US11006274B2

Systems and techniques enable an improved network selection procedure. Providers maintain preferred networks lists provisioned to UEs. The preferred networks lists include WLAN RATs, and for each entry coverage area and type of supported services. UEs include multiple credentials for connectivity via providers and potentially multiple transceivers supporting multiple active services. A UE triggers a network selection procedure whenever a new service is initiated. A credential is selected. The UE builds a list of network/RAT combinations from preferred networks lists and filters this list, removing entries that do not support the new service. The UE takes the context of the UE into consideration, further filtering the list. The remaining entries are scanned and a network/RAT combination selected. The UE determines whether registering with the selected network/RAT combination causes an interruption to an ongoing service. If not, the UE registers on the selection. If so, the UE engages in interruption resolution.
US11006271B2

A personal digital ID device provides a digital identifier to a service for a predetermined duration in response to user interaction. The user interaction may include a button press. The personal digital ID device may be in the form of a bracelet, a key fob, or other form factor. The service may be provided by a mobile device, in the cloud, or elsewhere.
US11006266B2

In one example, a server obtains, from a device having an embedded Subscriber Identification Module (eSIM), a unique identifier of the eSIM. The server validates the device based on the unique identifier of the eSIM. The server provides, to the device, a unique credential for a profile of the eSIM. The profile of the eSIM corresponds to a network of an enterprise. The server provides, to a credential database, the unique credential for the profile of the eSIM. The credential database including the unique credential for the profile of the eSIM indicates that the device is permitted to access the network of the enterprise.
US11006262B2

A power outlet for controlling power to an external device and transmitting data to the external device, the power outlet including: a housing containing at least one alternating-current power input connection; a power output connection; a data connector; a sensor module; a wireless communication module, including an antenna; a processing unit configured to receive data and control an electrically connected device through the power output connection and/or data connector based on the received data.
US11006261B2

A system, a method, and a computer program product for selective pairing of wireless devices are provided. A pairing device scans for an advertising packet. The pairing device checks each scanned advertising packet for a shared key. The pairing device responds to the scanned advertising packet only when the advertising packet contains the shared key.
US11006259B2

Briefly, in accordance with one or more embodiments, a fixed device synchronizes with a downlink channel of a network, acquires a master information block including a last system update time; and executes cell selection without acquiring other system information if the last system update time is before the last system access time. Furthermore, the fixed device may listen only for system information block messages that it needs, and ignore other system information blocks. A bitmap may indicate which system information block messages should be listed to for fixed devices, and which may be ignored. In some embodiments, one or more system information blocks may be designated for fixed devices.
US11006255B2

A method for communication within a cooperative intelligent transport system. The method comprises receiving, in a first node, a first intelligent transport system message from another node of the cooperative intelligent transport system. In the first node, a technology status of that another node is identified. The technology status comprises information whether or not the first intelligent transport system message was transmitted configured according to a predetermined first intelligent transport system technology, and information whether or not the first intelligent transport system message comprises a dual technology indicator. The dual technology indicator is an information element identifying that the node transmitting the first intelligent transport system message is capable of communicating intelligent transport system messages according to the first intelligent transport system technology as well as according to a predetermined second technology. A corresponding node for communication within a cooperative intelligent transport system is also disclosed.
US11006247B2

Disclosed are a method for a terminal transmitting positioning information in a wireless communication system supporting sidelink and a device therefor according to various embodiments. Disclosed are a method for a terminal transmitting positioning information and a device therefor, the method comprising the steps of: receiving, from a network or a transmission terminal, a positioning signal comprising N consecutive tones to which reference signals are mapped; measuring the phase difference between a reference signal, which is mapped to an anchor tone which is a reference among the N consecutive tones, and the reference signals respectively mapped to the remaining tones; and transmitting, to the network or the transmission terminal, positioning information comprising information relating to the measured phase difference, wherein the positioning information comprises information relating to the sum of the measured phase differences between the reference signals.
US11006245B2

In a general aspect, a method is presented for detecting a location of motion using wireless signals and topologies of wireless connectivity. The method includes obtaining motion-sensing data from access point (AP) nodes of a wireless mesh network. The motion-sensing data is based on wireless signals transmitted between respective pairs of the AP nodes. The method additionally includes identifying a motion-sensing topology of the wireless mesh network. The motion-sensing topology is based on tags assigned to respective AP nodes, each tag indicating a connected state of a respective AP node. The method further includes generating a probability vector based on the motion-sensing data and the motion-sensing topology. The probability vector includes values that represent probabilities of motion of an object at respective AP nodes. A location of the motion of the object is determined based on the probability vector.
US11006244B2

Methods, computer readable storage medium, and systems for mobile devices to locate persons or places are described. In a feature, the invention is a method implemented in a server for providing beaconing sequences to the mobile devices for location sharing. In a feature, the invention is a server executing a method of locating a user using a beaconing mobile device. In a feature, the invention is a non-transitory computer readable medium on a server that encodes a program to execute a method on a first mobile device that determine directions and/or distance between the first mobile device and a second mobile device. In a feature, the invention is a server executing a method to remember a place on a mobile device.
US11006243B2

A guidance device of an embodiment includes a first acquirer configured to acquire first mobile body movement information of a first mobile body from a reference position to a first position, a second acquirer configured to acquire a second mobile body movement history including a movement history including the first position in a movement history of a second mobile body, and an information provision controller configured to cause an output to output guidance information directed to a user of the first mobile body on the basis of the first mobile body movement information and the second mobile body movement history.
US11006242B1

Disclosed are systems, methods, and computer-readable storage media for displaying widgets. In some aspects, criteria for ranking widgets may be dynamically evaluated based on conditions associated with each widget. In some aspects, the conditions may consider a time or location of an event a social network user is scheduled to attend, and a relation to that time and location to a current time and/or current user location. Evaluation of the conditions may contribute to the determination of weights for each of the respective widgets, with the ranking based on the weights. Widgets with the highest rank may be invoked, and selectively displayed on an electronic display. Multiple possible parameter values for the displayed widgets may also be dynamically ranked and selected values applied when invoking the widget.
US11006233B2

A method and a terminal for playing an audio file in a multi-terminal cooperative manner include obtaining, by a source terminal, an audio signal frame, the audio signal frame includes a left channel signal and a right channel signal, obtaining, by the source terminal, a central channel signal and a surround channel signal based on the left channel signal and the right channel signal, obtaining, by the source terminal, a current location of a virtual sound source corresponding to the central channel signal, and generating, based on the current location and the central channel signal, a sound channel signal corresponding to the terminal in at least two sound channel signals, superposing, by the source terminal, the sound channel signal on the surround channel signal, to obtain a to-be-played sound channel signal corresponding to the terminal, and playing, by the source terminal, the to-be-played sound channel signal.
US11006232B2

An example playback device is configured to (i) receive, via a network interface, data representing a command to play back audio content, where the audio content is a first type of audio content, (ii) during playback of the first type of audio content via an audio amplifier configured to drive a speaker, apply a first calibration and a second calibration to playback by the playback device, where the first calibration at least partially offsets one or more acoustic characteristics of an environment surrounding the playback device when applied to playback by the playback device, and where the second calibration corresponds to the first type of audio content, and (iii) during playback of a second type of audio content via the audio amplifier configured to drive the speaker, apply a third calibration to playback by the playback device, where the third calibration corresponds to the second type of audio content.
US11006228B2

An implantable microphone for a middle ear prosthesis, includes an attachment system for fixing to a fixation bone close to an individual's middle ear; a cylindrical holding sheath, the sheath to be fixed to the fixation bone by the attachment system and having a suitable shape for extending from the fixation bone towards the ear ossicles of the individual; a coupler including a rod and an end piece of a suitable shape for bringing into contact with a point of the ear ossicles of the individual in a reversible manner; a sensor for converting a mechanical signal into an electrical signal, the sensor being secured to the coupler, supported by the cylindrical holding sheath and placed substantially in the extension of the axis of the cylinder; and a translation system for translation of the coupler along the axis of the cylinder, the translation system being housed in the sheath.
US11006226B2

A binaural hearing aid system (100) with improved diversity properties. The invention also provides a method for operating such a binaural hearing aid system (100).
US11006224B2

A method in a wireless network comprising a plurality of frequency channels and a receiving participant, the method includes: receiving data on a first subset of the plurality of frequency channels, wherein the frequency channels in the first subset are utilized at least once; receiving data on a second subset of the plurality of frequency channels; determining packet error rates for the respective frequency channels in the first and the second subsets; and selecting one of the plurality of frequency channel as an optimal frequency channel based on a result from the act of determining.
US11006216B2

A system includes a circuitry that provides for psychoacoustic frequency range extension for a speaker. The circuitry generates quadrature components from an audio channel, and generates rotated spectral quadrature components by applying a forward transformation that rotates a spectrum of the quadrature components from a standard basis to a rotated basis. In the rotated basis, the circuitry isolates components of the rotated spectral quadrature components at target frequencies, and generates weighted phase-coherent harmonic spectral quadrature components by applying a scale-independent nonlinearity to the isolated components. The circuitry generates a harmonic spectral component by applying an inverse transformation that rotates a spectrum of the weighted phase-coherent harmonic spectral quadrature components from the rotated basis to the standard basis. The circuitry combines the harmonic spectral component with frequencies of the audio channel outside of the target frequencies to generate an output channel, and provides the output channel to the speaker.
US11006209B2

A rectangular microspeaker according to the present invention transfers vibration sound through the front surface or side surface of a diaphragm. In order to maximize an effective vibration area and to expand a volume, all parts including a frame are fabricated in a rectangular shape. The present invention is applied to a P type, an F type, and a composite type. The vibration sound generated on the bottom of the diaphragm as well as the vibration sound generated on the top of the diaphragm may be discharged through the side surface. A magnetic field part may be insert-molded separately or along with the frame.
US11006192B2

A media-played loading control method, device and storage medium are provided. The method includes detecting a time span corresponding to media data preloaded by the player in a playing process of a player built-in a webpage, obtaining media data rendering the preloaded media data to satisfy the fixed time span when the time span corresponding to preloaded media data is less than a fixed time span, and sending obtained media data to a media element of the webpage for preloading via a media source extension interface.
US11006185B2

A video service quality assessment method and apparatus are provided to resolve a prior-art problem of relatively low accuracy of an assessment result. A monitoring device obtains an identifier of a to-be-monitored channel, an identifier of to-be-monitored user equipment, and configuration information of a video service transmission system; obtains a multicast video stream of the to-be-monitored channel based on the identifier of the to-be-monitored channel; obtains a retransmitted video stream based on the identifier of the to-be-monitored channel, the identifier of the to-be-monitored user equipment, and the configuration information of the video service transmission system; determines a to-be-assessed video stream based on the multicast video stream and the retransmitted video stream; and parses the to-be-assessed video stream, and obtains an assessment result based on a parsing result and the configuration information of the video service transmission system.
US11006180B2

The disclosed technology includes a system and method for selecting highlight media clips and posting the highlight media clips to social media platforms. In one implementation, a method includes receiving, during a live event, a selection of a point of interest (POI) in a media stream of the live event, the POI corresponding to a reference time during the live event, inserting into the media stream POI timing metadata indicating the reference time of the POI, and transcoding the media stream into data segments responsive to inserting the media stream POI timing metadata, each data segment corresponding to a presentation time stamp (PTS). The method may include selecting a data segment of the transcoded data segments, the selected data segment corresponding to a PTS mapped to the reference time and generating a media clip containing the selected data segment for presentation over a communications network during the live event.
US11006179B2

A method and an apparatus for outputting information are provided. A specific embodiment of the method comprises: in response to receiving voice inputted by a user, generating a voiceprint characteristic vector based on the voice; inputting the voiceprint characteristic vector into a voiceprint recognition model to obtain identity information of the user; selecting, from a preset multimedia file set, a predetermined number of multimedia files matching the obtained identity information of the user as target multimedia files; and generating, according to the target multimedia files, preview information, and outputting the preview information. This embodiment realizes the multimedia preview information recommendation with pertinence.
US11006177B2

A system and method for utilizing a secured service provider memory are disclosed. An electronic device is associated with a subscriber and is in communication with a data distribution network configured to deliver data by a service provider to the subscriber. The data distribution network comprises a server in communication with the data distribution network and the server configured to deliver a stream of data over the data distribution network. The electronic device comprises a first memory communicatively connected to the server. The first memory is configured to receive and store data from the server and it is accessible by the subscriber. A second memory is also communicatively connected to the server. The second memory is configured to receive and store data from the server, though the second memory is accessible only by the service provider.
US11006171B1

An online system receives information describing a collection of objects associated with a third-party system and an objective associated with each object. Upon receiving a request to present content associated with the third-party system to a user of the online system, the online system determines one or more groups in which each object is included based on a condition satisfied by objects included in each group. For each of multiple formats that may be used to present each group of objects, the online system computes a format score indicating a predicted likelihood that the user will perform a set of actions corresponding to a set of objectives associated with the group if the format is used. The online system selects a format for presenting each group of objects based on the format scores and/or a set of format selection rules and generates the user interface using the selected format(s).
US11006168B2

Techniques are described for synchronizing internet (“over the top”) video streams for simultaneous playback. In particular, techniques are described to improve the performance and accuracy of stream synchronization among participant media player applications playing a same video content item, for example, as part of a “watch party.” The techniques can be further augmented to allow interaction between the users watching the presentation, e.g., by sending messages to other users or by annotating the video presentation with comments, and can be further used to enable “cross device control,” a feature that enables multiple users, or a single user with multiple devices, to control a shared video playback session on another device. For example, two users watching a streaming video on a set-top box connected to a TV in their living room could each use an app on their respective smart phones to pause/play/seek the playback session, providing a more collaborative experience.
US11006160B2

Live-action event data is received during a live-action event from an event reporting computing system via a computer network interface. The live-action event data is provided to a machine-learning prediction machine previously trained with previously-completed event data to output a prediction for an upcoming aspect of the live-action event. The prediction is sent to a client computing system via the computer network interface prior to commencement of the upcoming aspect to enhance a live-action event experience provided by the client computing system.
US11006157B2

This disclosure describes methods and systems for viewing a collection of media objects, such as a video clip and associated responses (video, audio and text), in a seamless way. Provided with a media object and a series of responses and counter responses, a real time media combining methodology is coupled with a text and audio conversion process to generate a media stream, or downloadable media object, that contains the original media object and some or all of the associated responses. The media content is formatted into the stream so that ancillary content, like text associated with a particular video response, may also be displayed. Advertisements may be inserted into the stream between responses or overlaying some portion of the viewing area during rendering of the stream.
US11006156B2

The present invention relates to provision of a method and/or a device for transmitting and receiving a broadcast signal on the basis of color gamut resampling. The method for transmitting a broadcast signal, according to one embodiment of the present invention, comprises the steps of: resampling first color gamut-based content data into second color gamut-based content data; generating signaling information which includes color gamut resampling information indicating information on the resampling; respectively.
US11006150B2

A method of video decoding can include receiving a bit stream including coded bits of bins of syntax elements. The syntax elements are of various types that correspond to transform coefficients of a transform block in a coded picture. Context modeling is performed to determine a context model for each bin of the syntax elements. In a given frequency region of the transform block, for one type of the syntax elements, a group of the transform coefficients having different template magnitudes within a predetermined range share a same context model, or one of the transform coefficients uses the same context model for possible different template magnitudes of the one of the transform coefficients. The possible different template magnitudes are within the predetermined range. The coded bits are decoded based on the context models determined for each bin of the syntax elements to determine the bins of the syntax elements.
US11006142B2

A method for decoding an image according to the present invention comprises the steps of: decoding a residual block by quantizing and inverse transforming an entropy-decoded residual block; generating a prediction block via motion compensation; and decoding an image by adding the decoded residual block to the prediction block, wherein on the basis of the maximum number of motion vector candidates of the motion vector candidate list related to the prediction block, a motion vector candidate list is adjusted by adding a particular motion vector candidate or by discarding a portion from among the motion vector candidates, and in the prediction block generation step, a prediction motion vector of the prediction block is determined on the basis of the adjusted motion vector candidate list. Accordingly, the complexity of arithmetic operations is reduced during encoding/decoding of an image.
US11006141B2

An exemplary image generation system accesses a full atlas frame sequence that incorporates a set of image sequences combined within the full atlas frame sequence as atlas tiles. The system generates a first partial atlas frame sequence that incorporates a first subset of image sequences selected from the set of image sequences incorporated in the full atlas frame sequence, as well as a second partial atlas frame sequence that incorporates a second subset of image sequences selected from the set of image sequences. The second subset includes a different combination of image sequences than the first subset and includes at least one image sequence in common with the first subset. The system provides the first partial atlas frame sequence to a first video encoder and the second partial atlas frame sequence to a second video encoder communicatively coupled with the first video encoder. Corresponding methods and systems are also disclosed.
US11006140B2

Aspects of the disclosure provide methods and apparatuses for video encoding/decoding. In some examples, an apparatus for video decoding includes receiving circuitry and processing circuitry. For example, the processing circuitry decodes prediction information of a current block in a current coding tree unit (CTU) from a coded video bitstream. The prediction information is indicative of an intra block copy mode. A size of the current CTU is smaller than a maximum size of a reference sample memory for storing reconstructed samples. The processing circuitry determines a block vector that points to a reference block in a same picture as the current block. The reference block has reconstructed samples buffered in the reference sample memory. Then, the processing circuitry reconstructs at least a sample of the current block based on the reconstructed samples of the reference block that are retrieved from the reference sample memory.
US11006138B2

Described herein is a data processing system comprising a memory device to store a multisample render target and a general-purpose graphics processor comprising a multisample antialiasing compressor and a multisample render cache. The multisample render target can store color data for a set of sample locations of each pixel in a set of pixels. The multisample antialiasing compressor can apply multisample antialiasing compression to color data generated for the set of sample locations of a first pixel in the set of pixels. The multisample render cache can store color data generated for the set of sample locations of the first pixel in the set of pixels. Color data evicted from the multisample render cache is stored to the multisample render target.
US11006134B2

The present disclosure provides picture encoding and decoding methods, picture encoding and decoding devices as well as a decoder and an encoder. The picture decoding method includes: parsing a video bitstream to obtain candidate reshaping parameters from a picture-layer and/or slice-layer data unit of the video bitstream, and determining a reshaping parameter used for reshaping a reconstructed picture according to the obtained candidate reshaping parameters; and reshaping the reconstructed picture by using the reshaping parameter. The reconstructed picture is a picture obtained by decoding the video bitstream before performing the reshaping. The picture-layer and/or slice-layer data unit includes at least one of the following data units: a picture-layer parameter set and/or a slice-layer parameter set different from a picture parameter set (PPS), a parameter data unit which are included in an access unit (AU) corresponding to the reconstructed picture, slice header and a system-layer picture parameter data unit.
US11006127B2

An exemplary method for intelligent compression uses a foveated-compression approach. First, the location of a fixation point within an image frame is determined. Next, the image frame is sectored into two or more sectors such that one of the two or more sectors is designated as a fixation sector and the remaining sectors are designated as foveation sectors. A sector may be defined by one or more tiles within the image frame. The fixation sector includes the particular tile that contains the fixation point and is compressed according to a lossless compression algorithm. The foveation sectors are compressed according to lossy compression algorithms. As the locations of foveation sectors increase in angular distance from the location of the fixation sector, a compression factor may be increased.
US11006101B2

Examples disclosed herein relate to viewing device adjustment based on eye accommodation in relation to a display. In one implementation, a computing device determines accommodation information related to a viewer's focus on an image rendered on a display. The computing device may cause an optical component associated with a viewing device to adjust based on the determined accommodation.
US11006098B2

