US10856457B2

An electromagnetic shielding film for a cable, which relates to the field of wire manufacturing, for use in resolving the problem of easiness of break of the existing electromagnetic shielding film and the great consumption of time and power in the preparation process. The electromagnetic shielding film comprises a first metal layer (11,21,31,41), a conductive layer (12,22,32,42), and a protective film (13,23,33,43). The first metal layer covers the outer part of a conductor of a cable, and is used for shielding electromagnetic interference and is used as a medium. The conductive layer is disposed on the first metal layer, and is used for shielding electromagnetic interference, and the conductive layer comprises a curing agent, metal particles and polyurethane for carrying the metal particles. The protective film is disposed on the conductive layer and protects the electromagnetic shielding film.
US10856455B1

Electromagnetic interference (EMI) shielding panels and associated methods. An EMI shielding panel includes a binding matrix material and electrically conductive elements distributed throughout the binding matrix material. The electrically conductive elements are aligned such that conductive element longitudinal axes of the electrically conductive elements are at least substantially parallel to a shielding axis of the EMI shielding panel. The electrically conductive elements are configured to at least partially attenuate an incident electromagnetic wave that is incident upon the EMI shielding panel. A method of forming an EMI shielding panel includes providing a shielding mixture that includes electrically conductive elements distributed throughout an uncured binding matrix material, magnetically aligning the electrically conductive elements, and curing the binding matrix material to form the EMI shielding panel.
US10856454B2

Apparatus and method for providing an electromagnetic interference (EMI) shield for removable engagement with a printed circuit board (PCB). A shaped electrically conductive member has a substantially planar member portion with multiple lateral member edges. The sidewalls are disposed at respective lateral member edges and are substantially orthogonal to the substantially planar member portion. At least one of the sidewalls includes at least one first snap-fit latching feature to engage a respective complementary second snap-fit latching feature disposed at one or more of multiple peripheral portions of a PCB.
US10856448B1

Compressed air cooling is disclosed. In an embodiment, an assembly includes an input configured to receive compressed air. The assembly also includes an expansion chamber configured to at least in part contain an expansion of the compressed air. The assembly also includes a base configured to be thermally cooled via the expansion of the compressed air and configured to be coupled to an electronic component.
US10856447B2

A server includes an inner housing disposed within an outer housing such that a channel is defined between them. The inner housing includes a low-power electronic component and a high-power electronic component, and is sealed to protect the components. A first heat sink extends through the inner housing. Heat generated by the low-power electronic component is transferred through an inner portion of the first heat sink to an outer portion of the first heat sink. A second heat sink disposed in the channel is coupled to the high-power electronic component via heat pipes that extend through the inner housing. Heat generated by the high-power electronic component is transferred through the heat pipes to the second heat sink. A fan positioned in the channel causes air to enter the channel through a first vent, flow through the channel, and exit the channel via a second vent to remove the generated heat.
US10856444B2

A cooling device includes a heat reception base configured to receive heat transmitted from an electronic component. The cooling device also include a fin base configured to face the heat reception base. The fin base is also configured to form a ventilation path through which air flows between the fin base and the heat reception base. A heat conductor coupled with the heat reception base and the fin base is also included. The cooling device also includes a plurality of radiation fins configured to extend from the fin base to a side opposite to the heat reception base. The fin base includes an air outlet configured to communicate with a gap between the radiation fins adjacent to each other.
US10856440B2

An apparatus configured to cool an electronic assembly includes an evaporator configured to evaporate a cooling medium using heat of the electronic assembly, and a power transformer configured to transform energy stored in the evaporated cooling medium into electric power. The cooling medium has an evaporating temperature at atmospheric pressure within a temperature range of 50° C. to 80° C.
US10856438B2

A fan control circuit comprises: a fan controller connected with at least one fan connector, connected with a baseboard management controller (BMC) via integrated circuit bus communication lines and outputting a BMC fan signal wherein said fan controller is powered by a main power supply, and a baseboard status detection circuit connected with the BMC and the fan controller respectively, detecting a heartbeat signal of the BMC, and controlling an output of a fan pulse signal according to the heartbeat signal so as to control a fan connected with the fan controller to operate normally.
US10856432B1

A socket connector assembly includes a socket connector and a cable assembly coupled to the socket connector. The socket connector includes a socket frame having a socket opening and a socket substrate received in the socket opening. The socket substrate includes lower socket conductors electrically connected to a host circuit board and upper socket contacts having deflectable spring beams. The cable assembly includes an outer housing and a paddle card received in a pocket having paddle card contacts at a mating end on a lower surface interfacing with the upper socket contacts. The cable assembly includes cables terminated to the paddle card communicatively coupled to corresponding paddle card contacts. The side walls of the outer housing engage an outer surface of the socket frame to locate the paddle card relative to the socket substrate.
US10856429B2

A slam latch for mounting and unmounting a server in a rack holding a computing system is disclosed. The slam latch includes a permanent magnet. The slam latch further includes at least one magnetically attractive plate separated by a first distance from the permanent magnet, wherein the permanent magnet has a first force of attraction to the at least one plate. The permanent magnet has a second force of attraction to the at least one plate lower than the first force of attraction when the at least one plate is forceably separated from the permanent magnet by a second distance that is greater than the first distance.
US10856421B2

A circuit board is disposed on a substrate and includes a dielectric layer and a circuit layer. The dielectric layer is disposed on the substrate. The circuit layer is embedded in the dielectric layer and has plural traces. Each of the traces has a first top surface and a first bottom surface which are opposite to each other, and the first bottom surface faces toward the substrate. The first top surface is exposed from the dielectric layer, and an area of a vertical projection of the first top surface on the substrate is smaller than an area of a vertical projection of the first bottom surface on the substrate.
US10856419B2

A printed circuit board assembly (1) is provided that comprises a stacked or folded printed circuit board populated by components (2, 3), wherein printed circuit board regions (10, 11, 12) lying opposite one another are electrically connected to one another at least one edge, and wherein the printed circuit board and the components (2, 3) are encased in an encapsulation (4), and wherein at least one separating element (5) is located inside the encapsulation and between each pair of opposing and electrically connected printed circuit board regions (10, 11, 12).
US10856416B2

Disclosed herein is an electrical connector. The electrical connector comprises a flexible printed circuit comprising electrical elements on a flexible substrate. The electrical elements each comprises a solder pad and contact pad connected by a link. The electrical connector also comprises a base to at least partially surround the flexible printed circuit. The base comprises a connection interface to facilitate electrical connection with the flexible printed circuit through the base. The electrical connector further comprises a receptacle to couple to the base to partially enclose the flexible printed circuit. The receptacle exposes a portion of the flexible printed circuit to facilitate selective electrical connection with the flexible printed circuit through the receptacle.
US10856403B2

A power electronics module and a method of producing a power electronics module. The power electronics module includes multiple of power electronic semiconductor chips incorporated in a housing and attached to a substrate, and a heat transfer structure attached to the substrate and having a bottom surface which forms an outer surface of the module and which is adapted to receive a surface of a cooling device, wherein the heat transfer structure includes a compressible base plate.
US10856400B2

In some aspects, a plasma torch head for a plasma arc torch can include ports disposed within a base portion that are configured to receive fluids and electrical signals from a plasma torch lead via a plasma torch receptacle, the ports being shaped to align the torch head and the plasma torch receptacle during connection and including: a central coolant supply port to convey a liquid coolant to the torch head, the central coolant supply port extending a length to primarily align the plasma torch head with the torch receptacle, the central coolant supply port further including a flat surface shaped to secondarily align the torch head with the torch receptacle upon mating engagement, and an ohmic contact connector defining a tertiary alignment feature; and a connector disposed about the base portion shaped to engage with and couple to the torch receptacle.
US10856399B2

A device for generating an atmospheric-pressure plasma is disclosed. In an embodiment the device includes a piezoelectric transformer comprising an input region and an output region, wherein the input region is designed to convert an applied alternating voltage into a mechanical oscillation, wherein the output region is designed to convert a mechanical oscillation into a voltage, and wherein the output region adjoins the input region in a longitudinal direction, a contact element fastened to the piezoelectric transformer, the contact element being designed to apply the alternating voltage to the input region and a holder, wherein the contact element is connected to the holder by a form-fit connection, in such a manner that a movement of the piezoelectric transformer in the longitudinal direction, relative to the holder, is prevented.
US10856394B2

A load control system may be configured using a graphical user interface software. The graphical user interface software may display a first icon and a second icon. The first icon may represent a first electrical device and the second icon may represent a second electrical device. The first icon and the second icon may represent the relative location of the first electrical device and the second electrical device within a load control environment. The graphical user interface software may display a line from a selected icon (e.g., first icon) to a cursor. The graphical user interface software may adjust the line from the selected icon, for example, as the cursor moves. The graphical user interface software may define and store an association between the first electrical device and a second electrical device, for example, in response to the user selecting the first icon and the second icon.
US10856386B2

A LED driver circuit includes a first voltage drop module, a constant current driving module, a second voltage drop module, a DIP switch module, an auxiliary winding module, a control module and a loading module. The loading module is driven by converting a direct current voltage. The converted direct current voltage is additionally bucked to generate an optimized voltage that powers the DIP switch module and the control module. The DIP switch module selects a level of a predetermined current and in turn outputs an electrical signal to the control module. Therefore, the control module outputs a corresponding pulse signal for regulating a current passing through the loading module. Meanwhile, the control module calculates a required voltage level for driving. And the control module compares the required voltage level with an actual voltage value output by the auxiliary winding module and then determines the working status of the loading module.
US10856385B2

A lighting apparatus for a motor vehicle having a processing module configured to receive, process and send signals from a data bus of the motor vehicle, and a light-emitting diode (LED) unit configured to emit light of adjustable brightness and prescribed color locus, where the LED unit has a microcontroller and a plurality of LEDs. The microcontroller and the LEDs are surrounded by a package of the LED unit, and the LED unit has a temperature sensor configured to measure a present temperature value on the LED unit and to communicate bidirectionally with the processing module so that the present temperature value on the LED unit is ascertainable by the temperature sensor and the processing module.
US10856371B2

A microwave oven is described herein. In some instances, such a microwave oven may include a housing; a rotating turntable assembly disposed in a cooking cavity of the housing; a probe powered by the turntable assembly, where the probe is configured to measure an environmental condition during a cooking cycle and where the probe is configured to transmit a signal regarding the environmental condition; and a controller disposed in the housing and configured to receive the signal regarding the environmental condition from the probe. A method of operating a microwave oven for sous vide cooking is also disclosed.
US10856370B2

An induction coil with inner and outer coil segments joined together by a transition segment is arranged so that the outer coil segment generally inductively heat treats an annular outer region of a workpiece positioned under the coil, the inner coil segment generally inductively heat treats an annular inner region of the workpiece, and the transition segment traverses at least a portion of the width of the overall annular region of the workpiece to be heat treated. Relative arrangement of inner, outer and transition coil segments provides for controlled induction heat treatment across the overall annular region such as the gear teeth region of an intersecting axes or non-intersecting and non-parallel axes gear.
US10856368B2

A heating cooker system includes a first coil configured to produce a first high-frequency magnetic field by receiving supply of a first high-frequency current, a first inverter circuit configured to supply the first high-frequency current to the first coil, a first heating element positioned in reach of the first high-frequency magnetic field produced by the first coil to be inductively heated by the first coil, a second coil configured to produce a second high-frequency magnetic field by receiving supply of a second high-frequency current, a second inverter circuit configured to supply the second high-frequency current to the second coil, a power receiving coil positioned in reach of the second high-frequency magnetic field produced by the second coil to receive electric power from the second coil, and a second heating element configured to generate heat by the electric power received by the power receiving coil.
US10856364B2

The heat generating apparatus according to the present invention includes: a positive temperature coefficient thermistor heat generating element including an electrode layer; a first electrode terminal; a second electrode terminal; a holder configured to house the positive temperature coefficient thermistor heat generating element; and a heat conductive sheet, in which the heat conductive sheet includes a graphite particle and a polymer compound, a major axis direction of the graphite particle is substantially orthogonal to the surface of the positive temperature coefficient thermistor heat generating element, and the positive temperature coefficient thermistor heat generating element and the holder are assembled in a state in which they are biased so as to apply pressure to the heat conductive sheet.
US10856359B2

A network component is provided. The network component including a component configured such that the network transmits a response message containing an indicator indicating that a first message is an emergency-related request, and such that the network receives a second message containing information associated with a user equipment (UE).
US10856358B2

Apparatuses, systems, and methods for a base station to perform a method construct dynamic hierarchical sub-configurations of bandwidth parts (BWPs) for use in a connected mode discontinuous reception (CDRX) communication session with a user equipment (UE) device. The base station may configure a first BWP at a baseband frequency associated with the CDRX communication session as a default BWP, a second BWP with a wider bandwidth than the first BWP as a transmission BWP, and one or more third BWPs as resting BWPs. The transmission BWP and the one or more resting BWPs may be configured to periodically override the default BWP as the active BWP for a predetermined number of CDRX cycles. The transmission BWP may be utilized, when activated to perform data transmission by UE device, and the one or more resting BWPs may be utilized, when activated, for performing channel measurements.
US10856357B2

Systems and methods of discontinuous operation for wireless devices are provided. In one exemplary embodiment, a method may include preconfiguring (1501), by a user equipment (UE) (1012), the UE for discontinuous receive (DRX) operation in a connected state. The DRX operation may include modes of DRX operation of the UE with each mode corresponding to a level of connectivity of the UE. Further, while (1503) the UE is in the connected state, the method may include determining (1505), by the UE, the level of connectivity of the UE and sending (1507), by the UE, to a network node, a request for the DRX operation. Also, the request may include an indication of the level of connectivity of the UE.
US10856354B2

A radio communication method includes a step in which a MeNB (210) transmits a bearer setup instruction to establish a bearer including a first tunnel and a second tunnel based on a setup request, and a step in which a CN-UP (300) establishes the first tunnel and the second tunnel based on the bearer setup instruction. The CN-UP (300) sets the same identifiers to a TEID on the CN-UP (300) side of the first tunnel and a TEID on the CN-UP (300) side of the second tunnel.
US10856353B2

Methods, systems, and devices for wireless communications are described. A user equipment (UE) operating in a narrowband communications system with a base station may identify a radio link failure (RLF) and then initiate a radio resource control (RRC) connection reestablishment procedure to reconnect with the base station. As part of the connection reestablishment procedure, the UE may transmit a reestablishment complete message to the base station to indicate the connection reestablishment procedure is successful and include a measurement report related to downlink signals received from the base station in the reestablishment complete message. In some cases, the measurement report may include an indication of downlink signal strength and downlink signal quality. As such, the UE may transmit the measurement report in a single RRC message after identifying the RLF. Based on the measurement report, the base station may then perform network planning.
US10856349B2

A method for simultaneously communicating with multiple communication devices in a wireless local area network is described. Multiple uplink data units are received that are simultaneously transmitted by multiple second communication devices. The multiple uplink data units include a management data unit and a traffic data unit. An acknowledgment data unit is generated to acknowledge receipt of the multiple data units. The acknowledgment data unit includes (i) an indication that indicates that the acknowledgment data unit is intended for the multiple second communication devices, and (ii) respective acknowledgment information fields for the multiple second communication devices. The respective acknowledgment information fields include a first acknowledgment information field for the management data unit and a second acknowledgment information field for the traffic data unit. The acknowledgment data unit is caused to be transmitted from the first communication device to the multiple second communication devices.
US10856347B2

A wireless communications method includes: obtaining a first wireless universal model corresponding to a target device, wherein the first wireless universal model comprises a scanning rule applicable to wireless devices, and the scanning rule comprises identification information of the target device; scanning peripheral devices, and determining identification information of a scanned peripheral device based on the scanning rule; determining whether the identification information of the target device matches the identification information of the scanned peripheral device; and in response to that the identification information of the target device matches the identification information of the scanned peripheral device, pairing the scanned peripheral device with the primary device, to establish a communication connection between the scanned peripheral device and the primary device.
US10856341B2

The present disclosure discloses a wireless communication method, user equipment, and an access network device. The method includes: when user equipment (UE) is to transmit an uplink first data flow, if the first data flow is a new data flow and the first data flow belongs to a service pre-authorized to the UE, sending, by the UE, a bearer setup request to an access network device; and receiving, by the UE, a bearer setup response sent by the access network device, where the bearer setup response includes a bearer identifier, and the bearer identifier is an identifier of a bearer that is set up.
US10856339B2

A wireless device receives, one or more messages from a base station. The one or more messages indicate a first scheduling request (SR) resource corresponding to a first logical channel. A first SR is triggered in response to data of the first logical channel becoming available for transmission to the base station. A second SR is triggered in response to data of a second logical channel becoming available for transmission to the base station. when no valid SR resource is being configured for the second SR: a random access procedure is initiated; and the second SR is canceled and the first SR is kept pending. The first SR is transmitted to the base station via the first SR resource in response to the triggering of the first SR. An uplink grant for transmission of a transport block is received.
US10856338B2

Various embodiments of symmetric transmit opportunity (TXOP) truncation (STT) systems and methods are disclosed. One method embodiment, among others, comprises receiving a frame that truncates a TXOP around a first station, and responsive to receiving the frame, sending a second frame that truncates the TXOP around a second station. Others system and method embodiments are disclosed.
US10856336B2

A communication system is disclosed in which a communication device communicates with communication apparatus that operates a cell within which the communication device is located. The cell is operated as a licensed assisted access (LAA) cell and has an associated physical uplink control channel (PUCCH). The communication device has a controller that is adapted to: generate a control signal for transmitting to said communication apparatus; perform a clear channel assessment (CCA) on said PUCCH before the control signal is transmitted; and block transmission of the control signal on said PUCCH when said CCA indicates that said channel is not clear. The communication device is further adapted, when said controller has not blocked said transmission of the control signal, to transmit the control signal to said communication apparatus in said PUCCH.
US10856327B2

A wireless device receives one or more downlink control information (DCI) comprising transmission parameters for a plurality of signals and one or more power control commands. The wireless device calculates a transmission power of each of the plurality of signals employing the one or more power control commands. The wireless device calculates an energy detection threshold based, at least in part, on the transmission power of the plurality of signals. The wireless device performs a listen before talk (LBT) procedure employing the energy detection threshold.
US10856325B2

Apparatuses (including base stations and terminals), systems, and methods for supporting both wideband and narrowband communications are described. In one aspect, a base station supporting first type terminals operating on a first bandwidth and second type terminals operating on a second bandwidth is described, having an information formatter, a transceiver, and a controller. The information formatter generates a Low-end Master Information Block (L-MIB) and a Low-end System Information Block (L-SIB), which are transmitted by the transceiver to first type and second type terminals. The L-MIB includes control information on an L-subframe configuration for supporting a second type terminal and a sub-band configuration of the L-subframe, while the L-SIB includes information on downlink reception and uplink transmission of the second type terminal. When the base station receives a Random Access Channel (RACH) preamble request from one of the terminals, the base station performs the random access procedure.
US10856323B2

Disclosed herein is a method for receiving downlink data in a wireless communication system which includes: receiving configuration of a higher layer parameter set for at least a part of control information for receiving the downlink data from an eNB; receiving first downlink control information (DCI) including only an indicator indicating whether to grant scheduling for the higher layer parameter set; and receiving the downlink data on the basis of control information indicated by the higher layer parameter set, when the first DCI indicates a grant of scheduling for the higher layer parameter set.
US10856319B2

Certain aspects of the present disclosure relate to wireless communication systems, and more particularly, to link-dependent scheduling request (SR) formats for ultra-reliable low-latency communications (URLLC) in communication systems operating according to new radio (NR) technologies. A method is provided, that may be performed by a base station (BS) for wireless communications. The method includes determining one or more channel conditions for a link between the BS and a user equipment (UE). The BS assigns a SR format to the UE based on the one or more channel conditions. The UE receives the SR format assignment and transmits one or more SR transmissions to the BS according to the assigned SR format.
US10856317B2

A method for data receiving at a base station is provided. The base station receives data using a first transmission resource in a first symbol of an uplink control channel from a first UE. The base station receives UL data or control information using a second transmission resource in a second symbol of the uplink control channel from a second UE as well. The first symbol and the second symbol have different numerologies at a same sub band.
US10856313B2

A first network node (110; 111; 112; 130), a wireless device (120) and methods thereof, for managing one or more uplink resources between the wireless device (120) and a wireless communication network (100) are provided. The first network node (110; 11; 112; 130) compiles (204; 401) resource information about uplink resources available for the wireless device (120) to select and request for uplink scheduling. Said resource information associates each one of multiple such uplink resources with one or more downlink reference signals. The first network node (110; 111; 112; 130) sends (205; 402) the compiled resource information to the wireless device (120). The wireless device (120) 10 is thereby enabled to select, based on the resource information and said one or more downlink reference signals, at least one of said uplink resources to request for uplink scheduling.
US10856298B2

A resource information providing apparatus is disclosed, which includes a communication interface unit for receiving, from a first user device, a first request signal including a first time interval allowed to repeatedly receive resource information of an electronic device; and a processor for controlling the communication interface unit such that resource information is repeatedly provided to the first user device at every received first time interval.
US10856297B2

A method, system and computer program product for pre-calculating an RF channel for a short-range, wireless communications low-energy protocol in a connected isochronous stream (CIS) such as, for example BLE, between a master wireless communications device and a slave wireless communication device is disclosed. The method includes calculating an RF channel between the master wireless communications device and the slave wireless communications device for a first sub-event among a plurality of events, where the first sub-event occurs at a first time in the CIS. An RF channel for a subsequent sub-event among the plurality of events is pre-calculated while calculating the RF channel for the first sub-event, where the second sub-event occurs at a second time in the CIS that is subsequent to the first time.
US10856292B2

A communication method and a base station are provided, the method includes: determining, by a base station, a time length of a time domain scheduling unit, a downlink, a guard period and symbols occupied by an uplink, included in the time domain scheduling unit; generating length configuration information of the time domain scheduling unit according to the time length, the downlink, the guard period and the symbols occupied by the uplink; sending the length configuration information to a terminal through radio resource control signaling and/or downlink control information signaling, and informing the terminal of a length configuration of the time domain scheduling unit; implementing, by the base station, a communication with the terminal based on the length configuration. By utilizing the method, it is beneficial for the terminal to acquire time information of time domain resource scheduling, and utilization efficiency of time domain resources is improved.
US10856291B2

A method of transmitting uplink data is provided. The method includes establishing connections with a first serving cell and a second serving cell, determining, by a user equipment (UE), a time period for a device-to-device (D2D) discovery signal communication via the second serving cell, determining, by the UE and based on an uplink grant received via the first serving cell, a first subframe associated with an uplink signal to an evolved NodeB (eNB) associated with the first serving cell, and in response to determining that the first subframe overlaps in time with the time period, refraining from transmitting the uplink signal in the first subframe, and transmitting, based on a retransmission timing, the uplink signal.
US10856274B2

Embodiments of this application provide a power headroom reporting method and apparatus. Impact of introduction of multi-beam transmission, a plurality of time-frequency resource configurations, or an uplink multi-waveform technology on a power headroom is considered, so that the power headroom is calculated and reported more accurately, to help a network side make a scheduling decision, thereby improving communication performance.
US10856271B2

Methods and apparatus are described for transmitting a hybrid automatic repeat request-acknowledgement (HARQ-ACK) bit in a physical uplink shared channel (PUSCH) by a user equipment (UE) in a communication system. A method includes acquiring information on at least one offset for HARQ-ACK; obtaining at least one HARQ-ACK bit, based on a number of cells and a number of transport blocks for each of the cells; determining a number of coded symbols for the at least one HARQ-ACK bit, based on a number of the at least one HARQ-ACK bit and one offset of the at least one offset, wherein the one offset is identified according to the number of the at least one HARQ-ACK bit; obtaining coded HARQ-ACK bits based on a (32,O) block code, wherein O is the number of the at least one HARQ-ACK bit; and transmitting the coded HARQ-ACK bits in the PUSCH, based on the number of coded symbols for the at least one HARQ-ACK bit.
US10856270B2

The present specification provides a method for transmitting multiple uplink control information (UCI) on a physical uplink control channel (PUCCH) in a wireless communication system.More specifically, the method performed by a user equipment (UE) includes receiving, from a base station, control information related to PUCCH resources for transmitting the multiple UCI, wherein the control information includes information related to a number of REs of the PUCCH resources, information related to a modulation order, and information related to a configured maximum code rate; determining a PUCCH resource for transmitting the multiple UCI by comparing a value obtained by multiplying the configured maximum code rate and the modulation order by the number of REs corresponding to the PUCCH resources indexed in ascending order with a size of a payload for the multiple UCI; and transmitting, to the base station, the multiple UCI on the determined PUCCH resource.
US10856268B2

Embodiments of the present disclosure includes example subframe configuration methods and related devices. One example method includes configuring, by a network-side device, a target subframe, where the target subframe includes at least one sounding reference signal (SRS) symbol used to send an SRS signal. The network-side device can then send first configuration signaling to a terminal device, where the first configuration signaling includes a resource configuration of the target subframe or an SRS configuration of the target subframe.
US10856267B2

This application discloses example information indication methods and related devices. In one example method, a terminal device receives first information used to instruct the terminal device to receive a first channel in a first time unit, and second information used to instruct the terminal device to receive a second channel in a second time unit. The terminal device receives the first channel based on the first information. When the first time unit is equal to the second time unit, the terminal device receives the second channel based on the first information, where the second information is a first indicator value. When the first time unit is not equal to the second time unit, the terminal device receives the second channel based on the second information where the second information is a second indicator value.
US10856266B2

Provided are a method for realizing device-to-device communication relay selection, a network control node and a user equipment. The method includes: a network control node receiving relay-related information sent by user equipment and determining a relay node; and the network control node sending device-to-device communication relay configuration information to the determined relay node. In the technical solution, by sending relay-related information in a network to perform selection or configuration of a relay node, a corresponding solution is provided for a scenario for which relay selection is not provided, and thereby the selection of the relay node is realized.
US10856255B2

A paging procedure of a mobile telecommunications system is modified to page a terminal using all the transceiver node cells in the coverage area allocated to the terminal that operate in the frequency bands indicated by frequency band capability data for the terminal, but not using the transceiver node cells in the coverage area allocated to the terminal that operate only in other ones of the frequency bands. In one embodiment a control entity is operable to initiate an initial paging procedure by paging based on the characteristic of the terminal obtained by the control entity, and to initiate a subsequent paging procedure if no paging response is received from the terminal. In another embodiment, coverage area allocation means allocates each of the transceiver node cells to one or more of the coverage areas in dependence upon on which of the frequency bands the cell is capable of communicating.
US10856253B1

An information handling system, may include a positional sensor to estimate a position of the information handling system relative to a light-enabled 5G access point; a plurality of light sensors to detect light emitted from a light source of the light-enabled 5G access point in an area to determine relative angle data descriptive of an angle of the information handling system relative to the light-enabled 5G access point; a light sensing directionality comparison module to compare the estimated position of the information handling system with the relative angle data and update location data; and a beamsteering module to: conduct beamsweeping of a plurality of angles for a mm-wave antenna array using the light sensing directionality location data as an initial seed angle; determine a selected beamsteering pattern from the information handling system to the light-enabled 5G access point to initiate the mm-wave communication.
US10856250B2

The present disclosure is related to sending of a one time identifier of a UE during the NAS procedure. Specifically, the present disclosure relates to determining whether to use same one time identifier or different one time identifier during registration retry procedure.
US10856244B2

This disclosure provides systems, methods, apparatus, including computer programs encoded on computer storage media for orthogonal multiplexing of high efficiency (HE) and extremely high throughput (EHT) wireless traffic. Devices in a wireless local area network (WLAN) may operate under HE or EHT conditions. An access point (AP) may support both HE and EHT communications with WLAN devices. To enable substantially simultaneous downlink HE and EHT transmissions and substantially simultaneous uplink HE and EHT transmissions, the AP may support orthogonal frequency-division multiple access (OFDMA) of HE and EHT transmissions. For example, pre-HE and pre-EHT modulated fields, HE and EHT modulated fields, and payloads may be aligned in time for the HE and EHT transmissions. The AP may ensure orthogonality for multiplexing the HE and EHT transmissions based on the alignment. In some implementations, a trigger frame may be utilized to indicate uplink transmission alignments.
US10856231B2

Systems and methods for prediction of activity session for mobile network use optimization and user experience enhancement are disclosed. In one aspect, embodiments of the present disclosure include a method, which may be implemented on a system for enhancing user experience with a mobile application on a mobile device including, using user activity characteristics at a mobile device and server activity characteristics of a host server to anticipate a future activity session at the mobile device and transferring impending content from the host server the mobile device to pre-cache content on the mobile device to support predicted data activity for the future activity session that has been predicted.
US10856230B2

This disclosure relates to techniques for selecting a low power measurement mode (LPM mode). A wireless device may enter an idle mode, determine that it is stationary, and enter an LPM mode. In the LPM mode, the wireless device may perform cell measurements at a reduced frequency.
US10856223B2

The invention is directed at a method of distributing system information to one or more mobile terminals in a cellular telecommunications network. The network comprises at least one signaling cell serving a first coverage area, and one or more data cells associated with said signaling cell, each one of said data cells serving a respective partial coverage area covering at least a part of the first coverage area. For each one of said data cells, the respective data cell is operated in either an active or inactive communication mode depending on whether there is at least one of said mobile terminals present in the partial coverage area of said respective data cell, and whether said at least one mobile terminal operates in an active terminal mode and is not served by other data cells.
US10856209B2

The disclosure relates in some aspects to managing paging area information for a user terminal (UT) and connection signaling. In some aspects, paging area information is provided for an idle UT by defining a default paging area code (PAC) that is known by the network and the UT. In some aspects, paging area information is communicated via connection signaling. In some aspects, connection signaling may be used to force a UT to invoke an update procedure (e.g., a reconnection).
US10856206B2

A method is disclosed for providing image data to a central unit. In an embodiment, the method includes acquiring image data using a mobile imaging device, the mobile imaging device being a mobile communication device or being connected to a mobile communication device; determining bandwidth information relating to a locally available bandwidth for a radio network or multiple separate radio networks; at least one of selecting a communication location for the mobile communication device based on the bandwidth information determined, and selecting the radio network or multiple separate radio networks based on the bandwidth information determined; and at least one of moving the mobile communication device to the selected communication location selected, and using the radio network or multiple separate radio networks selected to transfer the image data to the central unit.
US10856202B2

A wireless device receives a packet from a sender node according to a routing protocol and determines a position information of the sender node. The wireless device calculates a distance to the sender node from the wireless device and discards the packet if the distance is outside of a range. Otherwise, the packet is processed according to the routing protocol. As a result, the approach may be suited to testing type environments where the wireless devices are proximately placed and yet one may wish to simulate real-world distances between the wireless devices.
US10856199B2

Disclosed herein are systems and techniques for auxiliary master and/or auxiliary call support functionality. For example, in some embodiments, a communication system with auxiliary master functionality may include a master node coupled to a plurality of downstream slave nodes, wherein at least one of the slave nodes may perform master node functions when the master node is disconnected from the system.
US10856194B2

In a cellular communications network, user equipment connected to a base station, the active mode handover behavior of the base station for selecting handover targets is set to be different from idle mode reselection. The MME provides its eNodeBs with supplemental information about other PLMNs which can be considered for handover in accordance with dynamic criteria such as the time, location, subscriber group, etc to allow dynamic handover to other PLMNs in accordance with the commercial agreements.
US10856187B2

There is provided a communication apparatus including: a first communication unit having a first communication range; a second communication unit having a second communication range wider than the first communication range; a control unit which transmits a request signal for starting communication via the second communication unit from the first communication unit to another communication apparatus, and transmits authentication information from the second communication unit to the another communication apparatus in the case where it is determined that communication with the another communication apparatus via the second communication unit is possible based on a response signal after the first communication unit receives the response signal in response to the request signal; and a notification unit which notifies a user after the second communication unit receives a result of authentication based on the authentication information.
US10856185B2

Channel reservation systems and methods are disclosed herein, which schedule transmissions on a shared radio medium that is shared by a plurality of licensed network operators. In embodiments, priority access is pre-assigned to the network and the method determines whether to send a transmission based at least on the transmitter's priority class as compared to another transmitter's priority class and to which transmitter the time slot of a signal is dedicated. In embodiments, priority access may not be preassigned to the network and pre-grants may be used in conjunction with CR-Ts and CR-Rs to determine whether a transmitter transmits.
US10856183B2

A method of providing a network slice service includes a mobile network operator (MNO): providing one or more service profiles to a virtual service provider (VSP) serving a user population including a plurality of user devices, each service profile comprising attributes defining characteristics of a respective network slice service offered by the MNO, the network slice service comprising any one or more of: a Virtual Network with E2E service requirements; a Virtual Network with a specified network topology; and a virtualized infrastructure. The MNO receives a request for a selected network slice service from the VSP; determines whether or not the requested service can be provided; and responsive to determining that the requested service can be provided: sending a Service Level Agreement (SLA) for the network slice service to the VSP; and subsequently facilitating a network slice service instance in accordance with the SLA.
US10856178B2

