403446B2
Disclosed are a dye-sensitized solar cell including a polymer/graphene composite gel electrolyte and methods of preparing the dye-sensitized solar cell.
US10403439B2
A capacitor device includes a plurality of capacitors arranged into a shape. Each capacitor of the plurality of capacitors has a first external electrode on a first side of the capacitor and a second external electrode on a second side of the capacitor opposing the first side. A first plate is proximate and electrically coupled to the first external electrodes of the capacitors. A second plate is proximate and electrically coupled to the second external electrodes of the capacitors.
US10403438B2
In an embodiment, a multilayer ceramic capacitor 10 has supplementary dielectric layers 11d covering the spaces between two first base conductor films 11c on both height-direction faces of a capacitive element 11′, respectively, in such a way that clearances CL are left between the first base conductor films 11c and the supplementary dielectric layers 11d in the length direction. External electrodes 12, 13 each have a second base conductor film 12a, 13a and a surface conductor film 12b, 13b, and the wraparound locations 12b1, 13b1 of each surface conductor film 12b, 13b have insertion parts 12b2, 13b2 that fill in the clearances CL. The multilayer ceramic capacitor can mitigate deterioration in moisture resistance.
US10403433B2
A multilayer electronic component includes a first capacitor including a first multilayer body having a structure in which a plurality of internal electrodes and a plurality of dielectric layers are alternately stacked, a second capacitor including a second multilayer body disposed adjacent the first multilayer body, the second multilayer body connected to the first multilayer body in parallel, and the second multilayer body having a structure in which a plurality of internal electrodes and a plurality of dielectric layers are alternately stacked, a fixing member fixing the first and second multilayer bodies, a first lead terminal connected to a first end portion of the fixing member, and a second lead terminal connected to a second end portion of the fixing member.
US10403431B2
A coil component that includes a coil having a thick coil core and good inductance characteristics and is able to narrow the pitch of a coil electrode is provided. The wiring of a coil electrode in a direction across the direction of a winding axis of the coil electrode includes a plurality of first metal pins and a plurality of second metal pins. By elongating each metal pin, the wiring of the coil electrode is easily elongated in a metal pin direction. Thus, a coil core is easily thickened in the metal pin direction. The wiring of the coil electrode can be formed in the metal pin direction only by arranging the metal pins. Thus, it is possible to provide a coil component that includes a coil having the thick coil core and good inductance characteristics and is able to narrow the pitch of the coil electrode.
US10403415B2
In a transparent electrode based on a metal material having reduced light reflectance, a light absorbing layer having black characteristic is formed on a lower surface, a partition wall, and/or an upper surface of a metal wire, and thus, light reflectance of transparent electrode is minimized. In a method of manufacturing a transparent electrode, the light absorbing layer can be selectively formed on the upper and lower surfaces and the partition wall of the metal wire having a fine line width by using self-aligning and a spontaneous pattern effect. A conductive wire is implemented by using an imprinting process using an elastic body-based stamp, and thus, conductive wires having a fine line width and an excellent aspect ratio can be formed, so that it is possible to improve electric conductivity and transmittance.
US10403401B2
A medical system includes a medical apparatus, a computer, a user input device, and at least one feature in communication with and controlled by the computer. The computer is in communication with the user input device, which is configured and arranged to allow a user to purchase the use of the feature. The computer is configured to enable the use of the feature after the user purchases use of the feature.
US10403395B2
A system is disclosed to provide a user the ability to obtain an objective medical second opinion generated by the system and approved by a licensed physician on the web through the Internet. The system enables the user to upload all available medical records. The system generates a current user medical status report in a comprehensive form with proper hyperlinks to the appropriate medical records including diagnostic images and results of other diagnostic procedures up loaded to the system in a digital or in a paper form such that the current status report is available to a consultant physician with all the proper hyperlinked attachments for review. The system generates a suggested second opinion consultant report by processing an evidence based diagnosis method incorporated into the system by utilizing all the data relevant to the user that is available to the system.
US10403393B2
Methods, systems, and computer-readable media are provided for facilitating the voice-assisted creation of a shorthand clinical note on a mobile or tablet device. A microphone on the device is used to capture a conversation between a clinician and a patient. Clinically-relevant concepts in the conversation are identified, extracted, and temporarily presented on the device's touch screen interface. The concepts are selectable, and upon selection, the selected concept is populated into a clinical note display area of the touch screen interface. The shorthand clinical note may be used as a memory prompt for the later creation of a more comprehensive clinical note.
US10403389B2
Methods, systems, techniques, and devices for operating a ferroelectric memory cell or cells are described. Groups of cells may be operated in different ways depending, for example, on a relationship between cell plates of the group of cells, pages of cells, and/or sections of cells. Cells may be selected in pairs or in larger multiples in order to accommodate an electric current relationship (such as a short) between two or more cells within a group, a page, and/or a section. When performing an access based on a smaller page size, a larger page size of cells may be selected to accommodate a short between plates within the smaller page, the larger page, and/or a section of memory that includes the smaller page or the larger page.
US10403386B2
A method for screening bad columns in a data storage medium includes steps of: writing predetermined data into at least one sample block; comparing the written data with the predetermined data to calculate numbers of error bits in the plurality of columns; defining an inspection window covering a portion of the columns; summing the numbers of error bits in the portion of columns in the inspection window to obtain a total number of error bits and determining whether the total number of error bits is greater than a number of correctable bits; if yes, determining a start point and a terminal point of a bad column interval in the inspection window, wherein the numbers of error bits in the columns between the start point and the terminal point are greater than a threshold of error bits; and labeling the columns in the bad column interval as bad columns.
US10403380B2
A semiconductor device with an anti-fuse element includes a semiconductor substrate, a well region of a first conductivity type formed in the semiconductor substrate, and a gate electrode formed over the semiconductor substrate through a gate insulating film, and source regions of a second conductivity type opposite to the first conductivity type formed within the well region at the both ends of the gate electrode. When writing in the fuse element, a first writing potential is applied to the gate electrode, a first reference potential is applied to the well region, an intermediate potential is supplied to the source regions, and the intermediate potential is lower than the first writing potential and higher than the first reference potential.