Provided is a configuration to make a virtual viewpoint image be a more natural stereoscopic image. The virtual viewpoint image is transmitted/received between information processing apparatuses that execute bidirectional communication. A processor calculates a virtual viewpoint position corresponding to a position of a virtual camera that captures a virtual viewpoint image on the basis of viewing position information of a viewing user of the virtual viewpoint image, and generates the virtual viewpoint image corresponding to a captured image from the virtual viewpoint position. The virtual viewpoint image is generated based on the captured image of a real camera that captures an object user, and the virtual viewpoint image is generated by setting a capture direction of a virtual camera to a point C, wherein the point C is in a position different from the object user.
US11006096B2

An observation device is provided with an image acquisition unit comprising at least one image sensor, an image display unit, that is arranged for displaying image data that is provided by the image acquisition unit, an image processing unit for image processing procedures, and a control unit comprising a multi-axis input module. The image acquisition unit is configured to provide recorded images having a predefined recording pixel quantity. The image display unit is configured to display display images having a predefined display pixel quantity, wherein the recording pixel quantity is equal to or greater than the display pixel quantity. Image pixels of the display pixel quantity are obtained from the recording pixel quantity. Subsets of the recording pixel quantity are selected to form the display pixel quantity. Image acquisition parameters and display parameters are controlled by the input module. The input module is arranged to be coupled with the image acquisition unit for controlling at least one image acquisition parameter.
US11006088B1

There is provided a method for determining colour correction parameters for a digital imaging device. The method comprises simulating target and raw value pairs for a set of colours based on pre-determined sample transmission spectra of the set of colours; i) a sensitivity spectrum of a monochrome sensor of the digital imaging device; and illumination spectra of different colours of a light source of the digital imaging device; or ii)—sensitivity spectra of pixels of different colours of a colour sensor of the digital imaging device; and an illumination spectrum of a light source of the digital imaging device. The method comprises determining a colour correction transformation for transforming the raw values to target values, wherein the colour correction transformation is parametrized by transformation parameters; and solving the transformation parameters for the colour correction transformation using an optimization problem.
US11006067B2

An electronic apparatus includes: an input unit that inputs data for imaging conditions for each of a plurality of imaging regions included in an image capturing unit, different imaging conditions being set for each of the imaging regions; and a recording control unit that correlates the data for imaging conditions inputted from the input unit with the imaging regions and records correlated data in a recording unit.
US11006063B2

A pixel readout circuit including a reset circuit configured to reset a first node to a first power supply voltage in response to a signal on a first scan line being active; a photodetector configured to generate, responsive to incident light, a charge signal and integrate the charge signal, the integrated charge signal causing a change in a voltage level at the first node; a photosensitive circuit configured to generate a pixel current in response to the change in the voltage level at the first node; and a switch circuit configured to transfer the pixel current to a signal readout line for readout in response to a signal on a second scan line being active.
US11006055B2

The present technology relates to an imaging device and a method for driving it that make it possible to create two kinds of images with less time deviation, and an imaging apparatus. The imaging device includes a pixel array in which a plurality of pixels is arranged, the pixel including at least a photoelectric conversion section that converts incident light into charge by photoelectric conversion and a charge accumulating section that accumulates charge transferred from the photoelectric conversion section. At least some of pixels in the pixel array perform an operation to transfer charge generated by the photoelectric conversion section to the charge accumulating section at different timings between adjacent pixels. For example, it is possible to apply the present technology to the imaging device, or the like.
US11006053B2

A weld inspection system is adapted to inspect a weld of a work product via thermographic technology. The weld inspection system includes a heat source assembly, a thermal imaging camera, and a controller. The heat source assembly is adapted to sequentially direct a plurality of heat pulses upon the work product from varying perspectives and within a pre-determined time period. Thea thermal imaging camera is configured to thermally image the weld over the pre-determined time period and collect thermal imaging data of heat dissipation from the work product. The thermal imaging data is associated with the weld and the plurality of heat pulses. The controller is configured to control the heat source assembly and the thermal imaging camera. The controller includes a processor configured to receive and transform the thermal imaging data into a binary image for evaluation of the weld.
US11006044B1

Systems, methods, and non-transitory media are provided for power-efficient image stabilization. An example method can include collecting measurements from a motion sensor, the measurements being based on movement of an image sensor while capturing frames; calculating parameters for counteracting motions in a frame, wherein first parameters are based on the measurements and second parameters are based on some of the measurements; adjusting, in a first stabilization pass of a dual-pass stabilization process, the first frame according to the second parameters; adjusting, in a second stabilization pass of the dual-pass stabilization process, the first frame according to the first parameters; based on a second frame having less motion than the first frame, enabling for the second frame a single-pass stabilization process for both a frame preview process and video record process; and adjusting, in the single stabilization pass, the second frame according to parameters for counteracting motions in the second frame.
US11006041B1

Aspects relate to digital imaging. An example method includes receiving a first image frame of a scene captured by a first image sensor. The method also includes receiving a second image frame of the scene captured by a second image sensor. The second image frame is captured concurrently with capture of the first image frame. The method also includes receiving a third image frame of the scene captured by a third image sensor. The third image frame is captured concurrently with capture of the first image frame. The method also includes generating a combined image from the first image frame, the second image frame, and the third image frame. The combined image includes a first field of view that is wider than a field of view of the first image frame.
US11006028B2

[Problem] To provide a photographing apparatus that reduces motion blur caused by camera rotation, provides high quality binocular parallax video, and suppresses visually induced motion sickness. [Solution] A photographing apparatus 1 is provided with a plurality of photographing units 10 that can form an entire peripheral image, and further provided with: a photographing unit installation unit 20 in which the photographing units 10 are installed; a rotary driving shaft 30 that rotatably supports the photographing unit installation unit 20; a driving unit (motor) 40 that applies rotational force to the rotary driving shaft 30; a photographing unit shaft 50 that is provided to the photographing unit installation unit 20 so as to rotatably fix the photographing units 10 at prescribed respective positions; and driving force transmission means 60 that are provided to both the rotary driving shaft 30 and the photographing unit shaft 50 so as to transmit the rotary driving force of the rotary driving shaft 30, wherein the photographing units 10 can hold a state of facing the prescribed positions without following the rotation of the photographing unit installation unit 20 when the photographing unit installation unit 20 rotates.
US11006027B2

A photographing system which can securely set a manual light amount to an appropriate light emission amount after changing the manual light amount of a strobe according to a photometry result at the time of pre-light emission. In the photographing system, when a light-emission amount automatic adjustment in a metered manual starts in a manual light-emission mode after setting a light emission amount of the light-emitting part in the main light emission within a first range by a user operation in the manual light-emission mode, a main appropriate light emission amount is calculated on a basis of a photometry result before and after the pre-light emission by a photometric circuit, then in a case where the calculated main appropriate light emission amount falls within a second range and is outside the first range, the light emission amount of the light-emitting part in the main light emission is changed to the main appropriate light emission amount, wherein the second range, wherein the second range, including the first range and wider than the first range, is possible to perform automatic light adjustment in the illumination apparatus.
US11006022B2

A video system includes a scene analyzing circuit, configured to perform a scene analysis operation on a video signal and output a scene analysis result; and a video processing module, comprising a first video processing circuit, configured to perform a first video operation on the video signal and output a first processing result; and a second video processing circuit, configured to perform a second video operation on the first processing result according to the scene analysis result.
US11006021B1

A method for rendering a correlation mark on a recording medium can involve encoding a pattern based on a correlation effect color based on a color recipe that includes a high density of one primary color and a mid-to-low density of at least one other primary color, and adjusting the pattern to ensure that the encoding is lost in a resulting rendering of a correlation mark embedded with the pattern. The pattern imposed on the correlation mark is not readily visible in an original without a decoding key. The correlation mark can include a frequency that is sufficiently high so that a copy of the correlation mark may not reproduce with the pattern.
US11006020B2

Provided is an image forming apparatus to control capturing of an execution screen displayed. A memory stores at least one application. A user interface device displays an execution screen of an application, to which a user is logged in with an identification (ID) of the user, and receives an input of capturing the execution screen. A processor determines an authority of the ID of the user to capture the execution screen by comparing a security level of the execution screen set based on the data displayed on the execution screen and a security level of the user set with respect to the ID of the user. The processor, in response to the input, controls the capturing of the execution screen, based on the determined authority of the ID of the first user.
US11006018B2

An image reading apparatus which is capable of preventing occurrence of a paper jam and poor stacking during conveyance of originals. The image reading apparatus sets a type of an original, conveys the original based on the set type of the original, and reads an image on the conveyed original. An original detecting sensor detects placement of the original on an original tray. An LCD touch panel displays an object for setting a type of the original in response to the detection by the original detecting sensor.
US11005993B2

An example method includes receiving, by a computational assistant executing at one or more processors of a mobile computing device and via a wireless link between the mobile computing device and an external device, a representation of audio data generated by a microphone of the external device, the audio data representing a spoken utterance detected by the external device; determining, by the computational assistant and based on the audio data, a response to the spoken utterance; and sending, by the mobile computing device, to the external device, and via the wireless link between the mobile computing device and the external device, a command to output, for playback by one or more speakers connected to the external device via a hardwired analog removable connector of the external device or a wireless link between the external device and the one or more speakers, audio data representing the response to the spoken utterance.
US11005988B1

Systems, methods, and computer-readable media for providing smart notifications during voice call transitions from hold status to active status are described. An example method can include establishing a call between an endpoint and a remote device; after a determination that the call was placed on hold by the remote device, monitoring, by the endpoint, the call for an indication of a call resume transition, the indication of the call resume transition including at least one of a particular keyword transmitted by the remote device, an active speaker at the remote device, and a dual-tone multi-frequency signaling (DTMF) input from the remote device; detecting, by the endpoint, the indication of the call resume transition; and in response to detecting the indication of the call resume transition, generating, by the endpoint, a notification indicating that the hold has ended and the call has resumed.
US11005983B1

A wearable electronics device having a removable thin top touchscreen that is interchangeable to other touchscreens having different sizes and shapes to convert the device form factor and functions from a fitness-tracker to a smartwatch or a handheld smartphone, using an applications processor in the underlying electronics housing unit capable of running the device in various form factors. The smartphone touchscreen further provides additional power and memory/storage for smartphone-level functions and performance.
US11005977B2

A packet filtering system uses linked zero-based binary search trees to filter received packets. The binary search trees may be generated from filter conditions defining filter parameters for filtering packets.
US11005976B2

A method includes receiving, at a customer premises equipment (CPE) device from a data source, media content requested by a media device. The method includes determining, at the CPE device, a number of concurrent media connections to establish to the media device based on a workload of the customer premises device. The method includes establishing the number of concurrent communication connections between the CPE device and the media device. The method also includes sending the media content as data packets via data packet streams to the media device from the customer premises equipment device. A data packet stream of the data packet streams is sent via each communication connection of the concurrent communication connections. Each data packet stream includes less than all data packets of the media content, and the media device processes the data packets received via the data packet streams to generate media content output.
US11005975B2

An example data processing technique includes determining, by a first media server during a first media session between a client device and the first media server, a stable bitrate value based on a rate at which the first media server receives data from the client device in the first media session. Further, the example technique includes, based on determining the stable bitrate value, storing in a database the stable bitrate value for the client device, and receiving, from the client device, a request to establish a second media session. The example technique also includes, in response to receiving the request, searching the database for a particular stable bitrate value for the client device, and sending the particular stable bitrate value to the client device, wherein the client device is configured to estimate, based on the particular stable bitrate value, an initial bitrate value for transmitting data from the client device to a second media server in the second media session.
US11005973B2

A device can receive, from a node of a set of nodes, a dynamic host configuration protocol (DHCP) discovery request. The device can determine a DHCP offer based on metadata associated with the node. The device can transmit, to the node, pre-boot execution environment (PXE) instructions, which can cause the node to load a minimal operating system image and execute a node installation service. The device can receive, from the node installation service, a request for information associated with a node type. The device can provide the information associated with the node type to the node, causing the node to generate configuration data relating to the node type. The device can receive, from the node, a request for a full operating system image, which can be provided to the node and can support one or more capabilities included in the configuration data.
US11005961B2

A communication system including a network of stickers in transit such that the spatial relationship between the stickers is changing, each sticker including a processor, a storage storing operation code and messages, a message including addresses of source and destination devices, and data sent from the source device to the destination device, and a wireless communicator, and devices that send and receive messages to and from stickers, whereby the operation code of each sticker causes its processor to sporadically receive data stored within other stickers that are currently within range of its communicator, to receive messages from source devices that are within range of its communicator, to store received messages within its storage, to sporadically transmit messages to other stickers that are within range of its communicator, and to transmit messages to the message's respective destination device, when the destination device is within range of its communicator.
US11005954B2

The present disclosure discloses a method and a device for accessing location related information. The method includes: receiving a request for assigning a network address to a POI; encoding the POI based on a preset geographical name code database to obtain a POI code of the POI; mapping the POI code into a network address, the network address comprising at least one of an IPv6 unicast address, an IPv6 multicast address, or a domain name; and sending the network address to a network device, enabling the network device to obtain location related information of the POI by accessing a site corresponding to the network address.
US11005946B2

A non-transitory storage medium stores instructions readable by a computer of an information processing apparatus. The information processing apparatus includes an accepter configured to accept an operation of a user. When executed by the computer, the instructions cause the information processing apparatus to perform: executing an accepting processing in which the accepter of the information processing apparatus accepts a selecting operation that is an operation of selecting data; executing an obtaining processing in which the information processing apparatus obtains a URL corresponding to data specified by the selecting operation accepted in the accepting processing; and executing a creating processing in which the information processing apparatus creates a two-dimensional code storing the URL obtained in the obtaining processing.
US11005938B2

Methods and apparatus for publisher-independent auxiliary communications in data router-mediated publisher/subscriber transmission architectures provide faster processing of actionable information by subscribers and increased flexibility to add publishers to a system. Publisher-originated information in a publisher-specific format is used by either the publisher, or a data router coupled to the publisher, to generate information, based on the publisher-originated information, in a publisher-independent format recognized by subscribers, and provided by the data router to subscribers. Publishers may include analyzers such as blood, immuno-assay, and clinical chemistry analyzers, IoT devices, and automation systems.
US11005934B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for migrating data from a first storage system to a second storage system. That data is for a process (e.g., a virtual machine, application, or some other process) operating on a computer system that is separate from the first storage system and the second storage system. That data is stored according to data subsets that are each exclusive of each other. As each data set is migrated, access to the data set by the process is precluded, but access for the remaining data sets is not affected. Once the data migration is complete, access to the data set by the process is restored.
US11005933B2

Providing queuing in a log streaming system. A state of each of a set of queues of messages is maintained by sending messages to a state topic in the log streaming system. Responsive to a client writing a message to one of the queues, writing the message to a message topic for the queue in the log streaming system. Responsive to the client reading from one of the queues, reading a message from the message topic for the queue and storing property types relating to the availability of the message in the state topic for the queue by sending messages to the state topic referencing the message in the message topic.
US11005932B1

A method for interworking data between a plurality of blockchain networks according to an embodiment of the inventive concept includes performing a first phase of a transaction by dividing steps of the transaction for recording data and performing a second phase of the transaction according to a result of performing the first phase, wherein performing the first phase comprises performing a first step of a first transaction for recording the data in a first blockchain network of a plurality of blockchain networks and requesting to perform a first step of a second transaction for recording the data in a second blockchain network of the plurality of blockchain networks. It may be available to interwork data between a plurality of blockchain networks without passing through a separate hub network, and ensure the concurrency of interworked data recording.
US11005927B2

A health check script for confirming a response from an application is disposed in a server, and a load balancer monitors a response to the health check script from the server.
US11005922B1

A method of generating a reduced address dataset for a geographical area includes receiving a source address dataset for a select geographical area, removing personally identifiable address parameters from detailed address parameters of a plurality of source address datapoints to form a reduced address dataset with a plurality of anonymous address datapoints, and storing the first version of the reduced address dataset. The reduced address dataset is for use by a geographical analytics service provider as a reference address dataset in analyzing target parameters in a target dataset associated with one or more managed service providers to develop geographical distributions of the target parameters. A method of generating a geographical distribution of a target parameter of a target dataset by using the reduced address dataset is also provided. Analytics computer system for generating the reduced dataset and for using the reduced address dataset are also provided.
US11005912B2

Managing the timing of publication of new webpages and in particular new versions of existing webpages. New webpages are uploaded into a data repository for storing them before they are made available for access externally. A dependency processor is provided to process these new webpages to assess their readiness for publication by checking for dependencies on other webpages, the dependencies including a mutual dependency; locating any of the other webpages; and ascertaining whether each such dependency is satisfied. If dependencies are satisfied, then the new webpage is deemed ready for publication and is published. The satisfied dependencies include the content being accessible. In the case that the new webpage is a new version of an existing webpage, it replaces the old version. If dependencies are not satisfied, then the new webpage is held back until such time as they are met.
US11005910B1

Systems, methods, and computer-readable media are disclosed for extracting data from web applications. An exemplary embodiment includes monitoring web traffic between a client terminal and a server, the web traffic corresponding to a user's interaction with a web browser to send a request for data, such as a web page, from the client terminal to the server. A data log is created reflecting the monitored web traffic, and processed to extract the request for data. A command is generated for accessing the server based on the request for the data that was extracted from the data log. When the generated command is executed, it downloads the data from the server to the client terminal. Some embodiments are able to specify a pattern to search for in the downloaded web page, search the downloaded data for the pattern to identify data of interest and provide the identified data to a user.
US11005909B2

Systems and methods are described herein for providing content during reduced streaming quality. Data streaming is susceptible to degradation in quality that adversely affects the delivery of content. For example, sufficient reduction in streaming quality can cause video and audio portions of a data stream to become unsynchronized. In place of displaying a buffering notification, the system displays a previously stored video frame that the system determines is a suitable replacement for the currently streamed video frame that is affected by the sufficiently reduced streaming quality.
US11005907B2

Disclosed herein are techniques to provide a unified display stream for multiple modes of a display specification. The display stream can include a link layer control protocol packet comprising link control information inserted between a set number of packets comprising display data. A packet can comprise indications of display data for a single stream or multiple streams.
US11005895B2

There is disclosed in one example a computing apparatus, including: a hardware platform including a processor and a memory; a network interface to communicatively couple to an enterprise service bus (ESB); instructions encoded within the memory to provide a data exchange layer (DXL) application programming interface (API), the DXL API to provide communication with a plurality of other DXL endpoints via a DXL broker; and instructions encoded within the memory to provide an asset management engine to: subscribe to a DXL location services topic via the DXL broker; receive a DXL location services query from a DXL endpoint via the DXL broker; and publish network location data via the DXL broker.
US11005893B2

Methods, systems, apparatuses, and computer program products are provided for generating a network security rule. Existing security rules may be determined across a network that includes a plurality of network resources, such as computing devices or virtual machines. A map is generated that identifies each of the permitted connections between the resources over the network. In some implementations, the map may include a network topology map. Network traffic data for each of the permitted connections may be gathered or monitored. Based on the existing security rules and the gathered network traffic data, an enhanced security rule may be generated for a particular connection that reduces data traffic over connection, which improves network security by further hardening the available communication paths.
US11005891B2

Embodiments described include systems and methods for generating and displaying live objects for network applications. Live objects may be created from applications (apps) that are served from and/or hosted on one or more servers, such as web applications and software-as-a-service (SaaS) applications, and shared with one or more recipients. The objects may be loaded or accessed as if they were normal network applications, and the recipients may see the latest or “live” version of content as shown to the live object creator, including user- or device-specific data of the creator, under full access policy control, without requiring access to credentials of the live object creator.
US11005887B2