Provided are a radio transmission apparatus, a radio receiving apparatus, a radio communication system, and a communication method that make it possible for the radio transmission apparatus performing OFDMA transmission to highly efficiently determine a radio receiving apparatus that is caused to participate in the OFDMA transmission. The radio transmission apparatus that performs OFDMA transmission with a plurality of radio receiving apparatuses includes a reception unit that has a function of performing carrier sense and a function of receiving a function information response frame including function response information indicating that a function of performing the OFDMA transmission is included, and a transmission unit that has a function of switching whether or not to transmit a frame to at least one of the plurality of radio receiving apparatuses on a basis of the carrier sense.
US10856176B2

As a channel busy ratio (CBR) is defined to measure the congestion of a PC5 interface in order to support an effective vehicle-to-everything (V2X) communication, an eNodeB (eNB) transmits CBR information of a sidelink channel to a user equipment (UE) for each resource pool used for V2X communication. The user equipment which has received the CBR information determines if there is a usable CBR and, if it is determined that there is no usable CBR, can use the received CBR information.
US10856168B2

The present invention relates to a wireless communication system. More specifically, the present invention relates to a method and a device for performing measurement for aerial UE in wireless communication system, the method comprising: informing a network of location information of the UE, which is used for figuring the network out current status of the UE which is in airborne status or is staying or hovering on the ground; receiving triggering conditions for measurement reporting which is associated with the informed location information of the UE; performing a measurement for a serving cell; and reporting result of the measurement to the serving cell if at least one of the triggering condition for the serving cell is met.
US10856166B1

A wireless relay serves wireless User Equipment (UEs). In the wireless relay, a user transceiver exchanges user signaling and user data with the UEs and exchanges access signaling and the user data with a network transceiver. The network transceiver determines wideband radio measurements and wirelessly exchanges the user data and relay signaling with a wireless data network over the wideband. The relay signaling includes the access signaling and the wideband radio measurements. The network transceiver determines when communication quality for the UEs falls below a quality threshold. In response, the network transceiver determines sub-band radio measurements for the sub-bands within the wideband and wirelessly exchanges additional relay signaling with the wireless data network over the sub-bands. The additional relay signaling has the sub-band radio measurements. The network transceiver may receive instructions to determine sub-band radio measurements instead of wideband radio measurements.
US10856158B2

A system, e.g., associated with a telecommunications network, includes first and second registry devices. In some examples, the first registry device receives a registration message. The second registry device receives a query specifying a type (NFType) of a network function and forwards the query to the first registry device based at least in part on the NFType. The first registry device responds, and the second registry device forwards the response. In some examples, the query specifies a service class and the second registry device forwards the query based at least in part on the service class. In some examples, the first registry device sends an indication of the registration to the second registry device, and the second registry device responds to the query based at least in part on the received indication and on at least one of an NFType or a service class of the query.
US10856154B2

Aspects of the disclosure provide a method for restoring connectivity among partitioned segments in a partitioned wireless sensor and actor network (WSAN). The method includes placing batches of mobile nodes at locations surrounding mobile nodes previously placed within a damaged area of the partitioned WSAN, spreading the batches of mobile nodes, determining whether connectivity among the partitioned segments has been restored, and repeating placing batches of mobile nodes, spreading the patches of mobile nodes, and determining whether connectivity among the partitioned segments has been restored when connectivity among the partitioned segments is not restored.The method is based on a distributed dropping approach which introduces minimal disruption to previously deployed mobile nodes, and decreases total traveled distance a mobile node might move compared with a traditional central dropping approach. Thus, the distributed dropping approach can expedite the restoration process, reduce power consumption, and expand survival time of a WSAN.
US10856148B2

Methods and apparatus for user authentication and human intent verification of administrative operations for eSIMs of an eUICC included in a mobile device are disclosed. Certain administrative operations, such as import, modification, and/or export, of an eSIM and/or for an eUICCs firmware can require user authentication and/or human intent verification before execution of the administrative operations are performed or completed by the mobile device. A user of the mobile device provides information to link an external user account to an eSIM upon (or subsequent to) installation on the eUICC. User credentials, such as a user name and password, and/or information generated therefrom, can be used to authenticate the user with an external server. In response to successful user authentication, the administrative operations are performed. Human intent verification can also be performed in conjunction with user authentication to prevent malware from interfering with eSIM and/or eUICC functions of the mobile device.
US10856142B2

A method and a device for performing communication by using a virtual subscriber identity module are used to provide a mode in which the device can perform communication without a SIM card. The method includes: receiving, by a first device, a virtual subscriber identity module data package sent by a second device by using a short range communications protocol, where the virtual subscriber identity module data package carries a virtual subscriber identity, and the virtual subscriber identity is used to uniquely identify a user using the first device when the first device performs communication in a network provided by a mobile communications operator; obtaining, by the first device, the virtual subscriber identity by using the virtual subscriber identity module data package; and communicating, by the first device by using the virtual subscriber identity, with another device in the network provided by the mobile communications operator.
US10856139B2

A method for reporting UE capability in a wireless communication system which includes receiving capability indexes related to the UE capability from a network; and transmitting at least one of the capability indexes and difference configuration of the UE capability compared to the at least one of the capability indexes to the network.
US10856116B1

A client-server system and a blockchain method for calculating whether a time-crucial shipment is located according to an expectation comprising a client device adapted for being adhered to or placed within a time-crucial package shipment; and a remote special purpose computer server comprising a transit plan schedule database based on pickup time and location stored in memory, the remote special purpose computer server being programmed to calculate a location of the client device based on data accessed from a Wi-Fi access point location database, the transmitted identification data, and the transmitted signal strength data, and compare the calculated location to an expected location based on common carrier schedule transit plan pickup time and delivery location received from third party database sources.
US10856107B2

A method and system for broadcasting a beacon identifier identifying the beacon system from the beacon system to a user device, receiving the beacon identifier at a content determination system from the user device, determining contextual content at the content determination system based on the beacon identifier, transmitting the contextual content from the content determination system to the user device, where the user device automatically transmits the contextual content to the first beacon system in response to receiving the contextual content, receiving the contextual content at the beacon system from the user device, and controlling the output display with the beacon system to present the contextual content.
US10856105B2

A wireless electronic device (1900) used in a wireless communication system is described. The wireless electronic device performs operations including detecting a person in a geographical area serviced by a base station and communicating with the UE responsive to the detecting the person in the geographical area serviced by the base station. The UE is associated with the person in the geographical area serviced by the base station. Related methods are disclosed.
US10856102B2

Embodiments are generally directed to sharing of environmental data for client device usage. An embodiment of a client device includes a processor; an environmental sensor to sense an environmental condition, an output of the sensor being a local environmental sensor value; and a wireless receiver to receive environmental data for a certain proximity area from a second client device according to an environmental data sharing protocol via a wireless network. The environmental data sharing protocol allows receipt of the environmental data without requiring pairing, bonding, or other relationship of client devices.
US10856098B1

Determination of an acoustic filter for incorporating local effects of room modes within a target area is presented herein. A model of the target area is determined based in part on a three-dimensional virtual representation of the target area. In some embodiments, the model is selected from a group of candidate models. Room modes of the target area are determined based on a shape and/or dimensions of the model. The room mode parameters are determined based on at least one of the room modes and the position of a user within the target area. The room mode parameters describe an acoustic filter that as applied to audio content, simulates acoustic distortion at the position of the user and at frequencies associated with the at least one room mode. The acoustic filter is generated at a headset based on the room mode parameter and is used to present audio content.
US10856091B2

An apparatus, including an external component of a medical device including an electromagnetic actuator configured such that static magnetic flux of the electromagnetic actuator removably retains the external component to a recipient thereof.
US10856088B2

This disclosure provides a method, performed at a hearing device, for updating a hearing device configuration at the hearing device of a hearing system. The hearing system comprises the hearing device, a fitting device configured to be controlled by a dispenser and a server device. The method comprises receiving a configuration package and a configuration authentication package, the configuration authentication package comprising a dispenser certificate. The method comprises determining if an update criterion is fulfilled. The update criterion is based on verifying the configuration authentication package. The method comprises updating the hearing device configuration based on the configuration package if the update criterion is fulfilled.
US10856082B1

An audio system with sound-field-type nature sound effect includes: a first primary channel playing device for playing a primary audio signal generated according to a left channel audio signal and/or a right channel audio signal; a first secondary signal circuit for generating a first secondary audio signal according to the left channel audio signal and the right channel audio signal; and a first sound field control playing device connected to the first secondary signal circuit and adapted to play the first secondary audio signal; wherein a first playing delay period exists between the playing of the first secondary audio signal and the playing of the primary audio signal; wherein the first secondary audio signal played by the first sound field control playing device does not undergo audio mixing with the primary audio signal by a first audio mixing circuit.
US10856077B2

The amount of far-field noise transmitted by a primary communication device in an open-plan office environment is reduced by defining an acoustic perimeter of reference microphones around the primary device. Reference microphones generate a reference audio input including far-field noise in the proximity of the primary device. The primary device generates a main audio input including the voice of the primary speaker as well as background noise. Reference audio input is compared to main audio input to identify the background noise portion of the main audio signal. A noise reduction algorithm suppresses the identified background noise in the main audio signal. The one or more reference microphones defining the acoustic perimeter may be included in separate microphone devices placed in proximity to the main desktop phone, microphones within other nearby desktop telephone devices, or a combination of both types of devices.
US10856073B2

This application relates to switch arrangements, in particular switch arrangements suitable for switchable connecting nodes of audio driving circuitry (100) that may, in use, experience a signal swing depending on an output audio driving signal (VD). A switch arrangement (300) comprises first and second transistors (301 and 302) of the same polarity type connected in series between the first and second nodes, with a third transistor (303) connected between a defined voltage (VS) and an intermediate node (N3) between the first and second transistors. The first transistor (301) has a drain connection to the first node (N1) and a source connection to the intermediate node (N3). The second transistor (302) has a drain connection to the second node (N2) and a source connection to the intermediate node (N3). The third transistor (303) has a source connection to the defined voltage (VS) and a drain connection to the intermediate node (N3) and regulates the voltage at the intermediate node when the switch arrangement is in an off state.
US10856072B2

An audio device includes a signal processor that processes an audio signal based on a predetermined parameter, a level adjuster that adjusts a level of the audio signal, a speaker that receives the audio signal and outputs sound, an interface that receives an instruction to switch the parameter, and a controller that decreases gain of the level adjuster when receiving the instruction to switch the parameter, and then performs gain control to increase the gain of the level adjuster so that a change amount of the gain of the level adjuster for a predetermined period of time is less than or equal to a predetermined value.
US10856070B2

A throat microphone system and method are disclosed. Certain people may have difficulty vocalizing, such as those suffering from neurodegenerative diseases. The throat microphone system includes a microphone unit that wirelessly communicates with an external device, such as a receiver unit in combination with a smartphone or a smartphone. The microphone unit includes a microphone and a wireless transceiver to wirelessly transmit sound data generated by the microphone. The smartphone processes the sound data in order to increase the intelligibility and/or the volume. Further, the microphone unit may attach to the neck of the wearer and may encircle the neck less than the entire perimeter of the neck. In this way, the microphone unit may be easily removed in the event the wearer is in distress. Moreover, the throat microphone system may include a non-audio sensor, such as a vibration sensor or an electromyograph sensor, in order to determine whether the wearer is voicing speech.
US10856061B2

A speaker device includes a housing that has a sound guide space having a vertically flattened shape, a first speaker disposed in the housing to be oriented toward a front of the housing, and a second speaker that is disposed in the housing and is oriented upward or downward to output sound into the sound guide space positioned at an internal upper part or an internal lower part of the housing. The sound guide space opens at an opening that is formed in vertically flattened form in the housing, and the opening has a vertical height that is smaller than an aperture of the first speaker.
US10856057B2

Methods and devices for manipulating optical signals. In one example, a LCOS (liquid crystal on silicon) device includes a surface bearing an anti-reflection structure. The anti-reflection structure includes i) a physical surface having a topography with features having lateral dimensions of less than 2000 nm and having an average refraction index which decreases with distance away from the surface; and ii) a configuration of the topography, averaged over lateral dimensions of greater than 2000 nm, varies with lateral position on the surface.
US10856048B2

Systems and methods are provided for sharing movie information online. In one implementation, the user of an online movie service can share information about the contents of a library or other such rights locker, e.g., under Ultraviolet™ and DECE. Users may also share likes and dislikes. The movie service may make suggestions based on the contents of the user's library and the contents of other user's libraries, such as those of the user's designated friends. A user can become a follower or fan of another user and receive recommendations based on the target user's profile or specific recommendations made by the target. The user can receive a credit on their account or on a related account when another user makes a purchase that is attributable to that user, e.g., from a recommendation. A user may be designated as an influencer when followed by a sufficient number of other users.
US10856046B2

A buffer status metric representing a current amount of video packets in a video playback buffer (303) of a user device (300). A buffer status action is triggered based on the buffer status action and at least one of a mobility metric representing a mobility pattern of the user device (300) and a radio quality metric representing a signal strength of a radio channel carrying video packets towards the user device (300). The embodiments also relate to determination of a buffer control model (142) that can be used in order to control the video playback buffer based on the input metrics. The embodiments achieve a more efficient control of video playback buffers (303) and may reduce the risk of freezes during video playback.
US10856034B2

Systems and methods are described for adapting a second user input device to resemble a first user input device while preserving new functionalities not available in the first user input device. The systems and methods may identify, based on identifiers of the first and second user input devices, a first and second set of device functionalities provided by the devices. The systems and methods may compare the sets of device functionalities to determine a set of common device functionalities and, in response, modify the display of an input of the second user input device to correspond to visual attributes of an input of the first user input device.
US10856030B1

A request for a video may be received from a client device. A determination whether to transmit the video at a first video resolution or a second video resolution based on a quality of the video at the first video resolution when converted to the second video resolution at the client device may be made. The video may be transmitted to the client device at the determined first video resolution or the second video resolution.
US10856022B2

The present disclosure is directed toward systems and methods for dynamically providing digital content to client devices at different insertion points of a digital video based on predicted total value of inserting the digital content and predicted engagement loss of inserting the digital content. For example, system and methods described herein determine that an insertion point is approaching in an actively playing digital video. In response, systems and methods identify digital content for insertion at the insertion point. In one or more embodiments, the described systems and methods insert the identified digital content by comparing the predicted total value of inserting the digital content at the insertion point of the digital video and a predicted engagement loss associated with inserting the digital content at the insertion point of the digital video.
US10856018B2

Methods and systems provide control of media synchronization using time stamp pairs. In an embodiment, a first device may request a time stamp from a second device. The first device may determine any de-synchronization between the first and second devices based on the requested time stamp and characteristics of the request. The first device may define a rate scalar based on the determined de-synchronization. A sample rate conversion may be performed for the first device based on the rate scalar such that the outputs of the first device and the second device are synchronized.
US10856016B2

Disparate live output stream manifests are generated based on user selection. When current media programming content in an existing first disparate live media output stream is streamed on a media player, one or more processors determine a set of alternate live input streams and/or a pre-encoded media assets, and associated alternate live media output manifests and/or pre-encoded media asset manifests, respectively, based on one or more parameters and metadata associated with the existing first disparate live media output stream. Based on an indicator in an existing first disparate live media output stream manifest, alternate content options are transmitted to the media player. A response is received corresponding to a selection of an alternate live input stream and/or a pre-encoded media asset, and an alternate live input stream manifest and/or pre-encoded media asset manifest is inserted into the existing first disparate live media output stream manifest as next programming media content.
US10856015B2

Cache (DANE) located along a transmission path between client terminals (CT) and at least one server (SE) and configured to receive requests from client terminals (CT) for segments of a multimedia content available at several representations, which comprises: —an interface of connection (1) for receiving, from a first client terminal, a first request for a preferred representation and at least one alternative representation of a given segment of said multimedia content; —a matching module (5) configured to determine if at least one ongoing representation of said given segment, already requested by the cache from a server for a further client terminal, matches the preferred representation or an alternative representation of the first request.
US10856014B2

A multicast content delivery system can use both multicast and unicast streams to efficiently use available bandwidth to deliver content. Available multicast content can be identified to gateways serving consumption devices, and the gateways can receive requests for unicast content deliver, but honor the requests with multicast group sessions.
US10856011B2

Efficient image compression for video data characterized by a non-neutral dominant white point is achieved by transforming the input video signal into a de-correlated video signal based on a color difference encoding transform, wherein the color difference encoding transform is adapted based on the dominant white point using an algorithm. The adapting algorithm is designed for optimizing low-entropy output when the white point is other than a neutral or equal-energy value. Decompression is handled conversely.
US10856010B2

A method of decoding a bitstream by an electronic device is provided. A directional mode of a block unit is determined from the bitstream. A plurality of reference lines neighboring to the block unit are determined based on the block unit. Each of the reference lines includes a plurality of neighboring samples. A plurality of reference samples are determined along an orientation of the directional mode based on the neighboring samples in at least one of the reference lines. A smoothed sample is generated for reconstructing an image frame including the block unit based on the reference samples.
US10856007B2

Techniques are described related to output and removal of decoded pictures from a decoded picture buffer (DPB). The example techniques may remove a decoded picture from the DPB prior to coding a current picture. For instance, the example techniques may remove the decoded picture if that decoded picture is not identified in the reference picture set of the current picture.
US10856006B2

A method and system for motion vector refinement in a search space for multi-reference inter-prediction are provided. Two or more reference pictures are selected, one of those used for motion vector refinement. Based on an initial estimate of a motion vector to the reference picture for motion vector refinement, a search space in this reference image is constructed. Using template matching, the first motion vector is refined. The second motion vector to another reference picture is calculated using its initial estimate, the initial estimate of the first motion vector and the refined first motion vector. The search spaces used in template matching in different iterations overlap.
US10856003B2

An example device for coding video data includes a memory configured to store video data, and one or more processors implemented in circuitry and configured to code a first motion vector difference (MVD) representing a difference between a first motion vector of a current block of video data predicted using affine prediction and a first motion vector predictor (MVP) for the first motion vector, predict a second MVD from the first MVD for a second motion vector of the current block, and code the current block using affine prediction according to the first motion vector and the second motion vector. Predicting the second MVD from the first MVD in this may reduce bitrate of a bitstream including coded video data, as well as improve processing efficiency.
US10856002B2

The present teachings relate to the field of video encoding. In particular, the present teachings relate to a method, device, and system for encoding a sequence of frames wherein a motion level of image data of an initial frame in the sequence of frames is determined to be below a motion level threshold. The encoding method described herein may reduce the bit rate for the encoded sequence of frames, while avoiding that the encoded video stream looks unnatural or frozen when decoded and displayed.
US10856000B2

A video encoder including a first buffer containing a plurality of data values defining a macroblock of pixels of a video frame. The video encoder also includes a second buffer and an entropy encoder coupled to the first and second buffers and configured to encode a macroblock based on another macroblock. The entropy encoder identifies a subset of the data values from the first buffer defining a given macroblock and copies the identified subset to the second buffer, the subset of data values being just those data values used by the entropy encoder when subsequently encoding another macroblock.
US10855999B2

A higher coding efficiency for coding a significance map indicating positions of significant transform coefficients within a transform coefficient block is achieved by the scan order by which the sequentially extracted syntax elements indicating, for associated positions within the transform coefficient block, as to whether at the respective position a significant or insignificant transform coefficient is situated, are sequentially associated to the positions of the transform coefficient block, among the positions of the transform coefficient block depends on the positions of the significant transform coefficients indicated by previously associated syntax elements. Alternatively, the first-type elements may be context-adaptively entropy decoded using contexts which are individually selected for each of the syntax elements dependent on a number of significant transform coefficients in a neighborhood of the respective syntax element, indicated as being significant by any of the preceding syntax elements.
US10855996B2

A technique is described for selecting an encoder to encode video captured by a network-connected camera system based on characteristics of deployment of the network connected cameras system. The network-connected camera system may include one or more cameras and a base station connected to each other via a network, which can be a wireless network. A processing system, for example at the base station, receives data indicative of characteristics of deployment of the network-connected camera system, processes, the received data to select an encoder, and causes the one or more cameras to process captured video using the selected encoder. In some embodiments, encoder selections can be continually updated based on changes in the deployment of the network-connected camera system.
US10855994B2

An image decoding method according to the present invention includes: receiving information on a set of reference pictures for configuring a set of reference pictures of a current picture, wherein the information on the set of reference pictures includes the most significant bit (MSB) information that may calculate the MSB of the picture order count (POC) of a long-term reference picture relative to the current picture, and flag information that represents whether there is MSB information; and eliciting the set of reference pictures by using received MSB information when the flag information is 1, and performing marking on the reference picture, wherein the flag information may be 1 when a temporal sub-layer identifier is 0, and there is at least one POC value for which a remainder obtained by dividing by a maximum value MaxPicOrderCntLsb capable of being represented by the LSB is the same as the least significant bit (LSB) of the POC of the long-term reference picture, in a set of POCs of a previous picture including POC values related to the previous picture that may not be discarded without affecting whether other pictures of the same temporal layer may be decoded.
US10855992B2

Video encoding and decoding techniques for bi-prediction with weighted averaging are disclosed. According to certain embodiments, a computer-implemented video signaling method includes signaling, by a processor to a video decoder, a bitstream including weight information used for prediction of a coding unit (CU). The weight information indicates: if weighted prediction is enabled for a bi-prediction mode of the CU, disabling weighted averaging for the bi-prediction mode.
US10855979B2

A Near-Eye-Display (NED) device utilizes eye tracking to interpret gaze direction as user input for hands free positioning of virtual items. The NED device includes an eye tracking system to monitor gaze direction and a display component that renders virtual items within a user's view of a physical real-world environment. The NED device receives an indication that the user desires to adjust a position of the virtual item. In response, the NED device uses tracks the user's eye movements to dynamically change the position at which the display component is rendering the virtual item. In this way, a NED device may identify when a user desires to adjust a position at which a virtual item is being rendered and then may enable the user to make the desired adjustments simply by “dragging” the virtual item with deliberate and controlled eye movements.
US10855962B2

A projector includes a measurement unit and a correction parameter generation unit. The measurement unit measures a color of image light of the image formed on a projection surface in terms of a plurality of colors constituting an RGB color system and a Z value in an XYZ color system. The correction parameter generation unit generates a correction parameter based on a first measurement value and a second measurement value. The first measurement value measured by the measurement unit is obtained by converting a measurement value of the color in the RGB color system into the color in the XYZ color system. The second measurement value measured by the measurement unit is a value in the XYZ color system. The measurement unit includes an optical filter having transmittance characteristics corresponding to spectral characteristics of blue light, in a wavelength range of a color light in the RGB color system.
US10855948B2

A system includes an outward facing video camera, a digital video recorder, a geolocation device, an interface, and a processor. The interface is configured to receive video data from the outward facing vehicle camera and receive location data from the geolocation device. The processor is configured to determine a digital video recorder storing state; disable transfer of video data to the digital video recorder in response to the digital video recorder storing state being a prohibited state; and enable transfer of the video data from the outward facing video camera to the digital video recorder for storage in response to the digital video recorder storing state being not the prohibited state.
US10855945B2

An apparatus takes data read out in parallel from m rows (2≤m
US10855933B2

A terminal according to the present disclosure comprises an inputter for receiving input of a preview image converted from light reflected from surroundings of the terminal; a controller for identifying a type of an object included in the preview image and selecting two or more image filters using a recommended algorithm regarding an image filter to be applied to the preview image; and a display for displaying the preview image to which the selected two or more image filters are applied, wherein the controller may apply a first image filter of the two or more filters to a first image area of the preview image and apply a second image filter that is different from the first image filter to a second image area that is an area excluding the first image area of the preview image.
US10855902B2

System, Method and Apparatus for generating a collection of images, the technique including providing at least two mobile devices with a data processing unit, a storage memory and a camera integrated therein or connected thereto; providing a master system with a data processing unit and a storage memory or configuring of one of the mobile devices as master system and configuring of the other or of all mobile devices as slave systems; setting a recording criterion in the master system; transmitting the recording criterion to the slave systems; setting a series ending criterion in the master system; transmitting the series ending criterion to the slave systems; respectively performing a process for recording an image on each slave system as long as the series ending criterion is not fulfilled comprising the steps of recording at least one image with the camera of one of the slave systems whenever the recording criterion is fulfilled, and sending the image from the slave system to the master system together with a time stamp, a series number and/or another variable for grouping the image; saving each of the images sent respectively with their time stamp, their series number and/or their variable for grouping in the storage memory of the master system; and generating a series of images comprising the images sent in order according to their time stamp, their series number and/or their variable for grouping.
US10855895B2

A light source module includes an array of illumination elements and a light diffusing material. The light source module is configured to receive a control signal for adjusting diffusion of light emitted from the light source module and in response adjust the amount of diffusion of light emitted from the light source module. A light source module may include a segmented light diffusing material where each segment is associated with an illumination element. And individual segments may have light diffusing properties that are different than other segments of the light diffusing material. Some illumination elements may emit light of a different color spectrum than other illumination elements, and a light diffusing material may scatter the different colored light to illuminate a scene with combinations of light of different colors. A light source module may be embedded in a mobile computing device.
US10855890B2

A camera module for a vehicular vision system includes a lens barrel having a plurality of optical elements accommodated therein, a front camera housing portion that accommodates at least one printed circuit board therein, and a rear camera housing portion mated with the front camera housing. The imager is optically aligned with an optical axis of the optical elements. A heat transfer element is disposed between and in thermal conductive contact with a thermoelectric device and the printed circuit board. Circuitry of the camera module is electrically connected to the imager and the thermoelectric device and is electrically connected to electrical connecting elements that electrically connect to a wire harness of a vehicle when the camera module is disposed at the vehicle. The thermoelectric device is electrically powered to draw heat from the imager printed circuit board to the rear camera housing portion.
US10855884B2

A display device which displays an image based on an input image signal includes: a first IC which performs first processing on the input image signal; a second IC which performs second processing on the signal processed by the first IC; and a setting unit which measures a frequency of the input image signal and sets a reference frequency inputted to the first IC, based on the measured frequency. The first IC is configured to be able to receive the input image signal within a frequency range decided by the reference frequency. The setting unit sets the reference frequency such that the frequency range decided by the reference frequency includes the frequency of the input image signal, if the frequency of the input image signal is out of the frequency range decided by the reference frequency.
US10855877B2

The image processing apparatus of the present invention includes: an image data acquisition unit configured to acquire image data; a generation unit configured to generate an ejection pattern of ink droplets from the image data, which are ejected for forming dots from a plurality of nozzles of an image forming apparatus; a characteristic acquisition unit configured to acquire an ejection characteristic of ink droplets of the image forming apparatus; and a pattern change processing unit configured to change the ejection pattern based on the ejection characteristic and the ejection pattern, and the pattern change processing unit repeatedly performs, in a case where a gap occurs between dots that should be formed so as to contact each other by the image forming apparatus, the ejection pattern change until the gap is eliminated.
US10855876B2

In response to a position information request, a controller in a management system transmits original image position information to an image processing device such that the controller transmits first and second original image position information, respectively, in response to first and second position information requests that are different from each other, first and second original image storage positions indicated by the first and second original image position information being different from each other. The controller receives original image data from the image processing device that has accessed by using the original image position information, stores the original image data at an original image storage position, and transmits code data to the image processing device. In response to a target image data request from a terminal device that has acquired target image position information by reading a code image, the controller transmits target image data to the terminal device.
US10855872B2

An apparatus detects movement of a target object, estimates a control quantity for first feedback control for the target object at a first period based on a detection signal, estimates a first state quantity of the target object and a second state quantity obtained by time differentiation of the first state quantity for second feedback control for the target object at a second period, shorter than the first period, based on the detection signal, generates a first operation quantity for the first feedback control based on the control quantity, generates a second operation quantity for the second feedback control based on the first and second state quantities, determines a sign of the second operation quantity from a relationship between the first and second state quantities, and generates an operation quantity on the target object from the first and second operation quantities.
US10855864B2

A system is provided for processing documents. In particular, the system is incorporates a feeder for feeding documents to a device for further processing of the documents. For instance, the system finds particular application in the field of document imaging in which a variety of documents of varying sizes and orientation are to be fed to an imaging system, such as a document scanner. The system may provide an input mechanism for easily identifying a characteristic of one of the documents and the system may include features for handling packets of documents.
US10855863B2

An image forming apparatus includes a storage unit that stores image data, an obtaining unit that obtains the stored image data, a printing unit that prints an image generated from the obtained image data on a sheet, a conveyance unit that conveys a sheet contained in a containing unit to the printing unit and conveys the sheet on which the image has been formed external to the image forming apparatus, and a detection unit that detects that the obtaining unit did not obtain the stored image data, where the conveyance unit stops conveyance of the sheet based on the detection by the detection unit during the conveyance of the sheet.
US10855856B2

One or more embodiments of an image processing apparatus, control method and storage mediums for use therewith are provided herein. At least one embodiment of an image processing apparatus receives setting information related to a transmission of an image from an external apparatus, sets whether to display a confirmation screen related to the setting information on an operation unit, and controls to differentiate whether or not the confirmation screen related to the setting information is displayed on the operation unit after the setting information is received in accordance with whether or not the setting of displaying the confirmation screen is performed.
US10855851B2

An SMF receives from an AMF a PDU session create request message requesting establishment of a PDU session for a wireless device. In response to the PDU session create request message, the SMF sends to a CHF a charging policy request message requesting charging policy information for the PDU session. The SMF receives from the CHF a response message comprising the charging policy information for the PDU session. The charging policy information comprises a first charging method. Based on the charging policy information, the SMF determines a charging control rule for the PDU session. The SMF enforces the charging control rule.
US10855847B2

A database stores unique associations between account identifiers and mobile-network telephone numbers assigned by a mobile network to mobile communications devices. The account identifiers are also associated with voice-over-IP (VoIP) telephone numbers. Voice calls between the mobile communications devices are made as voice-over-IP (VoIP) calls using respective VoIP telephone numbers. Tracking of the VoIP calls is performed through the mobile network using respective mobile-network telephone numbers, so that a prepaid balance can be enforced.
US10855843B2

A system described herein may use automated techniques, such as machine learning techniques, to analyze device snapshots from a group of User Equipment (“UEs”), and determine trouble conditions that are experienced by the UEs. The system may identify markers of the trouble conditions based on the snapshots, and may use these markers to predict or identify trouble conditions at other UEs based on snapshots received from the other UEs. Further, once a trouble condition is predicted or identified at the other UEs, the trouble condition may be proactively addressed, without requiring an explicit request from the other UEs to address the trouble condition.
US10855837B2

The sections of the call unnecessary for reproduction are grasped without wasting time and labor. The call recording system includes a call information entry unit to enter operation information of call terminals which is acquired by a call control unit into a terminal operation information table; a recorded information entry unit to enter recorded information of the call which are acquired by a call recording unit into a recorded information table; and a call information reproduction unit to recognize sections unnecessary for reproduction of the recorded information based on the operation information of the call terminals so as to display a reproduction screen including a result on the recognized sections on a display section.
US10855818B2

Disclosed are apparatus and methods for providing images of memory objects. A computing device can receive a plurality of memory objects for one or more executable software components. The computing device can classify the plurality of memory objects in accord with a plurality of object classifications. A particular object classification can represent a probability that a memory object classified with the particular object classification is to be written to during execution of the one or more executable software components. The computing device can order the plurality of memory objects based on the plurality of object classifications. The computing device can provide an image for the one or more executable software components using the computing device, where the image includes the ordered plurality of memory objects.
US10855813B1

A system in one embodiment comprises a first endpoint device. The first endpoint device comprises at least one processor that is coupled to memory. The first endpoint device is configured to communicate with a second endpoint device over a network using a given communication protocol. The at least one processor is configured to monitor a communication session under the given communication protocol between the first endpoint device and the second endpoint device and to determine that a designated network condition has occurred based at least in part on the monitoring of the communication session. The at least one processor is further configured to activate a performance monitoring component of the given communication protocol for the first endpoint device based at least in part on the determination that the designated network condition has occurred and to generate performance data associated with the communication session utilizing the activated performance monitoring component.
US10855805B2

A centralized storage-connected switch port auto-configuration system includes an SDN controller device that receives, from an SDN switch device subsequent to a storage device being connected to a switch port on the SDN switch device, discovery information and uses it to identify the switch port. The SDN controller device then provides SDN communications to the SDN switch device that include a port packet data unit size configuration, a port traffic suppression configuration, and a port loop prevention configuration. The SDN switch device applies the port packet data unit size configuration to configure a packet data unit size transmittable via the switch port, the port traffic suppression configuration to configure the amount of bandwidth of the switch port that will be available to transmit at least one type of data traffic, and the port loop prevention configuration to configure loop prevention designations that will be available for the switch port.
US10855798B2