US10403372B2
Adaptive read-threshold schemes for a memory system determine read-threshold with the lowest BER/UECC failure-rates while continuing to serve the host-reads with the required QoS. When it is determined that the QoS or other quality metric is not met for a particular read-threshold, which may be an initial, default, read-threshold, the performance of other read-thresholds are estimated. These estimates may then be used to determine an optimal read-threshold. During the iterative process, selection variables, e.g., how many times, and for which read commands, to use each of the non-default read-thresholds in future read-attempts may be determined on-the-fly.
US10403368B2
A non-volatile memory device includes a matrix memory plane with columns of memory words respectively formed on each row of the memory plane by groups of memory cells and control elements respectively associated with the memory words of each row. At least some of the control elements associated with the memory words of the corresponding row form at least one control block of B control elements disposed next to one another, adjacent to a memory block containing the B memory words disposed next to one another and associated with these B control elements, a first electrically-conducting link connecting one of the B control elements to all the control electrodes of the state transistors of the corresponding group of memory cells and B-1 second electrically-conducting link(s) respectively connecting the B-1 control element(s) to all the control electrodes of the state transistors of the B-1 corresponding group(s) of memory cells.
US10403366B1
In general, embodiments of the technology relate to a method for adjusting solid state memory write parameters. The method includes obtaining a performance goal for the solid state memory, receiving a client write request for data from a client, where the client write request comprises a logical address and data to be written. The method further includes determining a physical address corresponding to the logical address, where the physical address comprises a page number for a physical page in the persistent storage, obtaining at least one verify threshold value using the performance goal, issuing a control module program request including the data to be written and the at least one verify threshold value to a storage module, where the storage module comprises the physical page, and programming the data into the physical page of the storage module using the at least one verify threshold value.
US10403362B2
A split memory bank may comprise a number of memory matrices forming a memory bank and a shift register in which the shift register physically separates the matrices. An integrated circuit may comprise a number of shift registers and a plurality of memory matrices forming a memory bank in which the matrices are spatially separated by the shift register. An integrated printhead may comprise a number of memory banks each comprising a plurality of memory matrices and a number of shift registers in which each shift register spatially separates a number of the matrices.
US10403361B2
A semiconductor memory cell and arrays of memory cells are provided In at least one embodiment, a memory cell includes a substrate having a top surface, the substrate having a first conductivity type selected from a p-type conductivity type and an n-type conductivity type; a first region having a second conductivity type selected from the p-type and n-type conductivity types, the second conductivity type being different from the first conductivity type, the first region being formed in the substrate and exposed at the top surface; a second region having the second conductivity type, the second region being formed in the substrate, spaced apart from the first region and exposed at the top surface; a buried layer in the substrate below the first and second regions, spaced apart from the first and second regions and having the second conductivity type; a body region formed between the first and second regions and the buried layer, the body region having the first conductivity type; a gate positioned between the first and second regions and above the top surface; and a nonvolatile memory configured to store data upon transfer from the body region.
US10403355B2
A phase change memory device may include a plurality of word lines, a plurality of bit lines, a phase change memory cell, and a discharging circuit. The word lines and the bit lines may intersect each other. The phase change memory cell may be positioned at an intersection point between the word lines and the bit lines. The discharging circuit may be configured to apply a ground voltage to a non-selected word line adjacent to a selected word line or a non-selected bit line adjacent to a selected bit line.
US10403341B2
A semiconductor integrated circuit includes a register, a detection circuit, and a generation circuit. The register stores a detection start timing of a reference delay amount based on a first clock during a first period. The first period is a period in which the first clock starts to be input. The detection circuit has a plurality of delay stages. The detection circuit detects the reference delay amount at the start timing during the first period and obtains the number of delay stages corresponding to the reference delay amount. The generation circuit adjusts a duty ratio of the first clock based on the number of delay stages obtained by the detection circuit and generates a second clock during a second period. The second period is a period continuing from the first period.
US10403335B1
An apparatus may include a first pad and a first input circuit coupled to the first pad. The first input circuitry may include a first signal propagation path that couples to the first pad, a latch circuit, a second signal propagation path that couples to the latch circuit, and a gate circuitry coupling between the first and second signal propagation paths. The first signal propagation path may have first signal propagation time and the second signal propagation path may have second signal propagation time that is greater than the first propagation time.
US10403324B2
A card recognition system comprises an imaging device configured to capture a raw image of at least a portion of a card, and a processor operably coupled with the imaging device. The processor is configured to perform an image processing analysis of the raw image to identify measurements of at least one of a rank area around a rank of the card, and a suit area around a suit of the card, and automatically generate a calibration file based, at least in part, on the image processing analysis. A card handling device comprises a card infeed, a card output, and a card recognition system. A method for tuning a card handling device comprises capturing a plurality of images from a deck of cards, storing the images in memory, analyzing the plurality of images for card identification information, and generating a calibration file including parameters associated with the card identification information.
US10403321B2
A method for manufacturing a glass substrate according to which surface roughnesses of main surfaces of a glass substrate can be reduced more than with currently available methods is provided. After the main surfaces of the glass substrate used in a magnetic disk are mirror-polished (final finishing-polished) using a polishing liquid containing organic-based particles made of, for example, a styrene-based resin, an acrylic resin, or a urethane-based resin as polishing abrasive particles, by cleaning the glass substrate using an organic-based cleaning agent, surface roughnesses of the main surfaces of the substrate can be reduced more than with currently available methods.
US10403320B2
The magnetic tape device includes: a magnetic tape; and a reproducing head, in which the reproducing head is a magnetic head including a tunnel magnetoresistance effect type element as a reproducing element, the magnetic tape includes a non-magnetic support, and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, and logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding the surface of the magnetic layer is equal to or smaller than 0.050.
US10403317B2
The magnetic tape device includes a magnetic tape and a TMR head, in which the magnetic tape includes a non-magnetic support, and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, an intensity ratio of a peak intensity Int(110) of a diffraction peak of a (110) plane with respect to a peak intensity Int(114) of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, and a vertical direction squareness ratio of the magnetic tape is 0.65 to 1.00.