The present invention which relates to HoneyNet method, system, and computer program for mitigating link flooding attacks by exposing Honey Topology in SDN (Software Defined Networking) includes a Honey Node detecting unit configured to detect Honey Node Set of static metric and dynamic metric calculating from a SDN controller and OF (OpenFlow), a Honey Topology generating unit configured to arrange Honey Topology by applying probability model for the Honey Node Set, and an access determining unit configured to detect packet-in triggered to a Honey Node, and control transmission of packet to the Honey Topology from the Honey Node.
US11005880B2

Disclosed are systems and methods for detecting and blocking attacks on electronics systems of a means of transportation. A protection module intercepts messages being transmitted on the buses of the means of transportation and saves the intercepted messages, and also for each intercepted message at least one ECU of the means of transportation which is the recipient of that message. The protection module detects computer attacks on the electronics systems by applying one or more rules, which can be received from a security server, to the saved data in the log. The rules may depend on one or more indicators of compromise that include malicious messages used in a computer attack and information on at least one ECU that is a recipient of the malicious messages. The described system further blocks the computer attacks by blocking, modifying, or changing communications within the communications bus of the vehicle.
US11005879B2

Peer device protection enables a first device comprising a digital security agent to remedy security issues on (or associated with) a set of devices visible to the first device. The first device may comprise a digital security agent may identify a set of devices visible to the first device. The first device may monitor the set of devices to collect data, such as types of communications and data points of interest. The digital security agent may apply threat detection to the collected data to identify anomalous network behavior. When anomalous network behavior is detected, the first device may cause an indicator of compromise (IOC) to be generated. Based on the IOC, the first device may facilitate remediation of the anomalous network behavior and/or apply security to one or more devices in the set of devices.
US11005871B2

A central platform remote from a local network can detect anomalies on the local network. The central platform can assign a unique pair of DNS server IP addresses to the local network. The central platform can receive configuration data from the local network and use the configuration data and the assigned pair of DNS server IP addresses to uniquely identify devices on the local network. In the case that current network flow statistics do not match expected network flow statistics for the local network, a device causing the anomalous behavior can be identified using the assigned pair of DNS server IP addresses and configuration data.
US11005858B2

The present disclosure relates to a system, a method, and a non-transitory computer readable storage medium for deep packet inspection scanning at an application layer of a computer. A method of the presently claimed invention may scan pieces of data received out of order without reassembly at an application layer from a first input state generating one or more output states for each piece of data. The method may then identify that the first input state includes one or more characters that are associated with malicious content. The method may then identify that the data set may include malicious content when the first input state combined with one or more output states matches a known piece of malicious content.
US11005857B2

Systems and methods for security of industrial data streams are provided herein. Methods according to various embodiments include provisioning a fogNode that is communicatively coupled with a fog cloud manager through a forwarder of the fogNode and providing a fogLet within the fogNode, the fogLet communicating with a plurality of operational technology devices. Embodiments include providing fogLet identification information using hardware root of trust of the fogNode, the hardware root of trust of the fogNode being a Trusted Platform Module (TPM) of the fogNode. Embodiments further comprise communicating operational device authentication information with fogLet identification information to a third party tenant application, the third party tenant application validating industrial data streams from the operational technology devices by communicating the operational device authentication information with the fogLet identification information to a third party cloud application.
US11005854B2

A method and system for providing access to a location secured by an electronically activated locking mechanism, the method comprising: detecting a geographical position of a mobile device. Determining that the detected geographical position of the mobile device is proximate to the location secured by the electronically activated locking mechanism. Transmitting a signal causing the electronically activated locking mechanism to unlock.
US11005849B1

The disclosed embodiments relate to systems and methods for secure and efficient resource access using distributed directory caching techniques. Techniques include obtaining, from a directory service, client directory data associated with a client; providing the client directory data to a computing device associated with the client for caching on the computing device; identifying a request from the client; receiving, from the computing device, the client directory data that was cached on the computing device; and evaluating the request based on the received client directory data.
US11005848B2

The present application provides a service processing method, apparatus and server, and the method includes: when a first user logs on a client device based on a first account, receiving an operation request for requesting a service operation from the first user; according to the first account, searching account binding relationship which has been stored; if a second account of a second user bound with the first account is found, permitting the first user to accomplish the service operation using the second account authority of the second account; after the first user accomplishes the service operation using the second account authority of the second account, updating the second account information of the second account according to the operation result of the service operation. By applying the embodiments of the present application, the first user can accomplish various service operations on the basis of the account authorities of the multiple bound accounts, thus expanding the way of implementing services; and the times of transmission of service data among different accounts can be reduced, thus improving the interactive efficiency of service information.
US11005839B1

Aspects of the disclosure provide techniques for using behavior based information for providing and restricting access to a secure website, or computer network and its assets to a user. Components of the system may include the following. Client remote computing device, network and browser unique attribute data collection and fingerprinting. Method for capturing user habits and fingerprinting with ability to detect abnormalities through AIML using mobile and wearable device applications. System for detection of normality of user behavior based on habits, and cyber transactions, device access and determining a confidence score associated with each transaction. Method for calculating individual transaction risk based on contextual factors such as user behavior, device, browser and the network traffic and request for authentication by account owner when risk greater than allowed threshold. Method and system to identify user device, browser, and behavior unique attributes, storing and later matching to infer change upon consequent transactions and measuring transaction risk through a search and match against classified set of static and dynamic attributes using a user, browser traffic, device search and match engine.
US11005834B2

Methods and systems for facilitating access to a network (e.g., the Internet) are disclosed herein. A server with processor(s) and memory receives a request from a client device to download a network access configuration file, where the network access configuration file is configured to enable access to the Internet via a respective Internet access point. In accordance with the received request, the server identifies a first account in a social networking platform corresponding to a provider of the respective Internet access point. The server determines a relationship between the first account and a second account corresponding to a user of the client device in the social networking platform. In accordance with a first determination that the relationship satisfies one or more predetermined access criteria, the server provides the network access configuration file to the client device.
US11005830B2

Techniques described herein relate to analyzing executions of content resources within networks of execution client devices, and selecting sets of interactive content resources for execution on particular execution devices based on such analyses. Content resource execution data may be received from various execution client devices on which content resources have been executed and provided to end users. Such data may be analyzed to determine correlations between a first content executor and additional content executors based on the their respective content resource execution data, and the content resource execution data of correlated content executors may be aggregated and analyzed to select particular interactive content resources for the first content executor. Such selections may be provided to first content executor during a content execution session following an authenticated login by the first content executor.
US11005827B2

A method and apparatus for acquiring vehicular data. An embodiment of the method includes: acquiring vehicular data of an autonomous vehicle equipped with a vehicular data acquisition device by the vehicular data acquisition device, the vehicular data comprising: a control instruction of the autonomous vehicle and sensor data from a sensor on the autonomous vehicle; encrypting the vehicular data to obtain encrypted vehicular data, and storing the encrypted vehicular data; receiving a request for acquiring vehicular data sent by a server; and sending the encrypted vehicular data to the server when the vehicle identifier is identical to a vehicle identifier of the autonomous vehicle and the device identifier is identical to a device identifier of the vehicular data acquisition device.
US11005825B2

One or more networks each include a plurality of sensor nodes operable to communicate public data with each other. Each of the plurality of sensor nodes is operable to gather sensor node data and store the sensor node data locally on the sensor node. Duplicate portions of the sensor node data are distributed to the public data of others of the plurality of sensor nodes via the public data paths for backup storage. The system includes a host that is coupled to individually communicate private data with each of the plurality of sensor nodes. Each of the sensor nodes protects the private data from others of the sensor nodes using distributed key management to ensure distributed encryption.
US11005820B2

Management of a Security Association (SA) between an Internet protocol Multimedia Subsystem (IMS) and a terminal in a communication system. A method of operating a Proxy-Call Session Control Function (P-CSCF) device includes determining a need to establish an SA due to a loss of SA information of a terminal, and transmitting a message for informing the loss of the SA information.
US11005819B1

Surrogate browsing techniques are disclosed. A request for a page is received, from a client, by a surrogate. The specified page is requested by the surrogate from a site. Data received from the site in response to the request is rendered at the surrogate. A representation of the page is transmitted to the client.
US11005804B2

Content items found in a designated folder within an e-mail system are obtained by a separate computing system. The content items are converted into entities within the separate computing system, and associated with one or more other entities within the separate computing system, based on a set of mapping rules. The content items can then be surfaced, in context, in the separate computing system.
US11005798B2

A message handling system comprising connection handler circuitry, message parser circuitry, message modification circuitry, message processing circuitry, and content caching circuitry, wherein the message parser circuitry is operable to extract header(s) and/or content of a received message. The message modification circuitry is operable to generate a modified message by inserting, into the message, an HTML tag comprising a first unique uniform resource locator (URL). The connection handler circuitry is operable to send the modified message to a device that handles messages for the recipient. The message processing circuitry is operable to analyze the one or more headers and/or content. The message processing circuitry is operable to determine which image of a plurality of images to serve in response to a request containing the first unique URL, wherein the determination is based on the analysis of the one or more headers and/or content. The content caching circuitry is operable to serve the determined image.
US11005795B1

Techniques for media item display configuration are described. In one embodiment, an apparatus may comprise a media management component operative to retrieve a plurality of contact-associated media items associated with a plurality of contacts for a user account associated with a messaging client by a messaging system; retrieve an engagement score for each of the plurality of contacts; and order the plurality of contact-associated media items based on the engagement score for each of the plurality of contacts; and a user interface component operative to receive a mixed-contact media display interface invocation in the messaging client for the messaging system; and display the plurality of contact-associated media items in a mixed-contact media display interface according to the ordering of the plurality of contact-associated media items. Other embodiments are described and claimed.
US11005794B1

Methods, systems, and apparatuses are provided that are configured to: display, at a first node, at least one first interface with a first user interface element and a second user interface element; display, at the first node, at least one second interface; generate a first message; display, at the second node, at least one third interface; generate a second message that does not include a file attachment with the second message; display, at the first node, at least one fourth interface with a reference to at least one file; and allow access, at the first node, to the at least one file.
US11005780B2

A device, system and method for allocating resources for video streaming is provided. A device determines, respective differences between reserved and actual allocated resources for videos provided to a streaming system by client devices, and selects, at the streaming system, from a plurality of discrete selectable allocated resources available at the streaming system, first reserved aggregate allocated resources based on the actual allocated resources for the videos, the first reserved aggregate allocated resources for streaming the videos to video-playing devices. The device monitors used resources for streaming the videos to the video-playing devices and, in response to determining that the used resources are within a threshold value of the first reserved aggregate allocated resources: from the plurality of discrete selectable allocated resources, selects second reserved aggregate allocated resources based on the respective differences between the reserved allocated resources and the actual allocated resources for the videos.
US11005777B2

In one embodiment, a method includes determining, by one or more processors, a weight of a link between a first node and a second node of a network, wherein the weight is proportional to a probability value of forwarding a probe packet from the first node to the second node of the network. The method also includes adjusting, by the processors, the weight of the link between the first node and the second node using binary exponential backoff. The method further includes determining, by the processors, to forward the probe packet to the second node of the network based on the adjusted weight of the link and one or more field values of the probe packet.
US11005775B2

Systems and methods for allocating resources are disclosed. Resources as processing time, writes or reads are allocated. Credits are issued to the clients in a manner that ensure the system is operating in a safe allocation state. The credits can be used not only to allocate resources but also to throttle clients where necessary. Credits can be granted fully, partially, and in a number greater than requested. Zero or negative credits can also be issued to throttle clients. Segment credits are associated with identifying unique fingerprints or segments and may be allocated by determining how many credits a CPU/cores can support. This maximum number may be divided amongst clients connected with the server.
US11005773B2

Systems and methods for building service templates that allow for an agentless, data-driven and stateful automation of a provisioning of services to mobile network customers. Data associated with a request to create a target schema object class for a device and protocol are received. Based on the device and protocol information, a set of data fields associated with CRUD semantics is retrieved from either a database or from user provided data. A decorated target object class is created based on the requested target schema object class. A subrecipe is created including the decorated target object class, and one or more other decorated target object classes. A recipe is processed for transmission to an execution engine to form a service instance, the service instance being customizable by an operator for a specific network device such that the service instance data fields that are not pre-filled can be customized by the operator.
US11005763B2

A data packet transmission method and a border routing bridge device, where the method includes receiving, by a first border routing bridge device of a first area, a first data packet sent by a border routing bridge device of a second area to the first area, determining, a device identifier group of the second area according to the first data packet, determining, from the device identifier group of the second area, according to the first data packet, a device identifier of a border routing bridge device used to forward a return data packet sent by the target device to the source device, and sending, by the first border routing bridge device, a second data packet carrying the determined device identifier to the target device, where the determined device identifier is used as a source routing bridge device identifier of the second data packet.
US11005754B1

In one example embodiment, a network management device obtains a definition of a first network packet header, an identification of a condition indicating that a network packet has the first network packet header, and a definition of processing action information that includes a key and a processing action to be taken on the network packet when metadata in the network packet matches the key. The network management device merges custom network packet processing instructions written in a data plane programming language with pre-existing network packet processing instructions written in the data plane programming language to produce merged network packet processing instructions written in the data plane programming language. The custom network packet processing instructions define the first network packet header, identify the condition, and define the processing action information. The network management device provides the merged network packet processing instructions for execution by a network node.
US11005751B2

Techniques for exposing maximum node and/or link segment identifier depth using IS-IS are described. A network element in a Segment Routing (SR) network transmits a Type Length Value (TLV) element including a Maximum Segment Identifier Depth (MSD) value. The MSD value identifies a maximum number of segment identifier (SID) labels that the network element is able to push into packet headers of received packets to enable forwarding of the received packets through the SR network. The network element receives, from a controller, data for a path to be utilized by the network element for forwarding the received packets through the SR network. The data includes one or more SID labels to be pushed into the received packets, and the SID labels include fewer than or equal to the MSD value. The controller and the network element do not utilize the Path Computation Element Protocol (PCEP) over a southbound interface.
US11005745B2

Example methods are provided for a network management entity to perform network configuration failure diagnosis in a software-defined networking (SDN) environment. The method may comprise receiving a request to diagnose a network configuration failure; and generating and sending control information to a host to cause the host to inject, at a first network element, a diagnostic packet for transmission along a datapath to a configuration server via multiple second network elements. The diagnostic packet may be configured according to a network configuration protocol supported by the configuration server. The method may also comprise: receiving report information associated with the diagnostic packet from at least one of the following: the first network element, the multiple second network elements and the configuration server; and based on the report information, determining a diagnosis result associated with the network configuration failure.
US11005741B2

An apparatus including at least one processing circuitry, and at least one memory for storing instructions to be executed by the processing circuitry, wherein the at least one memory and the instructions are configured to, with the at least one processing circuitry, cause the apparatus at least: to determine an abnormal operation of an external application with which at least one communication element has established a communication connection; to decide on a change of an uplink traffic to the external application; and to selectively control a communication of the at least one communication element to the external application by providing control information for the at least one communication element, the control information reflecting the decision to change the uplink traffic to the external application.
US11005733B2

Methods and apparatus to scale in and/or scale out arbitrary resources managed by a cloud automation system are disclosed. An example apparatus includes an execution plan determiner to determine an execution plan for a scaling operation of an application in a platform environment based on a dependency graph; a component scaler to scale a scalable component in the platform environment corresponding to the application based on the execution plan by executing custom logic associated with the scalable component specified in the execution plan; and a dependent updater to update operation of a dependent component based on the scaling of the scalable component, the dependent component operating in conjunction with the scalable component.
US11005729B2

In general, the disclosure describes techniques for assigning traffic originating from an unknown application to a link based on known application quality of experience metrics. For instance, a network device may receive an application data packet of a data flow for an application and determine an application signature of the application data packet. The network device may determine whether the application signature matches an entry in an application signature database, and if the application signature does not match, the network device may identify a class of the application based on one or more characteristics of the application data packet. The network device may then assign the application data packet of the data flow to a first link of a plurality of links based on the class of the application and quality of experience (QoE) metrics for each link.
US11005722B2

A graphical network design and configuration tool provides an administrator graphical user interface (GUI) with icons that represent virtual network elements, physical network elements, and links used to deliver network-based services and associates, via the administrator GUI, the icons with network element properties based on user input. A design GUI is provided including a design canvas to arrange and connect the icons. User input is received via the design GUI to arrange the icons on the design canvas to provide a design for a network-based service. A design template for the network-based service is generated based on the second user input. A configuration GUI solicits location-specific network level attributes for network elements in the design template and creates an instance of the design template based on the network level attributes. Configuration files are automatically generated for the physical network elements represented in the instance of the design template.
US11005716B2

A network customer may support a plurality of network connectivity services (such as an E-line). A network connectivity service may experience spikes of traffic, and therefore, spikes of bandwidth usage. Dynamic capacity allows a network connectivity service to increase its available bandwidth during such traffic spikes. A computer-implemented method is disclosed that facilitates identifying network customers that might be interested in purchasing dynamic capacity. The method comprises collecting bandwidth utilization data of network connectivity services supported by each network customer, and identifying those connectivity services that exhibit patterns (e.g., cogent peaks) in their utilization data indicating the network connectivity service is a candidate for dynamic capacity. A trained pattern recognition algorithm is applied on collected utilization data of all network connectivity services and identifies those connectivity services that match the patterns, within a range of tolerance, in their utilization.
US11005711B2

A method for reconfiguring a network of wireless sensors in which certain nodes, referred to as coordinating anchors, emit beacon signals, and others, referred to as subordinated anchors, receive the signals only for synchronisation purposes. The whole network synchronises from peer to peer via wireless links from a primary anchor, the various nodes being further configured, via an auxiliary channel, from a central server. When a node loses its synchronisation, one or more subordinated anchors can be transformed into coordinating anchors by the central server so as to restore the synchronisation of the node. Likewise, when an electronic tag moves through the network, subordinated anchors can be transformed dynamically into coordinating anchors in order to ensure the synchronisation of the tag.
US11005704B2

A user equipment starts a first timer in response to detecting a physical layer problem with a radio link between the user equipment and a node of a cellular network. Responsive to detecting a handover measurement event, the user equipment also starts a second timer and sends a measurement report to the node. The starting of the first and second timers causes the first and second timers to simultaneously elapse. Responsive to one of the simultaneously elapsing timers expiring, the user equipment sends a radio link failure report, to the node, indicating which of the simultaneously elapsing timers expired.
US11005703B1

The present disclosure relates to a method, device and product for managing application nodes in a distributed application system. In a method, status of a plurality of application nodes in the distributed application system is obtained. A failed application node is determined among the plurality of application nodes based on the obtained status. A parent application node of the failed application node is determined according to a hierarchical structure of the distributed application system, the hierarchical structure describing connection relationships among the plurality of application nodes. An additional mapping entry that describes an association relationship between the failed application node and the parent application node is added to a node mapping relationship of the distributed application system, a mapping entry in the node mapping relationship describing an association relationship between an application node among the plurality of application nodes and an address of the application node in the distributed application system.
US11005691B2

A method (50) for estimating a frequency shift and a frequency drift affecting a useful signal including a code word formed by a channel encoder, including an analysis phase (51) including: for two analysis frequency drifts: a compensation (52) of the analysis frequency drift on the useful signal, an estimation (53) of the frequency shift on each useful signal obtained after compensation, a selection (54) of frequency hypotheses, and an estimation phase (55) including: for each frequency hypothesis: a frequency recalibration (56) of the useful signal depending on the frequency hypothesis, in order to obtain sample sequences, an evaluation (57) of the probability of each sample sequence to be a code word of said channel encoder, an estimation (58) of the frequency shift and of the frequency drift depending on the most probable frequency hypothesis.
US11005689B2