A proxy server receives from a client device a request for a network resource that is hosted at an origin server for a domain. The proxy server transmits the request to the origin server. Responsive to determining that the origin server is offline, the proxy server determines whether the requested resource is available in cache. If it is in cache, the proxy server retrieves the requested resource from the cache and transmits the requested resource to the client device. The proxy server also transmits an offline browsing cookie to the client device for the domain such that when a subsequent request is received from the client device for a resource of the domain that includes the offline browsing cookie, a cached version of the requested resource will be served instead of querying the origin server.
US10855793B2

In various embodiments, a gateway application generates an outgoing Hypertext Transmission Protocol (HTTP) request based on an incoming HTTP request. In operation, the gateway application receives the incoming HTTP request and identifies an upstream service based on at least one of an HTTP method and a header included in the incoming HTTP request. Subsequently, the gateway application generates an outgoing HTTP request based on the upstream service and the incoming HTTP request. Finally, the gateway application issues the outgoing HTTP request. The outgoing HTTP request causes the upstream service to perform an action requested in the incoming HTTP request. Advantageously, the gateway application enables underlying upstream services to perform actions specified via incoming HTTP requests without directly exposing the upstream services to users.
US10855790B2

A system includes a proxy device, a requestor device that communicates with the proxy via a first communications link, and an asset host that communicates with the proxy via a second communications link. The proxy receives receive an access request from a user of the requestor device via the first communication link. The access request is associated with a requested asset hosted by the asset host, and includes pipeline language parameters. Routing information associated with the asset host is determined, and the access request is routed to the asset host in response to verifying that the user is authorized to access the requested asset. The proxy device obtains the requested asset from the asset host, transforms the requested asset based on the pipeline language parameters, and transmits the transformed asset to the requestor device.
US10855776B2

A method and device for managing sessions comprises obtaining first identification information of a first session of a plurality of sessions and group operation identification information of a group operation to be performed for the plurality of sessions, each of the plurality of sessions replicating, from a source of the session to a destination of the session, a file system or a management system that manages the file system; determining whether the first session meets a condition that a session is suitable to be selected as a managing session, the managing session managing the plurality of sessions to perform the group operation on the plurality of sessions; in response to the first session failing to meet the condition, obtaining second identification information of a second session of the plurality of sessions, the second identification information being different from the first identification information; and selecting the managing session based on the second identification information.
US10855768B2

Methods and systems are provided for processing data generated in a vehicle group. One example embodiment comprises selectively off-boarding a data set generated at a first vehicle in the vehicle group for storage purposes, the first data set off-boarded to one or more of a second vehicle in the vehicle group and a remote storage device.
US10855757B2

The concepts and technologies disclosed herein provide high availability and high utilization cloud data center architecture for supporting telecommunications services. According to one aspect of the concepts and technologies disclosed herein, a 4-site model of application placement within the cloud computing environment provides 37.5% resource utilization with site availability of five 9s (99.999%) and virtual machine availability of five 9s. According to another aspect of the concepts and technologies disclosed herein, a 3-site model of application placement within the cloud computing environment provides 66% resource utilization with site availability of five 9s and virtual machine availability of five 9s. According to another aspect of the concepts and technologies disclosed herein, a 4-site model of application placement within the cloud computing environment provides 75% resource utilization with site availability of five 9s and virtual machine availability of five 9s.
US10855744B2

A dynamic file creation including a processor coupled to a data storage device and configured to execute a content downloading module system is provided. The content downloading module is configured to acquire a source identifier associated with a data repository. The content downloading module executes a plurality of separate and distinct download content portion requests on the data repository for portions of data pursuant to user specific parameters. The content downloading module downloads the portions of the data from the data repository into the data storage device as separate and distinct intermediate data files. The content downloading module combines the separate and distinct intermediate data files corresponding to each of the portions of the data into a consolidated data file.
US10855742B2

A buffer model in an HTTP streaming client may include receiving a first content fragment of a first content stream in response to a first HTTP request. It may also include receiving a second content fragment of a second content stream in response to a second HTTP request. The buffer model may further include storing the first and second content fragments in first and second buffers of a plurality of configurable buffers. The first and second content fragments may be multiplexed into a third buffer of the plurality of buffers. The multiplexed first and second content fragments may be stored in a fourth buffer of the plurality of buffers for playback. The buffer model may be implemented by an application. The buffers may be designed based on one or more constraints.
US10855736B2

A block-request streaming system provides for improvements in the user experience and bandwidth efficiency of such systems, typically using an ingestion system that generates data in a form to be served by a conventional file server (HTTP, FTP, or the like), wherein the ingestion system intakes content and prepares it as files or data elements to be served by the file server. A client device can be adapted to take advantage of the ingestion process. The client device might be configured to optimize use of resources, given the information available to it from the ingestion system. This may include configurations to determine the sequence, timing and construction of block requests based on monitoring buffer size and rate of change of buffer size, use of variable sized requests, mapping of block requests to underlying transport connections, flexible pipelining of requests, and/or use of whole file requests based on statistical considerations.
US10855726B2

Resources can be secured by a resource security system. The resource security system can determine whether to grant or deny access to resources using authorization information in an access request. The resource security system can also determine whether the access request is legitimate or fraudulent using risk scoring models. A score transformation table can be used to provide consistency in the risk level for a particular score over time. The score transformation table can be based on a target score profile and a precision format (e.g., integer or floating point). The score transformation table can dynamically adapt based on the trending top percent of risk and can account for changes in the distribution of scores over time or by weekday. The scores can be used to determine an access request outcome. Access to the resource can be accepted or rejected based on the outcome.
US10855722B1

Systems, apparatuses, methods, and computer readable mediums for implementing an email deception service. A system includes one or more processors coupled to one or more memories storing program instructions. The program instructions are executable by the processor(s) to scan live emails for suspicious emails. The suspicious emails are emails with phishing links, business compromise emails, emails with malware attachments, and so on. When a suspicious email is detected, the processor(s) execute the program instructions to interact with the suspicious email in a way that mimics an end-user. A set of decoy credentials are provided to an attacker during the interaction, and then a decoy account is monitored for accesses by the attacker using the decoy credentials. Accesses to the decoy account are monitored and recorded to obtain intelligence on the attacker.
US10855711B2

Concept 6)A computer-implemented method, computer program product and computing system for: obtaining consolidated platform information to identify current security-relevant capabilities for a computing platform; determining comparative platform information that identifies security-relevant capabilities for a comparative platform; and generating comparison information that compares the current security-relevant capabilities of the computing platform to the comparative platform information of the comparative platform to identify a threat context indicator.
US10855705B2

In one example embodiment, a threat detection server receives metadata of a network flow in a network; a zone definition that correlates the metadata of the network flow with a first zone of network devices in the network and a second zone of network devices in the network, where the network flow was transmitted from the first zone to the second zone; and a security policy for the network flow, where the security policy is enforced on the basis of the first zone and the second zone. Based on the zone definition, the threat detection server annotates a flow record that includes the metadata with an indication of the first zone and the second zone. Based on the annotated flow record and the security policy, the threat detection server determines whether to generate a notification associated with a detection of a security threat associated with the network flow.
US10855696B2

In an approach, an apparatus comprises: one or more processors; a processor logic coupled to the one or more processors and configured to: intercept, from a client computer, a request directed to a server computer that identifies a purported user agent executing on the client computer; send, to the server computer, the request from the client computer; intercept, from the server computer, one or more original instructions to be executed by the purported user agent of the client computer; determine one or more features supported by the purported user agent that are not utilized by the one or more original instructions; transform the one or more original instructions into one or more revised instructions which, when executed by the purported user agent, cause the purported user agent to utilize the one or more features; send, to the client computer, the one or more revised instructions.
US10855686B2

Aspects of the disclosure relate to preventing unauthorized access to secured information systems using multi-push authentication techniques. A computing platform may receive an event request associated with a group of enrolled devices. The computing platform may load multi-push settings and identify one or more user devices linked to the group of enrolled devices. Then, the computing platform may generate one or more notifications for the one or more user devices, and each notification may be generated for a corresponding user device based on device-specific user account state information. After sending the one or more notifications, the computing platform may generate one or more event execution commands based on prompt response information received from the one or more user devices and may send the one or more event execution commands to an event management computer system, which may execute an event corresponding to the event request.
US10855685B2

Resources can be secured by a resource security system. The resource security system can determine whether to grant or deny access to resources using authorization information in an access request. The resource security system can also determine whether the access request is legitimate or fraudulent using risk scoring models. A score transformation table can be used to provide consistency in the risk level for a particular score over time. The score transformation table can be based on a target score profile and a precision format (e.g., integer or floating point). The score transformation table can dynamically adapt based on the trending top percent of risk and can account for changes in the distribution of scores over time or by weekday. The scores can be used to determine an access request outcome. Access to the resource can be accepted or rejected based on the outcome.
US10855681B2

Communication devices to an IP network through communication lines to each of which a unique identification number is assigned and, in each communication device, the identification numbers of other communication devices allowed to communicate with the each communication device are registered, and the communication lines are uniquely connected for data communication by a three-way handshake based on the identification numbers. A communication line activates another communication line. When a connection is established, the connection is disconnected. It is determined at the activated communication line if a response signal from the activating communication line as a response to a call back signal sent to the activating communication line at a predetermined timing arrives, and it is determined at the activating communication line if a call back signal from the activated communication line arrives. Data communication is performed only when both the activating and activated communication lines are validated.
US10855679B2

An automated process is disclosed for improving the functionality of computer systems and electronic commerce in user identity-proofing. Steps include verifying that a user who is electronically seeking identity proofing is on an electronic directory of persons eligible for such identity proofing; creating an attest list for the user that includes associates who can vouch for his or her identity; collecting a video or other data from the user; sending the video or data to the associates and asking them for a confirmation or a disavowal of the identity of the user; deriving a biometric from the video or data upon receiving the confirmation; and saving the biometric as an identity-proofed biometric.
US10855676B2

One or more techniques and/or systems are provided for audio verification. An audio signal, comprising a code for user verification, may be identified. A second audio signal is created comprising speech. The audio signal and the second audio signal may be altered to comprise a same or similar volume, pitch, amplitude, and/or speech rate. The audio signal and the second audio signal may be combined to generate a verification audio signal. The verification audio signal may be presented to a user for the user verification. Verification may be performed to determine whether the user has access to content or a service based upon user input, obtained in response to the user verification audio signal, matching the code within the user verification audio signal. In an example, the user verification may comprise verifying that the user is human.
US10855674B1

Methods, systems, and apparatus, including computer programs encoded on a computer-readable storage medium, for pre-boot network-based authentication. In some implementations, a computing device enters a UEFI environment upon powering on the computing device. While in the UEFI environment, the computing device restricts booting of an operating system of the computing device, accesses a signed certificate corresponding to a particular user, sends a verification request to a server system over a communication network, and receives a verification response from the server system over the communication network. In response to receiving the verification response, the computing device (i) enables the operating system to boot and (ii) verifies the identity of the particular user to the operating system such that the operating system logs in the particular user without requiring further proof of identity for the particular user.
US10855673B2

A compliance application automatically produces certification controls by translating framework controls. The framework controls are common certification controls used in production of the certification. The application retrieves framework controls including metadata from a compliance framework data store. Metadata of the framework controls map the framework controls to the certification. In addition, the application retrieves certification parity data associated with the metadata. Certification controls are produced based on the framework controls and the certification parity data. A view of the certification including the certification controls is provided to a customer requesting the certification.
US10855666B2

The invention relates to providing alternate user communication based on user identification. A communication from a user may be received, and the communication may include an authentication credential from the user. When the user is determined to be an unauthorized user based on the authentication credential, the communication may be extended in order to capture more information from the unauthorized user, and to deter the unauthorized user from making other unauthorized access attempts. In addition to the extension of the communication with the unauthorized user, one or more additional alternate treatments may be presented to the unauthorized user in order to identify, track, and/or prevent access by the unauthorized user.
US10855660B1

A network device communication system can configure network devices (e.g., a primary and secondary database) to send and receive sequences messages, such as replication data, over a channel comprising a plurality of private network nodes. The messages can be generated and encrypted using one or more key pairs and changing wrapping replication keys to send and receive the messages between different types of database deployments.
US10855655B2

A system for providing a system for providing network communications organized using communities of interests defined by a common encryption key. IoT devices are located at the edge of a network while providing secure and isolated communications for its applications and data through a common network infrastructure. The system's functionality provides the IoT network with secure communications to obtain data from devices by host applications over public networks. The data may be organized and segmented in a manner that isolates and protects the data with only authorized applications gaining access the data to see its existence and read its contents.
US10855647B2

A method and apparatus performing operations including instantiating at least one ENUM physical server instance or vENUM virtual machine, wherein the at least one vENUM virtual machine initiating an IMSI session for at least one of a service and a record. The operations further include determining when the at least one of the service and the record is operating. When the at least one of the service and the record is operating, determining if the service was disabled, and if the service was disabled, clear any alarm and announcing service disabled via input/output device. When the at least one of the service and the record is not operating, the operations may include generating an alarm via input/output device, determining if automatic disablement is permitted, and if permitted, automatically disable the at least one of the service and the record. When automatic disablement is not permitted, the operations may include prompting for a disablement instruction via an input/output device and disabling the at least one of the service and the record upon receiving the disablement instruction.
US10855637B2

Technologies are described to increase a data limit for a user by introducing additional archive mailboxes as the original archive fills up or subsequently added archive mailboxes fill up. Thus, a user's data limit may be effectively removed through the use of additional archive mailboxes. In some examples, the additional mailboxes may be integrated into the architecture of the communication application such that their use is transparent to the user and/or an administrator of the communication application or associated service through the use of an application programming interface (API) that exposes a single multivalued strongly typed collection instead of dealing with multiple attributes and extending the schema every time a new type needs to be added. A mailbox locations attribute may act as the main storage of serialized mailbox locations and a mailbox identifier attribute may be used for indexing.
US10855631B2

A computerized method for managing a collaboration of objects via stubs may include a computerized apparatus linked to a computerized system and configured to intercept an outgoing communication including an object, to identify an instance of the object in a storage of the computerized system, to generate a stub of the instance of the object specifying a location of the identified instance the object in the storage of the computerized device, to replace the object in the outgoing communication with the stub, and to send the outgoing communication including the stub to a recipient.
US10855627B2

Modifying computer program output in a voice or non-text input activated environment is provided. A system can receive audio signals detected by a microphone of a device. The system can parse the audio signal to identify a computer program to invoke. The computer program can identify a dialog data structure. The system can modify the identified dialog data structure to include a content item. The system can provide the modified dialog data structure to a computing device for presentation.
US10855623B2

A pluggable module includes an interface configured to connect to a connector associated with a device having internal circuits; an optical interface configured to connect to a network path, to enable communication between the internal circuits and the network path; and a signal interface configured to connect to a second pluggable module in the device, wherein the signal interface connects to the second pluggable module as an out-of-band channel that operates independently from a backplane of the device and the internal circuits.
US10855621B2

System and method of network packet switching using a table representation of a trie data structure to identify a timestamp (TS) range (or time range) for a received packet based on the packet timestamp (TS). The trie data structure is programmed with a plurality of predetermined time ranges. Each node in the trie data structure corresponds to a TS prefix and is associated with a corresponding predetermined time range. A search engine in the network switch can use the packet TS as a key to traverse the trie data structure and thereby matching the packet TS to a predetermined time range according to a Longest Prefix Match (LPM) process. Provided with the TS ranges of the incoming packets, various applications and logic engines in the network switch can accordingly process the packets, such as determining a new destination IP address and performing channel switch accordingly.
US10855619B1

Systems and methods adjust workspaces based on available hardware resource of an IHS (Information Handling System) by which a user operates a workspace supported by a remote orchestration service. A security context and a productivity context of the IHS are determined based on reported context information. A workspace definition for providing access to a managed resource is selected based on the security context and the productivity context. A notification specifies a hardware resource of the IHS that is not used by the workspace definition, such as a microphone or camera that has not been enabled for use by workspaces. A productivity improvement that results from the updated productivity context that includes use of the first hardware resource is determined. Based on the productivity improvement, an updated workspace definition is selected that includes use of the first hardware resource in providing access to the managed resource via the IHS.
US10855615B2

A method for sharing content of a device is provided. The method includes receiving, by an inputter, an input of a share command of a selected content, recommending at least one service to share the content among a plurality of services that are available in the device and a share target, and sharing, by a controller, the content with the share target selected through the selected service based on a selection input with respect to the at least one recommended service and the share target.
US10855613B2

Networks, systems and methods for dynamically filtering market data are disclosed. Streams of market data may be buffered or stored in a queue when inbound rates exceed distribution or publication limitations. Inclusive messages in the queue may be removed, replaced or aggregated, reducing the number of messages to be published when distribution limitations are no longer exceeded.
US10855612B2

A method for suppressing broadcast messages includes intercepting a packet from a client device. If the packet is a bootstrap protocol (BOOTP) request, the method stores the packet in a BOOTP queue and sets a timer for the packet. If the packet is a dynamic host configuration protocol (DHCP) request, the method stores the packet in a DHCP queue and sets a timer for the packet. The method then processes the packets stored in the BOOTP queue and the DHCP queue, where each BOOTP packet in the BOOTP queue is processed before any DHCP packet in the DHCP queue is processed.
US10855610B2

An information processing apparatus includes a memory; and a processor coupled to the memory and configured to determine whether a size of data is equal to a predetermined threshold or less when degradation occurs on a communication path to a destination information processing apparatus of the data; transmit the data to another information processing apparatus different from the destination information processing apparatus and coupled to the destination information processing apparatus when it is determined that the size of the data is more than the predetermined threshold; and transmit the data to the destination information processing apparatus through the communication path when it is determined that the size of the data is the predetermined threshold or less.
US10855609B2

An interconnect is provided that has a plurality of nodes, and a ring network to which each of the nodes is connected to allow packets to be transmitted between nodes. For an ordered sequence of packets one of the nodes is arranged as a source node to add each packet of the ordered sequence on to the ring network, and another of the nodes is arranged as a destination node to remove each packet of the ordered sequence from the ring network. The source node is enabled to add a packet of the ordered sequence on to the ring network without waiting for a previously added packet of the ordered sequence to be removed from the ring network by the destination node. When the destination node is unable to accept a given packet of the ordered sequence that is currently being presented to the destination node by the ring network, that given packet remains on the ring network and continues to be transmitted around the ring network such that after a respin period that given packet will be presented again to the destination node. The destination node is then arranged to prevent acceptance of at least any other packets of the ordered sequence subsequently presented to the destination node by the ring network until the destination node has accepted the given packet following at least one respin period. This can improve the efficiency of the ring network in the handling of ordered sequences of packets, whilst still ensuring the ordering constraints are met.
US10855606B2

An information processing apparatus includes a memory and a processor coupled to the memory. The processor is configured to acquire a feature amount related to a flow composed of a plurality of packets. The processor is configured to control a transmission of the plurality of packets based on the acquired feature amount.
US10855599B2

Methods and systems for individual forward-link and return-link policies for network communication are disclosed. In some aspects, the individual forward-link and return-link policies define how data is routed over a plurality of access networks between a client-side enforcement unit and a provider-side enforcement unit. In some aspects, the individual policies may be based on metrics collected by the client-side and provider-side enforcement units, which may be positioned on each end of one or more access networks.
US10855591B2

Aspects of the present disclosure involve systems, methods, computer program products, and the like, for determining an estimated capacity for providing data from a telecommunications network to a plurality of end users. In one implementation, the estimated capacity for delivering the data to the end users is per transmission path or per access network connected to the telecommunications network. This information may be aggregated into a traffic flow table that illustrates the traffic flow and available capacity to one or more end user networks. Through analysis of the traffic flow table, the system determines an estimated available capacity to provide the data to the end users. The traffic flow table thus provides a more accurate estimate of the capacity of the telecommunications network to provide the data to the end users over previous capacity estimates.
US10855586B2

The application disclose a packet processing method that includes: receiving, by a service distribution node, service routing information sent by a controller, where the service routing information includes a flow identifier, a service identifier, and a next-hop address, the flow identifier is used to identify a packet flow, the service identifier is used to identify a sequence of a service node instance that processes the packet flow, and the next-hop address is used to identify the service node instance that processes the packet flow; receiving a first packet; acquiring a first flow identifier according to the first packet, and searching the service routing information according to the first flow identifier to acquire a matched service identifier and a matched next-hop address; and sending a second packet to a first service node instance that has the matched next-hop address, which implements service processing on a packet flow.
US10855585B2

A SIP node obtains a Session Initiation Protocol (SIP) message comprising a SIP header. The SIP node adds a description of the SIP header into a body of the SIP message. The description comprises an offset field and a length field indicating a position and a size, respectively, of a text string in the SIP header. The SIP node transmits the SIP message with the description added via a network.
US10855578B1

A network is organized into a plurality of broadcast domains. Each broadcast domain includes a plurality of nodes each configured to cause messages to be sent to two or more other of the nodes within the broadcast domain. The broadcast domains are coupled via bridging connections. Each bridging connection couples at least one of the nodes from a first of the broadcast domains to at least one of the nodes of a second of the broadcast domains. The messages are caused to be sent through the plurality of broadcast domains via a subset of the bridging connections. The subset of the bridging connections is selected non-deterministically via the plurality of broadcast domains.
US10855577B2

In an embodiment, a data processing method comprises receiving, at a BIER replicator node that is programmed to implement Bit Index Explicit Replication (BIER) protocol, from a data source, a multicast stream packet identifying a service-level multicast group address; using the BIER replicator node, replicating the multicast stream packet according to BIER protocol and transmitting two or more replicated packet streams to two or more BIER receiver nodes that are programmed to implement BIER; using the two or more BIER receiver nodes, transmitting the two or more replicated packet streams to two or more receivers. Other embodiments may use modified iOAM (In-situ Operations, Administration, and Maintenance) techniques.
US10855576B2

An information transmission method and device, comprising: when being connected to a virtual network, a network edge node encapsulates the virtual network identifier of the connected virtual network in a multicast protocol packet; the network edge node sends the multicast protocol packet to network edge nodes other than itself. The information transmission method can implement delivery of a virtual network identifier, thereby implementing highly efficient transmission of virtual network data.
US10855567B1

In some examples, a computing device comprises at least one computer processor; and a memory comprising instructions that when executed by the at least one computer processor cause the at least one computer processor to: receive feature usage data indicating respective usages of a plurality of network device features configured for the network device; receive resource utilization data indicating resource utilization of the network device resource by each of the network device features at different usages; determine, based on the features usage data and the resource utilization data, respective resource utilizations of the network device resource by the plurality of network device features; combine the respective resource utilizations of the network device resource to determine a total network device resource utilization for the network device resource; and output an indication of the total network device resource utilization for the network device resource.
US10855559B2

Adaptive ambient services are provided. In some embodiments, an adaptive ambient service includes providing an ambient service profile. In some embodiments, an ambient service includes implementing an ambient service profile for assisting control of the communications device use of an ambient service on a wireless network, in which the ambient service profile includes a plurality of service policy settings, and in which the ambient service profile is associated with an ambient service plan that provides for initial access to the ambient service with limited service capabilities prior to activation of a new service plan; monitoring use of the ambient service based on the ambient service profile; and adapting the ambient service profile based on the monitored use of the ambient service.
US10855549B2

Techniques are disclosed for processing data collected from network components for analysis by a machine learning engine of a Cognitive AI System. A network data processing driver receives a stream of data from a data collector which obtains data from one or more network data sources. The driver normalizes the stream of data to one or more feature values each corresponding to the network data sources and generates a sample vector from the feature values. The sample vector is formatted to be analyzed by the machine learning engine.
US10855548B2

Techniques are disclosed for summarizing, diagnosing, and correcting the cause of anomalous behavior in computing systems. In some embodiments, a system identifies a plurality of time series that track different metrics over time for a set of one or more computing resources. The system detects a first set of anomalies in a first time series that tracks a first metric and assigns a different respective range of time to each anomaly. The system determines whether the respective range of time assigned to an anomaly overlaps with timestamps or ranges of time associated with anomalies from one or more other time series. The system generates at least one cluster that groups metrics based on how many anomalies have respective ranges of time and/or timestamps that overlap. The system may preform, based on the cluster, one or more automated actions for diagnosing or correcting a cause of anomalous behavior.
US10855545B2

Methods and apparatus for centralized resource utilization visualization in distributed systems are disclosed. Metrics are collected from a plurality of sources in a distributed system, including network traffic metrics collected from nodes implementing a network-accessible service. A topology representing at least one of (a) a relationship between respective client accounts to which a first and second node are assigned, or (b) one or more network links between the first and second nodes is generated. Respective networking performance indicators of the first node and the second node are provided for inclusion in a resource heat map corresponding to the topology.
US10855544B1

Example embodiments may relate to web interfaces for a balloon-network. For example, a computing device may display a graphical interface that that includes one or more interface features to receive a request for use of bandwidth of a balloon network. In particular, the computing device may receive, via the graphical interface, input data corresponding to a bandwidth request for a first location, where the bandwidth request includes: (i) an indication of the first location and (ii) an indication of time. Subsequently, the computing device may receive an indication corresponding to whether or not the bandwidth request is accepted, where acceptance of the bandwidth request is based at least in part on expected movement of one or more balloons from a plurality of balloons in the balloon network. As such, the computing device may display, on the graphical interface, the indication corresponding to whether or not the bandwidth request is accepted.
US10855543B2

Embodiments relate to the field of communications technologies, and in particular, to a policy management method and system, and an apparatus. The method includes: requesting, by a policy decision entity, an NFVO in a management domain of a composite NS to perform a management operation on a policy group. According to embodiments, consistency between the LCM policy of the composite NS and the LCM policy of the nested NS forming the composite NS is ensured, and policy management execution efficiency is improved in a scenario of providing a composite NS across management domains.
US10855541B2

Systems, methods, apparatuses, and computer program products for moving VNF instances between network service instances are provided. One method includes, when a real network service is being instantiated, transmitting or receiving a move virtualized network function (VNF) operation to move at least one virtualized network function (VNF) instance from a source network service to a target network service.
US10855526B2

A sensor registration method according to one aspect of the present invention includes generating association information associating port information with sensor information, the port information identifying a connection port of a first communication device to which a sensor is connected, the sensor information including a type of the sensor, converting the association information to have a predetermined format, transmitting the converted association information to an information processing device configured to process data obtained from the sensor, and registering the sensor in the information processing device by storing the converted association information into the information processing device.
US10855522B2

Techniques are provided for dual port storage device emulation. A switch is configured with a first virtual switch to provide a first computing device with access a first single port device through a first port and a second port. The switch is configured with a second virtual switch to provide a second computing device with access to a second single port device through a third port and a fourth port. In response to determining that the first computing device has experienced a failure, the first virtual switch and the second virtual switch are reconfigured to provide the second computing device with access to the first single port device through the second port and access to the second single port device through the fourth port. The first computing device is disconnected from accessing the first single port device through the first virtual switch.
US10855507B2

Disclosed herein is a method of receiving a broadcast signal. The method comprises receiving the broadcast signal; an Orthogonal Frequency Division Multiplexing (OFDM) demodulating on the received broadcast signal; parsing at least one signal frame from the demodulated broadcast signal to extract service data or service component data; converting the service data or service component data into bits; decoding the converted bits; and outputting a data stream comprising the decoded bits.
US10855506B2

The present technology relates to a data processing apparatus and a data processing method which can suppress the influence of multipath propagation and the Doppler shift.A data processing apparatus includes a processing unit which performs modulation processing on a physical layer frame including a preamble, which includes a modulation parameter, and one or more subframes, which include data, in which any modulation parameter can be set for each of the subframes, and the subframes are arranged in the physical layer frame collectively by subframe groups which are collections of the subframes with FFT sizes, which are same, when IFFT operation is performed on symbols included in the physical layer frame. The present technology can be applied to, for example, data transmission compliant to a broadcast standard such as ATSC 3.0.
US10855501B2

It is possible to reduce the implementation complexity associated with dynamic carrier configuration by defining overlapping sets of candidate numerologies for at least some carriers in the network. A common numerology is included in sets of candidate numerologies pre-associated with two different carriers. This reduces the amount of numerologies that need to be supported by the corresponding user equipments (UEs) and base stations, which in turn reduces the complexity of those devices, e.g., less complex hardware, protocol stacks, and software, lower storage and processing requirements, etc. The common numerology specifies a common subset of physical layer parameters for both carriers. In one example, the common numerology specifies the same sub-carrier frequency spacing and symbol duration for both carriers. The common numerology may further specify the same cyclic prefix (CP) length for symbols communicated over both carriers.
US10855495B2

Systems and apparatuses are provided for an arbiter circuit for timing based ZQ calibration. An example system includes a resistor and a plurality of chips. Each of the plurality of chips further includes a terminal coupled to the resistor and a calibration circuit. The calibration circuit determines whether the resistor is available based, at least in part, on timing information that is unique to a corresponding chip of the plurality of chip. The timing information of each chip of the plurality of chips has a fixed duration of time common to the plurality of chips.
US10855487B2

Provided herein is a network system (1) that includes: an electric apparatus (300); and a server (100) that computes a predicted absence time period by using prediction data concerning a user of the electric apparatus (300), and that detects an absence time in which nobody is detected, the server (100) causing the electric apparatus (300) to perform an absence-time operation upon detecting a first absence time in a period outside of the predicted absence time period, and causing the electric apparatus (300) to perform the absence-time operation upon detecting a second absence time, shorter than the first absence time, in a period within the predicted absence time period.
US10855485B1

In one embodiment, a method includes receiving, from a client system via an assistant xbot of a messaging application, a first user input comprising a command for controlling a network-connected device, wherein the device is associated with a contact identifier (ID) in the messaging application, identifying the device based on the contact ID, generating one or more control instructions for the device based on the command, sending, to the device via a network, the control instructions to cause the device to perform one or more actions associated with the command, receiving, from the device via the network, a response to the command, and sending, to the client system via the assistant xbot, an output based on the response from the device. The first user input may include a character string that specifies the command or an indication of a selected user interface feature that corresponds to the command.
US10855483B1

Systems and methods for device-state quality analysis are disclosed. Polling schedules may be generated based on which accessory devices have yet to be polled, which accessory devices are associated with less than favorable previous polling results, and/or which accessory devices are associated with a priority polling request. Polling requests may be generated using the schedules and the polling requests may be sent to systems associated with the accessory devices. Those systems may return current device-state data, which may be compared to stored device-state data to determine an accuracy value for the stored device-state data. Quality data may be generated using these accuracy values.
US10855478B2

Disclosed is a device and method to secure software update information for authorized entities. In one embodiment, a device for receiving secured software update information from a server, the device includes: a physical uncolonable function (PUF) information generator, comprising a PUF cell array, configured to generate PUF information, wherein the PUF information comprises at least one PUF response output, wherein the at least one PUF response output is used to encrypt the software update information on the server so as to generate encrypted software update information; a first encrypter, configured to encrypt the PUF information from the PUF information generator using one of at least one public key from the server so as to generate encrypted PUF information; and a second encrypter, configured to decrypt the encrypted software update information using one of the at least one PUF response output so as to obtain the software update information.
US10855471B2

Systems and methods are provided for authenticating an identity of a user requesting a resource or service from an entity. In some embodiments, a system may include at least one processor; and a non-transitory medium containing instructions that cause the system to perform operations. The operations may include receiving credential information associated with the remote user, and receiving, from the server associated with the entity, first hash information. The operations may also include generating second hash information based on information associated with the user, comparing the first hash information with the second hash information, and transmitting an indication based on the comparison to the server associated with the entity.
US10855470B2

A USB security gateway device is integrated within a host computer. The USB security gateway device is used for protecting a USB port of a host computer against interaction with unauthorized USB device. The USB security gateway device qualifies any USB peripheral device before it allows it to interact with the host device. Qualification parameters are stored in the USB security gateway device and are reprogrammable.
US10855467B2

Techniques for determining whether a public encryption key is vulnerable as the result of deficiencies in pseudorandom number generation algorithms are provided. In some embodiments, a system may compile a database of cryptographic information received from a plurality of sources, including databases, and network traffic monitoring tools. RSA public keys extracted from the cryptographic information may be stored in an organized database in association with corresponding metadata. The system may construct a product tree from all unique collected RSA keys, and may then construct a remainder tree from the product tree, wherein each output remainder may be determined to be a greatest common divisor of one of the RSA keys against all other unique RSA keys in the database. The system may then use the greatest common divisors to factor one or more of the RSA keys and to determine that the factored keys are vulnerable to being compromised.
US10855463B2