US10403316B2
The magnetic tape includes a magnetic layer including ferromagnetic powder and a binding agent, in which a magnetic tape total thickness is equal to or smaller than 5.30 μm, the magnetic layer has a servo pattern, a center line average surface roughness Ra measured regarding a surface of the magnetic layer is equal to or smaller than 1.8 nm, the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, an intensity ratio of a peak intensity of a diffraction peak of a (110) plane with respect to a peak intensity of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, and a vertical direction squareness ratio of the magnetic tape is 0.65 to 1.00, and a magnetic tape device including this magnetic tape.
US10403315B2
Embodiments disclosed herein generally relate to a HAMR head. The HAMR head includes a main pole, a waveguide and a NFT disposed between the main pole and the waveguide. The NFT includes an antenna, and the antenna includes a first portion and a second portion. The second portion may be made of a material having a higher melting point than the material of the first portion. Having the second portion helps reduce the temperature rise of the NFT and reduce the laser power applied to the NFT.
US10403310B1
An apparatus comprises a slider configured for heat-assisted magnetic recording. A near-field transducer comprising a peg is situated at or near an air bearing surface of the slider, and an optical waveguide of the slider is configured to couple light from a light source to the near-field transducer. The peg comprises a hyperbolic metamaterial, and the near-field transducer may further include an enlarged portion from which the peg extends, where the enlarged portion may also comprise a hyperbolic metamaterial.
US10403306B2
A method for fast recognition of a hearing aid wearer's own voice, and a corresponding apparatus for carrying out the method. The hearing aid receives audio signals from at least two acoustoelectric transducers. The hearing aid has an apparatus with a first filter and a second filter for spatial separation. First filter parameters of the first filter are ascertained and used to attenuate the own voice of the hearing aid wearer of the hearing aid. In addition, second filter parameters of the second filter are ascertained. The second filter parameters are used to attenuate an external audio source. The apparatus is then operated with the first and second parameters, and the wearer's own voice is recognized on the basis of an output signal from the first filter and the second filter.
US10403304B1
Methods and apparatus are disclosed for generating predictions of tendencies of a waveform segment to induce frisson. In one example, a method includes producing Mel-frequency cepstral coefficients corresponding to an audio waveform, dividing the waveform into a plurality of segments that have been tagged with a value indicating a likelihood that the segment will produce a frisson response in a listener, and training a neural network with the Mel-frequency cepstral coefficients and the segment tag values to generate predictions of a tendency of a waveform segment to induce frisson. In some examples, the method further includes displaying a visualization of the waveform, wherein the visualization indicates how likely portions of the visualized waveform are to induce frisson.
US10403303B1
Audio content may have a duration. The audio content may be segmented into audio segments. Individual audio segments may correspond to a portion of the duration. Mel frequency spectral power features, Mel frequency cepstral coefficient features, and energy features of the audio segments may be determined. Feature vectors of the audio segments may be determined based on the Mel frequency spectral power features, the Mel frequency cepstral coefficient features, and the energy features. The feature vectors may be processed through a support vector machine. The support vector machine may output predictions on whether the audio segments contain speech. One or more of the audio segments may be identified as containing speech based on filtering the predictions and comparing the filtered predictions to a threshold. Storage of the identification of the one or more of the audio segments as containing speech in one or more storage media may be effectuated.
US10403295B2
The present invention proposes a new method and a new apparatus for enhancement of audio source coding systems utilizing high frequency reconstruction (HFR). It utilizes a detection mechanism on the encoder side to assess what parts of the spectrum will not be correctly reproduced by the HFR method in the decoder. Information on this is efficiently coded and sent to the decoder, where it is combined with the output of the HFR unit.
US10403294B2
In general, techniques are described for signaling layers for scalable coding of higher order ambisonic audio data. A device comprising a memory and a processor may be configured to perform the techniques. The memory may be configured to store the bitstream. The processor may be configured to obtain, from the bitstream, an indication of a number of layers specified in the bitstream, and obtain the layers of the bitstream based on the indication of the number of layers.
US10403287B2
A method for identifying and managing users within a group during a teleconference. The method includes a computer processor determining that a group of users are sharing a first client device to communicate, via a teleconference with one or more other users. The method further includes identifying a first user, of the group of user that are sharing the first client device, that is speaking during a first portion of the teleconference. The method further includes determining an action corresponding to the first user, where an action affects managing content of the teleconference at a client device. The method further includes initiating the determined action corresponding to the first user.
US10403281B1
Systems and methods for provisioning optimized resources in a cloud environment are described. The system receives voice-based user input for accessing resources in the cloud environment. The voice input is converted into textual data from which one or more keywords are identified. Further, the system automatically determine one or more parameters and corresponding one or more values of the one or more parameters required for accessing the resources based on the one or more keywords. These one or more values are populated in one or more fields corresponding to the one or more parameters. The one or more values indicates an optimal machine configuration of the resource. Further, the system provisions the optimized resource based on the populating of the one or more values in the one or more fields.
US10403278B2
Systems and processes for operating an intelligent automated assistant to provide media items based on phonetic matching techniques are provided. An example method includes receiving a speech input from a user and determining whether the speech input includes a user request for a media item. The method further includes, in accordance with a determination that the speech input includes a user request for obtaining a media item, determining a candidate media item from a plurality of media items. The method further includes determining, based on a difference between a phonetic representation of the candidate media item and a phonetic representation of the speech input, whether the candidate media item is to be provided to the user. The method further includes, in accordance with a determination that the candidate media item is to be provided to the user, providing the candidate media item to the user.
US10403270B1
Techniques are described for automatically distributing validated user safety alerts from a networked computing device. The networked computing device may be configured to operate as an autonomous agent to perform actions on behalf of a user without receiving direct instructions from the user. For example, the autonomous agent computing device may be configured to make certain purchases, send alerts or reminders, or perform other functions in accordance with preprogrammed rules. According to the disclosed techniques, the autonomous agent computing device is configured to automatically generate and send an alert to one or more computing devices associated with the user upon detecting a safety concern for the user. The autonomous agent also uses a signing key associated with its digital certificate, which verifies the identity of the autonomous agent, to sign the alert such that a third-party server may validate the alert prior to distribution to the destination computing devices.