Embodiments of the present disclosure relate to the field of communication technologies, and provide a method and an apparatus for bandwidth filtering based on deep learning, a server and a storage medium. In the present disclosure, a bandwidth data of a server is obtained in real time (101), the obtained bandwidth data is input into a deep neural network model (102), and an output result of the deep neural network model is taken as filtered output bandwidth data obtained after filtering the input bandwidth data (103), where the deep neural network model is obtained through training according to historical bandwidth data and output bandwidth data obtained after filtering the historical bandwidth data.
US11005687B2

A method for transmitting a sounding reference symbol (SRS) by a terminal in a wireless communication system can comprise the steps of: receiving, from a base station, control information comprising a first indicator for indicating localized SRS transmission; and transmitting a localized SRS in a particular symbol on the basis of the first indicator.
US11005679B2

In a transmission apparatus, signal carrier signal circuitry that generates two single carrier signals including a legacy preamble signal, a legacy header signal and an extension header signal respectively. OFDM signal circuitry that generates one OFDM signal by performing an IFFT processing on one or more payload signals. Transmission circuitry that transmits the two single carrier signals by allocating to a bonding channel which is formed by bonding two adjacent channels used in a bonding transmission scheme and the one OFDM signal by allocating to the bonding channel which is frequency-shifted.
US11005676B2

A system includes a detachable faceplate. The detachable faceplate includes a casing including an interior surface and an exterior surface; and an environmental sensing device disposed within the casing. The environmental sensing device is configured to acquire data.
US11005675B2

An electronic device is disclosed. The electronic device comprises: a communication unit for performing communication with at least one external electronic device; and a processor for receiving, from the external electronic device, interest information of a user in the external electronic device and system information in the external electronic device, comparing the received interest information and system information with notification service information of the electronic device, and determining whether the user registers a notification service.
US11005671B2

A network device probes whether a first port of the network device is coupled to power sourcing equipment, and when probing that the first port is coupled to power sourcing equipment, maintain or change the first port to a powered state, and lock the first port as a power drawing port, or when probing that the first port is decoupled to power sourcing equipment, and the network device has a power supply for supplying power, change the first port to a powering state. In this way, the first port may adaptively serve as a power drawing port or a power sourcing port according to a coupled device such that manually distinguished a port during device interconnection is not necessary and a coupling error rate is reduced.
US11005669B2

Disclosed is a physical unclonable function generator circuit and method. In one embodiment, a physical unclonable function (PUF) generator includes: a PUF cell array that comprises a plurality of bit cells, wherein each of the plurality of bit cells comprises at least two pre-charge transistors, at least one enable transistor, and at least two storage nodes, wherein the at least two storage nodes are pre-charged with substantially the same voltages by the respective at least two pre-charge transistors allowing each of the plurality of bit cells having a first metastable logical state; and an authentication circuit, coupled to the PUF cell array, wherein the authentication circuit is configured to access and determine second logical states of bit cells in at least one row of the PUF cell array by turning on the at least one enable transistor and turning off the at least two pre-charge transistors of each of the bit cell in the at least one row of the PUF cell array, and based on the determined second logical states of the bit cell in the at least one row of the PUF cell array, to generate a PUF signature.
US11005667B2

Computing devices and method for performing a secure neighbor discovery. A local computing device transmits an encrypted local node identifier and an encrypted local challenge to a remote computing device. The remote computing device generates a local challenge response based on the local challenge; and transmits an encrypted remote node identifier and an encrypted local challenge response to the local computing device. The local computing device determines that the received local challenge response corresponds to an expected local challenge response generated based on the local challenge. The remote computing device further transmits an encrypted remote challenge. The local computing device generates a remote challenge response based on the remote challenge; and transmits an encrypted remote challenge response to the remote computing device. The remote computing device determines that the received remote challenge response corresponds to an expected remote challenge response generated based on the remote challenge.
US11005658B2

A transmission system includes a first security unit coupling to application ends, a second security unit coupling to a user end, and a server. The server sends a first attribute key to the first security unit based on attributes of the application ends and sends a second attribute key to the second security unit based on attributes of the user end. To enable one application end, the first security unit encrypts a session key with the first attribute key, opens a socket, and sends the encrypted session key to the server. When the second security unit receives a request for the application end, the server sends the encrypted session key to the second security unit. The second security unit decrypts the encrypted session key with the second attribute key and connects to the socket. The second security unit interchanges information with the first security unit via the session key.
US11005656B2

A method and system are provided for updating an elliptic curve (EC) base point G, with the EC basepoint used in encryption and coding of video data. A candidate base point G is generated that includes additional data used for validation purposes and checked as a valid base point before transmission and use.
US11005649B2

An autonomous driving controller includes a plurality of parallel processors operating on common input data received from the plurality of autonomous driving sensors. Each of the plurality of parallel processors includes communication circuitry, a general processor, a security processor subsystem (SCS), and a safety subsystem (SMS). The communication circuitry supports communications between the plurality of parallel processors, including inter-processor communications between the general processors of the plurality of parallel processors, communications between the SCSs of the plurality of parallel processors using SCS cryptography, and communications between the SMSs of the plurality of parallel processors using SMS cryptography, the SMS cryptography differing from the SCS cryptography. The SCS and/or the SMS may each include dedicated hardware and/or memory to support the communications.
US11005647B2

The present invention relates to a method for processing an image executed by a terminal (1), comprising steps of receiving a proof datum previously input by a user of the terminal (1), setting (104, 106) of at least one parameter to a first value when the proof datum is equal to a secret reference datum, and to a second value different to the first value when the proof datum is different to the secret reference datum, and generation (200) of an output datum from an input datum being or dependent on an image previously acquired by a sensor (4), and also from the parameter, the output datum having a value as function of the value the parameter has been set to.
US11005643B2

A communication receiving device includes a clock data recovery circuit, an analog-to-digital converter (ADC), a channel evaluating circuit, a first equalizer, and a selector. The clock data recovery circuit is configured to generate a clock signal according to a first digital signal. The ADC is coupled to the clock data recovery circuit, and configured to convert a first analog signal to a second digital signal according to the clock signal. The channel evaluating circuit is configured to analyze the second digital signal to output a selection signal. The first equalizer is coupled to the ADC, and configured to equalize the second digital signal to generate a third digital signal. The selector is coupled between the first equalizer, the ADC, and the clock data recovery circuit. The selector is configured to output the second digital signal or the third digital signal as the first digital signal according to the selection signal.
US11005642B1

A circuit includes a source device coupled to an output circuit. The source device is configured to produce a sequence of digital values at a rate defined by a data period. The output circuit is configured to receive the sequence of digital values from the source device, generate a copy of each digital value at a predetermined point during the respective data period, and responsive to initiation of a data transaction during a given data period but before the predetermined point, output the digital value from the source device, whereas responsive to initiation of a data transaction during the given data period but after the predetermined point, output the copy of the digital value.
US11005626B2

Disclosed in the embodiments of the present application are a parameter configuration method and related products, the method includes: receiving, by a terminal, at least one preset parameter of a phase tracking reference signal PT-RS from a network device, wherein the at least one preset parameter of the PT-RS is configured for at least one bandwidth part BWP of the terminal, and the at least one preset parameter is used for indicating resource information that needs to be used by the terminal when the terminal sends or receives the PT-RS on the at least one BWP.
US11005623B2

Methods, systems, and devices for wireless communications are described. One method may include identifying a baseline demodulation reference signal (DMRS) mapping pattern for mapping of DMRS data to resource elements (REs) within a shortened transmission time interval (sTTI) based on a number of layers for which a user equipment (UE) is configured. In some examples, the number of layers may be configured on a per-unit basis. The method may further include determining a shifted DMRS mapping pattern based on the baseline DMRS mapping pattern and a reference signal configuration associated with reference signals other than a DMRS, configuring REs within the sTTI according to the shifted DMRS mapping pattern, and transmitting the configured REs.
US11005622B2

Methods, systems, and devices for wireless communications are described. A transmitting device may identify a set of allocated resource blocks and a number of the allocated resource blocks. The transmitting device may determine a bit sequence length corresponding to the number of allocated resource blocks. The transmitting device may generate a reference signal based on a bit sequence having the bit sequence length and transmit the reference signal within the allocated resource blocks. The transmitting device may modulate the bit sequence using a π/2 binary phase shift keying modulation scheme. The transmitting device may modulate a data bit sequence using the same modulation scheme to generate a modulated data bit sequence, where a peak to average power ratio (PAPR) of tones transporting the modulated data bit sequence satisfies a PAPR threshold and a PAPR of tones transporting the reference signal also satisfies the PAPR threshold.
US11005618B1

Determining when to provide a Proactive Grant Service (PGS) scheduling grant. A plurality of PGS grants are issued to a cable modem (CM). The PGS grants that were utilized by the CM are monitored as well as those PGS grants that were not utilized by the CM. A compromise PGS grants pattern for that CM is generated based on the observations of which PGS grants the CM utilized and which PGS grants the CM did not utilize. The compromise PGS grants pattern for that CM optimizes a projected experienced latency and jitter for particular data flows of the CM verses a projected wasted upstream capacity.
US11005612B2

The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to various embodiments in the present disclosure, an operating method of a base station in a wireless communication system may include determining a transmission mode of the greatest channel capacity among a plurality of transmission modes based on first channel information of a first terminal and second channel information of a second terminal, and transmitting a transmit signal generated based on the determined transmission mode to the first terminal and the second terminal. The first transmission mode of the plurality of the transmission modes may be a transmission mode for applying a diversity scheme to a first signal for the first terminal, applying a multiplexing scheme to a second signal for the second terminal, and transmitting the transmit signal comprising the first signal and the second signal in a non-orthogonal multiple access (NOMA) scheme.
US11005596B2

The present disclosure relates to a pre-5t-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). A method for operating a transmitting stage in a wireless communication system includes generating a signal by encoding an input bit sequence according to polar code determined from a linear code, and transmitting the signal to a receiving stage. The input bit sequence includes a second frozen bit which is determined based on a first frozen bit and an information bit. The first frozen bit and the information bit precede the second frozen bit in the input bit sequence.
US11005585B1

A network device may receive a timing control packet from a first client device. The network device may determine that the network device is in a synchronized state relative to a network grandmaster clock. The network device may modify a first field of a header of the timing control packet to indicate that the network device is in a synchronized state. The network device may modify a second field of the header of the timing control packet to indicate a time at which the network device received the timing control packet from the first client device. The network device may forward, via the network, the timing control packet toward a second client device.
US11005582B1

Developing intelligent systems which take into consideration the economical, environmental, and safety factors of the modern society, is one of the main challenges of this century. Progress in the fields of mobile robots, control architectures, artificial intelligence, advanced technologies, and computer vision allows us to now envisage a smart environment future. The rise of the connected objects known as the “Internet of Things” (IoT) will rival past technological marvels. This disclosure introduces a time synchronous communication IoT network and use of time of day by various objects to navigate freely, without interference and collision in a smart environment.
US11005581B1

Apparatuses, methods, and systems for calibrating of an antenna array that uses low-resolution phase shifters, are disclosed. On method includes generating a codebook of phase-shifter setting selections for each of a plurality of antenna elements of an antenna array including communicating a wireless signal between an external calibration antenna and the antenna array through a beam formed by a reference antenna element of the antenna array and an antenna element of the antenna array being calibrated, measuring a signal power of the communicated wireless signal for each of N settings of a digitally selected phase shifter associated with the antenna element of the antenna array being calibrated, and estimating a virtual signal power of each of M settings of the digitally selected phase shifter based on the signal power measurements of the N settings of the digitally selected phase shifter, wherein M is greater than N.
US11005571B2

A method and structure for compensation techniques in coherent optical receivers. The present invention provides a coherent optical receiver with an improved 8×8 adaptive MIMO (Multiple Input, Multiple Output) equalizer configured within a digital signal processor (DSP) to compensate the effects of transmitter I/Q skew in subcarrier multiplexing (SCM) schemes. The 8×8 MIMO equalizer can be configured such that each of the 8 outputs is electrically coupled to 3 of 8 inputs, wherein each of the input-output couplings is configured as a filter. The method includes compensating for impairments to the digital conversion of an optical input signal via the 8×8 MIMO equalizer following other signal processing steps, such as chromatic dispersion (CD)/polarization-mode dispersion (PMD) compensation, carrier recovery, timing synchronization, and cycle slip correction.
US11005570B2

Provided are a coherent optical receiver and a fabrication method thereof, the coherent optical receiver including a substrate, signal and local input waveguides extending in a first direction parallel to a top surface of the substrate and configured to receive an optical signal, a first optical circuit element including a first optical waveguide connected to the signal input waveguide and a trench provided in one side of the first optical waveguide in parallel to the first direction, a second optical circuit element including a second optical waveguide connected to the first optical waveguide, a slit crossing the second optical waveguide, and a wavelength plate inserted to the slit, and third optical circuit elements connected to the second optical circuit element, wherein the first to third optical circuit elements are monolithically integrated in the substrate.
US11005566B1

An optical transceiver module includes an optical transceiver and a controller. The optical transceiver has a ring filter configured to transmit optical signals from or receive optical signals for the optical transceiver module. The controller is configured to: detect a carrier frequency at the optical transceiver; detect a data signal frequency of data at the optical transceiver; determine a bit error rate of the data; and in response to determining that the bit error rate of the data is greater than a threshold, periodically vary a central wavelength of the ring filter at a frequency at least three orders slower than the data signal frequency.
US11005546B2

An antenna system is disclosed. The system includes: N radio frequency channels, configured to send a radio frequency signal to drive one or two columns of M columns of antennas, and N
US11005539B2

Described is an apparatus of a fifth generation (5G) Evolved Node-B (eNB) operable to communicate with a 5G User Equipment (UE) on a wireless network comprising one or more processors operable to generate one or more 5G Physical Downlink Shared Channel (xPDSCH) transmissions. The one or more processors may be operable to arrange the one or more xPDSCH transmissions for transmission through one or more respectively corresponding beamformed (Tx) beams. The one or more xPDSCH transmissions may carry one or more respectively corresponding 5G System Information Blocks (xSIBs).
US11005537B2

The present disclosure relates to signal sending methods and apparatus. One example method includes generating a first data signal based on channel state information, receiving a second data signal sent by a primary transmitter, determining a phase of the second data signal, and sending the first data signal based on a phase of a first measurement signal sent by the primary transmitter and the phase of the second data signal sent by the primary transmitter.
US11005536B2

A first transceiver communicates with a first station in a first network according to a first symbol alignment and includes a detection circuit and a precoding determination circuit. The detection circuit detects a signal in a second network from a second transceiver to a second station in the second network via receive chains, coverage areas of the first and second networks overlapping, and determines a second symbol alignment of the signal based on a preamble of the signal in the second network. The precoding determination circuit is coupled to transmit chains, determines a precoding matrix that creates a null in a location of the second station, and determines the first symbol alignment, which is synchronized with the second symbol alignment. The transmit chains pre-code a signal in the first network using the precoding matrix and align symbols of the signal in the first network according to the first symbol alignment.
US11005531B1

A signal generator includes a data source, a power source, and a modulator. The modulator is configured to modulate a power signal from the power source with a data signal from the data source to generate a modulated power signal. Data values of the data signal correspond to variations in a voltage level of the modulated power signal over time. The modulator is coupled to output the modulated data signal to a one-wire interface.
US11005522B2

In the present invention, regarding a narrowband used in a subframe for transmitting uplink data, if a switch is made from a first narrowband used in a first subframe to a second narrowband that is different from the first narrowband, with respect to a second subframe continuing to the first subframe, a final one symbol of the first subframe and an initial one symbol of the second subframe are punctured and set as a retuning time to transmit the uplink data in the first narrowband and the second narrowband.
US11005521B2

Doppler correlators are configured to receive samples of a signal sampled based on a frequency. Each Doppler correlator includes successive butterfly elements. Each butterfly element includes cross-coupled first and second branches that include a sample delay that doubles for each successive butterfly element, and a sample inversion selectively placed in one of the first and second branches to encode into the successive butterfly elements of each Doppler correlator the same code sequence. Each Doppler correlator is configured with a respective phase rotation that varies across the Doppler correlators. Each Doppler correlator is configured to correlate the samples against the code sequence and apply the respective phase rotation to the samples as the samples are shifted through the successive butterfly elements, to produce respective correlation results from each Doppler correlator centered on a respective frequency offset from the frequency that varies across the Doppler correlators based on the phase rotations.
US11005519B1

Disclosed embodiments relate to isolation methods for full-duplex communication. In one example, a full-duplex antenna system includes a Tx (transmit) signal path including one or more elements each, means a power amplifier, one or more filters, and a Tx port of a Tx patch antenna operating at a Tx frequency band to transmit an outgoing signal to a satellite, the one or more elements each further including an Rx (receive) signal path including a low noise amplifier driven by an Rx port of an Rx patch antenna operating at an Rx frequency band to receive an incoming signal from the satellite, the Rx frequency band being separated by a guard band from the Tx frequency band, wherein the filters together with a physical separation between the Tx and Rx signal paths provide sufficient isolation to reduce coupling between the Tx signal path and the Rx signal path, allowing the full-duplex antenna system to operate in full-duplex.
US11005517B2

There is provided mechanisms for transmitting adjusted signals. A method is performed by a radio communications device comprising at least two radio transmitter units. The method comprises generating a signal to be transmitted by the radio transmitter units. The method comprises adjusting the signal at at least one of the radio transmitter units by dithering at least one radio parameter value such that the signals from all radio transmitter units are mutually different. The method comprises transmitting the adjusted signal by the radio transmitter units.
US11005516B2

A protective case for an electronic device is disclosed. The electronic device includes a stretchable display panel. The stretchable display panel includes a first side and a second side opposite to each other. The protective case includes a backplate, a first and a second housing. The backplate includes an accommodating space, where the accommodating space is adapted to accommodate the electronic device. The first housing is slidably disposed on the backplate, and the first housing is adapted to abut against the first side of the stretchable display panel. The second housing is slidably disposed on the backplate, and the second housing is adapted to abut against the second side of the stretchable display panel. The first housing and the second housing move relative to each other, so that a distance between the first housing and the second housing varies with a distance between the first side and the second side.
US11005513B2

A receiver circuit is provided. The receiver circuit includes an antenna configured to receive a radio frequency (RF) signal; a filter configured to filter the RF signal received by the antenna; and a passive mixer circuit configured to adjust a center frequency of the filtered RF signal to a predetermined frequency. The passive mixer circuit includes: a transformer which includes a first coil and a second coil that is separate from the first coil; a first passive mixer which is directly connected to a first end of the second coil; and a second passive mixer which is directly connected to a second end of the second coil and is separate from the first passive mixer.
US11005512B2

Various embodiments are described herein that improve the signal reception and transmission capabilities of an access point by coupling an active antenna assembly to the access point. An active antenna assembly includes an antenna and at least one active component, such as a low-noise amplifier or a power amplifier. The active component can be connected to an antenna circuit board rather than the main circuit board of the access point, which is typically retained within an access point housing. By positioning the active component near the antenna, the active antenna assembly prevents degradation of signals received by the antenna. One or more coaxial cables can be used to connect the active component of the active antenna assembly to the main circuit board of the access point.
US11005509B2