Methods and systems for providing quality of service to an information handling system may involve generating a new transport encryption key for a management controller group, notifying nodes in the management controller group to negotiate for the new transport encryption key, and encrypting a first message to be sent to a first node in the management controller group using a current transport encryption key. The new transport encryption key for encrypted communications in the management controller group and to replace a current transport encryption key. The first message encrypted after notifying the nodes in the management controller group to negotiate for the new transport encryption key. The nodes of the management controller group including the first node.
US10855459B2

Systems and methods include modifying a Tme Random Number (TRN) pool using one or more user-identified randomization processes to produce a modified TRN pool with a user-specific modification that is unknown to or otherwise separated from a TRN provider. Systems and methods also include sending and receiving encrypted messages that are encrypted and decrypted using the modified TRN pool.
US10855454B1

Systems, apparatuses, methods, and computer program products are disclosed for session authentication. An example method includes receiving, by decoding circuitry and over a quantum line, a set of qbits generated based on a first set of quantum bases. The example method further includes decoding, by the decoding circuitry and based on a second set of quantum bases, the set of qbits to generate a decoded set of bits comprising at least one wildcard bit. The example method further includes generating, by session authentication circuitry, a session key based on the decoded set of bits, wherein the session key is generated based at least in part on the at least one wildcard bit.
US10855450B1

There is provided a physical layer security (PLS) system for enhanced cryptographic security and diversity of transmitted data, the system comprising a transmitter for first, converting the data into a plurality of OFDM symbols; second, multiplexing the plurality of OFDM symbols into parallel M OFDM streams; and third, performing spatial interleaving (SI) on the parallel M OFDM streams using a secret key. The system further comprises a receiver for receiving and de-scrambling the transmitted plurality of data samples, wherein software-defined radio (SDR) units are used as the system transmitter and receiver.
US10855447B2

Methods, apparatus, and processor-readable storage media for request approval using blockchain technology are provided herein. An example computer-implemented method includes initiating creation of a blockchain network comprising multiple devices corresponding to required sub-requests configured for a particular request for approval transaction; implementing, at a given one of the devices, a distinct block in the blockchain network, wherein the block comprises cryptographic information pertaining to the particular request for approval transaction, a decision value for one or more of the sub-requests, and a count of the cryptographic tokens remaining in the blockchain network; broadcasting, from the given device to the remaining devices, information pertaining to the block; removing at least one cryptographic tokens from the blockchain network in response to each implemented block that corresponds to approval of a required sub-request; and granting the particular request in response to removal of all of the cryptographic tokens from the blockchain network.
US10855433B2

A head-end equipment associated with a communication system configured to interface with an interference group (IG) composed of two or more modems is disclosed. The head-end equipment comprises a memory configured to store a plurality of instructions; and one or more processors configured to retrieve the plurality of instructions from the memory. In some embodiments, the one or more processors, upon execution of the plurality of instructions from the memory, is configured to generate an advanced warning signal to be provided to one or more modems associated with the IG. In some embodiments, the advanced warning signal comprises an information that a select modem, different from the one or more modems, in the IG will be initiating an upstream communication in a select frequency band, as well as information on a start time and a duration of the upstream communication.
US10855432B2

A user equipment (UE) is described. Receiving circuitry is configured to receive an activation command for semi-persistent channel state information-reference signal (CSI-RS) and channel state information-interference measurement (CSI-IM) resource(s) configuration, the semi-persistent CSI-RS and CSI-IM resource(s) configuration being associated with a DL BWP. The receiving circuitry is configured to receive a deactivation command for the semi-persistent CSI-RS and CSI-IM resource(s) configuration. Processing circuitry is configured to consider that the semi-persistent CSI-RS and CSI-IM resource(s) configuration is suspended when the associated DL BWP is being deactivated.
US10855430B2

According to one embodiment of the present invention, a method by which a terminal configured so as to support at least one cell of one or more transmission time interval (TTI) lengths transmits uplink control information in a wireless communication system comprises the steps of: receiving downlink control information; determining whether to transmit channel state information together with an acknowledgement/negative-acknowledgement (ACK/NACK) for a downlink data channel scheduled (or indicated) by the downlink control information, on the basis of a specific field of the received downlink control information; and transmitting both the ACK/NACK and the channel state information according to the determining step.
US10855429B2

Embodiments disclose a reference signal transmission method and an apparatus. The method includes receiving reference signal resource configuration information sent by a base station, where the reference signal resource configuration information includes antenna port quantity information and a resource configuration index. The method also includes determining a reference signal configuration from a reference signal configuration set according to the antenna port quantity information and the resource configuration index. The method also includes obtaining, according to the determined reference signal configuration, positions of the resource elements (REs) that are used to send the reference signal on the antenna ports in the antenna port set, and receiving reference signals according to the positions of the REs.
US10855414B2

A cross-subband or cross-carrier scheduling method, a base station and a user equipment are provided. The method includes: determining a first start symbol and a first end symbol for scheduling a user equipment to transmit and receive data using a time-frequency resource on a second subband or carrier, based on two numerologies corresponding to two subbands or carriers; and transmitting downlink control information to the user equipment on the first subband or carrier, so that the user equipment can transmit and receive data using the time-frequency resource on the second subband or carrier according to the downlink control information, where the downlink control information includes an identification number of the second subband or carrier allocated for the user equipment and the first start symbol and the first end symbol for scheduling the user equipment to transmit and receive data using the time-frequency resource on the second subband or carrier.
US10855408B2

The present specification relates to a method for transmitting uplink control channels in a wireless communication system, the method being performed by a terminal and comprising the steps of: receiving, from a base station, information on a cyclic shift (CS) index configuration, which indicates the configuration of an index group for a CS related to uplink control channel transmission; transmitting a first physical uplink control channel by using a first CS index included in the CS index group and a base sequence having a particular length; and transmitting a second physical uplink control channel by using a second CS index included in the CS index group and the base sequence having the particular length, wherein the first CS index is used for symbols that are not overlapped between transmission time intervals (TTI) for transmitting the physical uplink control channel, and the second CS index is used for symbols that are overlapped between the TTI.
US10855407B2

Devices and methods of receiving a PDCCH-less xSIB are generally described. A UE receive a xPBCH that occurs in a 0th or a 25th subframe and an ePBCH in an ePBCH transmission block. The ePBCH has the xSIB and is received on different Tx beams. The ePBCH spans consecutive symbols on the same subcarrier and with the same ePBCH symbol. The frame number, subframe number and symbol number of the ePBCH is dependent on a subframe number and symbol number of the xPBCH. The number of beams received for a particular symbol is dependent on a total number of beams, a beam sweeping time for the beams and a transmission periodicity of the xPBCH and ePBCH. The UE also uses different OCCs to demodulate a DMRS from different APs, in a same PRB as the ePBCH.
US10855403B2

Various solutions for reducing uplink overhead with respect to user equipment and network apparatus in mobile communications are described. An apparatus may determine whether to multiplex hybrid automatic repeat request-acknowledgement (HARQ-ACK) information in a physical uplink shared channel (PUSCH) transmission. The apparatus may determine whether only a physical downlink shared channel (PDSCH) is received. The apparatus may generate only the HARQ-ACK information corresponding to the PDSCH in an event that only the PDSCH is received. The apparatus may transmit the HARQ-ACK information in the PUSCH transmission.
US10855400B2

A method for transmitting data in a multiple-input-multiple-output space-time coded communication using a mapping table mapping a plurality of symbols defining the communication to respective antennae from amongst a plurality of transmission antennae and to at least one other transmission resource. The mapping table may comprise Alamouti-coded primary segments and may also comprise secondary segments, comprising primary segments. The primary segments in the secondary segments may be defined in accordance to an Alamouti based code pattern applied at the segment level to define a segment-level Alamouti based code.
US10855399B2

A communication device comprises a storage device for storing instructions of receiving a radio resource control (RRC) message via a RRC connection on a first cell from a first BS, wherein the RRC message configures a secondary cell group (SCG) configuration to the communication device; synchronizing to a downlink (DL) of a second cell indicated in the SCG configuration, wherein the second cell belongs to a second BS; transmitting a RRC complete message to the first cell or a third cell of the first BS in response to the RRC message without performing a random access (RA) procedure to the second cell, if the RRC message indicates no need to perform the RA procedure to the second cell; and determining that the SCG configuration is successfully configured, when detecting a Radio Network Temporary Identifier (RNTI) on a DL channel from the second cell in a first time period.
US10855386B1

A vehicle infotainment apparatus may include an antenna configured to receive a FM broadcast signal; an RF front end configured to modulate and demodulate the FM broadcast signal; and a controller configured to determine a type of content being broadcast by processing the FM broadcast signal, determine a reference level for switching a sound mode based on the determined type of the content, determine the sound mode based on the reference level and the level of the FM broadcast signal, and control the RF front end to modulate and demodulate the FM broadcast signal based on the determined sound mode.
US10855358B2

This application provides a channel state information feedback method and an apparatus. The method includes: generating first frequency domain indication information and M1 pieces of first precoding indication information, where the first frequency domain indication information is used to indicate L1 frequency domain subbands in T frequency domain subbands, the T frequency domain subbands are a system bandwidth or a part of the system bandwidth, 1≤L1
US10855351B1

A wireless device includes a radio, a first directional antenna, a second directional antenna, an omnidirectional antenna, and a switch selectively coupled between the radio and the first directional antenna, the second directional antenna, and the omnidirectional antenna. A processor is coupled to the switch and to, for a frame: determine, based on an arbitration table, a destination medium access control address of a client wireless device and identifiers of antennas for transmitting the frame and receiving acknowledgement data; cause the switch to couple the radio to the first directional antenna; transmit the frame to the client wireless device via the first directional antenna, wherein the first client wireless device is located along a first direction with respect to the wireless device; cause the switch to couple the radio to the omnidirectional antenna; and receive an acknowledgment, corresponding to the frame, from the client wireless device via the omnidirectional antenna.
US10855347B2

A base station according to this disclosure includes a plurality of antennas used for transmission and reception, an adaptive array processing unit that performs adaptive array processing on reception signals received by the plurality of antennas, and a control unit that decides a transmission antenna used for the transmission from the plurality of antennas at a time when a transmission signal is transmitted, and the control unit decides the transmission antenna based on transmission weight vectors respectively corresponding to the plurality of antennas obtained from a processing result of the adaptive array processing unit.
US10855338B2

A distributed antenna system (DAS) includes: a base station network interface; and a remote antenna unit communicatively coupled to the first base station interface, the remote antenna unit including an antenna. The remote antenna unit configured to: receive a radio frequency band signal from a subscriber unit; convert the radio frequency band signal into a data stream; and communicate the data stream with the first base station network interface. The first base station network interface is configured to: convert the data stream or a signal derived from the data stream into a communication signal, wherein a mater reference clock is distributed between various components of the DAS to keep the various components of the DAS locked to a single clock; and communicate the communication signal and the master reference clock to an external device, the external device configured to lock its clock to the master reference clock.
US10855329B2

A hopping spread-spectrum wireless network for IoT applications with mobile device that have unsynchronized local frequency references. The transmitters use hopping sequences defined in term of the relative differences of frequencies, in such a manner that a receiver can determine the hopping sequence of a transmission despite the presence of a large frequency error.
US10855328B1

Methods, systems, computer-readable media, and apparatuses for transmitting and receiving radar signals from a radar source while minimizing interference with other radar sources are presented. A transmit signal comprising a first chirp sequence is generated according to a set of waveform parameters, with least one waveform parameter being varied for one or more chirps in the first chirp sequence. Additionally, each chirp of the first chirp sequence can be phase-modulated. A receive signal comprising a second chirp sequence and corresponding to the transmit signal reflected off an object in a surrounding environment is then sampled to determine one or more attributes of the object. In some embodiments, the attributes include distance and speed values calculated using Discrete Fourier Transforms (DFTs). Other attributes that can be calculated from the receive signal include azimuth angle and elevation angle.
US10855327B2

The disclosed systems, structures, and methods are directed to a wireless receiver. The configurations presented herein employ a signal encoding module to encode a plurality of received analog signals with an orthogonal code set and combine the encoded analog signals into a single encoded analog composite signal, an analog-to-digital conversion unit to convert the single encoded analog composite signal into a single encoded digital composite signal containing constituent digital signals. The presented configurations also include a bank of multiple successive interference cancellation (SiC) modules to sequentially remove the constituent digital signals from the single encoded digital composite signal until a single constituent digital signal remains and a decoding module configured to decode the remaining constituent digital signal from the single encoded digital composite signal.
US10855322B2

An information handling system transceiver adjusts power levels for transmitting wireless signals to maintain specific absorption constraints by estimating the type of material proximate an antenna and applying the estimated material to adjust transmit power levels. When the capacitive response of an object in proximity to the antenna indicates an inanimate object, such as a desktop surface or a portion of a housing, the power level may be maintained at a high setting and remain within specific absorption constraints.
US10855317B2

An RF receiver includes a low-noise amplifier (LNA) to receive and amplify RF signals, a transformer-based IQ generator circuit, one or more load resisters, one or more mixer circuit, and a downconverter. The transformer-based IQ generator is to generate a differential in-phase local oscillator (LOI) signal and a differential quadrature (LOQ) signal based on a local oscillator (LO) signal received from an LO. The load resisters are coupled to an output of the transformer-based IQ generator. Each of the load resisters is to couple one of the differential LOI and LOQ signals to a predetermined bias voltage. The mixers are coupled to the LNA and the transformer-based IQ generator to receive and mix the RF signals amplified by the LNA with the differential LOI and LOQ signals to generate an in-phase RF (RFI) signal and a quadrature RF (RFQ) signal. The downconverter is to down convert the RFI signal and the RFQ signal into IF signals.
US10855315B2

Techniques are described for wireless communication. One method includes segmenting a payload into a plurality of code blocks; generating, for each code block, a cyclic redundancy check (CRC); encoding each code block and associated CRC in one or more codewords of a plurality of codewords; and transmitting the codewords. The encoding is based at least in part on a low density parity check code (LDPCC) encoding type. Another method includes receiving a plurality of codewords associated with a payload encoded using a LDPCC encoding type; decoding a set of the codewords associated with the first payload and a CRC; and transmitting one of an acknowledgement (ACK) or a non-acknowledgement (NAK) for the set of the codewords.
US10855311B2

A method for determining features of an error correcting code system, comprising independent error correcting codes and a polarization module, allowing transmitting a binary input vector on block fading sub-channels, the independent error correcting codes generating components of the binary input vector and a channel polarization being applied to the binary input vector by the polarization module. The method comprises: obtaining characteristics of the block fading sub-channels; and, determining features of said error correcting code system, comprising, for each error correcting code, a rate of said error correcting code, adapted to the obtained characteristics and minimizing a function of a probability that an instantaneous equivalent channel capacity of the block fading sub-channels is below a transmission rate transmitted on the block fading sub-channels.
US10855308B2

Exemplary multipath digital microphone described herein can comprise exemplary embodiments of adaptive ADC range multipath digital microphones, which allow low power to be achieved for amplifiers or gain stages, as well as for exemplary adaptive ADCs in exemplary multipath digital microphone arrangements described herein, while still providing a high DR digital microphone systems. Further non-limiting embodiments can comprise an exemplary glitch removal component configured to minimize audible artifacts associated with the change in the gain of the exemplary adaptive ADCs.
US10855306B2

A digital-to-analog converter (DAC) capable of operating in radio frequency (RF) with linear output, low distortion, low power consumption, and input data independence. The DAC includes switch drivers and output switches driven by the switch drivers. The switch drivers include pairs of outputs, and positive feedback circuitries coupled between respective pairs of outputs. The output switches are arranged between a first current source configured to push current to the DAC's outputs and a second current source configured to pull current from the DAC's outputs. Different output switches are configured to push current to and pull current from the DAC's outputs in accordance with rising edges and falling edges, respectively.
US10855303B1

Various embodiments provide a filter for propagation delay compensation and interpolation in encoder digital signal processing. The filter can include a first low pass filter configured to reduce noise of a digital input comprising a measured angular position; a first differentiator configured to receive a filtered digital input and to calculate a speed from a difference in time of the measured angular position and a previous angular position; a second low pass filter configured to reduce noise from the speed; a second differentiator configured to receive a filtered speed and to calculate acceleration using a difference in time of the filtered speed and a previous speed; a third low pass filter configured to reduce noise of the acceleration; and a delay compensator configured to receive the filtered digit input, the filtered speed, and a filtered acceleration, and to calculate a propagation delay compensated digital output.
US10855302B2

Improved track and hold (T/H) circuits can help analog-to-digital converters (ADCs) achieve higher performance and lower power consumption. The improved T/H circuits can drive high speed and interleaved ADCs, and the design of the circuits enable additive and multiplicative pseudo-random dither signals to be injected in the T/H circuits. The dither signals can be used to calibrate (e.g., linearize) the T/H circuits and the ADC(s). In addition, the dither signal can be used to dither any remaining non-linearity, and to calibrate offset/gain mismatches in interleaved ADCs. The T/H circuit design also can integrate an amplifier in the T/H circuit, which can be used to improve the signal-to-noise ratio (SNR) of the ADC or to act as a variable gain amplifier (VGA) in front of the ADC.
US10855301B2

A digital-to-analog converter (DAC) device includes a DAC circuitry and a calibration circuitry. The DAC circuitry includes first and second DAC circuits which generate first and second signals according to an input pattern. The input pattern includes at least one of first logic value and at least one of second logic value that have different numbers. The calibration circuitry performs a calibration operation according to first and second comparison results, to generate a control signal for controlling the second DAC circuit. The first comparison results are comparison results of the first and the second signals when the input pattern is a first pattern, the second comparison results are comparison results of the first and the second signals when the input pattern is a second pattern, and the first pattern is inverse to the second pattern.
US10855299B2

Described herein are DACs with low distortion for high dynamic range (HDR), extremely high dynamic range (EHDR), and other suitable applications. Some embodiments relate to a device including a DAC configured for coupling to an amplifier via a force path and a sense path. For example, the DAC may provide output current to the amplifier via the force path, and the DAC may sense the input voltage of the amplifier via the sense path. Accordingly, distortion such as harmonic distortion and/or gain offset from parasitic impedances in the force and/or sense paths may be reduced or eliminated. Some embodiments relate to a DAC including a voltage reference generator configured to compensate for variations in impedances of the DAC, such as due to semiconductor process variation. Accordingly, distortion in the DAC output due to variations in the DAC impedances may be reduced or eliminated.
US10855296B2

A circuit for calibrating an injection locked oscillator is provided. The injection locked oscillator includes an injection locking input, an LC tank and an oscillator output to output an oscillator output signal. The circuit is configured to adjust a capacitance of the LC tank to different values, detect an amplitude of the oscillator output signal for each value of the different values of the capacitance while an input signal having a target frequency is applied to the injection locking input, determine a maximum amplitude of the detected amplitudes, and select a value for operating the injection locked oscillator based on the determined maximum amplitude.
US10855295B2

Methods, systems, and devices for section-based data protection in a memory device are described. In one example, a memory device may include a set memory sections each having memory cells configured to be selectively coupled with access lines of the respective memory section. A method of operating the memory device may include selecting at least one of the sections for a voltage adjustment operation based on a determined value of a timer, and performing the voltage adjustment operation on the selected section by activating each of a plurality of word lines of the selected section. The voltage adjustment operation may include applying an equal voltage to opposite terminals of the memory cells, which may allow built-up charge, such as leakage charge accumulating from access operations of the selected memory section, to dissipate from the memory cells of the selected section.
US10855294B2

A high linearity phase interpolator (PI) is disclosed. A phase value parameter indicative of a desired phase difference between an output signal and an input clock signal edge may be provided by control logic. A first capacitor may be charged for a first period of time with a first current that is proportional to the phase value parameter to produce a first voltage on the capacitor that is proportional to the phase value parameter. The first capacitor may be further charged for a second period of time with a second current that has a constant value to form a voltage ramp offset by the first voltage. A reference voltage may be compared to the voltage ramp during the second period of time. The output signal may be asserted at a time when the voltage ramp equals the reference voltage.
US10855293B2

The present disclosure discloses a quick-start clock system, which includes: a digital subsidiary circuit configured to output a digital control value; a phase-locked loop including a programmable voltage-controlled oscillator circuit and a frequency dividing circuit connected to each other and both connected to the digital subsidiary circuit, the programmable voltage-controlled oscillator circuit obtains the digital control value output, and output a clock signal according to the digital control value, the frequency dividing circuit performs a frequency dividing operation on the clock signal; and a crystal oscillator circuit connected to the phase-locked loop, which includes a crystal and an oscillation injecting circuit connected to the crystal, the oscillation injecting circuit converts the clock signal performed with the frequency dividing operation to a co-frequency fully differential signal, and inject the co-frequency fully differential signal into the crystal.
US10855284B1

A method of routing interconnects of a field programmable gate array including: a plurality of logic tiles, and a tile-to-tile interconnect network, having a plurality of tile-to-tile interconnects to interconnect logic tile networks of the logic tiles, the method comprises: routing a first plurality of tile-to-tile interconnects in a first plurality of logic tiles. After routing the first plurality of tile-to-tile interconnects, routing a second plurality of tile-to-tile interconnects in a second plurality of logic tiles. The start/end point of each tile-to-tile interconnect in the first plurality and the second plurality of tiles is independent of the start/end point of the other tile-to-tile interconnects in the first and second plurality, respectively. Routing the second plurality of tile-to-tile interconnects includes connecting at least one start/end point of each tile-to-tile interconnect in the second plurality of tiles to at least one start/end point of each interconnect in the first plurality of tiles.
US10855280B2

A circuit receives an input signal that switches between reference and first voltage levels, a power node carries a second voltage level, and a set of transistors is coupled between the power node and an output node. The second voltage level is a multiple of the first voltage level, and the multiple and a number of the transistors have a same value greater than two. A control signal circuit includes a level shifting circuit including a series of capacitive devices paired with latch circuits, a number of the pairs being one less than the value of the multiple, and, responsive to the input signal, outputs a control signal to a gate of a transistor of the first set of transistors closest to the power node, the control signal switching between the second voltage level and a third voltage level equal to the second voltage level minus the first voltage level.
US10855278B1

Modular layout design units are provided with an internal channel for multi-directional distribution of a shared signal. In one illustrative embodiment, an integrated circuit includes: one or more modular units, each modular unit having an internal channel for signal distribution. The internal channel possesses: an edge connection on each edge of the modular unit; a hub node coupled to each edge connection by a respective bi-directional buffer having an incoming buffer and an outgoing buffer with at least one of the incoming and outgoing buffers disabled, the bi-directional buffers cooperating to steer a signal from a selectable one of the edge connections to one or more of the other edge connections; and a tap providing the signal for use by internal circuitry of the modular unit.
US10855272B1

A gate drive apparatus is provided. The gate drive apparatus includes a gate drive unit configured to drive a gate of a switching device; a parameter measuring unit configured to measure a parameter corresponding to current flowing through the switching device; a discrepancy detection unit configured to detect discrepancy between current flowing through the switching device during an on-state of the switching device and a reference value, based on the parameter; and a control unit that, if the discrepancy is not detected, switches a change speed of a gate voltage of the switching device at a timing when a reference time has elapsed since a turn-off start of the switching device during a next turn-off time period of the switching device, and if the discrepancy is detected, keeps the change speed of the gate voltage during the next turn-off time period of the switching device.
US10855271B2

In a control device that drives a semiconductor switch element, a first control switch is connected between a signal line and a source terminal or an emitter terminal of a semiconductor switch element. The signal line supplies a driving signal to a gate terminal or a base terminal of semiconductor switch element. The first control switch is controlled to an ON state when the semiconductor switch element is controlled to an OFF state. A second control switch is connected between the signal line and the source terminal or the emitter terminal in parallel with the first control switch. The second control switch is turned on when a potential of the source terminal or the emitter terminal becomes a negative potential.
US10855264B1

A circuit for generating differential reference voltages, a circuit for detecting a signal peak, and an electronic device. In the circuit for generating reference voltages, a common-mode extraction circuit receives a first differential signal and a second differential signal, extracts a common-mode level from the first differential signal and the second differential signal, and applies the common-mode level to a non-inverting input terminal of a first operational amplifier. The first operational amplifier, a main control switch, a first voltage dividing resistor, a second voltage dividing resistor, and a first direct current power source constitute a feedback loop, to generate differential reference voltages matching with the common-mode level. Adjusting a current provided by the first direct current power source can change the differential reference voltages, obtaining a reference for to-be-detected amplitude of the signals. Signal amplitude is detected with high precision, and detection reliability of a peak detecting circuit is improved.
US10855263B2

Aspects provide for a circuit including a voltage supply, a driver, and a feedback bias circuit. The driver includes a first p-type field effect transistor (FET) and a first n-type FET. The voltage supply has an input and an output. The driver has a first input coupled to the voltage supply output, a second input coupled to a first node, and an output coupled to a second node. The first p-type FET has a gate coupled to the output of the driver, a source coupled to the voltage supply output, and a drain coupled to the second node. The first n-type FET has a gate coupled to the output of the second driver, a drain coupled to the second node, and a source coupled to a ground node. The feedback bias circuit has an input coupled to the second node and an output coupled to the voltage supply input.
US10855258B1

This application relates to methods and apparatus for voltage control, and in particular to maintain safe voltages for components of audio driving circuits that are operable in a high voltage mode. An audio driving circuit (100) may include a power supply module (106) and may be operable such that, in use, a voltage magnitude at a source terminal of at least a first transistor (306, 309, 603, 605) of the audio driving circuit can exceed its gate-source voltage tolerance. A voltage generator (111P) is configured to output a first intermediate voltage (VSAFEP) to an intermediate voltage path for use as a gate control voltage for at least the first transistor, to maintain its gate-source voltage below tolerance. An intermediate path voltage clamp (114P) is provided for selectively clamping the intermediate voltage path to a voltage level, so as to maintain the magnitude of the gate-source voltage of the first transistor below tolerance. The voltage clamp (114P) is enabled by a reset condition (RST) for the audio driving circuit.
US10855254B2

Systems for calibrating impedances caused by a first component and a second component of a voltage-mode transmitter driver are described herein. The first component includes a first transistor and a first resistor connected to the first transistor, wherein the first component is connected to a voltage source and an output end of the voltage-mode transmitter driver, respectively. The second component includes a second transistor and a second resistor connected to the second transistor, wherein the second component is connected to the output end of the voltage-mode transmitter driver, and a third transistor, respectively. A first gate of the third transistor is applied with a first tunable gate voltage, and the first tunable gate voltage is configured to be tuned to calibrate a first impedance between the output end and a ground to match with a second impedance between the voltage source and the output end.
US10855243B2

A mobile communication system. The system has a housing comprising an interior region and an exterior region and a processing device provided within an interior region of the housing. The system has an rf transmit module coupled to the processing device, and configured on a transmit path. The system has a transmit filter provided within the rf transmit module. In an example, the transmit filter comprises a diplexer filter comprising a single crystal acoustic resonator device.
US10855240B2

Improved structures for spatial power-combining devices are disclosed. A spatial power-combining device includes a plurality of amplifier assemblies and each amplifier assembly includes a body structure that supports an input antenna structure, an amplifier, and an output antenna structure. According to embodiments disclosed herein, the body structure comprises a material that is configured to provide the spatial power-combining device with reduced weight while maintaining good thermal dissipation for heat generated by the amplifiers. In certain embodiments, the body structure may comprise an allotrope of carbon such as graphite or graphene, among others. In certain embodiments, the body structure may include one or more thermal vias configured to dissipate heat from the amplifier.
US10855230B2

Thermally-sensitive structures and methods for sensing the temperature in a region of a FET during device operation are described. The region may be at or near a region of highest temperature achieved in the FET. Metal resistance thermometry (MRT) can be implemented with gate or source structures to evaluate the temperature of the FET.
US10855221B2

There is provided a cladding member (13) formed of a supporting body portion (67) having mounts (54) and a head portion (12), and an absorber surface portion (70) having a peripheral boundary wall (71) defining a recess into which a solar cell array (removed in this view for clarity) is bonded. The supporting (67) and absorber surface (70) body portions are pressure moulded from polyvinyl ester/glassfibre (30%)/fire retardant (40%)/pigment sheet moulding compound. Complementary bonding portions (72) form a glue line in assembly and have complementary water passages (73) defined therebetween. The bonding portions (72) contrive a generally sinusoidal glue space (74) that is longer that the transverse sectional dimension of the boding portions (72), cooperating with the adhesive system to resist water pressure in the passages (73).
US10855210B2

In an example, a method includes interacting electric fields from charges in conductors in different inertial reference frames to effect motion. The example method implements the mathematical framework that divides electric fields from charges in different inertial reference frames into separate electric field equations in electrically isolated conductors. The example method may implement the interaction of these electric fields to produce a force on an assembly that can, by way of illustration, propel a spacecraft using electricity without other propellant(s).
US10855203B2

A cascaded architecture composed of interconnected blocks that are each designed to process constant power and eliminate bulk energy storage are provided. Further, local controls within each block natively achieve both block- and system-level aims, making the system modular and scalable. Further methods of providing power conversion using such interconnected clocks are also provided.
US10855199B2

A method of discharging a Modular Multilevel Converter (MMC) includes a plurality of phase legs connected in delta configuration. Each leg includes a plurality of series connected submodules, each submodule including an energy storage. The method includes disconnecting the MMC from an electrical grid, discharging the energy storages by means of a circulating current, and reconnecting the MMC to the electrical grid. The discharging includes, for each phase leg, setting a voltage reference, and sequentially selecting submodules in zero state by means of a sorting algorithm for switching each of the selected submodules to plus or minus state until the voltage deviation from the set voltage reference of the energy storage of each submodule in the phase leg is within a predefined range.
US10855197B2

A power supply system includes a power supply assembly, an auxiliary power circuit and a control unit. The power supply assembly converts input power into a first DC power when the input power outputted from an input power source is normal. The auxiliary power circuit includes at least one energy storage unit for providing a second DC power and power converter electrically connected between the energy storage unit and the load for converting the second DC power into an individual auxiliary power. The control unit drives the auxiliary power circuit to provide an overall auxiliary power to the load when the input power is normal and a transient power required by the load is greater than a upper limit rated value of an output power outputted from the power supply assembly, so as to compensate a difference value between the transient power and the upper limit rated value.
US10855194B2

A high frequency power supply system provides highly regulated power and frequency to a workpiece load where the highly regulated power and frequency can be independent of the workpiece load characteristics by inverter switching control and an inverter output impedance adjusting and frequency control network that can include precision variable reactors with a geometrically-shaped moveable insert core section and a stationary split-bus section with a complementary geometrically-shaped split bus section and split electric terminal bus section where the insert core section can be moved relative to the stationary split-bus section to vary the inductance of the variable reactors.
US10855193B2

A power conversion unit includes an AC/DC converter converting alternating-current power supplied from an AC power supply into direct-current power to charge a high-voltage battery with the direct-current power and a step-down DC/DC converter generating an intermediate voltage provided by stepping down a voltage of direct-current power supplied from the high-voltage battery. A constant-voltage DC/DC converter outputs, to a low-voltage load unit, direct-current power provided by stepping down the intermediate voltage of direct-current power output from the step-down DC/DC converter at a constant step-down ratio.
US10855190B2

A magnetic integrated device is disclosed, the device includes: a first magnetic core base and a second magnetic core base that are parallel and a first magnetic core column, a second magnetic core column, and a third magnetic core column that are located between the first magnetic core base and the second magnetic core base; and a first winding, a second winding, and a third winding are wound on the first magnetic core column, the second magnetic core column, and the third magnetic core column respectively in a same manner to form a closed magnetic flux loop, where the first winding, the second winding, and the third winding are separately used for connecting to a branch of a three-phase parallel circuit, and in all branches of the three-phase parallel circuit, values of currents are the same, and a difference between each two current phases is 120 degrees.
US10855189B2

A control apparatus for a resonant converter that receives a direct current (DC) voltage of a bulk capacitor. The control apparatus includes a forced turn-off control circuit that receives a resonance current detection signal, which has been produced by shunting a resonance current flowing through the resonant converter and converting the shunted resonance current to a voltage, outputs a forced turn-off signal in response to the resonance current detection signal falling between a first variable threshold and a second variable threshold that is smaller than the first variable threshold, and varies the first variable threshold and the second variable threshold in accordance with an input voltage inputted to the forced turn-off control circuit by dividing the DC voltage of the bulk capacitor.
US10855186B2

Resonant power converters that replace the conventional impedance matching stage with series or parallel connections between resonant inverters and resonant rectifiers are provided. Two or more resonant rectifiers can be connected in series or in parallel to the resonant inverter to provide impedance matching. Similarly, two or more resonant inverters can be connected in series or in parallel to the resonant rectifier to provide impedance matching. Electrical isolation of DC voltage between input and output is provided using only capacitors.
US10855183B1