US10403265B2
An object is to provide a technique that allows voice recognition of voice including a plurality of languages while suppressing a data size of a voice recognition dictionary. A voice recognition dictionary includes a plurality of place name dictionaries and a plurality of house number dictionaries in which phonemes in a different language are mapped to phonemes in a corresponding language. Out of the plurality of place name dictionaries, one place name dictionary is set, which a language-specific voice recognition unit set by a voice recognition language setting unit may perform voice recognition in phonemes of the corresponding language, and out of the plurality of house number dictionaries, one house number dictionary is set, which the language-specific voice recognition unit may perform voice recognition by substituting phonemes in a different language for the phonemes in the corresponding language.
US10403249B2
An interchangeable drum slip that may be quickly installed to change the appearance of a drum and to provide protection to the drum shell. The drum slip is a rectangular piece of material that is pre-cut to precisely fit specific models of drums. Openings are cut into the material that correspond with hardware that is attached to the drum shell. A user installs the drum slip by placing the drum slip around the drum shell and securing the ends of the drum slip together. The openings in the drum slip fit over and around any hardware that is attached to the drum shell and any apertures formed in the drum shell. The ends of the drum slip are pulled together and secured with an adhesive. For some drums, the drum slip may be installed without disassembling any parts of the drum. For other drums, one or more drum heads and retaining hoops must be removed to install the drum slip. The drum slip may be transparent, and the drum slip may be made in any color and messages, designs, or information may be printed on or molded into the drum slip. Anyone can quickly and easily change drum slips to change the appearance of a drum.
US10403248B2
A drum head includes: a first film including a striking surface; a second film disposed opposed to a back surface of the first film which is back from the striking surface; and a sensor disposed between the first film and the second film and configured to output a signal related to vibration. The sensor includes: a first contact surface configured to contact the back surface of the first film without being secured to the back surface; and a second contact surface configured to contact a front surface of the second film without being secured to the front surface. A sensor tail of the sensor is secured to at least one of the first film and the second film located outside the shell when the first film and the second film are stretched over an open end of a shell.
US10403247B2
This invention involves the field of tactile control of electronic devices using a sensor that transduces both air pressure and device positional orientation into a set of digitally encoded commands. The invention involves using as input the physical action taken on a musical instrument and generating control information using that input.
US10403245B1
A musical instrument slide for a stringed instrument and a method of manufacturing the same includes a slide body defining an outer wall, the outer wall configured to affect sound produced by the instrument when applied to one or more strings of the instrument. The slide includes an insert within the slide body defining an inner wall and creating a space between the slide body and the insert and further includes liquid within the space between the slide body and the insert to further affect the sound produced by the instrument when the outer wall is applied to the strings. A removable collar may be included with an aperture or opening that may vary in size to accommodate multiple users. Liquid may be selectively sealed between the slide body and the insert and be changed as required.
US10403226B2
A source driver is disclosed, including a data exchanger configured to receive a predetermined number of units of data and store the data corresponding to a predetermined number of channels, and a latch unit configured to store the data output from the data exchanger. The data exchanger mutually exchanges data corresponding to two channels included in each of a plurality of groups, and independently exchanges data for each of the plurality of groups, in which each of the plurality of groups includes two adjacent channels.
US10403217B2
The present invention discloses a display panel and the driving method thereof. It divides the pixel electrodes of the display panel into multiple groups according to the light color allowed passing through. That is, each said pixel electrode allows the light with the same color to pass through; during one frame display, the data driver applies independent Gamma voltage to each said pixel electrode. After the gate driver drives the gate line connected with a group of the pixel electrodes, it drives the gate line connected with next group of the pixel electrodes in sequence, so that it can independently adjust the Gamma voltage applied to the pixels with different colors.
US10403214B2
An electronic device may be provided with a display. Standard and high dynamic range content may be produced by content generators operating on control circuitry. In a first mode of operation, standard dynamic range content is displayed. In a second mode of operation, high dynamic range content is displayed. In a third mode of operation, standard dynamic range content and high dynamic range content are simultaneously displayed. Tone mapping parameters may be produced by a tone mapping engine for use in displaying the standard and high dynamic range content. The tone mapping parameters may be selected based on factors such as ambient light level, user brightness setting, content statistics, and display characteristics. Tone mapping parameters may be selected to accommodate simultaneous display of standard and high dynamic range content and to accommodate transitions between standard and high dynamic range content.
US10403207B2
A display device includes a plurality of pixel circuits and a gate driver including a plurality of stages configured to output a gate signal to a plurality of gate lines, respectively, to provide the gate signal to the pixel circuits. Each of the stages is divided into a plurality of sub-blocks. At least one of the pixel circuits is located between two adjacent sub-blocks of the sub-blocks.
US10403203B2
The present disclosure relates to an organic light emitting display device which is implemented to reduce or suppress the residual image and the flicker. According to an embodiment, a circuit includes an organic light emitting diode disposed between a first node and a first power source, a driving transistor disposed between the first node and a second power source and driving the organic light emitting device, a first transistor transmitting a data signal to the driving transistor, and a first control transistor disposed between the first node and a second node. The first control transistor applies a reverse current to the driving transistor during a first period and holes accumulated on the active layer of the driving transistor are removed during the first period, whereby a current path efficiency is improved.
US10403195B2
Embodiments of the disclosure provide a shift register, a method for driving the same, and a display device, and the shift register includes: a first input module and a second input module, connected respectively with an input signal terminal and a first clock signal terminal; a first control module and a second control module connected with a second clock signal terminal; a third control module connected with a first reference signal terminal; and an output module and a plurality of capacitors, connected respectively with the first reference signal terminal, the second reference signal terminal, and the output signal terminal.
US10403184B2
A freestanding exhibit display for supporting a banner includes a base, an upright support structure, and a transverse support arm. The upright support structure extends from the base. The transverse support arm is mounted on the upright support structure and includes a cradle defining a cradle space. The cradle is configured to retain a furled portion of the banner in the cradle space with only gravity.
US10403182B2
A solar-powered advertising kiosk can include a frame configured to divide the solar-powered advertising kiosk into one or more sections. The solar-powered advertising kiosk can also include a roof configured to convert sunlight to electricity to power one or more advertising displays, wherein the roof includes a first portion of the frame, and wherein the roof includes one or more solar tents each including one or more solar modules. The solar-powered advertising kiosk can further include a body configured to display one or more images on the one or more advertising displays, wherein the body includes a second portion of the frame.