An active canceller includes a magnitude estimator, a phase estimator, a tone generator, and a suppressor. The magnitude estimator estimates the magnitude of spurious signals on a channel. The phase estimator estimates the phase of the spurious signals on the channel. The tone generator generates a tone signal based on the estimated magnitude and phase. The suppressor subtracts the tone signal from a channel signal to suppress the spurious signals. The magnitude and phase estimators and the suppressor may operate in the time domain.
US11005506B2

A communication apparatus operates with a supply voltage of a power and transmits a sensor value with a digital communication method using consecutive frames. In the communication apparatus, a data source unit is configured to generate a frame using a data of a sensor value processed by a signal processing unit. A switching unit is configured to perform a signal switching to permit a transmission circuit to perform a re-transmission of re-transmitting a signal including the sensor value stored in a memory in response to a restoration of the power after an instantaneous power interruption. A frame monitoring unit is configured to monitor a status of a frame transmission and determine a frame at the occurrence of the instantaneous power interruption. The sensor value to be re-transmitted is determined based on information of the frame determined by the frame monitoring unit at the occurrence of the instantaneous power interruption.
US11005497B2

[Object] To achieve both continuity of the system running and reduction of the running cost under a situation in which a storage region on a network is used as a saving destination of various kinds of data. [Solution] Provided is a an information processing device including: a signal processing unit that encodes a first signal including one or more non-zero components based on first data and one or more zero components into a second signal having a shorter signal length than a signal length of the first signal on the basis of a matrix generated in accordance with a predetermined condition; a data generation unit that generates one or more pieces of second data by associating information indicating positions of signal elements in the second signal with the signal elements in the second signal; and a transmission unit that transmits each of the one or more generated pieces of second data to one or more devices connected via a network.
US11005494B2

A DAC driver includes a number of DAC drivers coupled to a load network. A first DAC driver includes a first set of data switches that can be controlled by a first digital input signal. The first DAC driver further includes a first set of output switches, a first set of dump switches and a first set of current sources. Another DAC driver includes a second set of output switches, dump switches, and current sources. The first set of output switches or the second set of output switches are operable to respectively couple either one of the first set of data switches or the first set of current sources to the load network. The first set of dump switches or the second set of dump switches are operable to respectively dump the first set of current sources or the second set current sources into a respective dump load.
US11005488B2

Apparatus, circuits and methods for calibrating time to digital converters (TDCs) are disclosed herein. In some embodiments, a circuit for calibrating a TDC is disclosed. The circuit includes a multi-bit delay circuit, a counter, and a register. The multi-bit delay circuit is configured for delaying a clock signal by a total delay time. The counter is configured for counting rising edges of the clock signal within the total delay time to generate a counted output. The register is configured for controlling the total delay time of the multi-bit delay circuit based on the counted output.
US11005487B2

An atomic oscillator includes an atom cell that includes walls defining an internal space in which alkali metal atoms are contained, a light emitting element that emits light for exciting the alkali metal atoms, and a light detecting element that detects the light transmitted through the atom cell, in which the atom cell includes a first portion in which gaseous alkali metal atoms are contained and through which light from the light emitting element passes along an x-axis, a second portion in which liquid or solid alkali metal atoms are contained, and a third portion that is positioned between the first portion and the second portion and couples the first portion and the second portion, and in the third portion, a distance between two walls facing each other along a y-axis orthogonal to the x-axis decreases from the first portion toward the second portion along the y-axis at a constant decrease rate.
US11005486B2

An atomic oscillator includes: an atom cell in which alkali metal atoms are accommodated; a light-emitting element that emits light beams for exciting the alkali metal atoms toward the atom cell; a shield that includes a first member, a second member, and a high thermal resistance portion and accommodates the atom cell, the first member and the second member being members having a magnetic shielding property, and the high thermal resistance portion being provided between the first member and the second member and having a thermal resistance higher than thermal resistances of the first member and the second member; a temperature control element that controls a temperature of the first member; a heater that is thermally coupled to the second member; and a light-receiving element that receives light beams passing through the atom cell.
US11005484B2

A phase locked loop circuit includes a voltage controlled oscillator configured to output a clock signal having a predetermined frequency based in a control voltage, a phase frequency detector configured to compare the clock signal with a reference signal to output a first control signal and a second control signal, a charge pump configured to output the control voltage based on the first control signal and the second control signal, a voltage supply including an output terminal connected to an output terminal of the charge pump by a transmission switch, and a leakage remover circuit connected to the transmission switch and configured to remove a leakage current flowing through the transmission switch while the transmission switch is turned-off.
US11005482B1

Techniques are disclosed for phase detection in a phase-locked loop (PLL) control system, such as a millimeter-wave PLL. A PLL control system includes a voltage-controlled oscillator (VCO) circuit and a sub-sampling phase detector (SSPD). The VCO circuit is configured to generate an oscillating VCO output voltage based at least in part on an error signal generated by the SSPD. The error signal is proportional to a phase difference between an oscillating reference input voltage and the oscillating VCO output voltage. The SSPD includes a switched emitter-follower (SEF) sampling network, also referred to in this disclosure as an SEF circuit. In contrast to existing CMOS-based techniques, the SEF sampling network allows the SSPD to operate up to higher frequencies, for example, greater than 100 GHz, than possible using a CMOS sampler, and is also compatible with BiCMOS processes, which generally do not have access to advanced small-geometry CMOS.
US11005481B2

A phase locked loop (PLL) system for mitigating non-linear phase errors stemming from time-variant integral non-linearity of the LO feedback phase quantizer (TDC) is disclosed. The system includes a phase modulation circuit which is configured to generate a plurality of phase shifts for a reference signal; select a phase shift of the plurality of phase shifts and introduce the selected phase shift into the reference signal, thereby modulating the phase difference between the feedback and the reference signal. Alternatively, the above phase modulation can be applied on the feedback signal path, attaining equivalent results. TDC is configured to quantize the phase of the LO feedback signal relative to the shifted reference signal to generate a phase detection signal, effectively modulating the non-linearity contributed error away from the LO center frequency. The phase detection signal is then digitally compensated for the intentional fractional frequency shift to allow the PLL to generate LO signal the desired frequency.
US11005467B1

A method operates by receiving a first voltage, which is a logical signal; converting the first voltage into a second voltage using a first inverting buffer with a first pull-up resistance and a first pull-down resistance; and converting the second voltage into a third voltage using a second inverting buffer with a second pull-up resistance and a second pull-down resistance, wherein: the first pull-up resistance, the first pull-down resistance, the second pull-up resistance, the second pull-down resistance are all tunable, and a difference between the first pull-up resistance and the first pull-down resistance is approximately equal to a difference between the second pull-down resistance and the second pull-up resistance.
US11005466B2

Methods and systems are described for generating, at a plurality of delay stages of a local oscillator, a plurality of phases of a local oscillator signal, generating a loop error signal based on a comparison of one or more phases of the local oscillator signal to one or more phases of a received reference clock, generating a plurality of phase-specific quadrature error signals, each phase-specific quadrature error signal associated with a respective phase of the plurality of phases of the local oscillator signal, each phase-specific quadrature error signal based on a comparison of the respective phase to two or more other phases of the local oscillator signal, and adjusting each delay stage according to a corresponding phase-specific quadrature error signal of the plurality of phase-specific quadrature error signals and the loop error signal.
US11005456B2

Provided is an output circuit including a logic circuit, a capacitor, a buffer circuit, and a driver circuit. When a clock signal is input and an enable signal is active, the logic circuit outputs a clock signal based on the clock signal. The buffer circuit receives a signal that is an output signal of the logic circuit via the capacitor. The driver circuit outputs a clock signal based on a signal that is an output signal of the buffer circuit. The logic circuit sets a signal to the same logic level as an input node of the buffer circuit when the enable signal is inactive.
US11005444B2

An acoustic wave device includes a piezoelectric substrate, an IDT electrode provided on the piezoelectric substrate, a support provided on the piezoelectric substrate so as to surround the IDT electrode, and a cover provided on the support. The support has a larger thermal expansion coefficient than the piezoelectric substrate. The IDT electrode is provided in a hollow space that is surrounded by the piezoelectric substrate, the support, and the cover. The support includes an inner surface on a side of the hollow space, and an outer surface on a side opposite to the inner surface, and the support includes a recess provided in at least one of the inner and outer surfaces.
US11005440B2

The various implementations described herein include methods, devices, and systems for automatic audio equalization. In one aspect, a method is performed at an electronic device that includes speakers, microphones, processors and memory. The electronic device outputs audio user content from the speakers and automatically equalizes subsequent audio output of the device without user input. The automatic equalization includes: (1) obtaining audio content signals, including receiving outputted audio content at each microphone; (2) determining from the audio content signals phase differences between microphones; (3) obtaining a feature vector based on the phase differences; (4) obtaining a frequency correction from a correction database based on the obtained feature vector; and (5) applying the obtained frequency correction to the subsequent audio output.
US11005434B2

An output stage circuit of an operational amplifier, the operational amplifier, and a signal amplifying method applied to the operational amplifier are provided. The output stage circuit includes an inverting circuit and a compensation module. The inverting circuit is electrically connected to a gain stage circuit of the operational amplifier. The inverting circuit generates an output signal of the operational amplifier. The compensation module includes a first compensation circuit, including a first current providing path and a first suppression activation circuit. The first current providing path provides a first compensation current. The first suppression activation circuit conducts the first compensation current to the inverting circuit if a first compensation condition related to a first gain stage signal generated by the gain stage circuit is satisfied. Variation of the output signal is suppressed because of the first compensation current.
US11005420B2

In a quartz crystal unit, the unit comprising a case, and a resonator having a base portion, and first and second vibrational arms, the base portion having a first base portion including a first width, and a second base portion including a second width greater than the first width, each of the first and second vibrational arms having a first vibrational portion including a first width and a first length, and a second vibrational portion including a second width greater the first width and a second length less than the first length, the second base portion being mounted on a mounting portion of the case, at least one groove being formed in at least one of opposite main surfaces of the first vibrational portion of each vibrational arm, and a spaced-apart distance between the second vibrational portions of the first and second vibrational arms being less than a length of the second base portion of the base portion.
US11005419B2

A circuit includes an oscillator having a driver and a resonator. The driver receives a supply voltage at a supply input and provides a drive output to drive the resonator to generate an oscillator output signal. A power converter receives an input voltage and generates the supply voltage to the supply input of the driver. A temperature tracking device in the power converter controls the voltage level of the supply voltage to the supply input of the driver based on temperature such that the supply voltage varies inversely to the temperature of the circuit.
US11005410B2

An over-current protection circuit for a motor capable of selecting one of a plurality of connection states has a plurality of decision circuits, a combining circuit, and a nullifying circuit. The combining circuit combines results of the comparisons in the plurality of decision circuits. The nullifying circuit nullifies part of the comparisons in the plurality of decision circuits. The number of outputs of the over-current protection circuit is one, so that for controlling the driving and stopping of the inverter needs just one terminal is required for receiving the output of the combining circuit. Moreover, because the over-current protection circuit is formed of hardware, the protection can be performed at a high speed.
US11005409B2

A motor drive apparatus includes a converter which converts AC power into DC power and outputs it to a DC link, an inverter which converts the DC power of the DC link into AC power for driving a motor, DC link capacitors connected in series with each other, resistors connected in parallel with the DC link capacitors and connected in series with each other, a DC link voltage detection unit, a current-carrying element which is connected between one of connection points connecting the DC link capacitors to each other and one of connection points connecting the resistors to each other, and carries a current when the applied voltage is higher than a predetermined value, and a short-circuit judgment unit which judges that at least one of the DC link capacitors has shorted when the DC link voltage value is larger than an upper limit or smaller than a lower limit.
US11005401B1

A method for operating an inverter-based resource includes monitoring a current magnitude in the inverter-based resource. The method also includes monitoring a voltage magnitude in the inverter-based resource. Further, the method includes comparing the current magnitude in the inverter-based resource to a primary current threshold. Moreover, the method includes comparing the voltage magnitude in the inverter-based resource to a voltage threshold. As such, the method also includes disabling switching of the switching elements of the power converter when the current magnitude increases above the primary current threshold and the voltage magnitude decreases below the voltage threshold to bypass the switching elements of the power converter until excess energy in the inverter-based resource is dissipated.
US11005395B2

The invention relates to a circuit for selectively actuating drive elements (1, 2), which are operated on direct current, in a motor vehicle by means of half-bridges (4, 5). According to the invention, the circuit is designed for selectively actuating eight drive elements (1, 2) for locking and, respectively, unlocking four doors of the motor vehicle from the outside and/or from the inside. The circuit contains nine half-bridges (4, 5), wherein the outputs of eight of the nine half-bridges (4) are each connected to a first pole of one of the eight drive elements (1, 2) and the output of the ninth half-bridge (5) is connected to all second poles of the eight drive elements (1, 2).
US11005387B2

A switching device according to the present invention is a switching device for switching a load by on-off control of voltage, and includes an SiC semiconductor layer where a current path is formed by on-control of the voltage, a first electrode arranged to be in contact with the SiC semiconductor layer, and a second electrode arranged to be in contact with the SiC semiconductor layer for conducting with the first electrode due to the formation of the current path, while the first electrode has a variable resistance portion made of a material whose resistance value increases under a prescribed high-temperature condition for limiting current density of overcurrent to not more than a prescribed value when the overcurrent flows to the current path.
US11005386B2

A power converter circuit includes a plurality of input nodes, an output, a plurality of switch and inductor circuits, a plurality of rectifier circuits, a first capacitor network, and a second capacitor network. Each of the plurality of switch and inductor circuits is connected between a respective pair of the plurality of input nodes, and each of the plurality of rectifier circuits is connected between a respective one of the plurality of switch and inductor circuits and the output. The first capacitor network includes at least two capacitors connected between at least one of the plurality of input nodes and the output, and the second capacitor network includes at least one capacitor and is connected to the output. A capacitance of the at least one capacitor of the second capacitor network is greater than a capacitance of each of the at least two capacitors of the first capacitor network.
US11005385B2

The disclosure provides an alternator and a rectifier thereof. The rectifier includes a transistor and a gate driving circuit. A control end of the transistor receives a gate voltage. The gate driving circuit generates the gate voltage according to a voltage difference between an input voltage and a rectified voltage. The gate driving circuit detects an initial time point when the voltage difference is smaller than a first preset threshold voltage, provides the gate voltage to turn on the transistor during a first time period after the initial time point, and sets the voltage difference to be equal to a first reference voltage. The gate driving circuit sets the voltage difference to be equal to a second reference voltage through adjusting the gate voltage during a second time period after the first time period.
US11005379B1

According to one configuration, a power system includes a resonant power converter, a monitor resource, and a controller. During operation, the resonant power converter converts an input voltage to an output voltage. The monitor resource monitors a magnitude of the input voltage. The controller dynamically controls a corresponding resonant frequency of the resonant power converter and a switching frequency of switches in the resonant power converter depending on a magnitude of the input voltage.
US11005374B2

Systems and methods for providing peak current mode control (PCMC) for power converters. Noise immunity is improved by enhancing the signal-to-noise ratio of an inductor (or switch) current to achieve minimum duty cycle resolution and eliminate subharmonic operation that causes high input and output ripples. Current is sensed and translated to a voltage by a current sense resistor for peak current mode control scheme. A direct current (DC) offset voltage is added only during an on-time of the main switch to increase the signal-to-noise ratio. A leading-edge spike caused by turn-on of the main switch is removed by resetting a filter capacitor of a current sense circuit to zero volts after each switching cycle.
US11005354B2

A power conversion circuit includes: a MOSFET having a super junction structure; an inductive load; and a freewheel diode. A switching frequency of the MOSFET is 10 kHz or more. When the MOSFET is turned off, a first period during which a drain current decreases, a second period during which the drain current increases, and a third period during which the drain current decreases again appear in this order. The freewheel diode is an Si-FRD or an SiC-SBD, and current density obtained by dividing a current value of the forward current by an area of an active region of the freewheel diode falls within a range of 200 A/cm2 to 400 A/cm2 when the freewheel diode is the Si-FRD, and the current density falls within a range of 400 A/cm2 to 1500 A/cm2 when the freewheel diode is the SiC-SBD.
US11005353B2

A lens moving apparatus, according to one embodiment, comprises: a bobbin having a first coil installed on the outer circumferential surface thereof; a location detection sensor equipped to the bobbin; a housing in which the bobbin is provided; an upper elastic member disposed on the upper side of the housing; and a support member that supports the housing such that the housing can move in a second or third direction that is perpendicular to a first direction, wherein the upper elastic member is divided into a plurality of parts, at least two of which are disposed parallel to each other on the x-y plane in the second or third direction and are disposed such that end portions thereof face each other.
US11005348B2

Various embodiments are described herein for switched reluctance machine configurations. In at least one embodiment, a switched reluctance machine configured according to the teachings herein includes an axially extending shaft, an axially extending rotor mounted to the shaft, the rotor having a plurality of salient rotor poles, an axially extending stator disposed coaxially and concentrically with the rotor, the stator having a plurality of salient stator poles protruding radially from the stator towards the rotor poles, a plurality of stator teeth and tooth-tips, and a plurality of electrical coils wound about the stator poles to define a plurality of phases of the switched reluctance machine, where a number of stator poles can be determined according to the following equation and at least one constraint condition: N s = N t × LCM ⁡ ( N s , N r ) N r × N ph × S 1 × S 2 .
US11005341B2

Provided is a sealing structure for sealing a peripheral area of a fan of a generator. The sealing structure includes a rotor, a fan assembly including a ring-shaped fan body coupled to an axial end of the rotor, multiple fan blades radially arranged along a circumferential surface of the fan body, and an annulus groove recessed, in an axial direction of the rotor, from an axial outer end surface of the fan body, a stator surrounding the rotor with an air gap provided between the stator and the rotor, a cooler positioned a predetermined distance apart from the stator, and a cooling gas duct including an outlet connected with the cooler and an inlet configured to cover the axial outer end surface of the fan body and an axial end of the air gap between the stator and the rotor, wherein an inlet-side end of the cooling gas duct includes a first member and a second member that are coaxially arranged and are positioned close to the axial outer end surface of the fan body and the axial end of the air gap, respectively, and an inlet-side end of the first member is inserted into the groove with a clearance, and a sealing device is provided on the inlet-side end of the first member.
US11005321B2

The current invention relates to a magnetic pole assembly, providing flux to an air gap, comprising one or more magnetic pole pieces and one or more sources of magnetic flux. Said one or more sources of magnetic flux lie adjacent to the axial faces and circumferential faces and one of the radially inner face or radially outer face of each magnetic pole piece. Thereby to allow flux created by said one or more sources of magnetic flux to enter the one or more magnetic pole pieces in order to focus the magnetic flux of said pole piece towards and out of the radial surface not having a source of magnetic flux adjacent thereto. Such an arrangement, increases the flux density in the air gap adjacent to said radial surface not having a source of magnetic flux adjacent thereto.
US11005314B2

The present invention relates to a stator core for improving the fixing properties of a magnet wire, and a motor in which the same is applied. Provided is a stator core which comprises a protrusion pattern part for fixing the distal end portion of a magnet wire, and thus eliminates a process of fixing the wire using a separate member during a wiring process, thereby improving processability and inhibiting an insulating film of the magnet wire from being damaged by an external force such as vibration.
US11005313B2

Provided is a method for implementing skewing in a hybrid homopolar generator comprising. The method includes aligning inductor poles within an axial front segment of a rotor, with corresponding magnets within an axial back segment of the rotor. The method also includes moving, during assembly, the axial front segment and the axial back segment relative to each other such that inductor poles in the axial front segment and the axial back segment form a pattern.
US11005307B2