Methods and circuits are provided for controlling an electronic switch such that it may be controlled by an external control signal, such as a PWM signal, or be set to operate in an active-diode mode, wherein current is allowed to flow through the switch in only one direction. The described circuits are configured to autonomously control the electronic switch, such that no external control signal is required when the active-diode mode is used. The provided techniques allow electronic switches to be efficiently used as part of a power stage or part of an active rectifier, so as to support bi-directional switched-mode power supplies, motor/generator drivers, and related electric circuits that require bi-directional power flow. By reusing electronic switches thusly and implementing an active-diode mode, the circuitry is minimized while maintaining good power efficiency.
US10855182B2

A power conversion circuit includes an error amplifying circuit, a first comparison circuit, a second comparison circuit and a control circuit. The error amplifying circuit provides an output signal. The first comparison circuit, coupled to the error amplifying circuit, receives the output signal and a ramp signal to generate a first comparison signal. The second comparison circuit receives an output voltage and a first reference voltage and provides a second comparison signal. The control circuit, coupled to the error amplifying circuit, the first comparison circuit and the second comparison circuit, provides a control signal to control the error amplifying circuit according to the first comparison signal, the second comparison signal and an enabling signal. In a first operation mode of error amplifying circuit, the output signal is an error amplifying signal. In a second operation mode of error amplifying circuit, the output signal is a second reference voltage.
US10855175B2

A high voltage generator includes a voltage converting device configured to increase a level of an input voltage and output an output voltage having a level higher than the level of the input voltage. The high voltage generator also includes a precharge controller configured to gradually increase the level of the input voltage up to a level of an external voltage based on a reference voltage and the output voltage.
US10855170B2

A power management integrated circuit (PMIC) is provided for extracting power from an energy harvester. The PMIC includes a voltage converter to convert an input power at a voltage Vin into an output power at an output voltage Vout_VC. The voltage converter includes, in addition to a main voltage converter circuit, a cold-start circuit for starting the voltage converter from an OFF state. The PMIC further includes an input terminal for receiving a voltage VEN-CS proportional to the converter input voltage Vin and a voltage comparator for comparing the voltage VEN-CS with a reference voltage Vref. A controller enables the cold-start circuit when VEN-CS≥Vref.
US10855169B1

An on-board charger (OBC) for charging a traction battery of an electric vehicle includes a primary phase, a secondary phase, and a pre-charge circuit. Each phase includes a circuit having an input and an output. The primary phase circuit input is connectable to a mains supply to connect the primary phase to the mains supply. The secondary phase circuit input has an input capacitor. The pre-charge circuit is connected between the circuit outputs and is switchable between an opened state in which the pre-charge circuit disconnects the circuit outputs and a closed state in which the pre-charge circuit connects the circuit outputs. When the pre-charge circuit is in the closed state, an electrical current may flow through the pre-charge circuit from the primary phase circuit output to the secondary phase circuit output and through the secondary phase circuit to the input capacitor to charge the input capacitor.
US10855164B2

A switch-mode power supply and a zero current detector for use therein. A zero current detector includes an input stage and an output stage. The output stage is coupled to the input stage. The output stage includes a detector output terminal, a first transistor, and a second transistor. The first transistor includes an input terminal and a control terminal. The input terminal is coupled to the detector output terminal. The control terminal is coupled to the input stage. The second transistor includes an input terminal, a control terminal, and an output terminal. The input terminal is coupled to the control terminal of the first transistor. The control terminal is coupled to the input terminal of the second transistor. The output terminal is coupled to ground.
US10855162B2

The present invention provides a secondary side of a linear motor, which mainly includes a base, a combining mechanism and multiple magnetic members, wherein the base has multiple plates that are sequentially stacked into a block; the combining mechanism is configured to combine the plate-shaped bodies; and the magnetic members are disposed on the base in a separated manner.
US10855150B2

A device may be used to assemble a rotor segment of an electric machine. The rotor segment may include a rotor shaft, a laminated core joined to the rotor shaft, and two pressure elements that clamp the laminated core. A method for assembling the rotor segment may involve positioning the rotor shaft in the device and orienting the rotor shaft using an orienting means of the assembly device, positioning the laminated core and at least one of the first or second pressure elements within a clamping means of the device, orienting the laminated core by means of a positioning module of the clamping means, and moving the rotor shaft relative to the clamping means such that the laminated core is pushed onto the rotor shaft and the at least one of the first or second pressure elements is connected to the rotor shaft.
US10855144B2

An electrical winding topology having a core and a plurality of windings is provided. The plurality of windings is operatively coupled to the core, where at least one of the plurality of windings includes an evaporator section and a condenser section. Further, at least a portion of one or more of the plurality of windings includes heat pipes.
US10855136B2

A cooling unit of a drive motor includes: a fixing member installed on an inner wall surface of a motor housing and configured to fix a stator core of the drive motor, wherein the fixing member has a ring shape, includes a flow path formed therein in order to allow a cooling medium to flow, and includes a cooling medium inlet and a cooling medium outlet formed to be connected to the flow path, the flow path includes a first path connecting the cooling medium inlet and the cooling medium outlet to each other at one side and a second path connecting the cooling medium inlet and the cooling medium outlet to each other at another side, and the first and second paths have different flow cross sections and are connected to each other.
US10855132B2

A bus bar unit includes: a plurality of bus bars arranged to be laminated, the respective bus bars having conductivity, the respective bus bars having a hole part; an insulating member interposed between the bus bars, the insulating member having insulating property, the insulating member having a hole part; a positioning member formed by insulating resin, the positioning member having a pin protruding in direction of laminating the bus bars, the pin being inserted through the hole parts of the bus bars and the hole part of the insulating member; and a fixing part provided at a tip end of the pin, the fixing part being configured to fix the bus bars and the insulating member.
US10855131B2

An assembly for an electric machine including a core with a plurality of teeth extending radially inward from the core, the plurality of teeth defining a plurality of slots for receiving coils, a plurality of coils, each coil wrapping around a respective tooth, a separator in one of the slots including a first leg joined at an angle to a second leg for separating adjacent coils within the slot, an insert between the first leg and the second leg for at least partially filling a space between the first leg and the second leg, and a potting filling space within the slot between the separator, the plurality of coils, and the insert.
US10855124B2

An electric motor comprising: a stator assembly; a rotor assembly; and a support body. The stator assembly comprises a plurality of stator elements, and the rotor assembly comprises a shaft to which is mounted at least a first and a second bearing mounted either side of a permanent magnet. The support body comprises an elongate central part, and first and second bearing seats positioned axially at opposite ends of the elongated central part to each other, and the elongate central part defines a plurality of openings each configured to receive one of the plurality of stator elements.
US10855122B2

Provided is a stator for rotating electrical machine that can avoid the sagging of teeth stacked at the distal ends under the self-weight. A stator core is a laminate of metal foil members stacked in a direction of a rotation axis of the rotating electrical machine. Each tooth has a pair of side walls facing the neighboring teeth in the circumferential direction. The stator includes a pair of insulating reinforcing members so as to become a bridge between the corresponding tooth and a part of the yoke and sandwich the corresponding tooth from both sides in the direction of the rotation axis while exposing the pair of side walls; insulating fixing members, each fixing member fixing the corresponding pair of reinforcing members to the corresponding tooth while wrapping around the pair of reinforcing members and tooth; and coils formed as distributed windings at the teeth fixed with the fixing members.
US10855121B2

Provided is a rotary electric machine capable of reducing an amount of leakage magnetic flux passing through connecting portions. A cutout portion is formed in the connecting portion so as to be located on a side closer to a magnetic air gap portion. The connecting portion has a slot portion-side thin connecting portion formed so as to be closer to a slot portion than the cutout portion. A slot projecting portion projecting from the slot portion toward the magnetic air gap portion with respect to the slot portion-side thin connecting portion is formed in a portion of the connecting portion that is shifted in the circumferential direction from a portion of the connecting portion in which the slot portion-side thin connecting portion is formed. The slot projecting portion is arranged on each of circumferential sides of the cutout portion.
US10855108B2

A wireless device is provided and includes a coil assembly. The coil assembly includes a first coil, a second coil, a first contact, a second contact, and a third contact. The second coil is configured to be connected to the first coil in series. The first contact is configured to be connected to a first end of the first coil. The second contact is configured to be connected between the first coil and the second coil. The third contact is configured to be connected to a second end of the second coil. The first contact, the first coil and the second contact form a first circuit loop, and the first contact, the first coil, the second coil and the third contact form a second circuit loop.
US10855100B2

A power supply control apparatus is applied to a power supply system that includes an opening and closing unit that has a plurality of switches that are connected in series on an energization path over which energization from a voltage source is performed and a plurality of diodes that are respectively connected in parallel to the plurality of switches, in which the plurality of diodes include diodes that are arranged in opposite directions to each other. The power supply control apparatus includes a determining unit determining that an abnormal state has occurred in which a current is flowing to any of the plurality of diodes in a state in which the plurality of switches are turned off, and a control unit controlling the switch that is connected in parallel to the diode through which the current is flowing to an on-state, when the abnormal state is determined to have occurred.
US10855096B2

A quick charger for a vehicle performs normal charging or quick charging depending on whether a device connected thereto supports quick charging. The quick charger includes: an input terminal receiving power from a vehicle; an output port configured to be connected to an electronic device and comprising a power port and a communication port; and a charging voltage changing module configured to convert a voltage of the power applied to the input terminal into a normal charging voltage or a quick charging voltage larger than the normal charging voltage, depending on a level of a voltage sensed at the communication port connected to the electronic device, wherein the electronic device is charged with the normal charging voltage at a normal speed and is charged with the quick charging voltage at a faster speed than the normal speed. With the above-described configuration, the quick charger can automatically perform normal charging or quick charging depending on the type of the electronic device connected thereto.
US10855094B2

A method of displaying information on a display is provided. The method includes: receiving a request to display, on the display, information indicating whether each of a plurality of battery packs associated with the display, is mounted on a device of a plurality of devices associated with the display; in response to the request, displaying, on a monitor of the display, information indicating whether or not a battery pack of the plurality of battery packs associated with the display is mounted on each device of the plurality of devices associated with the display; receiving a selection of a battery pack from the plurality of battery packs displayed on the display; and in response to the selection of the battery pack, displaying information on the selected battery pack. Each of the plurality of battery packs is mountable on the plurality of devices.
US10855092B2

A device for holding and charging an electronic cigarette element is disclosed. The device includes a protective case element configured for coupling to a mobile computing device, the case element including a rechargeable battery, a first power port in the case element, the first power port conductively coupled to the rechargeable battery and configured for accepting external power for recharging the rechargeable battery, a cavity in the case element, wherein the cavity is configured to accept an electronic cigarette element, and a charging terminal located in the cavity such that when the electronic cigarette element is inserted into the cavity, one end of the electronic cigarette element contacts the charging terminal, and wherein the charging terminal is conductively coupled to the rechargeable battery, wherein when the electronic cigarette element contacts the charging terminal, the rechargeable battery recharges a battery of the electronic cigarette element.
US10855091B1

In one aspect, an electronic apparatus may include a base and an electrode. In one embodiment, the electrode can be cylindrical with a threaded portion on top of the electrode, and the threaded portion can be used to secure another electronic device with corresponding threads. For example, the electrode can be used to connect with a camera having an electrode and a corresponding threaded portion. More specifically, the camera can be secured on the electrode through the threaded portions and when the camera is fully secured on the electrode, the electrode can be in contact with the electrode to electrically connect with the camera.
US10855089B2

A charging control device includes a detector detecting a temperature of a battery; a controller causing the charger to stop charging the battery in response to the temperature of the battery falling outside a first range during the charging of the battery; an obtainer obtaining, from the charger, information that is capable of identifying a charging characteristic of the charger; a range setter setting the first range to be a temperature range that corresponds to the charging characteristic of the charger based on the information obtained in the obtainer.
US10855087B1

Exemplary power supply systems according to the present invention include circuitry that is configured to provide DC power and configured to receive a input signal that originates from a portable electronic device (the “PED”) and to provide a output signal to be sent to the PED. Such circuitry is configured to be coupled to the PED via a connector having a first, second, third, and fourth conductor. Such a connector is configured to be detachably mated with a power input interface of the PED to transfer the DC power to the PED, a ground reference to the PED, the input signal from the PED to the circuitry, and, in coordination with the input signal, the output signal from the circuitry to the PED, which is usable by the PED in connection with control of charging a battery of the PED based on the DC power provided by the circuitry.
US10855083B2

A generator system, including first and second generators each having an inverter circuit outputting AC, a connection circuit connecting the generators through a power line, a master-slave determining unit determining one of the generators as a master generator, and to determine other of the generators as a slave generator, a data acquiring unit acquiring an output data of the master generator, and a synchronization controlling unit controlling switching operation of the inverter circuit of the slave generator based on the output data of the master generator to synchronize an output data of the slave generator with the output data of the master generator, wherein the master-slave determining unit determines one of the generators that starts earlier as the master generator, and when the generators start simultaneously, to determine one of the generators as the master generator in accordance with a predefined rule.
US10855077B2

A utility management device, comprising an input for receiving a utility consumption signal for a premises, an output for outputting utility management information, and a processor configured to monitor the input utility consumption signal for a change in magnitude. If a change is detected, the processor is configured to identify an appliance event corresponding to the change, obtain information relating to the projected utility consumption of the appliance for an upcoming time period, update a projected utility consumption of the premises based on the obtained information, determine whether any projected stored and/or generated utility amount at the premises is sufficient for the projected utility consumption of the premises, and, if not sufficient, cause the device to output a request to receive a utility amount from one or more other premises connected to the premises via a communication network.
US10855073B2

A method of and apparatus for protecting a MEMS switch is provided. The method and apparatus improve the integrity of MEMS switches by reducing their vulnerability to current flow through them during switching of the MEMS switch between on and off or vice versa. The protection circuit provides for a parallel path, known as a shunt, around the MEMS component. However, components within the shunt circuit can themselves be removed from the shunt when they are not required. This improves the electrical performance of the shunt when the switch is supposed to be in an off state.
US10855071B2

A motor drive includes a rectifier bridge for connection with mains, a converter bridge configured to connect with an elevator motor and an intermediate DC circuit in-between. A capacitor and/or battery is connected between positive and negative branches of the intermediate DC circuit. At the mains side of the rectifier bridge a controlled main relay with contacts are configured to connect or disconnect the rectifier bridge with the corresponding mains phase. The motor drive comprises a charging circuit which comprises a charging switch connected with a current limiting component. The motor drive comprises a voltage sensor between positive and negative branches of the intermediate DC circuit. The voltage sensor is connected to a circuit comprising a reference value and a comparator. The evaluation circuit is configured to compare the actual sensor signal of the voltage sensor to the reference value and to operate the main relay based on the comparison.
US10855066B2

Disclosed herein is an adjustable mounting assembly for mounting an electrical module relative to a supporting surface. The assembly comprises: mounting means adapted for embedded anchorage relative to the supporting surface; a holder having an aperture for receiving and holding the electrical module, the holder being adapted for moveable engagement with the mounting means to facilitate adjustment of a position of the electrical module relative to the supporting surface; and fastening means for fastening the holder to the mounting means, the fastening means being accessible for unfastening and refastening via the aperture to facilitate re-adjustment of the position of the electrical module relative to the supporting surface.
US10855063B2

A method in the manufacturing of an insulated electric high voltage DC termination or joint includes providing an insulated electric high voltage DC cable including a high voltage DC conductor, a polymer based insulation system surrounding the high voltage DC conductor, the polymer based insulation system including an insulation layer and a semiconducting layer surrounding the insulation layer, and a grounding layer surrounding the semiconducting layer; removing the grounding layer and the semiconducting layer in at least one end portion of the high voltage DC cable, mounting a field grading adapter or joint body in the at least one end portion of the high voltage DC cable; and subjecting the insulation layer of the polymer based insulation system in the at least one end portion of the high voltage DC cable for a heat treatment procedure, while being covered by the mounted field grading adapter or joint body.
US10855062B2

A cabinet comprising an outer wall which encapsulates an internal space comprising electronic components, the outer wall having a rupture line forming a release wall portion which by rupturing of the rupture line in response to an increased pressure in the internal space can be released and thereby define an opening forming arc-vent for the internal space. To protect against penetration of objects of a predetermined size into the electronic components, the cabinet further comprises a ventilation-open inner lining arranged in the internal space to cover the opening. If arcing should occur, the increased pressure may rupture the line and the opening will allow venting. In this situation, the inner lining prevents against penetration.
US10855059B2

A compartment-partitioning and busbar-supporting device for a cabinet for a low voltage electrical switchboard an insulating body having a substantially rectangular shape with a first surface configured for coupling with one or more busbars and a second surface configured for coupling with one or more electrical apparatuses, said first and second surfaces being delimited by a first and a second opposite side substantially parallel to each other and configured for coupling with a vertical uprights or horizontal crossbars of the supporting structure of the low voltage electrical switchboard, and a third and a fourth opposite sides substantially parallel to each other and perpendicular to said first and second opposite sides and configured for allowing vertical stacking of a plurality of said compartment-partitioning and busbar-supporting devices in correspondence of said third and fourth opposite sides, said first surface being provided with a plurality of retaining pairs of first and second retaining means facing each other and defining a retaining space for a busbar among them, the retaining pairs for a given busbar being aligned in a direction parallel to said first and second opposite sides and the retaining pairs for different busbars being spaced apart in a direction parallel to said third and a fourth opposite sides, said second surface being provided with a plurality of openings configured for allowing insertion of connection means between said electrical apparatuses and said busbars through said compartment-partitioning and busbar-supporting device.
US10855057B2

In a spark plug for an internal combustion engine, a cylindrical insulator is arranged radially inside a cylindrical ground electrode, and includes an insulator protruding portion protruding further toward a distal end side in an axial direction than a distal end of the ground electrode. A center electrode is held radially inside the insulator, and includes an exposed portion exposed from a distal end of the insulator protruding portion. The spark plug generates a discharge from the exposed portion to the ground electrode, in a discharge gap formed along a surface of the insulator protruding portion. At least one of the exposed portion and the insulator protruding portion includes a flow inlet that is open on an outer circumferential surface thereof, a flow outlet that is open toward the discharge gap, and a communication passage communicating between the flow inlet and the flow outlet.
US10855051B2

What is shown is a method for manufacturing a semiconductor light source. The semiconductor light source has a substrate and a layer sequence arranged above the substrate, the same having a light-emitting layer and an upper boundary layer arranged above the light-emitting layer. The layer sequence is patterned in order to form a light-emitting stripe for defining the semiconductor light source and an alignment stripe, extending in parallel thereto, as a horizontal alignment mark at the same time. Then, a cover layer is applied on the patterned layer sequence and a part of the cover layer is removed in order to expose the alignment stripe and expose a region of the layer sequence outside the light-emitting stripe and spaced apart from a light-entrance edge or a light-exit edge of the light-emitting stripe as a vertical alignment mark.
US10855049B2

A pulse laser apparatus (100) for creating laser pulses (1), in particular soliton laser pulses (1), based on Kerr lens mode locking of a circulating light field in an oscillator cavity (10), comprises at least two resonator mirrors (11, 12, . . . ) spanning a resonator beam path (2) of the oscillator cavity (10), at least one Kerr-medium (21, 22, 23) for introducing self-phase modulation and self-focusing to the circulating light field in the oscillator cavity (10), at least one gain-medium (31) for amplifying the circulating light field in the oscillator cavity (10), and a tuning device (40) for setting a first mode-locking condition and a second mode-locking condition of the oscillator cavity (10) such that an intra-cavity threshold-power for mode-locking at the first mode-locking condition is lower than that at the second mode-locking condition, wherein the first mode-locking condition is adapted for starting or shutting-down of the Kerr lens mode locking and the second mode-locking condition is adapted for continuous Kerr lens mode locking and a resonator-internal peak-power of the circulating light field is higher at the second mode-locking condition than at the first mode-locking condition. Furthermore, a method of operating a pulse laser apparatus is described.
US10855031B2

Apparatuses for securing a memory card. One example apparatus can include a slot coupled to a printed circuit board (PCB), wherein the slot is configured to receive a memory card to provide electrical connection between the PCB and the memory card and a cover coupled to the PCB and configured to enclose the memory card when in a closed position and maintain electrical connection between the memory card and the PCB when in the closed position.
US10855028B1

A plug connector includes a plug housing having a mating end at a front of the plug housing for mating with a mating connector. The plug housing has an upper wall, an end wall extending from the upper wall, and side walls extending from the upper wall. The plug housing has a mating chamber defined by the upper wall, the end wall and the side walls. The mating chamber is open at the front. The end wall is opposite the front at a rear of the mating chamber. The plug connector includes a circuit card held by the plug housing. The circuit card extends into the mating chamber for mating with the mating connector. The circuit card has plug contacts. The plug connector includes a mating spring coupled to the end wall. The mating spring has a spring arm extending into the mating chamber. The spring arm has a mating interface configured to engage a mating end of the mating connector to bias the end wall away from the mating end of the mating connector.
US10855027B2

A card-type storage device and a slot device, which are capable of preventing lowering of the reliability due to repeated insertion and removal of the storage device. A card medium includes card thermal contacts each having a contact surface which intersects with a thickness direction of the card medium. A first card upper guide surface restricts the position of the card medium in the thickness direction to a first position. An escape portion restricts the position of the card medium in the thickness direction to a different position from the first position. A second card upper guide surface links the first card upper guide surface and the escape portion.
US10855026B2

An electrical connector includes a plug that mates with a receptacle. In a medical application, the plug is connected to electrical leads that pass through a patient's skin to an implanted medical device in the patient's body, while the receptacle is connected to external medical equipment. The plug is small in diameter so the size of the opening in the patient's skin can be minimized. All electrical contacts in the plug are on internal portions. The receptacle includes annular contacts that contact the internal electrical contacts on the plug when the plug and receptacle are properly mated. When the plug is plugged into the receptacle, spring-loaded retention arms in the receptacle lock into place on the plug, retaining the plug in the receptacle.
US10855024B2

An electrical connector having electrical terminals and a housing. The housing has a terminal-receiving portion with terminal-receiving cavities for receiving the electrical terminals therein. At least one latch-receiving slot is positioned between adjacent terminal-receiving cavities. A cover portion is provided for covering the terminal-receiving cavities and the terminals. The cover portion has latches which cooperate with the at least one latch-receiving slot when the cover portion is moved to a closed position. A hinge portion connects the terminal-receiving portion to the cover portion. The hinge is deformable to allow the cover portion to move between an open position in which the terminals can be inserted and removed from the terminal-receiving cavities of the terminal-receiving portion and the closed position in which the terminals are secured in the terminal-receiving cavities of the terminal-receiving portion.
US10855020B1

A card edge connector includes a housing including a card slot open to a cavity and a contact assembly received in the cavity. The contact assembly has a contact positioner holding upper contacts in an upper contact array and lower contacts in a lower contact array. The contact positioner has a positioner card slot. The contacts include intermediate portions extending between mating beams and contact tails. The contact arrays include separate and discrete front and rear contact holders. The front contact holder is positioned between the mating beams and the intermediate portions. The rear contact holder is positioned between the intermediate portions and the contact tails.
US10855014B1

A connector (10) used with a high-current terminal (100) includes a main body (1) and a conductive spacer (2). The main body (1) has a connecting portion (11) disposed at one end thereof and a pluggable portion (12) disposed at the other end thereof. The high-current terminal (100) is plugged into the pluggable portion (12). The conductive spacer (2) is disposed between the pluggable portion (12) and the high-current terminal (100). The conductive spacer (2) has a plurality of outer projections (21) pressed against the pluggable portion (12) and a plurality of inner projections (22) pressed against the high-current terminal (100). Thus, the number of electrical contact points is increased by means of the outer projections (21) and the inner projections (22) disposed between the pluggable portion (12) and the high-current terminal (100) such that the connector (10) has excellent electric conductivity and current adjustment capability.
US10855009B2

Provided is a press-fit pin. The press-fit pin according to an embodiment of the present invention includes: a press unit press-fitted into a through hole formed on a board, which is press-fitted into an inner surface of the board including the through hole, pressurized toward a long hole formed inside the press unit, applies a repulsive force to the inner surface of the board through an elastic force, and maintains a contact with the inner surface of the board; a first terminal which is extended for a predetermined length from one side of the press unit along a longitudinal direction of the press unit and is disposed at the upper side of the board when press fitting the press unit; and a second terminal which is extended for a predetermined length from the other side of the press unit along the longitudinal direction of the press unit and is disposed at the lower side of the board, when press fitting the press unit, wherein the press unit includes a plurality of press-fit parts which faces each other along a width direction of the press unit based on the long hole, is pressurized to the inside along the width direction of the press unit and a thickness direction of the press unit, which crosses the width direction of the press unit, when the plurality of press-fit parts is press-fitted into the through hole, and applies a repulsive force toward the width direction of the press unit and the thickness direction of the press unit using an elastic force.
US10855007B2

A plug-in connection includes a first and second coupling part. The first coupling part includes a first contact element, an electrical cable, an insulation sleeve, and a first housing. The first contact element includes a base region and an outer region with an edge region, an external shell surface, and a slot. The electrical cable includes an electrical conductor, a connection region, and an insulation for the electrical conductor. The insulation sleeve surrounds the outer region and includes an external and internal shell surface. The first housing surrounds the base region, the insulation sleeve's external shell surface, and the connection region. The second coupling part includes a second contact element with an external shell surface over which the first contact element's outer region is slidable, and a second housing which encloses the second contact element and together therewith forms an annular space into which the first housing is insertable.
US10855004B2

A coaxial cable connector comprising a sleeve, nut, post, and annular flange is provided. When the post is assembled to the nut, the annular flange to the post, and post, annular flange and nut to the sleeve, a proximal post engagement portion of the post is near to a protrusion ridge of the nut, and a proximal flange engagement end of the annular flange is flush with an annular inward protrusion of the nut and post ridge and post outer surface of the post. An annular space is formed between the proximal flange engagement end and a distal flange end of the annular flange and post outer surface and a distal post tapered end of the post. A plurality of deformed indentations is formed on an inner surface of the sleeve via a plurality of engagement protrusions of the nut, each having a tapered side and a distal side.
US10854996B2

The disclosed structures and methods are directed to transmission and reception of a radio-frequency (RF) wave. An antenna comprises a stack-up structure having a first control layer, a second control layer, a first and a second parallel-plate waveguides, and a plurality of through vias. The antenna further comprises a first central port and a second central port being configured to radiate RF wave into the two parallel-plate waveguides independently; vertical-polarization peripheral radiating elements integrated with the first control layer and configured to radiate RF wave in vertical polarization; and horizontal-polarization peripheral radiating elements integrated with the second control layer and configured to radiate RF wave in horizontal polarization. Each vertical-polarization peripheral radiating element is collocated with one of the horizontal-polarization peripheral radiating element such that they cross each other. A central port for transmission of RF wave into the stack-up structure of the antenna is also provided.
US10854993B2

An antenna element including a base plate, a first ground clustered pillar projecting from the base plate, a second ground clustered pillar projecting from the base plate and spaced apart from a first side of the first ground clustered pillar is provided. The ground clustered pillars, the signal ears, and the ground ears can be shapes so that the capacitive coupling between the ears and the pillars is sufficient to allow them to be spaced further apart, thereby reducing the number of elements required in the phased array. In some embodiments, the ground ear can be directly machined with the base plate thereby obviating the need for the ground ear to be overmolded into the base plate with the signal ear. In other embodiments the phased array antenna can utilize elastomeric connectors to further improve the mechanical and electrical reliability of the connections of the phase array antenna.
US10854992B2

A radar transmitter transmits a radar signal through a transmitting array antenna at a predetermined transmission period, and a radar receiver receives a reflected wave signal which is the radar signal reflected by a target through a receiving array antenna. A transmitting array antenna and a receiving array antenna each include multiple subarray elements, the subarray elements in the transmitting array antenna and the receiving array antenna are linearly arranged in a first direction, each subarray element includes multiple antenna elements, the subarray element has a dimension larger than a predetermined antenna element spacing in the first direction, and an absolute value of a difference between a subarray element spacing of the transmitting array antenna and a subarray element spacing of the receiving array antenna is equal to the predetermined antenna element spacing.
US10854991B2

The present disclosure relates to a waveguide fed open slot antenna. In some examples, the antenna comprises a waveguide section, a slot, a matching load, a waveguide bottom extension, and a vertical metal wall. The waveguide section can be in the form of a rectangular waveguide or a substrate integrated waveguide (SIW). The slot can comprise a rectangle, with one of its long sides abutting the top surface of the waveguide section, and another long side abutting the matching load, while the two short sides do not connect any metal. The waveguide bottom extension can be rectangular. The end of the waveguide bottom extension and the edge of the matching load on the side close to the open slot can be connected together by the vertical metal wall. In this way, the slot can be excited.
US10854989B2

Embodiments discussed herein refer to systems and structures for focusing dispersal of electromagnetic signals. Focusing of the electromagnetic signals is achieved by a reflective lens that is constructed from several extremely high frequency focusing layers. Each focusing layer can include an extremely high frequency focusing window that, collectively, define the geometry of a cavity backed reflective lens and its ability to focus electromagnetic signal dispersion.
US10854982B2

A dielectric resonator antenna (DRA) includes: an electrically conductive ground structure; at least one volume of a dielectric material disposed on the ground structure; a signal feed disposed and structured to be electromagnetically coupled to the at least one volume of a dielectric material; and an electrically conductive fence disposed circumferentially around the at least one volume of a dielectric material, and electrically connected with and forming part of the electrically conductive ground structure.
US10854977B2

A three-broadside-mode patch antenna includes: a rotationally symmetric radiator; a patch, wherein the patch is separated from the rotationally symmetric radiator by a dielectric and configured to capacitively feed the rotationally symmetric radiator; and three antenna probes, connected to the patch, configured to provide three antenna ports corresponding to three respective broadside radiation polarizations.
US10854976B2

An antenna includes an electrical excitation component and a core component. The electrical excitation component has and input and a conducting component. The conducting component can conduct current from the input. The core component has a magnetic film, having a substrate and a magnetic material layer, wound around a rectangular mounting plate. The core component can have a magnetic current loop induced therein. The electrical excitation component is arranged such that concentric magnetic fields associated with current conducted through the electrical excitation component are additionally associated with a magnetic current loop within the core component.
US10854973B2

An antenna apparatus and an electronic apparatus are provided. The electronic apparatus includes the antenna apparatus. The antenna apparatus includes a radiator, a first and a second impedance control circuit. The radiator receives and transmits a radio frequency (RF) signal. The first impedance control circuit is electrically connected to the radiator and transmits the RF signal. The second impedance control circuit includes an impedance matching circuit and an inductor. The first end of the impedance matching circuit is electrically connected to the radiator. The impedance matching circuit adjusts the impedance matching of the radiator and transmits a sensing signal. The inductor is electrically connected to the second end of the impedance matching circuit. The inductor transmits a sensing signal, and blocks the RF signal. Accordingly, the structures of the antenna and the circuit can be simplified, and the influence between the RF signal and the sensing signal can be reduced.
US10854972B2

A multiple-frequency antenna device includes an antenna unit and a frequency switch unit. The antenna unit includes an insulating substrate on which grounded first and second conductive layers are disposed. The first conductive layer is further connected to a radio-frequency (RF) circuit. The frequency switch unit is connected to the antenna unit in parallel, and includes a switching component, and a frequency adjustment: component connected to the antenna unit. The multiple-frequency antenna device is resonant at a first resonant frequency when the switching component is switched to a first state, and is resonant at a different, second resonant frequency when the switching component is switched to a second state.
US10854971B1

Arrays that are deployable and can change their electromagnetic behavior by changing their shape are provided. An array can include a central panel and at least one foldable panel attached thereto. The central panel can include radiating elements on its upper surface while each foldable panel can have radiating elements on its bottom surface. The array is reconfigurable by each foldable panel being foldable onto the central panel such that its bottom surface then faces upward and covers part or all of the upper surface of the central panel.
US10854965B1

A ground shield is connected to a princted circuit board or antenna card in an antenna unit cell to cover a balun to prevent or inhibit the ability of a differential signal flowing towards or through the balun from coupling with a similar differential signal flowing through an adjacent antenna card in the antenna unit cell. This ground shield may be one of a pair of ground shields on the antenna card. Two ground shield can be positioned on opposing sides of the balun to enhance isolation thereof by shielding the differential signals flowing towards and through the balun from coupling with adjacent differential signals to thereby increase bandwidth performance of the antenna unit cell. The ground shields may be generally or substantially or totally planar so as to be conformal with a substrate or dielectric layer of the antenna card or printed circuit board.
US10854962B2