US10403174B2
A processor device has an executable implementation of a cryptographic algorithm implemented thereon that is white-box-masked by a function f. The implementation comprises an implemented computation step S by which input values x are mapped to output values s=S[x], and which is masked to a white-box-masked computation step T′ by means of an invertible function f. As a mapping f there is provided a combination (f=(c1, c2, . . . )*A) of an affine mapping A having an entry width BA and a number of one or several invertible mappings c1, c2, . . . having an entry width Bc1, Bc2, . . . respectively, wherein BA=Bc1+Bc2+ . . . . Output values w are generated altogether by the mapping f. The affine mapping A is constructed by a construction method coordinated with the invertible mappings c1, c2, and etc.
US10403173B2
NADO Cryptography Using One-way Functions is a symmetric cryptography for encrypting and decrypting information. The NADO process introduces some novel concepts and methods to cryptography: (1) The notion of a key generator is presented that eliminates the dependence of the cryptographic security on a single, static cryptography key. (2) A key generator updating method built with one-way functions exhibiting the avalanche effect that generates an unpredictable sequence of keys as the encryption or decryption algorithm executes; (3) An sequence of unpredictable permutations that diffuse the informations across the whole block. (4) An sequence of unpredictable permutations that act as substitution boxes. (4) The use of key generator updating and one-way functions that exploit the avalanche effect to update the permutations in (3) and (4). NADO using one-way functions can be implemented efficiently in hardware or in software.
US10403169B1
An apparatus for negotiating a work role relationship between two participants, comprising a Dialog and Agreement Board with multiple in-dialog areas where participants place one or more cards representing elements or parts of the work role relationship or personal characteristics related to the work role, and with a commitment area upon which cards can be taken from the in-dialog areas and placed to represent agreed-upon commitments by the participants. An agreement between the participants may be documented manually or automatically, in whole or in part. Components marked with bar codes can be read for entry into a computer program for documenting agreements.
US10403168B1
Systems and methods improve call center performance. A system can include a motor training component and a communication training component. A composite training component can determine a composite accuracy based on both motor training and communication training. A method can train motor skills, communication skills, and develop a composite training metric reflecting at least performance with respect to these aspects.
US10403164B2
A self-propelled driving simulator has a machine frame which can be moved by three, preferably four or more, wheel assemblies on an underlying surface. The wheel assemblies each contain at least one wheel which can move on the underlying surface and which is arranged so as to be rotatable about a steering axle. The machine frame is coupled to a cockpit which contains a seat for a person as well as operator control elements for controlling the driving simulator. The cockpit has a degree of freedom of rotational movement with respect to the machine frame, with the result that the cockpit can be rotated with respect to the machine frame about a main rotational axis, and/or wherein the main rotational axis is preferably a normal vector of the plane spanned by the wheel contact faces of the wheels on the underlying surface.
US10403161B1
A process is described that includes the generation and transmission of collision avoidance data and/or collision avoidance instructions based on data from 3-D radar scans of an airspace. The transmitted data and/or instructions could facilitate collision avoidance by aerial vehicles operating in the airspace. The transmitted data could be limited to protect the security, privacy, and/or safety of other aerial vehicles, airborne objects, and/or individuals within the airspace. The transmitted data could be limited such that only information pertaining to a region of the airspace proximate to a particular aerial vehicle was transmitted. The transmitted data could be limited such that it included instructions that could be executed by a particular aerial vehicle to avoid collisions and such that the transmitted data did not include location or other data associated with other aerial vehicles or airborne objects in the airspace.
US10403160B2
Devices, methods and systems for minimizing the probability of a collision between an aircraft and a floating platform are described. The device may include a processor in communication with a memory. The processor is configured to obtain a flight-path vector of an aircraft; determine a probability related to a plurality of flight-paths of a floating platform over a period of time based on operating parameters for the floating platform and weather data; and determine, based on the flight-path vector and the probability related to the plurality of flight-paths of the floating platform, a time and/or a location for launch or recovery of the floating platform that minimizes a probability of a collision between the aircraft and the floating platform while the floating platform is in flight.
US10403144B1
Tracking movements of mobile devices may provide insight into parking space availability for transports deemed to be associated with those mobile devices. One example method of operation may include tracking movements of mobile devices within a predefined geographical area, identifying a first movement of a first mobile device as being limited to a predetermined threshold distance, identifying a second movement of the first mobile device as having a movement speed that is greater than a movement speed of the first movement, and designating the mobile device as being inside a transport leaving a parking spot.
US10403131B2
A method and apparatus may include determining that a triggering has occurred. The triggering corresponds to a triggering of a formation of a multiple-input and multiple-output arrangement. The multiple-input and multiple-output arrangement comprises a grouping of user antennas and an antenna of the apparatus, and the apparatus is located at an existing infrastructure. The method may also include receiving data traffic information. The data traffic information comprises information that indicates an amount of data traffic that is requested by users of the user antennas. The method may also include forming the multiple-input and multiple-output arrangement based on the received data traffic information.
US10403130B2
Techniques are described for assessing road traffic conditions in various ways based on obtained traffic-related data, such as data samples from vehicles and other mobile data sources traveling on the roads, as well as in some situations data from one or more other sources (such as physical sensors near to or embedded in the roads). The assessment of road traffic conditions based on obtained data samples may include various filtering and/or conditioning of the data samples, and various inferences and probabilistic determinations of traffic-related characteristics from the data samples. In some situations, the filtering of the data samples includes identifying data samples that are inaccurate or otherwise unrepresentative of actual traffic condition characteristics, such as data samples that are not of interest based at least in part on roads with which the data samples are associated and/or that otherwise reflect vehicle locations or activities that are not of interest.
US10403127B2
Hazardous or dangerous conditions may be monitored. A mode may be set to a state indicative of the condition being present. It may then be determined that the hazardous or dangerous condition has eased. An indication of the hazardous or dangerous condition easing may be output in response to the determination. Such an indication may be output as synthesized speech.