A wireless power transmitter includes a power conversion unit configured to transfer wireless power to a wireless power receiver by forming magnetic coupling with the wireless power receiver; and a communication/control unit configured to communicate with the wireless power receiver to control transmission of the wireless power and to perform transmission or reception of data, wherein the communication/control unit is configured to: receive, from the wireless power receiver after a configuration phase, a received power packet (RPP) which indicates a value of the wireless power received by the wireless power receiver; transmit, to the wireless power receiver, a bit pattern which requests communication initiated by the wireless power transmitter in response to the RPP when the communication/control unit has data to be sent to the wireless power receiver; and receive a packet for polling the data to be sent from the wireless power receiver in response to the bit pattern.
US11005301B1

Systems and methods for ensuring that resonant inductive power transfer goes only to authorized users using encryption. Resonant inductive power transfer requires near-identical resonant frequencies in the transmitter and the receiver. The frequency of the power transfer signal changes on a schedule known only to the transmitter and receiver so a “power eavesdropper” cannot track the frequency well enough to efficiently receive power. To make the frequency transitions energetically efficient, a capacitive or inductive element is switched in or out of each circuit at moments of zero-crossing: zero charge on a capacitor or zero current in an inductor. To maintain phase alignment, either switching an inductor on the transmit side is nearly simultaneous with switching a capacitor on the receive side, or switching a capacitor on the transmit side is nearly simultaneous with switching an inductor on the receive side.
US11005290B2

Embodiments of the disclosure relate to a grid control system for at least one electrical grid. The system includes at least one peer-to-peer network having at least one peer-to-peer application. The peer-to-peer application has a detecting means executable by a part of the nodes of the peer-to-peer network and is configured to detect a first peer-to-peer module assigned to a controllable electrical device upon a connection of the controllable electrical device with the electrical grid. The first peer-to-peer module is configured to communicate with the peer-to-peer application, and the peer-to-peer application includes a registering means executable by at least a part of the nodes of the peer-to-peer network and is configured to store at least one identifier assigned to the detected controllable electrical device and at least one switching pattern of the detected controllable electrical device.
US11005281B2

A charging device is provided. The charging device includes an output terminal unit connected to an input terminal unit of a battery pack. The output terminal unit includes a terminal body including an output terminal connected to the input terminal unit and a terminal cover which covers the output terminal before the input terminal unit of the battery pack is connected to the output terminal unit and through which the output terminal passes while the input terminal unit of the battery pack is connected to the output terminal unit.
US11005280B2

An electrical connection system that connects and disconnects a plurality of supply circuits. More specifically, a connection system that can quickly connect two or more batteries in series or in parallel by connecting a wire bridge system to two or more mated battery side connectors. Alternatively, the connection system can quickly connect a plurality of devices to one battery connection point by connecting a multi-device connector to a mated battery side connector.
US11005279B2

A compact portable power charger having an internal rechargeable battery is provided with a wall plug interface and a car charger interface selectively and independently connected to the charger as power input interfaces for recharging the internal battery when the charger is connected to respective external power sources via the interfaces. Each interface is pivotably movable between an extended position where the interface projects outwardly away from the charger housing for use and a retracted position for storage of the interface within a respective cavity formed in the charger housing. The charger further includes a power output interface, such as a power connection port, operatively connected to the internal battery for providing an electrical charge from the internal battery to an electronic device when the electronic device is connected to the charger via the power output interface.
US11005278B2

The present disclosure relates to methods and associated systems for managing energy storage devices positioned in a device-exchange station. The method includes, for example, (1) receiving, by the device-exchange station from a server, information indicative of at least one characteristic associated with the energy storage devices; (2) selecting, by the device-exchange station, at least one energy storage device based on the at least one characteristic; and (3) adjusting the swapping priority of the at least one selected energy storage device.
US11005275B2

A smart charging solution is provided. The smart charging solution includes a power supply, a power line connected to the power supply and at least one universal serial bus (USB) splitter module and/or wireless charging module. The smart charging solution further includes a cable compensation integrated circuit (IC) for improved output voltage stabilization and a locking mechanism for furniture installation.
US11005273B2

The present disclosure relates to a power management circuit including a control circuit, a first switch module, a second switch module, and a voltage conversion circuit. A first input end of the control circuit receives a main battery activeness detection signal, a first output end is connected to an enabling end of the second switch module which is connected to the voltage conversion circuit and an energy recovery component, and a second output end is connected to an enabling end of the first switch module which is connected to the voltage conversion circuit, a secondary battery, and a main battery. According to the received activeness detection signal, a channel used by the energy recovery component to charge the secondary battery is connected, or a channel used by the secondary battery or the energy recovery component to charge the main battery is connected.
US11005255B2

Provided are a complex multifunctional relay system capable of complexly performing an overcurrent blocking function, an arc blocking function, and an earth leakage blocking function by a relay circuit, and a control method therefor. The complex multifunctional relay system includes an AC circuit including a hot line and a neutral line, a power control means connected in parallel to the hot line, insulation differential amplifiers circuit-connected to the hot line and the neutral line through current shunts, a microprocessor connected to the power control means and the insulation differential amplifiers to perform monitoring and control the power supply of the power control means, a first comparator connected to the current shunt and the insulation differential amplifier and connected to the microprocessor so as to check ground fault, and a second comparator connected between the current shunt/the insulation differential amplifier and the microprocessor so as to check arc fault.
US11005251B2

An apparatus for protecting a component of a power distribution system against wildlife, the apparatus comprising a cover having a first wall and a second wall, the first wall and the second wall being spaced apart to receive part of the component; the first wall having an opening for receiving a pin; and a cantilever mount at the opening for supporting the pin in the first wall. Various configurations of cantilever mount and pin may be used. Opposing pins in opposing walls may be used. The pins may extend towards each other and may or may not meet.
US11005246B2

An electrical enclosure for an electrical device or instrument includes an enclosure body defining an interior that receives the electrical device or instrument, the enclosure body including a back wall. A mounting foot is disposed outside the enclosure body and attached to the back wall. The mounting foot includes a generally planar body defining a mounting fastener opening that receives a fastener to secure the mounting foot to a wall or other support structure. A panel fastener is attached to and extends forward from the mounting foot, through the back wall, and into the interior of the enclosure body. The panel fastener is used to secure an internal panel to the enclosure body within the interior of the enclosure body.
US11005245B2

A cable bracket includes a base, first and second plates extending from a first side of the base, and an arm extending diagonally from an upper end connected to the first plate at a position away from the base. The arm extends to a lower end positioned toward the base intermediate the first plate and the second plate, and the lower end of the arm is not secured to the base. The arm is of made of a semi-rigid material such that the arm can be deflected from a neutral position by a user in order to insert a cable between the arm and the second plate. A dual-sided bracket may be formed by including one or more plates and arms on both sides of the base. A dovetail connection may allow multiple cable brackets to be coupled in series. Two brackets may also be coupled utilizing an intermediate slider.
US11005242B2

A wiring member includes wires and a resin molded portion. The wires include a curved portion to be arranged along a curved path. The resin molded portion includes a main body portion and a curve reinforcing portion. The main body portion covers the curved portion of the wires. The curve reinforcing portion protrudes from an outer peripheral surface of the main body portion and extends along an extending direction of the curved portion so as to keep the wiring member in a curved state.
US11005231B2

Systems and methods are described herein to grow a layered structure. The layered structure comprises a first germanium substrate layer having a first lattice constant, a second layer that has a second lattice constant and is epitaxially grown over the first germanium substrate layer, wherein the second layer has a composite of a first constituent and a second constituent, and has a first ratio between the first constituent and the second constituent, and a third layer that has a third lattice constant and is epitaxially grown over the second layer, wherein the third layer has a composite of a third constituent and a fourth constituent, and has a second ratio between the third constituent and the fourth constituent, wherein the first ratio and the second ratio are selected such that the first lattice constant is between the second lattice constant and the third lattice constant.
US11005229B2

An all solid-state laser light source device comprises a diode-pump laser and the following devices sequentially arranged in an optical path direction of laser light: a coupling optical fiber, a coupling lens assembly, and a resonant cavity. An anisotropic laser crystal is provided in the resonant cavity. Absorption spectra of the anisotropic laser crystal comprise a π polarization absorption spectrum and a σ polarization absorption spectrum. Each of the π polarization absorption spectrum and the σ polarization absorption spectrum has a peak pump region and a left pump region and a right pump region arranged on either side of the peak pump region. Pump light outputted by diode-pump laser has a wavelength λ falling within the left pump region or the right pump region.
US11005227B2

A high-power fiber laser produces a compound output beam having a center beam and an annular beam. The center beam and the annular beam are independently adjustable in power and wavelength. The output beam is delivered from an output optical fiber having a center core and a concentric annular core. A fundamental beam generated by a seed laser is amplified by a fiber amplifier and partially converted to a second-harmonic beam by a second-harmonic generator. The residual fundamental beam and second-harmonic beam are separated, attenuated, and selectively coupled into the cores of the output optical fiber.
US11005221B2

A charging plug, having a housing for accommodating power contacts and power contacts for power transmission, and having an apparatus for detecting liquid, which apparatus is configured to detect liquid collecting inside the housing.
US11005219B2

A connector system, method and apparatus for an EMI enclosure such as a Gauss/Faraday cage or chamber. The connector system, method and/or apparatus includes one or more individual conductors located within the EMI enclosure to eliminate EMI/E&H field effects with respect to applications such as a small form factor cable applications, high density cable applications, and a high speed (e.g., greater than 1 Gbps) multiconductor copper-based cable applications. This approach therefore isolates individual or multiple cable signals (e.g., single conductors) within individual Gaussian/Faraday cages to eliminate EMI/E&H field effects for small form factor, high density, high speed (e.g., >1 Gbps) multiconductor copper based cable applications.
US11005206B2

A plug-in coupling (100) for making electrical contact with an electric drive (90) which is included in a hand-held power tool (200) and has a battery unit (20) which is to be accommodated by the hand-held power tool (200). The plug-in coupling (100) has at least one electrical contact plate (1) which is to be connected to the hand-held power tool (200), and at least one electrical contact spring pair (3) which corresponds to the contact plate (1), wherein the contact spring pair (3) is to be arranged on the battery unit (20) and is to be slid onto the contact plate (1) in the sliding-on direction (AR) and is to be withdrawn therefrom in the withdrawal direction (AB), wherein in the state in which contact is made (ZK) the contact plate (1) and the contact spring pair (3) form a frictionally locking latching-connection pairing.
US11005198B2

A connector includes a body and a contact that is inserted into the body. The contact includes a protruding part that is protruded in a direction orthogonal to an insertion direction of the contact, a protrusion that is provided on an outer periphery of the contact, and an overhanging part that overhangs in the direction orthogonal to the insertion direction. The body includes, on an inner surface thereof, a guide groove that is fitted with the protruding part and is extended in the insertion direction, a housing part that has an internal dimension for press-fitting the contact, which includes the protrusion, thereto, and a press-fitting part that has an internal dimension for press-fitting the contact, which includes the overhanging part, thereto. An insertion distance A of the protruding part, an insertion distance B of the protrusion, and an insertion distance C of the overhanging part satisfy a relation A>B>C.
US11005192B2

Examples disclosed herein relate to an intelligent metamaterial radar. The radar has an Intelligent Metamaterial (“iMTM”) antenna module to radiate a transmission signal with a dynamically controllable iMTM antenna in a plurality of directions based on a controlled reactance and generate radar data capturing a surrounding environment. The radar also has an iMTM interface module to detect and identify a target in the surrounding environment from the radar data and to control the iMTM antenna module.
US11005190B1

An antenna array includes a dielectric substrate, a ground metal plane, a first antenna unit, a second antenna unit, a third antenna unit, and a fourth antenna unit. The first antenna unit includes a first metal loop and a first feeding metal element. The first feeding metal element is adjacent to the first metal loop. The second antenna unit includes a second metal loop and a second feeding metal element. The second feeding metal element is adjacent to the second metal loop. The third antenna unit includes a third metal loop and a third feeding metal element. The third feeding metal element is adjacent to the third metal loop. The fourth antenna unit includes a fourth metal loop and a fourth feeding metal element. The fourth feeding metal element is adjacent to the fourth metal loop.
US11005186B2

A tunable, optical metasurface can include an optically reflective surface to reflect optical radiation, such as infrared laser light. An array of optical resonant antennas may, for example, extend from or otherwise be positioned on the reflective surface with sub-wavelength spacings of, for example, less than one-half of a wavelength. Voltage-controlled liquid crystal may be positioned in the optical field region of each of the optical resonant antennas. A controller may apply a voltage differential bias pattern to the liquid crystal of optical resonant antennas, that may be arranged in tiled, interleaved, or randomly arranged subsets of optical resonant antennas to attain one-dimensional beam steering, two-dimensional beam steering, and/or spatial beam shaping.
US11005183B2

An antenna module of a wireless communication system is provided. The antenna module includes a radiator comprising a top face to which a radio wave is radiated, a dielectric material disposed on a bottom face of the radiator, the bottom face of the radiator being opposite to the top face of the radiator, a feeding unit disposed on a bottom face of the dielectric material, the feeding unit being configured to supply an electric signal to the radiator through the dielectric material, and a support unit disposed on the bottom face of the dielectric material, the support unit comprising a metallic material.
US11005181B2

A multi-layer antenna assembly and related antenna array are provided. In one aspect, a multi-layer antenna assembly includes a first radiating layer(s) and a second radiating layer(s). The second radiating layer(s) is provided below and in parallel to the first radiating layer(s). The second radiating layer(s) overlaps at least partially with the first radiating layer(s). In this regard, an electromagnetic wave radiated vertically from the second radiating layer(s) is horizontally guided by an overlapping portion of the first radiating layer(s). In another aspect, an antenna array can be configured to include a number of multi-layer antenna assemblies to enable radio frequency (RF) beamforming. By employing the multi-layer antenna assemblies in the antenna array, it may be possible to flexibly and naturally steer an RF beam in a desired direction(s) without causing oversized side lobes, thus helping to improve power efficiency and performance of the antenna array.
US11005177B2

A remotely controllable antenna mount for use with a wireless telecommunication antenna provides mechanical azimuth and tilt adjustment using AISG compatible motor control units and AISG control and monitoring systems to remotely adjust the physical orientation of the antenna. The mount control units are serially interconnected with AISG antenna control units which adjust electronic tilt mechanisms within the antenna itself. An AISG compatible mount azimuth control unit drives rotatable movement of the antenna through a range of azimuth angle positions. The antenna mount further includes a mechanical downtilt assembly interconnected between the antenna interface and the antenna. An AISG compatible mount tilt control unit drives linear movement of an actuator assembly and corresponding pivoting of the antenna through a range of tilt angle positions.
US11005176B2

A radome shell for shielding a radio-frequency (RF) antenna, the radome shell comprising one or more layers of dielectric material. At least one layer comprises a plurality of repetitive gaps, and at least one of width, length and depth of the repetitive gaps is of an order of magnitude of a working frequency wavelength of the RF antenna or one order of magnitude smaller than the working frequency wavelength of the RF antenna.
US11005175B2

Provided are a hybrid metal sheet for magnetic shielding and a wireless power transmission module including the same. The hybrid metal sheet for magnetic shielding according to an embodiment of the present invention comprises: a first sheet layer made of a ribbon sheet of an amorphous alloy having a first width; and a plurality of second sheet layers stacked in multiple layers on one side of the first sheet layer, wherein the second sheet layer may be a sheet layer formed by arranging a plurality of divided sheets having a second width narrower than the first width and made of a ribbon sheet of a nano-crystal alloy on the same plane.
US11005174B2

Various examples are provided for point symmetric complementary meander line (PSC-ML) slots, which can be used for mutual coupling reduction. In one example, an antenna array includes first and second patch antenna elements disposed on a first side of a substrate, the first and second patch antenna elements separated by a gap. The antenna array can include point symmetric complementary meander line (PSC-ML) slots formed in a ground plane disposed on a second side of the substrate. The PSC-ML slots can include a pair of ML slots aligned with the gap between the first and second patch antenna elements. In another example, a method includes forming first and second antenna elements on a first side of a substrate and forming PSC-ML slots in a ground plane disposed on a second side of the substrate that are aligned with a gap between the first and second antenna elements.
US11005172B2

The invention relates to a method for producing a radome, a flexible printed circuit board having a metallic structure being used. Said flexible printed circuit board is embossed and is back-molded with a thermoplastic material and electric contact elements are connected to the flexible printed circuit board. A connector skirt is placed on the contact elements prior to back-molding.
US11005166B2

Disclosed is a patch antenna module, which receives a signal for position information and a signal for vehicle communication by using one patch antenna, thereby minimizing a mounting space. The disclosed patch antenna module includes a dielectric; an upper patch formed on one surface of the dielectric and for receiving a signal for position information; a lower patch formed on the other surface of the dielectric; and a feed pin for penetrating the dielectric, the upper patch, and the lower patch, formed in a length within a predetermined range, and for receiving a signal for vehicle communication.
US11005158B2

Systems and methods are disclosed for integration of an electrically functional structure in an information handling system. An information handling system may include may include a housing including a first housing portion coupled to a second housing portion. The first housing portion may include an electrically functional structure integrated within the first housing portion. The first housing portion may also include a first layer and a structural adhesive applied to the first layer. The first housing portion may further include a second layer and a thermally conductive adhesive applied to the second layer to bond the second layer to the first layer. The first housing portion may also include a PCB layer coupled between a first PCB and a second PCB, the PCB layer bonded to the second layer, and the electrically functional structure includes the first PCB and the second PCB.
US11005155B2

A microwave antenna apparatus comprises a semiconductor package module comprising a mold layer, a semiconductor element, a coupling element and a redistribution layer, and an antenna module mounted on top of the semiconductor package module, said antenna module comprising an antenna substrate, one or more antenna elements, an antenna feed layer and an antenna ground layer. The footprint of the antenna module is larger than the footprint of the semiconductor package module.
US11005154B2

The present subject matter describes positioning of an antenna inside a frame for a display panel of an electronic device. The antenna comprises a ground plate extending along a side of the frame, a substrate positioned on the ground plate, and two loop antenna elements formed on the substrate, both ends of each of the two loop antenna elements being connected to the ground plate.
US11005153B1

A display panel and a display device are provided. The display panel includes sub-pixels located in a display area, first and second substrate that are oppositely arranged, a first electrode layer, an antenna layer, and a magnet isolating layer including at least one magnet isolator. The first electrode layer is located at a side of the first substrate facing the second substrate, and a first electrode of the first electrode layer covers at least two sub-pixels in a first direction. The antenna layer includes at least one antenna including a multi-turn antenna coil. One magnet isolator corresponds to at least one antenna. Along a thickness direction of the display panel, the magnet isolating layer is disposed between the first electrode layer and the antenna layer. The magnet isolator is disposed between the first electrode and the antenna coil.
US11005150B2

Disclosed is an assembly for the propagation of waves of frequencies between 1 GHz and 10 THz, including: (a) a waveguide to guide the waves, the waveguide being produced from a plastic material, a part of the waves propagating inside this waveguide and another part of the waves propagating outside this waveguide; and (b) a protective covering which surrounds the waveguide delimiting one or more spaces between the waveguide and the covering, in which space or spaces the waves propagating outside the waveguide are contained, the protective covering thus forming a barrier to protect these waves from external disturbances.
US11005134B2

The present disclosure relates to an electrified vehicle with a battery protection device and a corresponding method. An example electrified vehicle includes a battery protection device with a first housing portion and a second housing portion. The first and second housing portions are each made of a sandwich structure and exhibit U-shaped profiles. The U-shaped profiles of the first and second housing portions face one another to provide an internal cavity.
US11005119B2