Disclosed is a cross loop antenna system for an aerial vehicle. In one embodiment, the cross loop antenna system includes a cross bar antenna and a ground plane. The cross bar antenna includes two thin coplanar perpendicular bars that intersect in the middle and are parallel to the ground plane. Each bar couples to the ground plane at each end, comprising an antenna loop. Thus, the cross loop antenna system comprises two intersecting single-fed loops. The antenna can operate at a wavelength that is approximately twice the length of the bars. In such an embodiment, the antenna system may be resonant. The distance between the bars and the ground plane may be relatively small, thus minimalizing the vertical profile of the antenna. The antenna may be operated as a dual-band antenna and may produce an omnidirectional radiation pattern. An aerial vehicle may include two such antennas.
US10854955B2

The present disclosure provides an electronic device, a mobile terminal and an antenna assembly. The electronic device includes: a case defining an accommodating groove; a movable support slidably connected to the case, and capable of moving out of or retracting into the accommodating groove; and a first antenna installed on the movable support. Since the first antenna may be ejected out of the accommodating groove along with the movable support, influence of other components disposed inside the electronic device on the first antenna may be reduced. Thus, the implementation of the present disclosure may improve antenna performance of the electronic device.
US10854951B2

The present disclosure provides an antenna package structure and an antenna packaging method for a semiconductor chip. The package structure includes an antenna circuit chip, a first rewiring layer, an antenna structure, a second metal connecting column, a second packaging layer, a second antenna metal layer, and a second metal bump. The antenna circuit chip, the antenna structure, and the second antenna metal layer are interconnected by using two rewiring layers and two layers of metal connecting columns.
US10854947B2

An electronic device is provided. The electronic device includes a housing, a display exposed through at least a portion of the housing, a battery disposed in the housing, an antenna module disposed in the housing and spaced apart from the battery, a first electronic component positioned between the antenna module and the battery, a first heat dissipation member disposed to partially overlap the first electronic component and to extend toward the antenna module, a frame disposed to partially overlap the first heat dissipation member, surround at least a part of the first electronic component, and form a part of an outer appearance of the electronic device, and a heat insulation member interposed between the frame and the first heat dissipation member.
US10854938B2

A phase shifter is disclosed and includes a first substrate comprising a phase change line; and a second substrate comprising an input line connected to an input port, a first output line connected to a first output port, a second output line connected to a second output port, and a connection line connecting the first output line and the second output line. The first substrate is disposed to face the second substrate and to be overlaid at a predetermined distance from the second substrate. A phase of a signal passing through a first portion of the phase change line changes by a first value according to a movement of the first substrate. The signal is branched into a first signal to be transmitted to the first output port and a second signal to be transmitted to the second output port.
US10854933B2

Presented are battery pack voltage-switching (“V-switch”) systems, methods for making/operating such systems, and multi-pack, electric-drive motor vehicles with battery pack V-switch capabilities. A method for controlling operation of a vehicle includes a vehicle controller receiving a voltage switch signal to change a voltage output of the vehicle's battery system. The vehicle controller determines if a speed of a traction motor is less than a calibrated base speed; if so, the controller transmits a pack isolation signal to a power inverter to electrically disconnect the traction battery packs from the traction motor. The vehicle controller determines if a bus current of a DC bus is less than a calibrated bus current threshold; if so, the controller transmits an open signal to open one or more pack contactor switches and a close signal to close one or more pack contactor switches thereby causing the vehicle battery system to output the second voltage.
US10854920B2

Provided are a solid electrolyte composition containing at least one dendritic polymer selected from the group consisting of dendrons, dendrimers, and hyperbranched polymers and a specific inorganic solid electrolyte, in which the dendritic polymer has at least one specific functional group, an electrode sheet for an all-solid state secondary battery and an all-solid state secondary battery for which the solid electrolyte composition is used, a method for manufacturing an electrode sheet for an all-solid state secondary battery, and a method for manufacturing an all-solid state secondary battery.
US10854919B2

A solid polymer electrolyte for a battery is disclosed. The solid polymer electrolyte includes solid polymer electrolyte including a diblock copolymer AB or a triblock copolymer of the BAB type, in which block A is an unsubstituted polyethylene oxide chain having a number-average molecular weight less than 80,000 g/mol; block B is an anionic polymer prepared from one or more monomers selected from vinyl monomers and derivatives thereof to which is grafted an anion of lithium salt, and a second monomer having cross-linking functions.
US10854916B2

Solid-state lithium ion electrolytes of lithium metal sulfide based composites are provided which contain an anionic framework capable of conducting lithium ions. An activation energy of the lithium metal sulfide composites is from 0.2 to 0.45 eV and conductivities are from 10−4 to 3.0 mS/cm at 300K. Composites of specific formulae are provided and methods to alter the composite materials with inclusion of aliovalent ions shown. Lithium batteries containing the composite lithium ion electrolytes are also provided. Electrodes containing the lithium metal sulfide based composites and batteries with such electrodes are also provided.
US10854897B2

Temperature control system and method for a fuel cell system are disclosed. The temperature control system includes a state detector, a control selector, a normal controller and an internal model controller. The state detector determines whether the fuel cell system is in a leakage condition based on a dynamic transfer function from an air flowrate provided to the fuel cell system to a fuel cell temperature. The control selector selects to switch between the normal controller and the internal model controller based on a determined result. The normal controller is configured for controlling an air flowrate of the fuel cell system which is not in the leakage condition. The internal model controller is configured for controlling the air flowrate of the fuel cell system in the leakage condition to control the fuel cell temperature. A fuel cell system with the temperature control system is also disclosed.
US10854883B2

A wire mesh including a warp which includes a first nickel alloy wire having a first peak tensile strength; and a weft which includes a wire including nickel having a second peak tensile strength, wherein the first peak tensile strength is greater than or equal to the second peak tensile strength, is provided. A current collector and a zinc-air battery that includes the wire mesh are also provided.
US10854880B2

An all-solid-state battery including a laminated body with a cathode current collecting layer, cathode active material layer, solid electrolyte layer, anode active material layer, and anode current collecting layer in this order, and a restraining member that applies a restraining pressure to the laminated body in a laminated direction; containing a conductive material, an insulating inorganic substance, and a polymer, is in at least one of a position between the cathode active material layer and the cathode current collecting layer, and a position between the anode active material layer and the anode current collecting layer; the content of the insulating inorganic substance in the PTC layer is 10 volume % or more and 40 volume % or less; and a proportion of a particle size D90 of the insulating inorganic substance, D90, to a thickness of the PTC layer, TPTC, regarded as D90/TPTC is 0.6 or more and 1.0 or less.
US10854877B2

An all-solid-state secondary battery including: a positive electrode layer; a negative electrode layer; and a solid electrolyte layer between the positive electrode layer and the negative electrode layer, wherein the positive electrode layer includes a sulfur-containing positive electrode active material, a halogen-containing sulfide solid electrolyte, and a conductive carbon material, and wherein the sulfur-containing positive electrode active material includes elemental sulfur and a transition metal disulfide.
US10854845B2

A display device may include a substrate having a first pixel area, a first electrode on the substrate; a passivation layer between the substrate and the first electrode, a second electrode on the first electrode, and an organic emission layer between the first electrode and the second electrode. The first pixel area may include an emission area and a non-emission area surrounded by the emission area.
US10854836B2

A light emitting device includes: a first electrode and a second electrode facing each other, an emissive layer disposed between the first electrode and the second electrode and including a quantum dot, an electron auxiliary layer disposed between the emissive layer and the second electrode and including a plurality of nanoparticles, and a polymer layer between a portion of the second electrode and the electron auxiliary layer, wherein the nanoparticles include a metal oxide including zinc, wherein the second electrode has a first surface facing a surface of the electron auxiliary layer and a second surface opposite to the first surface, and the polymer layer is disposed on a portion of the second surface and a portion of the surface of the electron auxiliary layer, and wherein the polymer layer includes a polymerization product of a thiol compound and an unsaturated compound having at least two carbon-carbon unsaturated bonds.
US10854833B2

The invention relates to a photovoltaic device (1), comprising a photovoltaic acceptor material (7) and a photovoltaic donor material (10), in which the photovoltaic device (1) comprises at least two carrier layers (2, 3), of which one carrier layer (2) has n-doped electron donors (6) and the other carrier layer has acceptor material (7) as p-doped or undoped electron acceptors, wherein the carrier layers (2, 3) are arranged with respect to one another such that they touch one another at least in sections, and the carrier layers (2, 3) are wetted or coated in filmlike fashion with a photovoltaic donor material (10). The carrier layers (2, 3), which are formed in particular from fibres (6, 7) composed of silicon carbide SiC, enable textile solar cells. Methods for producing the fibres (6, 7) and for producing the photovoltaic device (1) and textile structures formed therefrom are furthermore described. A photovoltaic device (1) is furthermore proposed, in which carrier elements of an individual carrier layer have a corresponding photovoltaically active construction by virtue of correspondingly applied layers.
US10854825B2

An organic semiconductor element functions as a strain sensor, and includes a substrate and an organic semiconductor layer formed on the substrate as a single-crystal thin film of an organic semiconductor that is a polycyclic aromatic compound with four or more rings or a polycyclic compound with four or more rings including one or a plurality of unsaturated five-membered heterocyclic compounds and a plurality of benzene rings. Since the organic semiconductor layer is formed as the single-crystal thin film, an identical crystal structure is obtained regardless of formation technique. Therefore, when the same strain is given, the same carrier mobility is obtained and uniform property is obtained with respect to the strain. Accordingly, it is possible to provide strain sensors having uniform property.
US10854823B2

Provided are a heterocyclic compound and an organic light-emitting device including the same. The heterocyclic compound is represented by Formula 1:
US10854820B2

The present disclosure provides a blue organic electroluminescent device comprising: a substrate; an anode layer disposed on the substrate; a light emitting layer disposed on the anode layer, the light emitting layer being formed from a blue organic fluorescent material and a hole-type organic host material, wherein the blue organic fluorescent material is 8.0% to 25.0% by mass of the hole-type organic host material; and a cathode layer disposed on the light emitting layer.
US10854819B2

A method of making a solid state semiconducting film. The method includes blending a non-conjugated semiconducting polymer matrix containing crystalline aggregates with intentionally placed conjugation-break spacers along the polymer backbone, and fully conjugated semiconducting polymer. The resulting blend is subjected to a film making method to result is a semiconducting film. A solid state semiconducting film comprising a non-conjugated semiconducting polymer matrix containing crystalline aggregates with intentionally placed conjugation-break spacers along the polymer backbone, and a fully conjugated semiconducting polymer, wherein the fully conjugated semiconducting polymer serves as tie chains to bridge crystalline aggregates from the non-conjugated polymer matrix. Devices made from these semiconductor films.
US10854813B2

Methods and devices based on the use of dopant-modulated etching are described. During fabrication, a memory storage element of a memory cell may be non-uniformly doped with a dopant that affects a subsequent etching rate of the memory storage element. After etching, the memory storage element may have an asymmetric geometry or taper profile corresponding to the non-uniform doping concentration. A multi-deck memory device may also be formed using dopant-modulated etching. Memory storage elements on different memory decks may have different taper profiles and different doping gradients.
US10854811B2

Subject matter disclosed herein may relate to fabrication of a correlated electron material (CEM) switch. In particular embodiments, formation of a CEM switch may include removing of an exposed portion of a CEM film to form an exposed sidewall region bordering a remaining unexposed portion of the CEM film under or beneath a conductive overlay. The method may further include at least partially restoring properties of the exposed sidewall region to a CEM via exposure of the exposed sidewall region to one or more gaseous annealing agents.
US10854810B2

A passive magnetic device (PMD) has a base electrode, a multi-port signal structure (MPSS), and a substrate therebetween. The MPSS has a central plate residing in a second plane and at least two port tabs spaced apart from one another and extending from the central plate. The substrate has a central portion that defines a mesh structure between the base electrode and the central plate of the multi-port signal structure. A plurality of magnetic pillars are provided within the mesh structure, wherein each of the plurality of the magnetic pillars are spaced apart from one another and surrounded by a corresponding portion of the mesh structure. The PMD may provide a magnetically self-biased device that may be used as a radio frequency (RF) circulator, an RF isolator, and the like.
US10854800B2

A light emitting device includes a substrate, a first group of light emitting diode (LED) structures, a second group of LED structures, and a connection port is provided. The substrate has a first surface and a second surface opposite to the first surface. The first group of LED structures is disposed on one side of the first surface. The second group of LED structures is disposed on another side of the first surface opposite to the first group of LED structures. The connection portion includes at least an opening, and a first connection pad and a second connection pad electrically coupled to at least a part of the LED structures. The connection port is adapted to be coupled to other device through the opening. A light emitting module and an illuminating apparatus are also provided.
US10854789B2

A light-emitting device includes a first lead having a first lateral surface, a second lead having a second lateral surface, and a resin portion. The first lateral surface of a first lead facing a second lead has a first recess that is recessed so as to be away from the second lead toward the first lead in a top view, and is continuous with an end of a first groove. The second lateral surface of the second lead facing the first lead has a second recess that is recessed so as to be away from the first lead toward the second lead in the top view, and is continuous with an end of a second groove. In the top view, a part of the resin portion is continuously disposed between the end of the first groove and the end of the second groove.
US10854784B2

A method for producing an electrical contact on a semiconductor layer and a semiconductor component having an electrical contact are disclosed. In an embodiment a method includes providing a semiconductor layer, forming a plurality of contact rods on the semiconductor layer, wherein the contact rods are formed by a first material and a second material, wherein the first material is applied to the semiconductor layer and the second material is applied to the first material, and wherein a lateral structure of the first material is self-organized, forming a filling layer on the contact rods and in intermediate spaces between the contact rods and exposing the contact rods.
US10854776B1

A method for manufacturing a display panel comprising light emitting device including micro LEDs includes providing multiple donor wafers having a surface region and forming an epitaxial material overlying the surface region. The epitaxial material includes an n-type region, an active region comprising at least one light emitting layer overlying the n-type region, and a p-type region overlying the active layer region. The multiple donor wafers are configured to emit different color emissions. The epitaxial material on the multiple donor wafers is patterned to form a plurality of dice, characterized by a first pitch between a pair of dice less than a design width. At least some of the dice are selectively transferred from the multiple donor wafers to a common carrier wafer such that the carrier wafer is configured with different color emitting LEDs. The different color LEDs could comprise red-green-blue LEDs to form a RGB display panel.
US10854775B2

A method and a device for carrying out the method for transferring electronic components from a carrier substrate to a receiving substrate. The method comprises a positioning step in which a carrier substrate on which a plurality of electronic components arranged in a grid each adhere to a corresponding adhesion site by means of an adhesion which can be detached by laser radiation is positioned, in particular oriented, relative to a receiving substrate; a transferring step in which, while the positioning of the carrier substrate relative to the receiving substrate is maintained, the adhesion sites of the components of a transfer unit consisting of at least two of the components arranged on the carrier substrate are selectively irradiated with laser radiation such that the adhesion of the components of the transfer unit is selectively detached thereby from the carrier substrate at these adhesion sites, and the components of the transfer unit are each transferred to a grid position on the receiving substrate corresponding to the initial arrangement thereof in the grid on the carrier substrate.
US10854772B2

A system for transporting substrates and precisely align the substrates horizontally and vertically. The system decouples the functions of transporting the substrates, vertically aligning the substrates, and horizontally aligning the substrates. The transport system includes a carriage upon which plurality of chuck assemblies are loosely positioned, each of the chuck assemblies includes a base having vertical alignment wheels to place the substrate in precise vertical alignment. A pedestal is configured to freely slide on the base. The pedestal includes a set of horizontal alignment wheels that precisely align the pedestal in the horizontal direction. An electrostatic chuck is magnetically held to the pedestal.
US10854766B2

The present application relates to an encapsulant for a PV module, a method of manufacturing the same, and a PV module. The encapsulant according to an embodiment of the present application has excellent heat resistance or the like and improved creep properties, exhibits a haze with a certain level or less and excellent optical properties such as transparency or the like, when the encapsulant is applied to a PV module, physical properties such as durability, transparency, or the like are improved, and thus excellent generating efficiency of the PV module may be obtained.
US10854764B2

A solar cell includes a semiconductor substrate, a tunneling layer on one surface of the semiconductor substrate, a first conductive type area on the tunneling layer, a second conductive type area on the tunneling layer such that the second conductive type area is separated from the first conductive type area, and a barrier area interposed between the first conductive type area and the second conductive type area such that the barrier area separates the first conductive type area from the second conductive type area.
US10854761B1

A electrical switch has a first substrate, a first conducting layer disposed on the first substrate, a first dielectric layer disposed on the first conducting layer and a second conducting layer disposed on the first dielectric layer, and the second conducting layer disposed on the second substrate, and a conductive via connected to the first conducting layer and extending through the first dielectric layer. Active dielectric has a first conductor, a first dielectric layer disposed on the first conducting layer, one or more electrical switches disposed on the first dielectric layer, a dielectric layer disposed between neighboring electrical switches, the second dielectric layer disposed on the last electrical switch, and the second conducting layer disposed on the second dielectric layer.
US10854757B2

A transistor including a channel disposed between a source and a drain, a gate electrode disposed on the channel and surrounding the channel, wherein the source and the drain are formed in a body on a substrate and the channel is separated from the body. A method of forming an integrated circuit device including forming a trench in a dielectric layer on a substrate, the trench including dimensions for a transistor body including a width; forming a channel material in the trench; recessing the dielectric layer to expose a first portion of the channel material; increasing a width dimension of the exposed channel material; recessing the dielectric layer to expose a second portion of the channel material; removing the second portion of the channel material; and forming a gate stack on the first portion of the channel material, the gate stack including a gate dielectric and a gate electrode.
US10854741B2

An enhanced HFET, comprising a HFET device body. Regions without two-dimensional electron gas are provided on a channel layer (2) at the portion between a drain electrode (6) and a source electrode (4) of the HFET device body, and there is a region without two-dimensional electron gas provided on the channel layer (2) at the portions excluding the area under a gate electrode (5); two-dimensional electron gas regions are provided on the channel layer (2) excluding the portions located between the drain electrode (6) and the source electrode (4) and provided with the regions without two-dimensional electron gas; the channel layer (2) at the portion between the gate electrode (5) and the source electrode (4) and the portion between the gate electrode (5) and the drain electrode (6) are each provided with a two-dimensional electron gas region; and two-dimensional electron gas (8) is provided at a portion or whole portion of a two-dimensional electron gas layer at the channel layer (2) at the portion right under the gate electrode (5). The HFET has the advantages of high saturation current, high threshold voltage controllability, fast response, low energy consumption, and the like.
US10854739B2

A power semiconductor device includes: a drift region; a plurality of IGBT cells each having a plurality of trenches extending into the drift region along a vertical direction and laterally confining at least one active mesa which includes an upper section of the drift region; and an electrically floating barrier region of an opposite conductivity type as the drift region and spatially confined, in and against the vertical direction, by the drift region. A total volume of all active mesas is divided into first and second shares, the first share not laterally overlapping with the barrier region and the second share laterally overlapping with the barrier region. The first share carries the load current at least within a range of 0% to 100% of a nominal load current. The second share carries the load current if the load current exceeds at least 0.5% of the nominal load current.
US10854737B2

Techniques are disclosed for methods of post-treating an etch stop or a passivation layer in a thin film transistor to increase the stability behavior of the thin film transistor.
US10854728B2

According to an exemplary embodiment, a method of forming a vertical device is provided. The method includes: providing a protrusion over a substrate; forming an etch stop layer over the protrusion; laterally etching a sidewall of the etch stop layer; forming an insulating layer over the etch stop layer; forming a film layer over the insulating layer and the etch stop layer; performing chemical mechanical polishing on the film layer and exposing the etch stop layer; etching a portion of the etch stop layer to expose a top surface of the protrusion; forming an oxide layer over the protrusion and the film layer; and performing chemical mechanical polishing on the oxide layer and exposing the film layer.
US10854721B2

A semiconductor device includes a first type region including a first conductivity type. The semiconductor device includes a second type region including a second conductivity type. The semiconductor device includes a channel region extending between the first type region and the second type region. The semiconductor device includes a first silicide region on a first type surface region of the first type region. The first silicide region is separated at least one of a first distance from a first type diffusion region of the first type region or a second distance from the channel region.
US10854718B2

In one embodiment, a method of forming a HEM diode may comprise forming the HEM diode with high forward voltage that is greater than one of a gate-to-source threshold voltage of a HEMT or a forward voltage of a P-N diode.
US10854699B2

Discussed is an organic light emitting display device with auxiliary electrode and method of manufacturing the same according to the embodiments. The present disclosure is directed to provide a top emission type transparent organic light emitting display device and a method of manufacturing the same, which provides an area of an auxiliary electrode that effectively reduces a resistance of a cathode electrode, and decreases the number of masks, thereby simplifying the manufacturing process.
US10854688B2

A display panel includes a planarization layer, self-luminous elements, a first wiring line, a second wiring line, and a sensing wiring line. The first wiring line is coupled to the first electrode layer through a first opening of the planarization layer. The second wiring line is coupled to the second electrode layer through a second opening of the planarization layer. The sensing wiring line is provided in a region and is electrically separated from the first electrode layer, the second electrode layer, the first wiring line, and the second wiring line. The region is positioned in the same layer as the first electrode layer, in the same layer as the second wiring line, or in a layer disposed between the first electrode layer and the second wiring line, and is positioned between the first electrode layer and the second opening.
US10854683B2

A pixel arrangement structure of an OLED display is provided. The pixel arrangement structure includes: a first pixel having a center coinciding with a center of a virtual square; a second pixel separated from the first pixel and having a center at a first vertex of the virtual square; and a third pixel separated from the first pixel and the second pixel, and having a center at a second vertex neighboring the first vertex of the virtual square.
US10854675B2

The disclosed technology relates generally to integrated circuit devices, and in particular to cross-point memory arrays and methods for fabricating the same. In one aspect, a memory device of the memory array comprises a substrate and a memory cell stack formed between and electrically connected to first and second conductive lines. The memory cell stack comprises a first memory element over the substrate and a second memory element formed over the first element, wherein one of the first and second memory elements comprises a storage element and the other of the first and second memory elements comprises a selector element. The memory cell stack additionally comprises a first pair of sidewalls opposing each other and a second pair of sidewalls opposing each other and intersecting the first pair of sidewalls. The memory device additionally comprises first protective dielectric insulating materials formed on a lower portion of the first pair of sidewalls and an isolation dielectric formed on the first protective dielectric insulating material and further formed on an upper portion of the first pair of sidewalls.
US10854673B2

An elementary cell includes a non-volatile resistive random-access memory mounted in series with a volatile selector device, the memory including an upper electrode, a lower electrode and a layer made of a first active material, designated memory active layer. The selector device includes an upper electrode, a lower electrode and a layer made of a second active material, designated selector active layer. The cell includes a one-piece conductor element including a first branch having one face in contact with the lower surface of the memory active layer in order to form the lower electrode of the memory, a second branch having one face in contact with the upper surface of the selector active layer in order to form the lower electrode of the memory.
US10854668B2

A pixel including a workpiece having a protrusion and a bulk, wherein the protrusion extends from an upper surface of the bulk. The pixel further includes a floating diffusion node in the protrusion. The pixel further includes a photosensitive device in the bulk. The pixel further includes an isolation well surrounding the photosensitive device.
US10854666B2

A protective film composition includes a polymer having the following formula: each of a, b, and c is a mole fraction; a+b+c=1; 0.05≤a/(a+b+c)≤0.3; 0.1≤b/(a+b+c)≤0.6; 0.1≤c/(a+b+c)≤0.6; each of R1, R2, and R3 is a hydrogen atom or a methyl group; R4 is a hydrogen atom, a butyrolactonyl group, or a substituted or unsubstituted C3 to C30 alicyclic hydrocarbon group; and R5 is a substituted or unsubstituted C6 to C30 linear or cyclic hydrocarbon group. A method of manufacturing a semiconductor package includes forming a sawing protective film on a semiconductor structure by using the protective film composition and sawing the sawing protective film and the semiconductor structure from the sawing protective film.
US10854665B2

A semiconductor wafer has a plurality of non-rectangular semiconductor die with an image sensor region. The non-rectangular semiconductor die has a circular, elliptical, and shape with non-linear side edges form factor. The semiconductor wafer is singulated with plasma etching to separate the non-rectangular semiconductor die. A curved surface is formed in the image sensor region of the non-rectangular semiconductor die. The non-rectangular form factor effectively removes a portion of the base substrate material in a peripheral region of the semiconductor die to reduce stress concentration areas and neutralize buckling in the curved surface of the image sensor region. A plurality of openings or perforations can be formed in a peripheral region of a rectangular or non-rectangular semiconductor die to reduce stress concentration areas and neutralize buckling. A second semiconductor die can be formed in an area of the semiconductor wafer between the non-rectangular semiconductor die.
US10854664B2

The present disclosure relates to a solid-state image pickup device and a method for manufacturing the same, and an electronic apparatus, capable of suppressing color mixture, stray light, reduction in contour resolution, and the like. A solid-state image pickup device includes: a light shielding body having light shielding walls and a light transmitting portion formed in an opening portion between the light shielding walls; a first light shielding layer which is formed on an incident surface side of light of the light shielding body, and has an opening portion narrower than the opening portion of the light shielding body for each of the opening portions of the light shielding body; a microlens provided on the incident surface side of light of the light shielding body and for each of the opening portions of the first light shielding layer; a light receiving element layer in which a large number of light receiving elements which perform photoelectric conversion in accordance with incident light condensed by the microlens and input via the light transmitting portion of the light shielding body are arranged; and a second light shielding layer which is formed on the light receiving element layer side of the light shielding body, and has an opening portion narrower than the opening portion of the light shielding body and wider than the first light shielding layer for each of the opening portions of the light shielding body. The present disclosure can be used for a compound eye optical system, for example.
US10854661B2

Provided is a solid-state imaging device that includes: a first pixel provided with a color filter layer having a transmission band in a visible light wavelength region on a light-receiving surface of a first light-receiving element; a second pixel provided with an infrared pass filter layer having a transmission band in an infrared wavelength region on a light-receiving surface of a second light-receiving element; an infrared cut filter layer that is provided on a position overlapping with the color filter layer and transmits light in the visible light wavelength region by blocking light in the infrared wavelength region; and a cured film provided in contact with the infrared cut filter layer.
US10854660B2

The present disclosure relates to a solid-state image capturing element capable of suppressing a dark current, a manufacturing method thereof, and an electronic device. Provided is a solid-state image capturing element including: a photoelectric conversion unit formed outside a semiconductor substrate; and a charge retention section that is formed in the semiconductor substrate and retains charges generated in the photoelectric conversion unit. Among surfaces of the charge retention section, a bottom surface on a side opposite to a surface of a gate side of a transistor formed in the semiconductor substrate is covered by an insulation film. The present disclosure can be applied to, for example, solid-state image capturing elements and the like.
US10854658B2

An image sensor includes a photodiode within a semiconductor substrate and an interconnect structure over the semiconductor substrate. The interconnect structure includes a contact etch stop layer (CESL), a plurality of dielectric layers over the CESL and a plurality of metallization layers in the plurality of dielectric layers. At least one dielectric layer of the plurality of dielectric layers includes a low-k dielectric material. An opening is extended through the plurality of dielectric layers to expose a portion of the CESL above an active region of the photodiode. A cap layer is on sidewalls of the opening. The cap layer includes a dielectric material having a higher moisture resistance than the low-k dielectric material.
US10854657B2

The present technique relates to a solid-state image pickup element and an electronic apparatus each of which enables a pad to be formed in a shallow position while reduction of a quality of a back side illumination type solid-state image pickup element is suppressed. The solid-state image pickup element includes a pixel substrate in which a light condensing layer for condensing incident light on a photoelectric conversion element, a semiconductor layer in which the photoelectric conversion element is formed, and a wiring layer in which a wiring and a pad for outside connection are formed are laminated on one another, and at least a part of a first surface of the pad is exposed through a through hole completely extending through the light condensing layer and the semiconductor layer. The present technique, for example, can be applied to a back side illumination type CMOS image sensor.
US10854652B2

An array of diffraction-pattern generators employ phase anti-symmetric gratings to projects near-field spatial modulations onto a closely spaced array of photoelements. Each generator in the array of generators produces point-spread functions with spatial frequencies and orientations of interest. The generators are arranged in an irregular mosaic with little or no short-range repetition. Diverse generators are shaped and placed with some irregularity to reduce or eliminate spatially periodic replication of ambiguities to facilitate imaging of nearby scenes.
US10854648B2

An image sensor includes a sensor layer and at least one metal layer. The sensor layer includes a plurality of sensing elements arranged as a 2-dimensional array along a first direction and a second direction. Each of the at least one metal layer includes a plurality of metal wires configured to form a plurality of apertures for passing lights to the plurality of sensing elements. At least one of the plurality of metal wires forming the plurality of apertures is disposed along a third direction different from the first direction and the second direction.
US10854643B2

The present application discloses a display panel and a display apparatus. The display panel includes a substrate, and a plurality of first-layer conducting wires, where each of the first-layer conducting wires is disposed on the substrate, a polarizing color filter layer is disposed on the first-layer conducting wire and forms a color filter film with anisotropy, and the first-layer conducting wire is connected to a column data driver and a pixel driver of the display panel.
US10854641B2

An object is to improve the drive capability of a semiconductor device. The semiconductor device includes a first transistor and a second transistor. A first terminal of the first transistor is electrically connected to a first wiring. A second terminal of the first transistor is electrically connected to a second wiring. A gate of the second transistor is electrically connected to a third wiring. A first terminal of the second transistor is electrically connected to the third wiring. A second terminal of the second transistor is electrically connected to a gate of the first transistor. A channel region is formed using an oxide semiconductor layer in each of the first transistor and the second transistor. The off-state current of each of the first transistor and the second transistor per channel width of 1 μm is 1 aA or less.
US10854631B2

A semiconductor memory device including a substrate including a first block and a second block each having a cell array region and a connection region, a stack including insulating layers and gate electrodes and extending from the cell array region to the connection region, first cell channel structures in the cell array region of the first block and passing through the stack to be electrically connected to the substrate, first dummy channel structures in the connection region of the first block and passing through the stack, second cell channel structures in the cell array region of the second block and passing through the stack, and second dummy channel structures in the connection region of the second block and passing through the stack may be provided. The first dummy channel structures are electrically insulated from the substrate, while the second dummy channel structures are electrically connected to the substrate.
US10854630B2

A semiconductor device includes a plurality of channel structures on a substrate, each channel structure extending in a first direction perpendicular to the substrate, a common source extension structure including a first semiconductor layer having an n-type conductivity and a gate insulating layer between the substrate and the channel structures, a plurality of gate electrodes on the common source extension structure and spaced apart from each other on a sidewall of each of the channel structures in the first direction, and a common source region on the substrate in contact with the common source extension structure and including a second semiconductor layer having an n-type conductivity. An upper portion of the common source extension structure has a first width, and a lower portion of the common source extension structure has a second width smaller than the first width.
US10854629B2

An alternating stack of insulating layers and spacer material layers is formed over a substrate. A staircase region having stepped surfaces is formed by patterning the alternating stack. Memory opening fill structures are formed in a memory array region, and support pillar structures are formed in the staircase region. Each of the memory stack structures includes a memory film and a vertical semiconductor channel. The support pillar structures include first support pillar structures and having a first maximum lateral dimension and second support pillar structures having a second maximum lateral dimension that is less than the first maximum lateral dimension and interlaced with the first support pillar structures. The sacrificial material layers are replaced with electrically conductive layers. The second support pillar structures are positioned interstitially among the first support pillar structures and contact via structures that are formed on the electrically conductive layers to provide additional structural support.
US10854624B2

Provided is a semiconductor memory device including a substrate, an isolation structure, a first gate dielectric layer, a first conductive layer, a second gate dielectric layer, a second conductive layer, and a protective layer. The substrate has an array region and a periphery region. The isolation structure is disposed in the substrate between the array and periphery regions. The first gate dielectric layer is disposed on the substrate in the array region. The first conductive layer is disposed on the first gate dielectric layer. The second gate dielectric layer is disposed on the substrate in the periphery region. The second conductive layer is disposed on the second dielectric layer. The second conductive layer extends to cover a portion of a top surface of the isolation structure. The protective layer is disposed between the second conductive layer and the isolation structure.
US10854622B2

A vertical memory device includes a channel, gate lines, and a cutting pattern, respectively, on a substrate. The channel extends in a first direction substantially perpendicular to an upper surface of the substrate. The gate lines are spaced apart from each other in the first direction. Each of the gate lines surrounds the channel and extends in a second direction substantially parallel to the upper surface of the substrate. The cutting pattern includes a first cutting portion extending in the first direction and cutting the gate lines, and a second cutting portion crossing the first cutting portion and merged with the first cutting portion.
US10854620B2