US10403123B2
The present disclosure provides details of a system and method for a communication device for guards in a controlled environment. The communication device is established based on a wireless infrastructure in the controlled environment, receiving wireless positioning signals to calculate and determine the real-time location of personnel carrying the device. The indoor wireless positioning can be combined with other available positioning methods to provide highly accurate positioning information of the personnel. The communication device detects and records activities of the personnel during a period of time, and is controlled by the control center. The status of personnel is monitored by control center. Meanwhile, the communication device has AR functions that allow physical objects and augmented reality element to be displayed to the personnel at the same time. The personnel can thus have improved awareness of the surrounding environment and can respond to various potential dangers more effectively.
US10403115B2
A method for geo-location services is described. In one embodiment, the method includes tracking incidents that occur within a predetermined geographic area in relation to a subscription service, upon receiving a request for a list of incidents in relation to the predetermined geographic area, generating a notification comprising the requested list of incidents, and sending the notification to one or more subscribers within the predetermined geographic area.
US10403111B2
Embodiments relate generally to systems and methods for detecting obscuration of a window of a flame detector. A flame detector may comprise a housing; a window attached to the housing, wherein the window allows radiation to pass through to the interior of the housing; a transmitter configured to emit electromagnetic radiation; a receiver configured to receive electromagnetic radiation emitted by the transmitter; and a plurality of angled surfaces configured to direct the electromagnetic radiation from the transmitter through at least a portion of the window and toward the receiver.
US10403109B2
Disclosed is a system for detecting information of assets stored in communication tags and communicating assets information over a communication network. The system includes a bi-directional communication reader and a server. The bi-directional communication reader has at least one antenna with associated signal strength and antenna number. The bi-directional communication reader processes the received assets information from the communication tags. The server includes a database for storing asset information and further the server communicates with the bi-directional communication reader. The server stores asset information using a software application. The software application includes a front end application module for configuration, an event module, a back end application module and a communication module. The front end application module configured to receive at least one operational mode from a user. The operational mode relates to setting of operation of the bi-directional communication reader. The event module reads the asset information from the database and alerts the user if a certain event occurs. The event module sets a specific rule that triggers an event. Further the back end application module configures the bi-directional communication reader as per the selected operational mode to process the required information from the communication tags read by the bi-directional communication reader. The communication module receives processed assets information from the communication tags via the bi-directional communication reader from the specific antenna. Further, the communication module communicates the processed assets information over the communication network via a proprietary protocol.
US10403107B2
A system, method, and apparatus are discussed for a passive optical camera-based system to detect a presence of one or more vehicles with one or more cameras. A detection algorithm is applied to recognize of the presence of the one or more vehicles using one or more imaging processors and the one or more cameras to detect fluctuations in light intensity from scattered light and/or reflections off of that vehicle. Those scattered light and/or reflections are captured in images contained in a set of frames from the one or more cameras.
US10403102B2
Methods and systems are described for determining operation of an openable barrier into a building. A method for determining a state of a barrier includes identifying, based at least in part on a barrier sensor, a first position of the barrier. In one embodiment, the barrier sensor may be positioned at a first side of the barrier, and a magnet may be positioned adjacent to the barrier sensor at the first side of the barrier. The magnet may be positioned at an angle with respect to the barrier sensor. The method may further include determining, based at least in part on the barrier sensor and the magnet, when the barrier changes position from the first position to a second position; and wirelessly transmitting data concerning the change in position of the barrier.
US10403098B2
A slot machine device providing a unique operation, payout scheme, and structure. This slot machine provides optional, unique game play features. These features may include a Notice feature which informs a player if the next cycle will be a win or a loss; a Flush feature allowing a player to discard a losing cycle; a Do-Over feature, allowing a player to replay a cycle if they do not like the results of the prior cycle; a skill-based feature that requires the player to display an element of skill; and a social feature that requires the player to perform a social task. These features may be turned on and off, and the slot machine may be configured to automatically adjust a payout option depending on what features are activated.
US10403085B2
Examples disclosed herein relate to a gaming device including a memory, a processor, a display, and a call tower including a first plate, a second plate, a third plate, and a call tower display screen and/or a plurality of external lights located at an outer area of a front surface of the gaming device, forming a u-shape with a left side, a right side, and a bottom each comprising a light column. The gaming device includes a processor which presents a game via the display.
US10403079B2
One or more techniques and/or systems are provided for evaluating dispenser functionality of a dispenser for dispensing a material. In an example, a non-loaded electrical characteristic and/or a loaded electrical characteristic of the dispenser may be measured and evaluated to determine whether to perform a dispense event. In another example, current measurements, such as peak current, may be measured during a dispense event. The current measurements may be evaluated to determine whether a problem exists, such as a mechanical stall, a gear train problem, an actuator problem, a pump problem (e.g., a clogged pump), a mechanical impedance, and/or other issue. Such information may be collected, stored as historical data, and/or used to determine whether to perform subsequent dispense events.
US10403078B2
Disclosed herein is an apparatus for processing a medium, including: a accepting unit in which the medium is loaded; a dispending unit from which the medium is withdrawn; a medium discriminator configured to discriminate a denomination of the medium loaded into the accepting unit; a plurality of medium storage boxes configured to each discriminate and store the medium by denomination of the medium discriminated by the medium discriminator; and a controller configured to store the medium loaded through the accepting unit by the same denomination in the medium storage box and withdraw the loaded medium from the medium storage box according to a predetermined withdrawal criterion.
US10403070B2
Digital certificates are signed by a server's private key and installed at lock controllers that restrict access to physical resources. The server's public key is distributed to lock controllers and to mobile electronic devices operated by users who are given access to the physical resources. Lock-access data is digitally signed by the server's private key and provided to mobile electronic devices to facilitate access. The lock controller validates lock-access data and grants access conditionally based on time, version, and/or identity data provided within lock-access data. The use of certificates reduces the need to rely on a security scheme specific to the network. Lock controllers can also broadcast status notifications, so that updates and log data can be securely communicated with the server using mobile electronic devices as a proxy. The system is highly scalable, as each lock controller need not track the full scope of access permissions.
US10403066B2
A system and method for a portable device analyzing user information broadcast from target user devices is disclosed. The portable device includes a commodity user device (e.g. iPhone, smart phone) and a directional antenna system fastened to the commodity user device for receiving the user information broadcast from the target user devices. An application program executing on the portable device can then be used to disable a user account on an access control system, for example.