In an electrolyte membrane for a fuel cell, having nanofiber unwoven cloth buried in an electrolyte resin, the nanofiber unwoven cloth is disposed being exposed only from one face of the electrolyte membrane. The fuel cell includes a MEA having an anode electrode disposed on one face of the electrolyte membrane and having a cathode electrode disposed on the other face thereof, and a pair of separators holding the MEA by sandwiching the MEA therebetween. Thereby, the electrolyte membrane for a fuel cell, the manufacturing method of the electrolyte membrane, and the fuel cell are provided with which the electric power generation property and productivity are improved.
US11005118B2

A solid electrolyte sheet for all-solid batteries has a carrier film including poly (methyl methacrylate) and an ionic conductive material, and has a solid electrolyte slurry coated on the carrier film. The solid electrolyte sheet and an all-solid battery including such a solid electrolyte sheet can realize formation of a solid electrolyte layer as a thin film and can prevent a short-circuit upon stacking a positive electrode and a negative electrode. The solid electrolyte sheet and the all-solid battery can prevent yield decrease resulting from a short-circuit of the all-solid battery and can minimize supernumerary pores due to ionic conductive material incorporated into the solid electrolyte layer to suppress formation of lithium dendrites.
US11005102B2

The present application relates to a binder for a secondary battery. The binder includes a first copolymer unit including a carboxyl group-containing acrylic monomer and at least one of an acrylic acid derivative monomer and a substituted or unsubstituted styrene and a second copolymer unit including a residue of a polymer azo initiator. A mass ratio of the second copolymer unit relative to a total mass of the first copolymer unit and the second copolymer unit is 10 mass % to 40 mass %.
US11005101B2

A graft copolymer composition comprising the following structure: wherein: Ax represents a polymer backbone having a number of polymerized monomer units x; [By] represents a multiplicity of a graft polymer side chain having a number of polymerized monomer units y, and at least a portion of the monomer units in By contains a group —C(O)OM, with M independently selected from H and alkali metals; [C] represents a multiplicity of positions on the polymer backbone Ax where the graft polymer side chain B or any other graft polymer side chain is not attached; the subscript w represents a grafting density of the group By, wherein w is an integer within a range of 10-50%; and the subscript z represents a density of the group C, wherein z=(100−w) %. The invention is also directed to lithium-ion batteries in which the above-described composition is incorporated in an anode of the battery.
US11005096B2

A positive electrode for a nonaqueous electrolyte secondary battery according to an embodiment of the present disclosure includes a positive electrode current collector mainly composed of aluminum (Al), a protective layer disposed on the positive electrode current collector, and a positive electrode mixture layer containing a lithium-containing transition metal oxide and disposed on the protective layer. The protective layer has a thickness of 1 to 5 μm and contains an electroconductive material and an inorganic compound having an oxidation power lower than that of the lithium-containing transition metal oxide.
US11005091B2

A novel composite electrode material and a method for manufacturing the same, a composite electrode containing said composite electrode material, and a Li-based battery comprising said composite electrode are disclosed. Herein, the composite electrode material of the present invention comprises: a core, wherein a material of the core is at least one selected from the group consisting of Sn, Sb, Si, Ge, C, and compounds thereof; and a carbon nanotube or a carbon fiber, wherein the carbon nanotube or the carbon fiber grows on a surface including a surface of the core.
US11005088B2

The present invention relates to processes that may be used singly or in combination to prevent lithium (or alkali metal) plating or dendrite buildup on bare substrate areas or edges of electrode rolls during alkaliation of a battery or electrochemical cell anode composed of a conductive substrate and coatings, in which the electrode rolls may be coated on one or both sides and may have exposed substrate on edges, or on continuous or discontinuous portions of either or both substrate surfaces.
US11005083B2

The present invention provides a high-resolution Micro-OLED display module and a manufacturing method thereof. The method for manufacturing the high-resolution Micro-OLED comprises: S1, providing a substrate, and manufacturing light-emitting pixel units on the substrate; S2, encapsulating the light-emitting pixel units by a film encapsulation technique, and forming a film encapsulation layer; S3, manufacturing sub-pixel units on the surface of the film encapsulation layer, and depositing a metal reflective layer between two sub-pixel units which are adjacent to each other; S4, manufacturing a metal oxide layer on the surfaces of the metal reflective layer and the sub-pixel units by a deposition technique, to obtain a high-resolution Micro-OLED matrix; and S5, using a cover plate to encapsulate the high-resolution Micro-OLED matrix produced in step S4, to finish the manufacturing of a high-resolution Micro-OLED.
US11005072B2

A display device and a method of manufacturing the display device are disclosed. In one aspect, the display device includes a substrate including a display region and a peripheral region. A first block member is in the peripheral region and surrounding display structures, the first block member having a first height. A second block member is spaced apart from the first block member in a first direction extending from the display region to the peripheral region, the second block member surrounding the first block member, the second block member having a second height that is greater than the first height. A first encapsulation layer is over the display structures, the first block member, and the second block member. A second encapsulation layer is over the first encapsulation layer, the second encapsulation layer overlapping at least a portion of the first block member in the depth dimension of the display device.
US11005066B2

This organic electronic device using an adhesive film encapsulation technology includes: a substrate; an electrode layer formed of a transparent conductive material on the top surface of the substrate; an active region layer which is an active layer that induces the flow of holes or electrons in a portion of the electrode layer; a counter electrode formed of a conductive material on the top surface of the electrode layer and the active region layer; an adhesive film attached to cover a region including the active region layer; and a cover material disposed at a certain distance vertically upward and apart from the adhesive film, and sealing the space between counter electrodes by using an encapsulating material along both edges thereof, wherein a gap is formed between the adhesive film and the cover material.
US11005058B2

A light emitting device including an emissive material comprising quantum dots is disclosed. In one embodiment, the device includes a cathode, a layer comprising a material capable of transporting and injection electrons comprising an inorganic material, an emissive layer comprising quantum dots, a layer comprising a material capable of transporting holes, a layer comprising a hole injection material, and an anode. In certain embodiments, the hole injection material can be a p-type doped hole transport material. In certain preferred embodiments, quantum dots comprise semiconductor nanocrystals. In another aspect of the invention, there is provided a light emitting device wherein the device has an initial turn-on voltage that is not greater than 1240/λ, wherein λ represents the wavelength (nm) of light emitted by the emissive layer. Other light emitting devices and a method are disclosed.
US11005056B2

A flexible display panel is disclosed. The panel includes: a flexible substrate; an organic material layer disposed on the flexible substrate, and the organic material layer includes multiple grooves; multiple thin-film transistors received in the multiple grooves; a planarization layer disposed on the organic material layer and the multiple thin-film transistors; a pixel definition layer disposed on the planarization layer, and including multiple openings; multiple organic light-emitting diodes received in the multiple openings; an encapsulation layer disposed on the multiple organic light-emitting diodes and the pixel definition layer. The formed organic material layer having the groove has good bending property, which can improve the stress absorption and release capability of the device, and can avoid the film from variations in the performance of the thin-film transistors (such as threshold voltage Vth, sub-threshold swing S.S, etc.) that occur during constant bending in order to increase the life of device.
US11005055B2

A display apparatus may include a base substrate including a first portion and a second portion smaller than the first portion, a plurality of pixels disposed on the first portion, a protection substrate disposed below the base substrate, and a groove disposed in a portion of the protection substrate and overlapped with the second portion. The groove may include a first region extending in a first direction, and a second region and a third region, which are arranged along the first direction, wherein the first region is interposed between the second region and the third region. The first and second portions may be arranged in a second direction crossing the first direction, and a width of each of the second and third regions may be larger than a first width of the first region, when measured in the second direction.
US11005048B2

The invention relates to an organic molecule, in particular for the application in organic optoelectronic devices. According to the invention, the organic molecule has a first chemical moiety with a structure of Formula I, and one second chemical moiety with a structure of Formula II, # represents the binding site of a single bond linking the first chemical moiety to the second chemical moiety; wherein at least one variable of X1, X2 is N, and at least one variable of X3, X4 is N.
US11005046B2

In order to obtain a carbon nanotube array including no m-CNTs through simple steps using a mechanism that is different from thermocapillary flow, there are provided a process for producing a carbon nanotube array including (A) a step of preparing a carbon nanotube array in which m-CNTs and s-CNTs are horizontally aligned; (B) a step of forming an organic layer on the carbon nanotube array; (C) a step of applying voltage to the carbon nanotube array in a long axis direction of the carbon nanotubes constituting the carbon nanotube array in the air; and (D) a step of removing the organic layer, and a carbon nanotube array obtained by the process.
US11005042B2

The present invention relates to formulations for the preparation of organic electronic devices which comprise at least one specific ketone solvent containing a non aromatic cycle and at least one organic functional material, preferably selected from organic conductors, organic semiconductors, organic fluorescent compounds, organic phosphorescent compounds, organic light-absorbent compounds, organic light-sensitive compounds, organic photosensitisation agents and other organic photoactive compounds, selected from organometallic complexes of transition metals, rare earths, lanthanides and actinides.
US11005041B2

A method for manufacturing a resistive random access memory includes depositing a layer made of an active material of variable electrical resistance on a substrate containing a first electrode, forming a lower electrode; depositing an electrically conductive layer on the active material layer; etching the electrically conductive layer so as to delimit a second electrode, forming an upper electrode, facing the lower electrode; exposing at least one flank of the upper electrode to an ion beam inclined with respect to the normal to the substrate by an angle (α) comprised between 20° and 65°, so as to implant the ions in a portion of the active material layer adjacent to the flank and located under the upper electrode, the ion implantation conditions being chosen so as to create defects in the structure of the active material and to obtain an average implantation width comprised between 5 nm and 10 nm.
US11005037B2

A method of manufacturing an integrated circuit device. In the method, a plurality of contacts are formed over a substrate, and one or more bottom electrode layers are formed over the plurality of contacts. A first dielectric layer is formed such that a first base region of the first dielectric layer is in contact with the one or more bottom electrode layers and a second base region of the first dielectric layer is not in contact with the one or more bottom electrode layers. One or more top electrode layers are formed over the first dielectric layer. Patterning is then performed by etching through the one or more top electrode layers and by etching through the first dielectric layer to form a metal-insulator-metal structure. The patterning removes a portion of the second base region, but does not remove the first base region.
US11005035B2

A magnetoresistive effect element includes a first ferromagnetic layer and a tunnel barrier layer. The tunnel barrier layer has a main body region and a first interface region. The main body region has an oxide material of a first spinel structure represented by a general formula LM2O4. The first interface region has at least one element X selected from a group consisting of elements having a valence of 2 and elements having a valence of 3 excluding Al and has an oxide material of a second spinel structure represented by a general formula DG2O4(D represents one or more kinds of elements including Mg or the element X, and G represents one or more kinds of elements including Al or the element X). A content of the element X contained in the first interface region is larger than that of the element X contained in the main body region.
US11005024B1

A superconducting quantum interference devices (SQUID) comprises a superconducting inductive loop with at least two Josephson junction, whereby a magnetic flux coupled into the inductive loop produces a modulated response up through radio frequencies. Series and parallel arrays of SQUIDs can increase the dynamic range, output, and linearity, while maintaining bandwidth. Several approaches to achieving a linear triangle-wave transfer function are presented, including harmonic superposition of SQUID cells, differential serial arrays with magnetic frustration, and a novel bi-SQUID cell comprised of a nonlinear Josephson inductance shunting the linear coupling inductance. Total harmonic distortion of less than −120 dB can be achieved in optimum cases.
US11005023B2

A superconducting logic element includes a superconducting tunnel junction including first and second superconductors. First and second insulating ferromagnets in contact with the first and second superconductors, respectively, generate by magnetic proximity effect a predetermined density of spin-split states in the first and second superconductors, respectively. A writing element applies a writing current to at least a superconductor and is in contact with one of the first or second insulating ferromagnets, so that the first and second insulating ferromagnets commute, by the magnetic field generated by the applied writing current, between a state with parallel magnetization to a state with antiparallel magnetization with respect to each other. The superconducting tunnel junction includes the first or second superconductor between which an insulating layer is arranged with tunnel barrier function, the insulating layer selected between a layer selected from the group consisting of AlOx, AlN, and the first or second insulating ferromagnet.
US11005021B2

A substantial amount of the light emitting surface area of a wavelength conversion element above a light emitting element is covered by a reflective thermal conductive element. The light that is reflected by this reflective element is ‘recycled’ within the light emitting structure and exits the structure through the smaller area that is not covered by the reflective element. Because the thermal conductive element does not need to be transparent, a relatively thick metal layer may be used; and, because the thermal conductive element covers a substantial area of the wavelength conversion element, the thermal efficiency of this arrangement is very high. The reflective thermal conductive element may be coupled to thermal conductive pillars, which may be mounted on a thermal conductive submount.
US11005015B2

The disclosure discloses a method and apparatus for detecting an electromagnetic touch, where organic light-emitting diodes arranged in an array in an organic light-emitting diode display panel are controlled to be lightened row by row, and detection current flowing through the lightened organic light-emitting diodes is obtained in real time. The detection current of each of the lightened organic light-emitting diodes includes inductive current of the organic light-emitting diode, and driving current of the organic light-emitting diode being lightened, and the inductive current is the current, generated by the organic light-emitting diode, related to magnetic induction intensity of a magnetic field emitted by a magnetic field emitting apparatus only when the lightened organic light-emitting diodes senses the magnetic field, a position of an electromagnetic touch can be determined according to the driving current of each of the organic light-emitting diodes, and the obtained detection current thereof.
US11005010B2

A phosphor has a composition represented by Chemical formula 1: 1.5Y2O3·2.5aAl2O3:Ce where a is a number satisfying 1.02
US11005005B2

An optoelectronic semiconductor device and a method for manufacturing an optoelectronic semiconductor device are disclosed. In an embodiment an optoelectronic semiconductor device includes a semiconductor body comprising a first region of a first conductive type, an active region, a second region of a second conductive type and a coupling-out surface, wherein the first region, the active region and the second region are arranged along a stacking direction, wherein the active region extends from a rear surface opposite the coupling-out surface to the coupling-out surface along a longitudinal direction transverse to or perpendicular to the stacking direction, wherein the coupling-out surface is arranged plane-parallel to the rear surface, and wherein the coupling-out surface and the rear surface of the semiconductor body are produced by an etching process.
US11005003B2

A semiconductor chip and a method for producing a semiconductor chip are disclosed. In an embodiment an electronic semiconductor chip includes a growth substrate with a growth surface, which is formed by a planar region having a plurality of three-dimensional surface structures on the planar region, a nucleation layer composed of oxygen-containing AlN directly disposed on the growth surface and a nitride-based semiconductor layer sequence disposed on the nucleation layer, wherein the semiconductor layer sequence is selectively grown from the planar region such that a growth of the semiconductor layer sequence on surfaces of the three-dimensional surface structures is reduced or non-existent compared to a growth on the planar region, and wherein a selectivity of the growth of the semiconductor layer sequence on the planar region is targetedly adjusted by an oxygen content of the nucleation layer.
US11004997B2

An infrared thermal emitter includes a substrate, a light-emitting unit and an infrared-emitting unit. The light-emitting unit is disposed on the substrate in a laminating direction and has a light-exiting surface away from the substrate. The infrared-emitting unit is disposed on the substrate in the laminating direction to cover the light-emitting unit and includes a layered structure having a light-absorbing layer that is aligned with the light-emitting unit in the laminating direction. The light-absorbing layer absorbs light emitted from the light-emitting unit so as to be heated up and to generate infrared radiation.
US11004994B2

Disclosed is a solar cell including a semiconductor substrate, a conductive area including a first conductive area and a second conductive area formed on one surface of the semiconductor substrate, a passivation film formed on the conductive area, the passivation film having a contact hole, a protective film formed on the conductive area inside the contact hole, the protective film being formed on at least one of at least a portion of an inner side surface of the contact hole and the passivation film, and an electrode electrically connected to the conductive area through the contact hole with the protective film interposed therebetween.
US11004993B2

A photovoltaic module employing an array of photovoltaic cells disposed between two optically transparent substrates such as to define a closed-loop peripheral area of the module that does not contain a photovoltaic cell. The module is sealed with a peripheral seal along the perimeter; and is devoid of a structural element affixed to an optically transparent substrate and adapted to mount the module to a supporting structure. The two substrates may be bonded together with adhesive material and, optionally, the peripheral seal can include the adhesive material. The module optionally includes diffraction grating element(s) adjoining respectively corresponding PV-cell(s).
US11004989B2

A photodiode device and method of manufacturing the same are disclosed. A stack of functional layers of the photodiode device, formed of crystalline semiconductor material, may be formed on a highly thermally conductive substrate, such as diamond or SiC. The stack of functional layers may be in contact with or close proximity to the thermally conductive substrate to thereby provide an efficient thermal conductive path between the functional layers and an external source, thereby mitigating problems that may result from overheating the photodiode device.
US11004984B2

Embodiments of the present invention are directed to forming a nanosheet field effect transistor (FET) having a low resistivity region that reduces the nanosheet external resistance. In a non-limiting embodiment of the invention, a nanosheet stack is formed over a substrate. An inner layer is formed over nanosheets in the nanosheet stack. The inner layer includes a first material having a first melting point. An outer layer is formed over the inner layer. The outer layer includes a second material having a second melting point that is lower than the first melting point. A heavily doped region is formed on a surface of the outer layer and the nanosheet stack is annealed at a temperature between the first melting point and the second melting point such that the outer layer is selectively liquified, distributing the dopants throughout the outer layer.
US11004981B2

A semiconductor device includes first active patterns on a PMOSFET section of a logic cell region of a substrate, second active patterns on an NMOSFET section of the logic cell region, third active patterns on a memory cell region of the substrate, fourth active patterns between the third active patterns, and a device isolation layer that fills a plurality of first trenches and a plurality of second trenches. Each of the first trenches is interposed between the first active patterns and between the second active patterns. Each of the second trenches is interposed between the fourth active patterns and between the third and fourth active patterns. Each of the third and fourth active patterns includes first and second semiconductor patterns that are vertically spaced apart from each other. Depths of the second trenches are greater than depths of the first trenches.
US11004978B2

Methods of forming germanium channel structure are described. An embodiment includes forming a germanium fin on a substrate, wherein a portion of the germanium fin comprises a germanium channel region, forming a gate material on the germanium channel region, and forming a graded source/drain structure adjacent the germanium channel region. The graded source/drain structure comprises a germanium concentration that is higher adjacent the germanium channel region than at a source/drain contact region.
US11004961B2

A semiconductor device that can be miniaturized or highly integrated is provided. The semiconductor device includes a first conductor, a second conductor over the first conductor, a first insulator covering the second conductor, a first oxide over the first insulator, and a second oxide over the first oxide, an opening overlapping with at least part of the first conductor is provided in the first oxide and the first insulator, and the second oxide is electrically connected to the first conductor through the opening.
US11004960B2

A semiconductor device includes a substrate, a first dielectric fin, a second dielectric fin, a semiconductor fin, an epitaxy structure, and a metal gate structure. The first dielectric fin and the second dielectric fin disposed over the substrate. The semiconductor fin is disposed over the substrate, in which the semiconductor fin is between the first dielectric fin and the second dielectric fin. The epitaxy structure covers at least two surfaces of the semiconductor fin, in which the epitaxy structure is in contact with the first dielectric fin and is separated from the second dielectric fin. The metal gate structure crosses the first dielectric fin, the second dielectric fin, and the semiconductor fin.
US11004959B2