According to one embodiment, a semiconductor memory device includes: first interconnect layers; second interconnect layers; a first memory pillar extending through the first interconnect layers; a second memory pillar extending through the second interconnect layers; a first film provided above the first interconnect layers, having a planar shape corresponding to the first interconnect layers and extending in the first direction; and a second film provided above the second interconnect layers, separate from the first film in the second direction, having a planar shape corresponding to the second interconnect layers and extending in the first direction. The first and second films have a compressive stress higher than a silicon oxide film.
US10854618B2

A memory device includes: a conductive layer coupled to a reference voltage level; a first storage portion vertically coupled to a first surface of the conductive layer; and a second storage portion vertically coupled to a second surface of the conductive layer; wherein the second surface is opposite to the first surface.
US10854616B2

Reference marks for forming a staircase structure are disposed along slit areas of a 3D memory structure, and slits of the 3D memory structure are formed on the slit areas. In a staircase area, the reference marks are formed by etching the topmost one of stacked layers, having a pair of a dielectric layer and a sacrificial layer, in a stacked structure.
US10854614B2

Disclosed are semiconductor devices and methods of manufacturing the same. A support layer and a mold layer are partially etched off from the substrate, to form a mold pattern and a support pattern on the substrate such that a contact hole is formed through the support pattern and the mold pattern and an interconnector is exposed therethrough. A lower electrode layer is formed on the mask pattern to fill the contact hole, and a lower electrode is formed in the contact hole by partially removing the lower electrode layer and the mask pattern. The lower electrode is contact with the interconnector and is supported by the support pattern having the same thickness as the support layer.
US10854611B2

Some embodiments include a memory cell having a first transistor supported by a semiconductor base, and having second and third transistors above the first transistor and vertically stacked one atop the other. Some embodiments include a memory cell having first, second and third transistors. The third transistor is above the second transistor, and the second and third transistors are above the first transistor. The first transistor has first and second source/drain regions, the second transistor has third and fourth source/drain regions, and the third transistor has fifth and sixth source/drain regions. A read bitline is coupled with the sixth source/drain region. A write bitline is coupled with the first source/drain region. A write wordline includes a gate of the first transistor. A read wordline includes a gate of the third transistor. A capacitor is coupled with the second source/drain region and with a gate of the second transistor.
US10854588B2

A semiconductor device includes a normally-on junction FET having a first gate electrode, a first source electrode and a first drain electrode, a normally-off MOSFET having a second gate electrode, a second source electrode and a second drain electrode, and a voltage applying unit which applies a voltage to the first gate electrode. The first source electrode of the junction FET is electrically connected to the second drain electrode of the MOSFET, and the junction FET is thus connected to the MOSFET in series, and the voltage applying unit applies a second voltage with a polarity opposite to that of a first voltage applied to the first gate electrode when the junction FET is brought into an off-state, to the first gate electrode when the MOSFET is in an on-state.
US10854582B2

Disclosed is a light-emitting module including: a first insulation film having light transmissive property; a conductor layer provided on the first insulation film; a second insulation film disposed to face the first insulation film; a plurality of light-emitting elements interposed between the first insulation film and the second insulation film and have one surface on which a pair of electrodes connected to the conductor layer are provided; and a board that is connected to the first insulation film and has a circuit connected to the conductor layer.
US10854580B2

The present disclosure provides a semiconductor structure including a first chip having a first dielectric surface, a second chip having a second dielectric surface facing the first dielectric surface and maintaining a distance thereto, and an air gap between the second dielectric surface and the first dielectric surface. The first chip includes a plurality of first conductive lines in proximity to the first dielectric surface and parallel to each other, two adjacent first conductive lines each having a sidewall partially exposed from the first dielectric surface. The present disclosure further provides a method for manufacturing the semiconductor structure described herein.
US10854579B2

The present disclosure provides a semiconductor package, including a substrate having a first surface and a second surface opposite to the first surface, a semiconductor die connected to the first surface of the substrate, and a conductive bump connected to the conductive via at the second surface. The substrate includes a conductive line surrounded by a dielectric and a conductive via connected to the conductive line and penetrating the dielectric at the second surface.
US10854575B2

The present invention discloses a three-dimensional package structure which can achieve a relatively high utilization of an internal space thereof, so that a size of electronic package structure can be reduced. The three-dimensional package structure comprises a first electronic component, a plurality of second electronic components and a plurality of conductive patterns. The first electronic component has a top surface and a bottom surface. The plurality of second electronic components are disposed over the top surface of the first electronic component. The plurality of conductive patterns are disposed over the plurality of second electronic components to electrically connect the plurality of second electronic components and the first electronic component.
US10854570B2

A method of fabricating an integrated fan-out package is provided. The method includes the following steps. An integrated circuit component is provided on a substrate. An insulating encapsulation is formed on the substrate to encapsulate sidewalls of the integrated circuit component. A redistribution circuit structure is formed along a build-up direction on the integrated circuit component and the insulating encapsulation. The formation of the redistribution circuit structure includes the following steps. A dielectric layer and a plurality of conductive vias embedded in the dielectric layer are formed, wherein a lateral dimension of each of the conductive vias decreases along the build-up direction. A plurality of conductive wirings is formed on the plurality of conductive vias and the dielectric layer. An integrated fan-out package of the same is also provided.
US10854566B2

A pre-conductive array disposed on a target circuit substrate comprises a plurality of conductive electrode groups disposed on the target circuit substrate, and at least a conductive particle dispose on each of conductive electrodes of a part or all of the conductive electrode groups. The at least a conductive particle and the corresponding conductive electrode form a pre-conductive structure, and the pre-conductive structures form the pre-conductive array.
US10854563B2

A redistribution structure includes a first dielectric layer, a pad pattern, and a second dielectric layer. The pad pattern is disposed on the first dielectric layer and includes a pad portion and a peripheral portion. The pad portion is embedded in the first dielectric layer, wherein a lower surface of the pad portion is substantially coplanar with a lower surface of the first dielectric layer. The peripheral portion surrounds the pad portion. The second dielectric layer is disposed on the pad pattern and includes a plurality of extending portions extending through the peripheral portion.
US10854561B2

A semiconductor package includes: a connection member including a plurality of connection pads and a redistribution layer; a semiconductor chip disposed on the connection member; an encapsulant sealing the semiconductor chip; a passivation layer disposed on the connection member; a plurality of under bump metallurgy (UBM) pads disposed on the passivation layer; and a plurality of UBM vias connecting the plurality of UBM pads to the plurality of connection pads, respectively, wherein the plurality of UBM pads include a first UBM pad overlapped with the semiconductor chip in a stacking direction, and a second UBM pad located outside of the overlapped region, and the first connection pad has an area larger than an area of an associated first UBM pad while the associated first UBM pad is overlapped in the stacking direction, and has an area larger than an area of the second connection pad.
US10854560B2

A semiconductor device includes: an island that is formed by a metallic layer including a single metallic layer or a plurality of different metallic layers; a semiconductor chip provided upon an upper surface of the island, and having a pair of side portions mutually opposing each other; a plurality of signal terminals disposed at an external periphery of at least the pair of side portions of the semiconductor chip, and formed by the metallic layer; a grounding terminal disposed at an external periphery of the plurality of signal terminals, and formed by the metallic layer; electrically conductive connection members that are connected between each of a plurality of electrodes of the semiconductor chip and each of the plurality of signal terminals; sealing resin that seals the island, the semiconductor chip, the electrically conductive connection members, the plurality of signal terminals, and the grounding terminal, so that a lower surface of the island, lower surfaces of the plurality of signal terminals, and a lower surface of the grounding terminal are exposed to the exterior; and a metallic shielding layer that covers over an outer peripheral side surface and an upper surface of the sealing resin, and a portion of the grounding terminal.
US10854559B2

Devices and methods are disclosed, related to shielding and packaging of radio-frequency (RF) devices on substrates. In some embodiments, a method for providing electro-magnetic interference shielding for a radio-frequency module can include applying a metal-based covering over a portion of a lead-frame package, the package having a plurality of pins with at least one pin exposed from overmold compound and in contact with the metal-based covering. The method can also include mounting the lead-frame package on a substrate. The method can further include connecting the metal-based covering to a ground plane of the substrate.
US10854544B2

Anti-fuse structure circuit and method of forming an anti-fuse structure circuit are provided. A substrate is provided, and an anti-fuse is formed on the substrate by forming a first gate structure and a dielectric layer on the substrate and forming conductive plugs respectively in the dielectric layer at two sides of the first gate structure. The dielectric layer covers the first gate structure, and the conductive plugs have a width decreasing from top to bottom. A second gate structure is formed on the substrate. A top surface of the first gate structure is higher than a top surface of the second gate structure. The dielectric layer also covers the second gate structure. The conductive plugs are also located respectively in the dielectric layer at two sides of the second gate structure.
US10854543B2

A semiconductor device includes: a substrate; a first wiring layer arranged above the substrate; a first insulating film covering the first wiring layer; a lower oxidation preventing film arranged on the first insulating film; at least one thin-film resistor arranged on the lower oxidation preventing film; an upper oxidation preventing film arranged on the at least one thin-film resistor; a second insulating film covering the lower oxidation preventing film, the at least one thin-film resistor, and the upper oxidation preventing film; a second wiring layer arranged on the second insulating film; and a third insulating film covering the second wiring layer. The first wiring layer overlaps an end portion of the at least one thin-film resistor when viewed in a normal direction of one surface of the substrate.
US10854536B2

A fingerprint chip package and method for processing same, relating to a field of biometric identification. The fingerprint chip package includes: a lead frame (1), a chip (2), and a plastic packaging part enclosing the lead frame (1) and the chip (2); the lead frame (1) comprises a base island (13), a connecting rib (11), and a golden finger (12); the base island (13) is used for bearing the chip (2); the connecting rib (11) is used for supporting the lead frame (1) and connecting the base island (13) via the golden finger (12); and the golden finger (12) is used for fixing the base island (13) and electrically connecting with the chip (2).
US10854529B2

A high resistivity wafer with a heat dissipation structure includes a high resistivity wafer and a metal structure. The high resistivity wafer includes a heat dissipation region and a device support region. The high resistivity wafer consists of an insulating material. The metal structure is only embedded within the heat dissipation region of the high resistivity wafer. The metal structure surrounds the device support region.
US10854526B2

Embodiments of the present application provide the chip packaging structure, the chip module and the electronic terminal. In the chip packaging structure, the chip is accommodated in the trench of the substrate to decrease the thickness and volume of the chip packaging structure; and the plastic package is provided on the surface of the substrate on which the chip is disposed to plastically package the chip, which not only ensures the structural strength of the chip packaging structure, but also reduces the warpage that may be caused due to the decrease of the thickness of the chip packaging structure as much as possible. In addition, the surface of the plastic package is treated to be a flat surface, such that the chip module has good flatness and the adaptability of the chip module is improved.
US10854517B2

Methods of manufacturing a semiconductor chip are provided. The methods may include providing a semiconductor substrate including integrated circuit regions and a cut region. The cut region may be between the integrated circuit regions. The methods may also include forming a modified layer by emitting a laser beam into the semiconductor substrate along the cut region, polishing an inactive surface of the semiconductor substrate to propagate a crack from the modified layer, and separating the integrated circuit regions along the crack. The cut region may include a plurality of multilayer metal patterns on an active surface of the semiconductor substrate, which is opposite to the inactive surface of the semiconductor substrate. The plurality of multilayer metal patterns may form a pyramid structure when viewed in cross section.
US10854512B2

The present disclosure provides a method for fabricating an integrated circuit (IC). The method includes receiving an IC layout having active regions, conductive contact features landing on the active regions, and a conductive via feature to be landing on a first subset of the conductive contact features and to be spaced from a second subset of the conductive contact features; evaluating a spatial parameter of the conductive via feature to the conductive contact features; and modifying the IC layout according to the spatial parameter such that the conductive via feature has a S-curved shape.
US10854510B2

Aspects of the present invention relate to approaches for forming a narrow source-drain contact in a semiconductor device. A contact trench can be etched to a source-drain region of the semiconductor device. A titanium liner can be deposited in this contact trench such that it covers substantially an entirety of the bottom and walls of the contact trench. An x-metal layer can be deposited over the titanium liner on the bottom of the contact trench. A titanium nitride liner can then be formed on the walls of the contact trench. The x-metal layer prevents the nitriding of the titanium liner on the bottom of the contact trench during the formation of the nitride liner.
US10854498B2

A wafer-supporting device for supporting a wafer thereon adapted to be installed in a semiconductor-processing apparatus includes: a base surface; and protrusions protruding from the base surface and having rounded tips for supporting a wafer thereon. The rounded tips are such that a reverse side of a wafer is supported entirely by the rounded tips by point contact. The protrusions are disposed substantially uniformly on an area of the base surface over which a wafer is placed, wherein the number (N) and the height (H [μm]) of the protrusions as determined in use satisfy the following inequities per area for a 300-mm wafer: (−0.5N+40)≤H≤53;5≤N≤100.
US10854495B2

A pressure sensitive adhesive tape for semiconductor processing includes a base having a Young's modulus of 1000 MPa or more at 23° C., and a pressure sensitive adhesive layer provided on at least one surface of the base, and the product (N)×(C) of (N) and (C) is 500 or more at 30° C., and 9000 or less at 60° C., where (N) [μm] is a thickness of the pressure sensitive adhesive layer and (C) [μm] is a creep amount.
US10854487B2

The invention relates to a method for the transportation and/or storage of at least one semiconductor plate, in which the plate is disposed in a hermetic container (1) filled with hydrogen at a pressure of between 10−1 and 4*103 Pa and, optionally, at least one inert gas, the total pressure in the casing being between 10−1 and 5*104 Pa.
US10854482B2

A reaction chamber is provided. The reaction chamber includes a chamber body, a dielectric window, and a power supplier. The dielectric window is provided on top of the chamber body along a first direction and hermetically connected with the chamber body. Each coil of a plurality of sets of coils is wound around an outer surface of the dielectric window at an interval along the first direction. The plurality of sets of coils are connected in parallel, with first ends electrically coupled to the power supplier for supplying power to each set of the plurality of sets of coils, and with second ends grounded. The second ends of the plurality of sets of coils are arranged in proximity between the first ends.
US10854481B2

A substrate processing method includes holding a substrate horizontally, supplying water-containing processing liquid to an upper surface of the substrate, forming a low surface tension liquid film, covering the upper surface by supplying that liquid to the substrate's upper surface, supplying a gas to a center region of the liquid film to form an opening in the center, widening the opening in order to remove the film, rotating the substrate around a predetermined rotational axis along a vertical direction, blowing, in the opening widening step, the gas toward a gas supply position that is set further inward than a peripheral edge of the opening on the upper surface of the substrate, and moving the gas supply position toward the peripheral edge of the upper surface of the substrate, and supplying, the low surface tension liquid toward a liquid landing position that is set further outward and moving the liquid landing position toward the peripheral edge of the upper surface of the substrate.
US10854475B2

A wiring substrate includes: a first insulating layer; a plurality of wiring patterns formed on one surface of the first insulating layer; a dummy pattern formed, on the one surface of the first insulating layer, between the nearby wiring patterns; and a second insulating layer made of resin and formed on the one surface of the first insulating layer so as to cover the nearby wiring patterns and the dummy pattern, wherein the dummy pattern is a dot pattern arranged at a center portion between the nearby wiring patterns, and wherein a height of at least one dot constituting the dummy pattern is lower than heights of the nearby wiring patterns.
US10854469B2

When a silicon concentration of a phosphoric acid aqueous solution inside a tank reaches an upper limit value of a specified concentration range, the phosphoric acid aqueous solution is drawn off from the tank and/or an amount of the phosphoric acid aqueous solution returning to the tank is decreased to decrease a liquid amount inside the tank to a value not more than a lower limit value of a specified liquid amount range. When the liquid amount inside the tank decreases to the value not more than the lower limit value of the specified liquid amount range, the phosphoric acid aqueous solution is replenished to the tank to increase the liquid amount inside the tank to a value within the specified liquid amount range and decrease the silicon concentration of the phosphoric acid aqueous solution inside the tank to a value within the specified concentration range.
US10854464B2

A manufacturing process of an elemental chip includes steps of preparing a substrate held on the holding tape, the substrate including first and second sides opposite each other and the second side thereof being held on the holding tape, and the substrate further including a plurality of element regions and a plurality of segmentation regions defining each of the element regions; setting a nozzle to have a length between a lower most edge of the nozzle and the first side of the substrate in a range between 20 mm and 150 mm, spraying a resist solution to form droplets of the resist solution, the resist solution containing a resist constituent and a solvent; forming a resist layer by vaporizing the solvent from the droplets and depositing the resist constituent on the first side of the substrate that is held on the holding tape such that an amount of the solvent remained in the resist layer to be in a range between 5 wt. % and 20 wt. %; patterning the resist layer to expose the first side of the substrate in the segmentation regions; and plasma-etching the first side of the substrate exposed in the segmentation regions thereof.
US10854453B2

A substrate processing technique is described herein for etching layers, such as dielectric layers, and more particularly low k dielectric layers in a manner that minimizes etch lag effects. Multiple etch processes are utilized. A first etch process may exhibit etch lag. A second etch process is a multi-step process that may include a deposition sub-step, a purge sub-step and an etch sub-step. The second etch process may exhibit inverse etch lag. The second etch process may be a cyclic process which performs the deposition, purge and etch sub-steps a plurality of times. The second etch process may be an atomic layer etch based process, and more particularly a quasi-atomic layer etch. The combination of the first etch process and the second etch process may provide the desired net effect for the overall etch lag when etching the dielectric layer.
US10854452B2

A method of manufacturing a semiconductor device includes forming first sacrificial cores on a first region of a lower structure and second sacrificial cores on a second region of the lower structure, forming spacers on side walls of the first sacrificial cores and side walls of the second sacrificial cores, forming a protective pattern covering the second sacrificial cores on the second region of the lower structure, removing the first sacrificial cores from the first region, and etching the lower structure using the spacers on the first region, and the second sacrificial cores and the spacers on the second region. By using only spacers as an etching mask in the first region and the sacrificial cores with the spacers as an etching mask in the second region, patterns with different widths are formed simultaneously on the first and second regions.
US10854446B2

Methods and structures includes providing a substrate, forming a prelayer over a substrate, forming a barrier layer over the prelayer, and forming a channel layer over the barrier layer. Forming the prelayer may include growing the prelayer at a graded temperature. Forming the barrier layer is such that the barrier layer may include GaAs or InGaAs. Forming the channel layer is such that the channel layer may include InAs or an Sb-based heterostructure. Thereby structures are formed.
US10854442B2

An orientation chamber of a semiconductor substrate processing system is provided. The orientation chamber includes a substrate holder, an orientation detector, and a purging system. The substrate holder is configured to hold a substrate. The orientation detector is configured to detect the orientation of the substrate. The purging system is configured to inject a cleaning gas into the orientation chamber and remove contaminants from the substrate.
US10854438B2

In an inductively coupled plasma-mass spectrometry (ICP-MS) system, ions are transmitted into a collision/reaction cell. A DC potential is applied at an exit of the cell at a first magnitude to generate a DC potential barrier effective to prevent the ions from exiting the cell. The DC potential barrier is maintained during a confinement period to perform an interaction. After the confinement period, analyte ions or product ions are transmitted to a mass spectrometer by switching the exit DC potential to a second magnitude effective to allow the analyte ions or product ions to pass through the cell exit as a pulse. The analyte ions or product ions are then counted during a measurement period. The interaction may be ion-molecule reactions or ion-molecule collisions.
US10854435B2

Sb—Te-based alloy sintered sputtering target having a Sb content of 10 to 60 at %, a Te content of 20 to 60 at %, and remainder being one or more types of elements selected from Ag, In, and Ge and unavoidable impurities, wherein an average grain size of oxides is 0.5 μm or less. An object of this invention is to improve the texture of the Sb—Te-based alloy sintered sputtering target in order to prevent the generation of arcing during sputtering and improve the thermal stability of the sputtered film.
US10854432B2

The present disclosure generally relates to methods and apparatus for facilitating electrical feedthrough in plasma processing chambers. The apparatus includes an electrically insulating housing positioned on a backside of the substrate support to contain a secondary plasma therein. The secondary plasma facilitates an electrical connection between the substrate support and electrical power or ground located outside the processing chamber. The methods include utilizing a secondary plasma to electrically couple substrate support to and electrical power or ground located outside the processing chamber.
US10854428B2

Apparatus and methods of processing a substrate in a plasma enhanced spatial atomic layer deposition chamber. A substrate is moved through one or more plasma processing regions and one or more non-plasma processing regions while the plasma power is pulsed to prevent a voltage differential on the substrate from exceeding a breakdown voltage of the substrate or device being formed on the substrate.
US10854421B2

A charged particle beam system includes a charged particle source, an extraction electrode, a suppressor electrode, a first variable voltage supply for biasing the extraction electrode with an extraction voltage and a second variable voltage supply for biasing the suppressor electrode with a suppressor voltage.
US10854419B2

According to one embodiment, a contour extraction method for extracting a contour of a target object from an image obtained using an electron beam includes: extracting the contour of the target object from a backscattered electron image; creating a dictionary for associating a secondary electron image obtained from a portion common to the backscattered electron image with the contour; calculating a likelihood of the contour of the target object in a plurality of positions of a newly obtained secondary electron image by referencing the dictionary regarding the newly obtained secondary electron image; and setting a route along which a total sum of the likelihood is maximized out of the plurality of positions as the contour of the target object.
US10854418B2

A mass analyzer includes a mass analyzing magnet that applies a magnetic field to ions extracted from an ion source to deflect the ions, a mass analyzing slit that is provided downstream of the mass analyzing magnet and allows an ion of a desired ion species among the deflected ions to selectively pass, and a lens device that is provided between the mass analyzing magnet and the mass analyzing slit and applies a magnetic field and/or an electric field to the ion beam to adjust the convergence or divergence of a ion beam. The mass analyzer changes a focal point of the ion beam in a predetermined adjustable range between an upstream side and a downstream side of the mass analyzing slit with the lens device to adjust mass resolution.
US10854415B1

A fuse includes a tubular body having two ends each having a first cap, which is formed with a through hole; a fusible and breakable unit including a first fusible filament arranged inside the tubular body and having two ends extending outward through the through holes respectively; and a plurality of second caps each of which has a surface that is formed with a recessed part and an opposite surface that is provided with a conductive wire. The recessed parts of the second caps are mounted to outer circumferences of the first caps. The two ends of the first fusible filament are respectively coupled between the first caps and the second caps corresponding thereto so as to extend a distance between the two ends of the first fusible filament and thus, preventing the occurrences of electrical arc after the first fusible filament is fused and broken.
US10854414B2

A compact disconnect device includes a magnetic arc deflection assembly including at least one set of stacked arc plates and at least one magnet disposed adjacent switchable contacts and establishing a magnetic field across the stacked arc plates. The magnetic arc deflection assembly facilitates reliable connection and disconnection of DC voltage circuitry well above 125 VDC with reduced arcing intensity and duration. The disconnect device may be a compact fusible disconnect switch device having dual sets of switch contacts in the same current path.
US10854411B2

A microelectromechanical systems (MEMS) switching circuit and related apparatus is provided. A MEMS apparatus includes a MEMS switching circuit and a control circuit. The MEMS switching circuit includes a first number of MEMS switches, each configured to close and open based on a high driving voltage and a low driving voltage, respectively. The MEMS switching circuit includes a MEMS-based driver circuit configured to receive a second number of control signals that collectively identify a selected MEMS switch among the first number of MEMS switches. Accordingly, the MEMS-based driver circuit decodes the second number of control signals and causes the selected MEMS switch to close. By using a lesser number of control signals to control a larger number of MEMS switches, it may be possible to reduce control lines between the control circuit and the MEMS switching circuit, thus helping to reduce routing complexity and footprint of the MEMS apparatus.
US10854409B2

An electromagnetic relay includes a movable terminal including a movable contact, a fixed terminal including a fixed contact that faces the movable contact, first irons disposed on one of the fixed terminal and the movable terminal, and a second iron disposed on another one of the fixed terminal and the movable terminal such that the second iron at least partially overlaps both of the first irons.
US10854408B2

A magnetic flux assembly for closing a magnetic circuit of a relay and a relay. The magnetic flux assembly has a yoke and a U-shaped armature that is movable relative to the yoke. The yoke has a coil part that is in a coil and a flux conduction part that conducts the magnetic flux generated by the coil.
US10854402B2

A knob assembly includes a lower housing, a pushing member, an upper housing, and a screw member. The lower housing includes a tank and hook structures. A through via is formed at the center of the lower housing. The upper housing is rotatably stacked on the lower housing. A lower surface of the upper housing includes an annular hook groove. The pushing member is disposed between the upper and the lower housing, and includes a body and pushing structures. A screw hole is formed at the center of the body. When the screw member is screwed into the screw hole through the through via, the pushing member moves toward and locks the lower housing, and the pushing structures push the hook structures to cause the hook structures to expand outward and be hooked to the annular hook groove, so that the upper housing is limited by the lower housing.
US10854397B2

An electric machine, to a motor vehicle with such an electric machine, and to a method for operating such an electric machine. The electric machine includes at least one sliding contact which is formed by a slip ring connected to a rotor and by at least one brush and via which an operating current flows during an operation of the electric machine. A control unit is configured to control the operation of the electric machine. The control unit is configured to verify a predetermined operating criterion of the electric machine and, if said operating criterion is met, to inject a cleaning current according to a predetermined scheme, which then flows independently of the operating current via the sliding contact and cleans said sliding contact in order to maintain or improve a current transfer capability of the sliding contact.
US10854396B2

A packaging material for electrochemical cells, which has insulating properties sufficient for preventing a short circuit, while exhibiting excellent electrolyte solution resistance and water vapor barrier properties. A packaging material for electrochemical cells is obtained by sequentially laminating a metal layer, an adhesive resin layer and a thermally adhesive resin layer in this order, wherein: a base coating layer is provided between the metal layer and the adhesive resin layer; and the base coating layer contains at least a zirconium oxide (A) having an average particle diameter within the range of from 1 nm to 500 nm (inclusive), one or more phosphorus-containing compounds (B) selected from the group of phosphorus compounds having 4 or more phosphonic groups in each molecule, and an acid-modified polyolefin resin (C).
US10854392B2

A multi-layer ceramic electronic component includes: a ceramic body including internal electrodes laminated in a first direction, a first main surface including a first flat region facing in the first direction, and a second main surface including a second flat region facing in the first direction; and a pair of external electrodes connected to the internal electrodes and facing each other in a second direction orthogonal to the first direction, a dimension of the ceramic body in the first direction being 1.1 times or more and 1.6 times or less a dimension of the ceramic body in a third direction orthogonal to the first and second directions, the first flat region being formed at a center portion of the first main surface in the second direction, the second flat region being formed at a center portion of the second main surface in the third direction.
US10854391B2

A multilayer capacitor includes a capacitor body including an active region, and upper and lower cover regions disposed on upper and lower portions of the active region, respectively. First and second external electrode are disposed on both ends of the capacitor body, respectively. The active region includes a plurality of first dielectric layers, first and second internal electrodes alternately disposed with the first dielectric layer interposed therebetween, and first and second auxiliary electrodes disposed on the first dielectric layers on which the first and second internal electrodes are disposed, respectively. The upper and lower cover regions each include a plurality of second dielectric layers having a thickness less than that of each of the first dielectric layers, and a dummy electrode disposed on the second dielectric layers.
US10854387B2

A capacitor component includes a capacitor component includes a body including a dielectric layer and first and second internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween, and first and second external electrodes disposed on the body and electrically connected to the first and second internal electrodes. The body may include a capacitance forming portion including the first and second internal electrodes, cover portions disposed on upper and lower surfaces of the capacitance forming portion, and margin portions disposed on side surfaces of the capacitance forming portion, in which the margin portions have a hardness ranging from 8.5 GPa to 14 GPa.
US10854385B2

A method for producing a ceramic substrate that includes a substrate body having ceramic layers and columnar projecting electrodes on a first primary surface of the substrate body. The method includes a step of preparing electrode formation sheets for forming the projecting electrodes, a step of perforating the electrode formation sheets with through holes and filling the through holes with a first electrically conductive paste containing a first electrically conductive powder, a step of building a composite multilayer body by stacking ceramic green sheets and the electrode formation sheets on a first primary surface of the stack of ceramic green sheets. The first electrically conductive powder contains electrically conductive metal(s) and anti-sintering ceramic(s) that controls the sintering of particles of the electrically conductive metal(s), with at least part of the surface of the particles of the electrically conductive metal(s) covered with the anti-sintering ceramic(s).
US10854376B2

A coil component includes a coil and a composite magnetic material containing magnetic particles. The magnetic particles have an average minor-axis length of more than 5.0 nm and 50 nm or less and an average aspect ratio of 2.0 or more and 10.0 or less. The magnetic particles are orientated substantially perpendicularly to a central axis of the coil and are orientated randomly within a perpendicular plane to the central axis of the coil. The composite magnetic material has a saturation magnetization σs of 80.0 emu/g or more.
US10854370B2

An embedded coil assembly embodiment includes a ferrite ring having an annular axis. The ferrite ring is positioned on a conductive metal surface. A plurality of separate, spaced apart conductive structures extend over the ferrite ring and are attached to the conductive metal surface in a first region of the conductive surface positioned radially outwardly of the annular axis of the ferrite ring and in a second region of the conductive surface positioned radially inwardly of the annular axis of the ferrite ring. An encapsulation layer covers, the ferrite ring and at least a portion of the plurality of conductive structures.
US10854369B2

A transformer station, in particular, an offshore transformer station including at least one transformer and at least one transformer cooling unit arranged on at least one side wall of the transformer station or a roof of the transformer station and configured to cool the at least one transformer. The transformer station also includes at least one air deflecting unit arranged on at least one roof edge of the transformer station and/or at least one air deflecting unit arranged on at least one side edge of the transformer station. The air deflecting unit is arranged such that an air movement is deflectable in the direction of the transformer cooling unit.
US10854348B2

An X-ray generator includes: a line X-ray source; a multilayer film mirror; and a side-by-side reflecting mirror including two concave mirrors joined together so as to share a join line. A cross section of a reflecting surface of the multilayer film mirror has a parabolic shape, and a focus of the parabolic shape is located at the line X-ray source. Cross sections of reflecting surfaces of the two concave mirrors of the side-by-side reflecting mirror each have a parabolic shape, and each of focuses of the parabolic shapes is located on a side opposite to the multilayer film mirror. An extended line of the join line of the side-by-side reflecting mirror passes through the multilayer film mirror and the line X-ray source as viewed in a plan view.
US10854343B2

The present invention relates to a nuclear reactor, more precisely a passive safety device applicable to a thermal neutron reactor and a nuclear fuel assembly equipped with the same. The nuclear fuel assembly for a thermal neutron reactor of the present invention includes multiple fuel rods; multiple guide thimbles arranged between the fuel rods; and a passive safety device including neutron absorber parts which are inserted in one or more guide thimbles.
US10854336B1

A system for customizing informed advisor pairings, the system including a computing device. The computing device is configured to identify a user feature wherein the user feature contains a user biological extraction. The computing device is configured to generate using element training data and using a first machine-learning algorithm a first machine-learning model that outputs advisor elements. The computing device receives an informed advisor element relating to an informed advisor. The computing device determines using output advisor elements whether an informed advisor is compatible for a user.
US10854333B2

A method and system for setting time blocks of a repeating time period is disclosed. The method and system may be a part of a healthcare management software system.
US10854330B1

Provided are mechanisms and processes for a medical appointment delay management system. According to various examples, the system includes a location sensor that detects when a medical professional wearing a personal beacon enters an examination room to conduct an examination of a particular patient. The system also includes a medical schedule processor that logs a time associated with when the medical professional enters the examination room and compares this time with scheduling information to predict whether future appointments in the schedule will be delayed. A notification interface, included in the system, is designed to notify an upcoming patient if their scheduled appointment will be substantially delayed. Scheduling information is cryptographically separated from HIPAA information.
US10854320B2

The disclosure includes a method and system for initiating at least one workflow associated with a patient, the system enabling users to create electronic messages, the method comprising the steps of presenting an electronic message via a display wherein the electronic message includes at least fields, associating the displayed electronic message with a first patient, receiving a general event descriptor entered by a system user via an interface in one of the message fields where the general event descriptor can be used to identify at least one workflow being requested by the user, obtaining the general event descriptor from the field, identifying a workflow associated with the general event descriptor and associated with the first patient and transmitting an electronic message to at least one entity that is capable of handling the workflow being requested by the user.
US10854318B2

Inferring a characteristic of an individual is disclosed. An indication that a first user and a second user have at least one shared chromosomal segment is received. Information about the second user is obtained. A characteristic of the first user is inferred based at least in part on the information about the second user.
US10854314B2