US10403060B2
A control system including a detection device and a control host is provided. The detection device is configured to detect a biometric characteristic to accordingly identify a user ID, and output an ID signal according to the user ID. The control host is configured to receive the ID signal to accordingly perform an individualized control associated with the user ID.
US10403058B2
A system and method to preserve the integrity of data being extracted from an electronic data recorder (“EDR”) of an electronic control module (“ECM”) makes use of a forensic link adapter (20) and, optionally, a sensor simulator (10) (when the ECM is out of the vehicle). The forensic link adapter (20) has one or more first microprocessors (23) and associated first software which prevent any message being sent by an external network from corrupting the previously recorded data measurements. The data measurements are then extracted, verified, and stored in a separate file. The sensor simulator (10) has one or more second microprocessors (23), associated second software, and a bank of resistors (21) that mimic sensors normally in communication with the ECM. The simulator “tricks” the ECM into thinking it is still in the vehicle by using the replicating vehicle system values the ECM normally sees when in the vehicle.
US10403055B2
Provided is an incoming and outgoing vehicle management method and an incoming and outgoing vehicle management system that are based on a vehicle number and a vehicle type identified therefrom, the method and system including: receiving incoming vehicle information including a vehicle number recognized from a vehicle image, and incoming time or an incoming gate identifier; determining a vehicle type by using the vehicle number of the incoming vehicle information; and generating an incoming vehicle message for directing the incoming vehicle to an incoming gate and transmitting the generated incoming vehicle message to a portable terminal designated to a user of the vehicle, wherein the incoming vehicle message includes incoming identification information that indicates the recognized vehicle number, and the incoming time or the incoming gate identifier.
US10403046B2
In an AR environment in which the pointing direction of the video camera is slaved to field technician motion to capture a video signal within a camera FOV of an object at arm's length from the technician and remotely-generated hand gestures for manipulation of the object are overlaid on the video signal to instruct the technician in manipulation of the object, a customer-defined key code and FOV limitations are used to exclude portions of a scene for data capture and transmission compliance. If the video camera pointing direction does not satisfy an alignment condition to a marker in the scene, the camera is controlled to exclude at least a portion of the camera FOV that lies outside a user-defined allowable FOV from capture within the video signal. The customer-defined key code includes at least technician identification, marker pairing and specified tolerance fields that define the allowable FOV. The key code allows the technician to control the FOV exclusions to protect the technician from capturing and/or transmitting data in the scene that would violate customer or country policies or legal requirements.
US10403042B2
Computerized systems and methods are provided for generating and providing augmented video content to viewers. In one implementation, a media player executed by a user device obtains playlist data identifying underlying video content and elements of overlay content. The media player may generate augmented video content by merging an element of the overlay content into the underlying video content at a temporal position within the underlying video content that is relevant to the overlay content element, and further, may present the augmented video content to a viewer. The media player may detect a triggering event during the presentation of the augmented video content, and may modify the augmented video content in response to the triggering event.
US10403036B2
Rendering glasses with shadows is disclosed, including: generating a face image corresponding to an image of a set of images based at least in part on a face model, wherein the set of images is associated with a user's face; generating a face with shadows image corresponding to the image based at least in part on shadows casted by a glasses model on the face model; generating a shadow transform based at least in part on a difference determined based at least in part on the face image and the face with shadows image; generating a shadowed image based at least in part on applying the shadow transform to the image; and presenting the shadowed image including by overlaying a glasses image associated with the glasses model over the shadowed image.
US10403032B2
An example system includes a first computing device comprising a first graphics processing unit (GPU) implemented in circuitry, and a second computing device comprising a second GPU implemented in circuitry. The first GPU is configured to perform a first portion of an image rendering process to generate intermediate graphics data and send the intermediate graphics data to the second computing device. The second GPU is configured to perform a second portion of the image rendering process to render an image from the intermediate graphics data. The first computing device may be a video game console, and the second computing device may be a virtual reality (VR) headset that warps the rendered image to produce a stereoscopic image pair.
US10403029B2
Systems and methods for multistage post-rendering image transformation are provided. The system may include a transform generation module arranged to dynamically generate an image transformation. The system may include a transform data generation module arranged to generate first and second transformation data by applying the generated image transformation for first and second sampling positions and storing the transformation data in a memory. The system may include a first image transformation stage that selects the first and second transformation data for a destination image position and calculates an estimated source image position based on the selected first and second transformation data. The system may include a second image transformation stage that selects the first and second transformation data for the destination image position, retrieves the first and second transformation data from the memory, and recalculates an estimated source image position based on the selected first and second transformation data.
US10403028B2
A system and method for geometric warping correction in projection mapping is provided. A lower resolution mesh is applied to A mesh model, at least in a region of the mesh model misaligned with a corresponding region of a real-world object. One or more points of the lower resolution mesh are moved. In response, one or more corresponding points of the mesh model are moved to increase alignment between the region of the mesh model and the corresponding region of the real-world object. An updated mesh model is stored in a memory. And one or more projectors are controlled to projection map images corresponding to the updated mesh model onto the real-world object.
US10402981B2
Systems and methods are provided for segmenting tissue within a computed tomography (CT) scan of a region of interest into one of a plurality of tissue classes. A plurality of atlases are registered to the CT scan to produce a plurality of registered atlases. A context model representing respective likelihoods that each voxel of the CT scan is a member of each of the plurality of tissue classes is determined from the CT scan and a set of associated training data. A proper subset of the plurality of registered atlases is selected according to the context model and the registered atlases. The selected proper subset of registered atlases are fused to produce a combined segmentation.
US10402980B2
A method and system for using one or more sensors configured to capture two-dimensional and/or three dimensional image data of one or more objects. In particular, the method and system combine one or more digital sensors with visible and near infrared illumination to capture visible and non-visible range spectral image data for one or more objects. The captured spectral image data can be used to separate and identify the one or more objects. Additionally, the three-dimensional image data can be used to determine a volume for each of the one or more objects. The identification and volumetric data for one or more objects can be used individually or in combination to obtain characteristics about the objects. The method and system provide the user with the ability to capture images of one or more objects and obtain related characteristics or information about each of the one or more objects.