A representation of a nucleic acid sequence encodes a particular gene having at least one intron. An intron signature value corresponding to the at least one intron is determined based on a first computational function applied to at least one portion of the representation of the nucleic acid sequence corresponding to the at least one intron. A protein signature value is determined, being based on a second computational function applied to a representation of a protein. In a database, an association is formed between the intron and protein signature values. This process is repeated for each of a plurality of nucleic acid sequences. Nucleic acid sequences in the database are ordered based on a sort of corresponding intron signature values. An ordering determined by the sort is used to determine or confirm a role or function of a portion of a given nucleic acid sequence.
US10854305B2

An indication of an initialization of power to a memory component can be received. In response to receiving the indication of the initialization, a last written page of a data block of the memory component can be identified. The last written page is associated with a status indicator. A determination is made of whether the status indicator is readable. Responsive to determining that the status indicator readable, it can be determined that programming of data to the data block of the memory component did complete and there is a data retention loss.
US10854299B2

A data erase operation is performed on the memory system. The directed data erase operation performed on the memory system erases blocks of the memory device including blocks that are indicated as not including user data. In some embodiments, a data erase operation may be performed on a memory system to erase those groups of memory cells (e.g., blocks) indicated as not including user data. In some embodiments, a data erase operation may be performed on a memory system to erase those groups of memory cells (e.g., blocks) indicated as valid without erasing those groups of memory cells (e.g., blocks) indicated as invalid. In some embodiments, a data erase operation that can be performed on a memory system may obtain information associated with failing scenes of groups of memory cells (e.g., blocks) prior to obtaining the information, and erase the blocks (e.g., invalid blocks) subsequently.
US10854298B2

A semiconductor memory device includes a first memory cell, a second memory cell above the first memory cell, a first word line electrically connected to a gate of the first memory cell, a second word line electrically connected to a gate of the second memory cell, and a control unit that performs an erasing operation on the first and second memory cells. During the erasing operation, the control unit applies a first voltage to a first word line and a second voltage higher than the first voltage to a second word line.
US10854295B2

Methods of operating an integrated circuit device, and integrated circuit devices configured to perform methods, including applying a particular voltage level to a first input of an input/output (I/O) buffer and to a second input of the I/O buffer, determining whether the I/O buffer is deemed to exhibit offset, and applying an adjustment to the I/O buffer offset while applying the particular voltage level to the first input of the I/O buffer and to the second input of the I/O buffer if the I/O buffer is deemed to exhibit offset.
US10854286B2

Apparatuses, memories, and methods for decoding memory addresses for selecting access lines in a memory are disclosed. An example apparatus includes an address decoder circuit coupled to first and second select lines, a polarity line, and an access line. The first select line is configured to provide a first voltage, the second select line is configured to provide a second voltage, and the polarity line is configured to provide a polarity signal. The address decoder circuit is configured to receive address information and further configured to couple the access line to the first select line responsive to the address information having a combination of logic levels and the polarity signal having a first logic level and further configured to couple the access line to the second select line responsive to the address information having the combination of logic levels and the polarity signal having a second logic level.
US10854285B2

A method for performing memory access includes: performing a first sensing operation corresponding to a first sensing voltage and performing at least a second sensing operation corresponding to a second sensing voltage to respectively generate a first digital value of a Flash cell of a Flash memory and a second digital value of the Flash cell of the Flash memory; using the first digital value, the second digital value, and charge distribution statistics information of the Flash memory to obtain soft information of a bit stored in the Flash cell, wherein the soft information corresponds to a threshold voltage of the Flash cell; and using the soft information to perform soft decoding.
US10854282B2

In some embodiments, a semiconductor memory device includes an array of semiconductor memory cells arranged in rows and columns. The array includes a first segment of memory cells and a second segment of memory cells. A first pair of complementary local bit lines extend over the first segment of memory cells and is coupled to multiple memory cells along a first column within the first segment of memory cells. A second pair of complementary local bit lines extend over the second segment of memory cells and is coupled to multiple memory cells along the first column within the second segment of memory cells. A pair of switches is arranged between the first and second segments of memory cells. The pair of switches is configured to selectively couple the first pair of complementary local bit lines in series with the second pair of complementary local bit lines.
US10854279B2

A SRAM array is provided, including a first bit cell array and a second bit cell array arranged along a first direction; a strap cell arranged in a second direction and positioned between the first bit cell array and the second bit cell array along the first direction. The strap cell includes a first strap column, a second strap column, a doped P-type region, a doped N-type region, and a deep N-type well region. The first strap column includes a first P-type well region and two first N-type well regions adjacent opposite sides of the first P-type well region along the first direction. The second strap column is adjacent to the first strap column along the second direction. The second strap column includes a second N-type well region and two second P-type well regions adjacent opposite sides of the second N-type well region along the first direction.
US10854276B2

Apparatuses and methods are disclosed that include two transistor-one capacitor memory and for accessing such memory. An example apparatus includes a capacitor coupled to first and second selection components. The apparatus further includes a first digit line and the first selection component configured to couple a first plate of the capacitor to the first digit line, and also includes a second digit line and the second selection component configured to couple the second plate to the second digit line. A sense amplifier is coupled to the second digit line and is configured to amplify a voltage difference between a voltage coupled to the second digit line and the reference voltage.
US10854269B2

The present disclosure includes apparatuses and methods related to compute components formed over an array of storage elements. An example apparatus comprises a base substrate material and an array of memory cells formed over the base substrate material. The array can include a plurality of access transistors comprising a first semiconductor material. A compute component can be formed over and coupled to the array. The compute component can include a plurality of compute transistors comprising a second semiconductor material. The second semiconductor material can have a higher concentration of doping ions than the first semiconductor material.
US10854264B2

Various implementations described herein refer to an integrated circuit having a sense amplifier that operates with a clock signal, and the sense amplifier may be biased with a bias signal that affects duration of the clock signal. The integrated circuit may include a delay circuit coupled to the sense amplifier, and the delay circuit may turn-off the clock signal. The delay circuit may have a current-starved delay stage that receives an input signal having a falling edge and provides a current-starved delay signal biased by the bias signal that also biases the sense amplifier.
US10854262B2

A memory device includes a first memory cell that is connected with a first source line, a first word line, and a first bit line, a first write circuit to receive first write data that are stored in the first memory cell through a first write input/output line and to control a voltage of the first source line and a voltage of the first bit line based on the first write data, and a first pull-down circuit to receive first pull-down data corresponding to the first write data from the first write circuit through a first internal metal line and to pulls down the voltage of at least one of the first source line and the first bit line to a predetermined voltage based on the first pull-down data.
US10854257B2

A magnetic device may include a layer stack. The layer stack may include a first ferromagnetic layer; a non-magnetic spacer layer on the first ferromagnetic layer, where the non-magnetic spacer layer comprises at least one of Ru, Ir, Ta, Cr, W, Mo, Re, Hf, Zr, or V; a second ferromagnetic layer on the non-magnetic spacer layer; and an oxide layer on the second ferromagnetic layer. The magnetic device also may include a voltage source configured to apply a bias voltage across the layer stack to cause switching of a magnetic orientation of the second ferromagnetic layer without application of an external magnetic field or a current. A thickness and composition of the non-magnetic spacer layer may be selected to enable a switching direction of the magnetic orientation of the second ferromagnetic layer to be controlled by a sign of the bias voltage.
US10854256B2

A storage element includes a layer structure including a storage layer having a direction of magnetization which changes according to information, a magnetization fixed layer having a fixed direction of magnetization, and an intermediate layer disposed therebetween, which intermediate layer contains a nonmagnetic material. The magnetization fixed layer has at least two ferromagnetic layers having a direction of magnetization tilted from a direction perpendicular to a film surface, which are laminated and magnetically coupled interposing a coupling layer therebetween. This configuration may effectively prevent divergence of magnetization reversal time due to directions of magnetization of the storage layer and the magnetization fixed layer being substantially parallel or antiparallel, reduce write errors, and enable writing operation in a short time.
US10854241B2

A method is disclosed in which first payload data included in a first file container and second payload data included in a second file container are determined. The first payload data is decoded to determine first un-encoded data representing first content, and the second payload data is decoded to determine second un-encoded data representing second content. At least one difference is determined between the first un-encoded data and the second un-encoded data, and third un-encoded data corresponding to the at least one difference is determined. The third un-encoded data is encoded to generate third payload data representing third content, and a third file container is generated that includes the third payload data.
US10854239B1

Data set groups are determined, wherein each data set group includes a plurality of data sets and each data set includes error-correcting information for content user data of the data set. One or more versions of data set group level error-correcting information for each data set group are calculated. The data set groups on stored a tape storage media. After the data set groups are stored, an amount of storage available on one or more regions of the tape storage media associated with one or more tape edges is identified. An instruction is provided to store at least a partial amount of the calculated one or more versions of data set group level error-correcting information for the data set groups able to be stored in the amount of storage available on the one or more regions of the tape storage media associated with the one or more tape edges.
US10854232B2

The magnetic recording medium includes a magnetic layer which contains ferromagnetic hexagonal ferrite powder and a binder, in which the magnetic layer contains an abrasive and a fatty acid ester, Int (110)/Int (114) of a crystal structure of the hexagonal ferrite, determined by performing XRD analysis on the magnetic layer by using an In-Plane method, is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, FWHMbefore and FWHMafter is greater than 0 nm and equal to or smaller than 7.0 nm, and a difference between spacings measured within a surface of the magnetic layer by an optical interference method before and after the heating in a vacuum is greater than 0 nm and equal to or smaller than 8.0 nm.
US10854227B2

The magnetic recording medium includes a non-magnetic support and a magnetic layer which contains ferromagnetic powder and a binder, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the magnetic layer contains an abrasive, Int (110)/Int (114) of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, and a logarithmic decrement obtained by performing a pendulum viscoelasticity test on a surface of the magnetic layer is equal to or lower than 0.050.
US10854226B2

Provided are a magnetic tape including: a non-magnetic support; and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, in which the magnetic layer has a timing-based servo pattern, a center line average surface roughness Ra measured regarding a surface of the magnetic layer is equal to or smaller than 1.8 nm, the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, an intensity ratio of a peak intensity of a diffraction peak of a (110) plane with respect to a peak intensity of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, and a vertical direction squareness ratio of the magnetic tape is 0.65 to 1.00, and a magnetic tape device including this magnetic tape.
US10854220B2

A pitch detection method. Such a pitch detection method may use a Teager Energy Operator (TEO) with a Pseudo Weigner Ville Transformation (PWVT) to recover speech from noise and to recover low-frequency information of the speech signal in its detection of a pitch value. Also, the pitch detection method may use the combinatory PWVT and the respective state machine for decision making.
US10854211B2

An apparatus for encoding a multi-channel signal including at least two channels includes a time-spectral converter for converting sequences of blocks of sampling values of the at least two channels into a frequency domain representation having sequences of blocks of spectral values for the at least two channels; a multi-channel processor for applying a joint multi-channel processing to the sequences of blocks of spectral values to obtain at least one result sequence of blocks of spectral values including information related to the at least two channels; a spectral-time converter for converting the result sequence of blocks of spectral values into a time domain representation including an output sequence of blocks of sampling values; and a core encoder for encoding the output sequence of blocks of sampling values to obtain an encoded multi-channel signal.
US10854204B2

Some aspects of the invention may include a computer-implemented method for enrolling voice prints generated from audio streams, in a database. The method may include receiving an audio stream of a communication session and creating a preliminary association between the audio stream and an identity of a customer that has engaged in the communication session based on identification information. The method may further include determining a confidence level of the preliminary association based on authentication information related to the customer and if the confidence level is higher than a threshold, sending a request to compare the audio stream to a database of voice prints of known fraudsters. If the audio stream does not match any known fraudsters, sending a request to generate from the audio stream a current voice print associated with the customer and enrolling the voice print in a customer voice print database.
US10854203B2

A personal information assistant computing system may include a user computing device having a processor and a non-transitory memory device storing instructions. The personal information assistant may receive a user accessible input as a natural language communication from the user, which may be analyzed by a personal information assistant to determine a task to be performed by the virtual information assistant. The personal information assistant may be personalized to the user using encrypted user information. The personal information assistant communicates with a remote computing system in performance of a computer-assisted task, wherein the first personal information assistant interacts as a proxy for the user in response to at least one response received from the remote computing system. The personal information assistant may communicate the results of the task to the user via a user information screen and/or an audio device.
US10854184B2

A friction damped insert for highly stressed engineering components is disclosed. The disclosed inventive concept provides a method and system for increasing the damping capacity of an engineering system by adding a non-flat solid, highly damped insert to a system component that contributes most to the system's dynamic response. The insert can either be embedded into a system component during casting or be fastened to the system component outer surface. The insert is made of the single layer of flexible material by forming it into a rigid elongated body. The layer of material can be turned over on itself without folding to create a cylinder or can be folded over a number of times to create a prismatic bar. The layer of material may be shaped into a corrugated panel. The layer of flexible material may have a number of relatively small openings or perforations with a uniform spatial distribution.
US10854180B2

An automated music composition and generation system and process for producing one or more pieces of digital music, by providing a set of musical energy (ME) quality control parameters to an automated music composition and generation engine, applying certain of the selected musical energy quality control parameters as markers to specific spots along the timeline of a selected media object or event marker by the system user during a scoring process, and providing the selected set of musical energy quality control parameters to drive the automated music composition and generation engine to automatically compose and generate one or more pieces of digital music with control over the specified qualities of musical energy embodied in and expressed by the piece of digital music to composed and generated by the automated music composition and generation engine.
US10854175B2

A computing device monitors support element strain to enable deployment of positionally-related components in conjunction with one another while the real-time positional relationship between these positionally-related components fluctuates during operation. An exemplary computing device includes a first component and a second component that are both mounted to a support element. The computing device may be subjected to mechanical loading during operation which may induce strain into the support element thereby affecting the nominal positioning between the positionally-related components. The computing device includes a displacement sensor to generate displacement data that is indicative of a real-time positional relationship between the components. This real-time positional relationship may be compensated while implementing desired functionality. In this way, the computing device can be subjected to the stresses and strains that result from many typical use cases while the positional relationship between the sensor components is actively monitored and compensated for to implement desired functionality.
US10854156B2

A display device includes a plurality of pixels arranged in a matrix. Overlapping areas between gate electrodes and drain electrodes of switching elements connected to a plurality of selected pixel electrodes are individually set to equalize or substantially equalize retention voltages Vd(+) (Vd(−)) of the selected pixel electrodes when a specific voltage of a first polarity is applied to the selected pixel electrodes. The source application section is controlled to apply to the source lines source signals Vsc each of which is corrected by superposing a correction voltage preset for each source line on the source signal Vs(−) (Vs(+)) in application of a voltage of a second polarity to the selected pixel electrodes.
US10854155B2

A display apparatus includes a display panel, a timing controller, a data driver, and a gate driver. The timing controller receives image data at a number of frames per second of a first level and generates a gate control signal and a data control signal. The timing controller includes an image converter that operates in film mode or normal mode when the input image data are moving image data, and that outputs film image data at a number of frames per second of second level lower than the first level during the film mode. The data driver applies a data voltage corresponding to the film image data to the display panel based on the data control signal. The gate driver applies a gate voltage to the display panel based on the gate control signal. The display panel operates at a frequency of the second level during the film mode.
US10854148B2

The present disclosure proposes a method and a system of controlling backlight driving. The method includes receiving an initial-pulse-width modulating signal and outputting a corresponding pulse-width modulating signal according to the initial-pulse-width modulating signal. The pulse-width modulating signal is used to control a corresponding LED string to illuminate. A cycle of each of the pulse-width modulating signals is the same with a predetermined phase difference.
US10854144B2

A display device includes a display panel, a dimming controller, and a panel driver. The display panel includes a plurality of pixels. The dimming controller generates at least one temporary voltage set by performing a first interpolating operation using a (j)th band voltage set and a (j+1)th band voltage set among first through (i)th band voltage sets corresponding to first through (i)th dimming bands, respectively, and generates a grayscale gamma voltage set corresponding to target luminance by performing a second interpolating operation using the temporary voltage set and the (j)th band voltage set. The panel driver drives the display panel by converting image data into a data signal based on the grayscale gamma voltage set and by providing the data signal to the pixels.
US10854142B2

A display device includes a pixel circuit, a driving circuit configured to drive a data line coupled to the pixel circuit, and a first capacitance element provided between the data line and the driving circuit, wherein the driving circuit includes a second capacitance element, and a first switching circuit configured to alternately repeat charging and discharging of the second capacitance element, and is configured to control the charging and the discharging based on a gradation specified by the pixel circuit, and output a voltage signal corresponding to the gradation.
US10854134B2

Disclosed is a source signal driving apparatus capable of implementing channels at high integration density. The source signal driving apparatus is configured to sequentially output source signals by sequentially delaying enable time points of enable signals provided to channel circuits.
US10854126B1

A display device comprises a plurality of pixel unit sets and a plurality of common electrode (VCOM) signal generation circuits. Each of the pixel unit sets comprises a first portion pixel unit and a second portion pixel unit. Each of the first portion pixel unit and each of the second portion pixel unit comprise a plurality rows of pixel units. Each row of the pixel units comprises a plurality of pixel units. The VCOM signal generation circuits are respectively coupled to one of the pixel unit sets. The VCOM signal generation circuits are divided into a plurality of groups of number m. The VCOM signal generation circuits in each of the groups generate a first VCOM signal and a second VCOM signal to the coupled pixel unit set according to a first clock signal, a second clock signal and one of a plurality control signal sets of number m.
US10854114B2

By introducing inequality to the information dispersal/sharing storage method, a ciphertext management method or the like is provided to support novel ciphertext data management. After the ciphertext and key data are each divided, pairs of the divided ciphertext and key data are generated. Specifically, they are one-to-one paired as with conventional techniques. Furthermore, additional one-to-many pairs are generated. The generated one-to-one pairs provide equality as with conventional techniques. When the number of the one-to-one pairs of the divided ciphertext and key data that can be used is equal to or greater than a threshold number, both the ciphertext data and the key data can be reconstructed, and accordingly, the secret data can be decoded. In contrast, even when the one-to-many pairs that can be used is equal to or greater than a threshold number, the ciphertext data and/or the key data cannot be reconstructed. This provides inequality.
US10854110B2

Aspects of the present disclosure relate to systems and methods that aid users with hearing and/or speech impediments to have a conversation with a remote phone number without human assistance. In one aspect, an application residing on a user's device, such as a smartphone, tablet computer, laptop, etc., may be used to initiate a phone call to a recipient. Upon initiating the phone call locally, a service residing on the server may receive a request to initiate a connection to the recipient. Once the recipient answers, the user may converse with the recipient by providing text input to their local app. The text input may be transmitted to the service. The service may use a text to speech converter to translate the received text to speech that can be delivered to the recipient.
US10854107B2

A pair of training scissors structurally configured to help a child learn proper finger positions for use of scissors. The handles include solid bowl apertures to positioned so that the tips of the fingers are desirably positioned so that the tips of the fingers are utilized to operate the scissors. The scissors also include an illumination feature that encourages a child to practice opening and closing the scissors as they are motivated by the light. This repetition serves to reinforce the proper finger positions, and the repetitions also help develop muscle strength.
US10854106B2

A computer-based language learning system uses targeted repetition to familiarize a student with words and language governing rules. Targeted repetition presents practice-sentences made up of specific words and rules the language learning system has targeted for practice, with the intervals between encounters of targeted words and rules varying based on prior incorrect, correct and partially correct responses to the rule-items. Targeted reinforcement determines manner of response to practice-sentences. Learning records for each word and rule track information used in calculating an up-to-the-moment ‘need to practice’ rating for the rule-item. Learning records also track each prior response to the item, allowing the language learning system to determine the aspects of the word or rule-item of which a student lacks mastery. The language learning system provides targeted reinforcement by drilling the student on the particular aspect of the rule needing practice, along with the practice-sentence incorporating it.
US10854087B2

The present disclosure relates to an assistance system for a first vehicle, comprising a detection unit for detecting accident- and/or breakdown-related data from at least one device in a vehicle, a position determining unit for determining the current position of the first vehicle, an evaluation unit for evaluating data detected by the detection unit and the position determining unit, and a communication unit for issuing data using radio signals—automatically or following the triggering of an actuating unit in the vehicle—concerning an area around the current position of the first vehicle to be avoided by other road users using the communication unit if the evaluation unit has determined—based on the evaluation of the data collected—that the first vehicle has suffered an accident or that the first vehicle has experienced a breakdown.
US10854075B2

The network system triggers registration of the start of a transport journey in response to a communication of a transport user device and a transport provider device with each other, performs a continuous coordinated proximity monitoring to verify the identity of a transport user and a transport provider vehicle, and triggers registration of the end of the transport journey through communication of the transport user device and the transport provider device with each other.
US10854070B2

A load control system may include multiple control devices that may send load control messages to load control devices for controlling an amount of power provided electrical loads. To prevent collision of the load control messages, the load control messages may be transmitted using different wireless communication channels. Each wireless communication channel may be assigned to a load control group that may include control devices and load control devices capable of communicating with one another on the assigned channel. A control device may send load control messages to a load control device within a transmission frame allocated for transmitting load control messages. The transmission frame may include equal sub-frames and load control messages may be sent at a random time within each sub-frame. Control devices may detect a status event within a sampling interval to offset transmissions from multiple control devices based on detection of the same event.
US10854069B2

Embodiments of a central security monitoring device for reducing incidences of false alarms in a security system is disclosed. In one embodiment, a method is described, comprising receiving an alarm signal from an occupancy sensor via a receiver, receiving a second alarm signal from a barrier alarm device after receiving the alarm signal, determining, by a processor, an elapsed time from when the alarm signal from the occupancy sensor was received to when the second alarm signal from the barrier alarm device was received, transmitting, by the processor via a network interface, a message to a personal communication device indicating that a false alarm has occurred when the elapsed time is less than the predetermined time.
US10854061B2

An adaptive method and system for monitoring a shipping container for an environmental anomaly uses sensor-based ID nodes within the container and a command node. Sensors on each ID node generate sensor data about an environmental condition proximate the ID node as disposed within the container. Each ID node periodically broadcasts the sensor data. The command node monitors a first group of sensor data from the ID nodes over a first time period to detect an initial environmental threshold condition related to the container, then monitors a subsequent group of sensor data over a second time period under a modified monitoring parameter to detect a secondary environmental threshold condition related to the container as the anomaly. In response to detecting the secondary condition, the command node generates an alert notification and transmits the alert notification to an external transceiver to initiate a mediation response related to the anomaly.
US10854057B2

A similarity computation unit (130) derives a first probability P indicating that a first moving body appearing in the first video is the same as a second moving body appearing in the second video on the basis of similarity of feature value of the moving bodies. A non-appearance probability computation unit (140) derives a second probability Q indicating that the first moving body is not the same as the second moving body on the basis of an elapsed time after the first moving body exits from the first video. A person determination unit (150) determines whether the first moving body is the same as the second moving body by comparing the probability P and Q.
US10854046B2

Disclosed herein are systems and methods for facilitating cash payment for online gaming including receiving player information at a service provider system through an input element of a player input screen presented on a player system. Embodiments include presenting information regarding a point-of-service that is equipped to accept cash payments, generating a token that is optically readable for use by the point-of-service, determining if the point-of-service is located in a geographic region authorized to make payments to the game provider; and notifying the point-of-service to reject any payments from the player system if the point-of-service is not located in a geographic region authorized to make the payments from the player system to the game provider.
US10854045B2

Methods and systems for electronic interaction comprising a display for presenting a grid of identifying objects, an input for receiving a player selection of an identifying object, a random generator for randomly selecting a winning identifying object, and a point tally system for awarding points to the player according to the rules comprising a first point value if the player selected identifying object exactly matches the winning identifying object, a second point value if the player selected identifying object is in a geometric relationship with the winning identifying object, and a third, negative, point value if the player is not awarded the first point value or the second point value.
US10854044B2

An electronic gaming machine (EGM) may present first visual effects on a display system, including game play items, corresponding to one or more instances of a base game and determining instances of game play items that correspond to feature credits towards an automatic award of a feature comprising one or more bonus games. The EGM may present second visual effects corresponding to an accumulation of feature credits towards the automatic award of the feature, receive an indication of a player's initiation of an attempt to trigger an award of the feature, at a time during which less than a number of feature credits necessary for an automatic award of the feature has been accumulated, determine whether an award of the feature will be triggered and control the display system to present third visual effects corresponding to whether an award of the feature has been triggered.
US10854030B2

A method, an apparatus and a system relate to processing a transport container for objects of value, particularly value documents, such as for example banknotes. The method comprises the steps of feeding the transport container to an apparatus for processing the transport container, opening the transport container in the apparatus, emptying the objects of value from the transport container, and checking the transport container for a residual quantity. For the check, electromagnetic radiation is applied to the transport container, wherein a transmission image of the transport container is produced by means of the electromagnetic radiation. The residual quantity in the transport container is deduced by means of the analysis of the transmission image.
US10854018B2

A method for calculating a fare for a transport service is provided. One or more processors receive a plurality of location data points from a computing device associated with a vehicle providing the transport service. The plurality of location data points correspond to a route of travel during performance of the transport service. A determination is made, based on a set of location data points of the plurality of location data points, that the vehicle has potentially driven along a roadway in which a toll is to be assessed as part of the fare. The roadway in which the toll is to be assessed is identified. The amount for the toll is determined for the identified roadway.
US10854013B2

Described herein are systems and methods for presenting building information. In overview, the technologies described herein provide relationships between Building Information Modeling (BIM) data (which includes building schematics defined in terms of standardized three dimensional models) and Building Management System (BMS) data (which includes data indicative of the operation of building components such as HVAC components and the like). Some embodiments use relationships between these forms of data thereby to assist technicians in identifying the physical location of particular pieces of equipment, for example in the context of performing inspections and/or maintenance. In some cases this includes the provision of 2D and/or 3D maps to portable devices, these maps including the location of equipment defined both in BIM and BMS data. In some cases, augmented reality technology is applied thereby to provide richer access to positional information.
US10854010B2

Provided is a method, performed by a device, of processing an image, the method including tracking a movement of a user wearing the device and generating movement information of the user, the movement information being about a movement occurring between a previous time when a first image was rendered and a current time when a second image is rendered; selecting at least one pixel from among a plurality of pixels comprised in the first image, based on the generated movement information and a location of a target pixel comprised in the second image; and changing a value of the target pixel by blending a value of the selected at least one pixel with the value of the target pixel according to a preset weight.
US10854004B2

In one embodiment, a method includes receiving first information from a sensor associated with a first computing device, wherein the first information comprises information associated with first images captured at the first sensor; receiving second information from a second computing device, wherein the second information comprises information associated with second images captured at a sensor associated with the second computing device; identifying first points within the first images; identifying second points within the second images; and relocalizing the first and second computing devices within a shared augmented-reality environment by defining coordinate spaces based on the images and combining the coordinate spaces based on identified shared points.
US10853997B2

In some examples, octree serialization can include non-transitory machine-readable medium storing instructions, the instructions executable by a processing resource to evaluate two or more nodes sequentially in an octree structure until a leaf node is reached, wherein the two or more nodes include at least one non-leaf node, and generate a serialized octree document based on a respective node identifier in a header associated with each node of the two or more nodes.
US10853994B1

The disclosure is directed to methods and processes of rendering a complex scene using a combination of raytracing and rasterization. The methods and processes can be implemented in a video driver or software library. A developer of an application can provide information to an application programming interface (API) call as if a conventional raytrace API is being called. The method and processes can analyze the scene using a variety of parameters to determine a grouping of objects within the scene. The rasterization algorithm can use as input primitive cluster data retrieved from raytracing acceleration structures. Each group of objects can be rendered using its own balance of raytracing and rasterization to improve rendering performance while maintaining a visual quality target level.
US10853992B1

Systems and methods for displaying a three-dimensional (3D) model of a real estate property are disclosed. An exemplary system may include a display device, a memory storing computer-readable instructions and at least one processor. The processor may execute the computer-readable instructions to perform operations. The operations may include determining a field of view (FOV) of a virtual observer of the 3D model based on a view point of the virtual observer in the 3D model. The FOV may cover a subset of the 3D model. The operations may also include determining, based on a floor plan corresponding to the 3D model, feature information of a functional space that at least partially fall within the FOV or connect to the subset of the 3D model covered by the FOV. The operations may further include controlling the display device to display the subset of the 3D model along with the feature information.
US10853989B2

Embodiments described herein provide an apparatus comprising a processor to maintain a plurality of first-in first-out (FIFO) queue structures in a computer readable memory, each of the plurality of FIFO queue structures corresponding to a coarse selection dispatch rate, receive a request message to dispatch coarse compute shader work, the request message comprising a requested coarse selection dispatch rate and a thread identifier, and store the request message in a FIFO queue structure having a coarse selection dispatch rate corresponding to the requested coarse selection dispatch rate associated with the request message. Other embodiments may be described and claimed.
US10853987B2

A system and method for generating cartoon images from photos are described. The method includes receiving an image of a user, determining a template for a cartoon avatar, determining an attribute needed for the template, processing the image with a classifier trained for classifying the attribute included in the image, determining a label generated by the classifier for the attribute, determining a cartoon asset for the attribute based on the label, and rendering the cartoon avatar personifying the user using the cartoon asset.
US10853981B2

Systems and methods are provided for providing a timeline representing a culture media protocol for a culture medium. Providing a timeline representing a culture media protocol can include receiving the culture media protocol for the culture media generating the timeline on a user interface based on the culture media protocol, monitoring time on the timeline, receiving one or more culture media images related to the culture media protocol, associating each of the one or more culture media images with a position on the timeline that correlates to a time at which the culture media image was captured, and generating a selectable marker for each culture media image associated with the timeline, the selectable marker being aligned with the position on the timeline that correlates to the time at which the culture media image was captured.
US10853974B2

A decoding device, an encoding device and a method for point cloud decoding is disclosed. The method includes receiving a compressed bitstream. The method also includes decoding the compressed bitstream into 2-D frames that represent a 3-D point cloud. Each of the 2-D frames including a set of patches, and each patch includes a cluster of points of the 3-D point cloud. The cluster of points corresponds to an attribute associated with the 3-D point cloud. One patch of the set of patches, the set of patches, and the 2-D frames correspond to respective access levels representing the 3-D point cloud. The method also includes identifying a first and a second flag. In response to identifying the first and the second flag, the method includes reading the metadata from the bitstream. The method further includes generating, based on metadata and using the sets of 2-D frames, the 3-D point cloud.
US10853969B2

A method for supporting image processing for a movable object includes acquiring one or more images captured by an imaging device borne by the movable object. The imaging device is at least partially blocked by an obstructive object attached to the movable object. The method further includes applying a template to the one or more images to obtain one or more projected locations of the obstructive object within the one or more images and detecting at least portion of the obstructive object at the one or more projected locations within the one or more images.
US10853968B2

The geometric pose of a patch of watermark data is estimated based on the position of a similar, but non-identical, patch of information within a data structure. The information in the data structure corresponds to a tiled array of calibration patterns that is sampled along at least three non-parallel paths. In a particular embodiment, the calibration patterns are sampled so that edges are globally-curved, yet locally-flat. Use of such information in the data structure enables enhanced pose estimation, e.g., speeding up operation, enabling pose estimation from smaller patches of watermark signals, and/or enabling pose estimation from weaker watermark signals. A great variety of other features and arrangements are also detailed.
US10853964B2

An image recognition system includes a first computer for detecting a recognition target from image data, and a second computer for identifying the recognition target detected by the first computer. The first computer and the second computer are disposed at positions physically separated from each other. When the first computer sends image data to the second computer, the second computer sends to the first computer a detection parameter group used for detection via a communication path. The detection parameter group is included in a recognition parameter group that is dynamically changed and used for image recognition processing of the image data.
US10853961B1

Techniques are disclosed for generating a low-dimensional representation of an image. An image driver receives an image captured by a camera. The image includes features based on pixel values in the image, and each feature describes the image in one or more image regions. The image driver generates, for each of the plurality of features, a feature vector that includes values for that feature corresponding to at least one of the image regions. Each value indicates a degree that the feature is present in the image region. The image driver generates a sample vector from each of the feature vectors. The sample vector includes each of the values included in the generated feature vectors.
US10853953B2

A method of operating a video camera system comprises recording video frames of a scene that includes a zone defined as an area within a field-of-view of the video capture element; performing a first analysis of recorded video frames showing the zone, determining, based on the first analysis, a first difference of composition thereof; performing a second analysis of an area outside of the zone; determining, based on the second analysis, a second difference of composition thereof; characterizing one or more properties corresponding to the second difference in composition; determining whether the one or more properties are associated with the first difference in composition within the zone and if so, characterizing the first difference in composition within the zone based on the one more properties and performing an action based on the characterization of the first difference in composition within the zone based on the one or more properties.
Patent Agency Ranking