US10402973B2
An image processing apparatus includes: a luminal shooting situation analysis unit configured to analyze a luminal shooting situation determined based on a relationship between a subject and an imaging unit that shoots the subject in a luminal image obtained by shooting an inside of a lumen; and a specific region detection unit configured to detect a specific region in accordance with the luminal shooting situation.
US10402968B2
An image processing apparatus comprising an image producing unit 101 for producing an axial image of a body part to be imaged including an aorta and an esophagus; a map generating unit 102 for generating a map M2 for locating a region in which a probability that the aorta lies is high in the axial image; a detecting unit 103 for detecting a temporary position of the aorta based on the map M2; and a deciding unit 104 for making a decision on whether or not the temporary position of the aorta falls within the region of the aorta in the axial image based on a distribution model DM containing information representing a reference position (xe, ye) of the esophagus and information representing a range over which the aorta distributes relative to the reference position (xe, ye) of the esophagus, and on the map M2.
US10402961B2
An inspection apparatus, system, and method, each of which: acquires a master image serving as an inspection reference, the master image being generated based on image data to be printed as a printed image; acquires a read image read from the printed image; extracts a neighboring region neighboring an edge region of the master image; determines whether a change amount of density of pixels in the neighboring region falls within a predetermined range; based on a determination that the change amount of density of pixels in the neighboring region falls within the predetermined range, calculates a statistic of density of pixels in a corresponding region of the read image, which corresponds to the neighboring region of the master image; and determines existence or non-existence of a defect in the corresponding region of the read image based on the statistic of the corresponding region.
US10402957B2
A method of analyzing a defect comprising analyzing a digital image of the defect on a portable device using software contained in the device or an associated processor by virtue of a downloaded app. The method can be used for glass, for example, windscreen defects, in automobiles, for bodywork defects and for alloy wheel scuffs. The app can send details to a repair facility to get a quote for repair.
US10402956B2
Dimensioning systems may automate or assist with determining the physical dimensions of an object without the need for a manual measurement. A dimensioning system may project a light pattern onto the object, capture an image of the reflected pattern, and observe changes in the imaged pattern to obtain a range image, which contains 3D information corresponding to the object. Then, using the range image, the dimensioning system may calculate the dimensions of the object. In some cases, a single range image does not contain 3D data sufficient for dimensioning the object. To mitigate or solve this problem, the present invention embraces capturing a plurality of range images from different perspectives, and then combining the range images (e.g., using image-stitching) to form a composite range-image, which can be used to determine the object's dimensions.
US10402952B2
Systems, methods, and computer readable media to improve the operation of electronic display systems. Techniques for inverse tone mapping operations for selected standard dynamic range (SDR) images are described. The converted images may be presented on high dynamic range (HDR) displays so as to increase a user's viewing experience (through an expanded dynamic range) while preserving the artistic content of the displayed information. Techniques disclosed herein selectively transform SDR images to HDR images by determining if the SDR images were created from HDR images (e.g., through the fusion of multiple SDR images) and if their quality is such as to permit the conversion without introducing unwanted visual artifacts. The proposed techniques apply a sigmoidal inverse tone mapping function configured to provide a perceptual-based tone mapping. Values for the function's tuning parameters may be set based on what may be determined about the original HDR-to-SDR mapping operation.
US10402950B1
Methods for quantifying pupil swim are disclosed in order to compensate for the same. A target image, in one embodiment, is displayed on a display of a head mounted display (HMD). Images of the target image are captured from a plurality of positions relative to an optical axis of an optics block of the HMD at an exit pupil of the HMD. The target image includes features and differences between observed locations of the features and their expected locations absent the optics block are determined. From these differences, a wavefront of the optics block is reconstructed and distortion corrections for the optics block are generated using the wavefront. The distortion corrections, when applied to a virtual scene, add pre-distortion that is canceled by the optical imperfections of the optics block as light of the virtual scene with the pre-distortion passes through the optics block.
US10402927B2
Structures and protocols are presented for signaling a decision (processing or transmitting a medical record or other resource, e.g.) conditionally, at least partly based on one or more performance indicia (excess hospital readmissions, e.g.) or therapeutic determinants (prior success, e.g.) or privacy considerations (patient consent, e.g.).
US10402925B2
A method managing wellness of employees is presented. A computer system receives a group of health factors for activities and group of preferences for activities of the employees. The computer system identifies a recommendation for an activity for a portion of the employees based on the group health factors, the group of preferences, and information for locations where recommended activities are to occur. The computer system then sends the recommendation for the activity to the portion of the employees.
US10402919B2
A method for estimating growth stage threshold values for a specific hybrid seed at a specific geo-location using historical growth stage data and observed growth stage data comprises using a server computer system, storing a historical crop growth model of one or more hybrid seeds measured from one or more fields over a particular period of time. The historical crop growth model includes growth stage threshold estimates for one or more hybrid seeds. The server computer system receives, via a network, one or more digital measurement values specifying one or more observed growth stage values for a particular hybrid seed at a particular field over a particular period of time. The server computer system transforms the growth stage thresholds into growth stage duration values for the historical crop data and the observed crop data. The server computer system then generates a posterior distribution of growth stage duration values for the particular hybrid seed using a multivariate distribution of growth stage duration value data, which is comprised of historical and observed growth stage data, a covariate matrix describing correlations between different growth stages, and an error matrix used to represent variations in the multivariate distribution. The server computer system estimates mean duration values and variance values for the different growth stages for the particular hybrid seed and then calculates estimated crop growth threshold values for the particular hybrid seed. The server computer system then sends the estimated crop growth threshold values to one or more external computer systems for the purposes of updating and programming crop management instructions.
US10402917B2
Systems and methods are provided for generating social networking recommendations. A color preference of a first user may be determined from a color palette of a first image associated with the user and/or a color palette of an item associated with the user. Other users may be identified that have a similar color preference as the first user based at least in part on the determined color preference of the first user. Interactions between the first user and one or more other users having similar color preferences with respect to the first user may be facilitated. A social networking recommendation may be generated with respect to the one or more other users having similar color preferences with respect to the first user.