A semiconductor device structure is provided. The semiconductor device structure includes an isolation structure formed over a substrate, and a first stacked wire structure and a second stacked wire structure extending above the isolation structure. The semiconductor device structure includes a dummy fin structure formed over the isolation structure, and the dummy fin structure is between the first stacked wire structure and the second stacked wire structure. The semiconductor device structure also includes a capping layer formed over the dummy fin structure. The isolation structure has a first width, the dummy fin structure has a second width, and the second width is smaller than the first width.
US11004943B2

Methods for forming porous or nanoporous semiconductor materials are described. The methods allow for the formation of arrays pores or nanopores in semiconductor materials with advantageous pore size, spacing, pore volume, material thickness, and other aspects. Porous and nanoporous materials also are provided.
US11004942B2

In some examples, a system comprises a bi-directional gallium nitride (GaN) device including first and second switches and a substrate, the first switch including a first gate and a first source, the second switch including a second gate and a second source, and the substrate shared between the first and second switches. The system include a third switch coupled to the first source and the substrate. The system includes a fourth switch coupled to the second source and the substrate and a comparator having inputs coupled to the first and second sources and outputs coupled to the third and fourth switches.
US11004938B2

A semiconductor substrate structure includes: a substrate; and an epitaxial growth layer bonded to the substrate, wherein the substrate and the epitaxial growth layer are bonded by a room-temperature bonding or a diffusion bonding.
US11004937B1

A semiconductor device includes a substrate, a gate structure, a source/drain region, a contact opening, an etching stop layer, an interlayer dielectric layer, and a first contact structure. The substrate includes a buried insulation layer, a semiconductor layer, and an isolation structure. The semiconductor layer is disposed on the buried insulation layer. The gate structure is disposed on the semiconductor layer. The isolation structure and the source/drain region are disposed in the semiconductor layer. The contact opening penetrates at least a part of the substrate. The etching stop layer is disposed on the gate structure, the source/drain region, a sidewall of the contact opening, and a bottom of the contact opening. The interlayer dielectric layer is disposed on the etching stop layer. The first contact structure penetrates the interlayer dielectric layer and the etching stop layer in the contact opening.
US11004935B2

The present invention discloses a rugged power semiconductor field effect transistor structure, and through a special design, it solves the problem that the activation under a transient condition may result in failures on the device, so that there is no parasitic BJT, and thus the device is more rugged.
US11004930B2

A component includes a substrate and a capacitor formed in contact with the substrate. The substrate can consist essentially of a material having a coefficient of thermal expansion of less than 10 ppm/° C. The substrate can have a surface and an opening extending downwardly therefrom. The capacitor can include at least first and second pairs of electrically conductive plates and first and second electrodes. The first and second pairs of plates can be connectable with respective first and second electric potentials. The first and second pairs of plates can extend along an inner surface of the opening, each of the plates being separated from at least one adjacent plate by a dielectric layer. The first and second electrodes can be exposed at the surface of the substrate and can be coupled to the respective first and second pairs of plates.
US11004929B2

Various examples provide an electronic device that includes first and second resistor segments. Each of the resistor segments has a respective doped resistive region formed in a semiconductor substrate. The resistor segments are connected between first and second terminals. The first resistor segment is configured to conduct a current in a first direction, and the second resistor segment is configured to conduct the current in a second different direction. The directions may be orthogonal crystallographic directions of the semiconductor substrate.
US11004928B2

A display device includes a non-display area adjacent a display area, a thin film transistor, a display element, a thin film encapsulation layer, an organic insulating layer, a power voltage line, and a protective layer. The thin film transistor is on the display area and is connected to the display element. The thin film encapsulation layer covers the display element. The organic insulating layer is between the thin film transistor and display element and extends to the non-display area. The organic insulating layer includes a central portion corresponding to the display area, an outer portion surrounding the central portion, and a division region dividing the central portion and the outer portion and surrounding the display area. The power voltage line is in the non-display area and includes a portion corresponding to the division region. The protective layer covers an upper surface of the power voltage line in the division region.
US11004914B2

A display apparatus includes: a first substrate including a transmission area, a display area that surrounds at least part of the transmission area, and a first non-display area between the transmission area and the display area; an insulating layer in the display area and the first non-display area; a plurality of display elements in the display area; a spacer above the insulating layer in the first non-display area and surrounding the transmission area; and a second substrate facing the first substrate.
US11004910B2

A display device includes an optical filter substrate including: a substrate; a first color filter on the substrate; a second color filter on the substrate, the second color filter spaced apart from the first color filter; a first color conversion element on the first color filter, the first color conversion element converting incident light into light of a first color; a second color conversion element on the second color filter, the second color conversion element converting the incident light into light of a second color; and a black matrix located between the first color conversion element and the second color conversion element, and between the first color filter and the second color filter.
US11004895B1

Devices and methods of their fabrication for pixels or displays are disclosed. Pixels and displays having redundant subpixels are described. Subpixels are initially isolated by an unprogrammed antifuse. A subpixel is connected to the display by programming the antifuse, electrically connecting it to the pixel or display. Defective subpixels can be determined by photoluminescent testing or electroluminescent testing, or both. A redundant subpixel can replace a defective subpixel before pixel or display fabrication is complete.
US11004891B2

A light emitting device includes at least three light emitting elements arranged side by side, and one or more light transmissive members each containing a phosphor and covering the light emitting elements. The at least three light emitting elements include two outer light emitting elements arranged on outer sides, and an inner light emitting element arranged between the two outer light emitting elements and having a different peak emission wavelength than a peak emission wavelength of the two outer light emitting elements. The phosphor has a longer peak emission wavelength than the peak emission wavelengths of the outer light emitting elements and the peak emission wavelength of the inner light emitting element. The two outer light emitting elements and the inner light emitting element are connected in series.
US11004890B2

Substrate based light emitter devices, components, and related methods are disclosed. In some aspects, light emitter components can include a substrate and a plurality of light emitter devices provided over the substrate. Each device can include a surface mount device (SMD) adapted to mount over an external substrate or heat sink. In some aspects, each device of the plurality of devices can include at least one LED chip electrically connected to one or more traces and at least one pair of bottom contacts adapted to mount over a surface of external substrate. The component can further include a continuous layer of encapsulant disposed over each device of the plurality of devices. Multiple devices can be singulated from the component.
US11004884B2

An imaging device includes one or more insulating layers on a substrate; an effective region including: a polarization layer in the one or more insulating layers and including one or more polarizers that polarize light; and at least one first photoelectric conversion region in the substrate and that converts incident light polarized by the one or more polarizers into electric charge; and a peripheral region outside the effective region and including: one or more wiring layers that include a pad portion in a same layer of the one or more insulating layers as the polarization layer.
US11004882B2

A minute transistor is provided. A transistor with low parasitic capacitance is provided. A transistor having high frequency characteristics is provided. A semiconductor device including the transistor is provided. A semiconductor device includes a first opening, a second opening, and a third opening which are formed by performing first etching and second etching. By the first etching, the first insulator is etched for forming the first opening, the second opening, and the third opening. By the second etching, the first metal oxide, the second insulator, the third insulator, the fourth insulator, the second metal oxide, and the fifth insulator are etched for forming the first opening; the first metal oxide, the second insulator, and the third insulator are etched for forming the second opening; and the first metal oxide is etched for forming the third opening.
US11004880B2

In some embodiments, a pixel sensor is provided. The pixel sensor includes a first photodetector arranged in a semiconductor substrate. A second photodetector is arranged in the semiconductor substrate, where a first substantially straight line axis intersects a center point of the first photodetector and a center point of the second photodetector. A floating diffusion node is arranged in the semiconductor substrate at a point that is a substantially equal distance from the first photodetector and the second photodetector. A pick-up well contact region is arranged in the semiconductor substrate, where a second substantially straight line axis that is substantially perpendicular to the first substantially straight line axis intersects a center point of the floating diffusion node and a center point of the pick-up well contact region.
US11004875B2

A structure is disclosed, comprising: a first field effect transistor, FET, comprising a first source terminal, a first drain terminal, a first layer or body of semiconductive material arranged to provide a first semiconductive channel connecting the first source terminal to the first drain terminal, and a gate terminal arranged with respect to the first semiconductive channel such that a conductivity of the first semiconductive channel may be controlled by application of a voltage to the gate terminal; and a second FET comprising a second source terminal, a second drain terminal, a second layer or body of semiconductive material arranged to provide a second semiconductive channel connecting the second source terminal to the second drain terminal, and the gate terminal, the second conductive channel being arranged with respect to the gate terminal such that a conductivity of the second channel may be controlled by application of a voltage to the gate terminal. Methods of manufacturing such structures are also disclosed.
US11004870B2

A transistor structure may include a first electrode, a second electrode, a third electrode, a substrate, and a semiconductor member. The semiconductor member overlaps the third electrode and includes a first semiconductor portion, a second semiconductor portion, and a third semiconductor portion. The first semiconductor portion directly contacts the first electrode, is directly connected to the third semiconductor portion, and is connected through the third semiconductor portion to the second semiconductor portion. The second semiconductor portion directly contacts the second electrode and is directly connected to the third semiconductor portion. A minimum distance between the first semiconductor portion and the substrate is unequal to a minimum distance between the second semiconductor portion and the substrate.
US11004865B2

A memory device includes a plurality of gate electrode layers stacked on a substrate, a plurality of channel layers penetrating the plurality of gate electrode layers, a gate insulating layer between the plurality of gate electrode layers and the plurality of channel layers, and a common source line on the substrate adjacent to the gate electrode layers. The common source line includes a first part and a second part that are alternately arranged in a first direction and have different heights in a direction vertical to a top surface of the substrate. The gate insulating layer includes a plurality of vertical parts and a horizontal part. The plurality of vertical parts surrounds corresponding ones of the plurality of channel layers. The horizontal part extends parallel to a top surface of the substrate.
US11004863B2

A non-volatile memory having a gate all around thin film transistor includes a multi-layer structure, an elongated plug structure, a first conductive plug, and a second conductive plug. The multi-layer structure includes a plurality of gate electrode layers stacked on a substrate separately from each other. The elongated plug structure penetrates through the multi-layer structure, and a cross-section of the elongated plug structure has an elongated contour. The elongated plug structure includes an insulating pillar, a channel layer, and a gate dielectric layer. The channel layer surrounds the insulating pillar. The gate dielectric layer surrounds the channel layer. The gate electrode layers surround the gate dielectric layer. The first conductive plug is disposed between the channel layer and the substrate and between the insulating pillar and the substrate. The second conductive plug is disposed on the insulating pillar and is covered by the channel layer.
US11004860B2

A method for fabricating a non-volatile memory device is provided. The method includes forming a channel hole and a first contact hole simultaneously, several times, in order to achieve a desired a high aspect ratio.
US11004855B2

An integrated circuit includes a semiconductor substrate, an isolation region extending into, and overlying a bulk portion of, the semiconductor substrate, a buried conductive track comprising a portion in the isolation region, and a transistor having a source/drain region and a gate electrode. The source/drain region or the gate electrode is connected to the buried conductive track.
US11004854B2

A semiconductor device includes an active region in a substrate, an isolation film defining the active region in the substrate, a gate trench extending across the active region and the isolation film and including a first trench in the active region and a second trench in the isolation film, a gate electrode including a main gate electrode and a pass gate electrode, the main gate electrode filling a lower part of the first trench, and the pass gate electrode filling a lower part of the second trench, a support structure on the pass gate electrode, the support structure filling an upper part of the second trench, a gate insulating film interposed between the isolation film and the pass gate electrode and between the support structure and the pass gate electrode.
US11004852B2

Semiconductor structures are provided. A semiconductor structure includes a first P-type transistor including a first SiGe channel region, and a second P-type transistor including a second SiGe channel region. The first SiGe channel region has higher Ge atomic concentration than the second SiGe channel region. The first and second P-type transistors are formed in the same N-type well region.
US11004847B2

An integrated circuit (IC) device comprises a substrate having a metal-oxide-semiconductor (MOS) region; a gate region disposed over the substrate and in the MOS region; and source/drain features in the MOS region and separated by the gate region. The gate region includes a fin structure and a nanowire over the fin structure. The nanowire extends from the source feature to the drain feature.
US11004838B2

Embodiments of the present disclosure include semiconductor packages and methods of forming the same. An embodiment is a semiconductor package including a first package including one or more dies, and a redistribution layer coupled to the one or more dies at a first side of the first package with a first set of bonding joints. The redistribution layer including more than one metal layer disposed in more than one passivation layer, the first set of bonding joints being directly coupled to at least one of the one or more metal layers, and a first set of connectors coupled to a second side of the redistribution layer, the second side being opposite the first side.
US11004835B2

Light-emitting sub-pixels and pixels for micro-light-emitting diode-based displays are provided. Also provided are methods of fabricating individual sub-pixels, pixels, and arrays of the pixels. The sub-pixels include a double-layered film that includes a coupling layer disposed over a light-emitting diode and a light-emission layer disposed over the coupling layer.
US11004831B2

A stack package includes a package substrate and a fan-out sub-package mounted on the package substrate using first and second connection bumps. The fan-out sub-package includes a first semiconductor die and redistributed line (RDL) patterns. Second semiconductor dies are stacked on the package substrate to provide a first step structure, and third semiconductor dies are stacked on the second semiconductor dies to provide a second step structure. The second and third semiconductor dies are connected to the package substrate by bonding wires.
US11004829B2

A semiconductor device is disclosed including a memory module formed from a pair of semiconductor dies mounted face to face to each other at the wafer level. These die pairs are formed using wafer-to-wafer bonding technology, where the wafers may be bonded to each other when they are of full thickness. Once bonded, respective inactive surfaces of the wafers may be thinned and then the die pairs diced from the wafers to form a completed memory module. When the wafers are bonded face to face, they compensate each other, mechanically resulting in the die pair having a minimum warpage.
US11004821B2

A wire bonding method comprises: preparing a wire bonding apparatus; a step of forming a free air ball; a first height measuring step of measuring the height of a first electrode by detecting whether the free air ball is grounded to the first electrode; a second height measuring step of measuring the height of a second electrode by detecting whether the free air ball is grounded to the second electrode; a first bonding step of controlling the height of a bonding tool based on the measurement result in the first height measuring step, and bonding the free air ball to the first electrode; and a second bonding step of controlling the height of the bonding tool based on the measurement result in the second height measuring step, and bonding a wire to the second electrode to connect the first and the second electrodes. Thus, electrodes can be correctly bonded.
US11004819B2

A method of fabricating a connection structure is disclosed. The method includes providing a substrate that has a top surface and includes a set of pads for soldering, each of which has a pad surface exposed from the top surface of the substrate. The method also includes applying a surface treatment to a part of the top surface of the substrate close to the pads and the pad surface of each pad so as to make at least the part of the top surface and the pad surfaces of the pads rougher.
US11004816B2

A hetero-integrated structure includes a substrate, a die, a passivation layer, a first redistribution layer, a second redistribution layer, and connecting portions. The die is attached on the substrate. The die has an active surface and a non-active surface. The active surface has pads. The passivation layer covers sidewalls and a surface of the die to expose a surface of the pads. The first redistribution layer is located on the passivation layer and electrically connected to the pads. The second redistribution layer is located on the substrate and adjacent to the die. The connecting portions are connected to the first redistribution layer and the second redistribution layer.
US11004809B2

Structures and formation methods of a chip package are provided. The chip package includes a semiconductor die having a conductive element and a first protective layer surrounding the semiconductor die. The chip package also includes a second protective layer over the semiconductor die and the first protective layer. The chip package further includes an antenna element over the second protective layer. The antenna element is electrically connected to the conductive element of the semiconductor die.
US11004804B2

In one embodiment, a semiconductor device includes a substrate, and a plurality of insulating layers provided on the substrate. The device further includes a plurality of electrode layers provided on the substrate alternately with the plurality of insulating layers and including metal atoms and impurity atoms different from the metal atoms, lattice spacing between the metal atoms in the electrode layers being greater than lattice spacing between the metal atoms in an elemental substance of the metal atoms.
US11004802B1

An integrated circuit chip includes a wide bandgap semiconductor substrate, a plurality of semiconductor electronic components disposed on the semiconductor substrate, an overlying insulating layer disposed on the plurality of semiconductor devices, and a crack barrier laterally displaced from all of the plurality of semiconductor components. The crack barrier is configured to prevent propagation of cracks in the overlying insulating layer. The crack barrier does not conductively connect to any of the plurality of semiconductor electronic components.
US11004801B2

In one example, a semiconductor device comprises a substrate, a first electronic component on a top side of the substrate, a second electronic component on the top side of the substrate, an encapsulant on the top side of the substrate, contacting a lateral side of the first electronic component and a lateral side of the second electronic component, a conformal shield on a top side of the encapsulant over the first electronic component and having a side shield contacting a lateral side of the encapsulant, and a compartment wall between the first electronic component and the second electronic component and contacting the conformal shield to define a compartment containing the first electronic component and excluding the second electronic component. Other examples and related methods are also disclosed herein.
US11004800B2

An electronic device comprising a semiconductor chip which comprises a plurality of structures formed in the semiconductor chip, wherein the semiconductor chip is a member of a set of semiconductor chips, the set of semiconductor chips comprises a plurality of subsets of semiconductor chips, and the semiconductor chip is a member of only one of the subsets. The plurality of structures of the semiconductor chip includes a set of common structures which is the same for all of the semiconductor chips of the set, and a set of non-common structures, wherein the non-common structures of the semiconductor chip of the subset is different from a non-common circuit of the semiconductor chips in every other subset. At least a first portion of the non-common structures and a first portion of the common structures form a first non-common circuit, wherein the first non-common circuit of the semiconductor chips of each subset is different from a non-common circuit of the semiconductor chips in every other subset. At least a second portion of the non-common structures is adapted to store or generate a first predetermined value which uniquely identifies the first non-common circuit, wherein the first predetermined value is readable from outside the semiconductor chip by automated reading means.
US11004796B2

An integrated fan-out (InFO) package includes a first redistribution structure, a die, an encapsulant, a plurality of through insulating vias (TIV), a plurality of dipole antennas, and a second redistribution structure. The die is disposed on the first redistribution structure. The encapsulant encapsulates the die. The TIVs and the dipole antennas are embedded in the encapsulant. Each dipole antenna includes a pair of antenna elements. Each antenna element has a first folded-sidewall and a second folded-sidewall opposite to the first folded-sidewall. A portion of each second folded-sidewall in the pair of antenna elements face each other. Each first folded-sidewall includes at least three sub-sidewalls connected to each other. The adjacent sub-sidewalls form an obtuse angle. The second redistribution structure is disposed on the die, the TIVs, the dipole antennas, and the encapsulant.
US11004786B2

A package structure includes a die, a TIV, a first encapsulant, a RDL structure, a thermal dissipation structure and a second encapsulant. The die has a first surface and a second surface opposite to each other. The TIV is laterally aside the die. The first encapsulant encapsulates sidewalls of the die and sidewalls of the TIV. The RDL structure is disposed on the first surface of the die and on the first encapsulant, electrically connected to the die and the TIV. The thermal dissipation structure is disposed over the second surface of die and electrically connected to the die through the TIV and the RDL structure. The second encapsulant encapsulates sidewalls of the thermal dissipation structure.
US11004785B2

First and second wells are formed in a semiconductor substrate. First and second trenches in the first second wells, respectively, each extend vertically and include a central conductor insulated by a first insulating layer. A second insulating layer is formed on a top surface of the semiconductor substrate. The second insulating layer is selectively thinned over the second trench. A polysilicon layer is deposited on the second insulating layer and then lithographically patterned to form: a first polysilicon portion over the first well that is electrically connected to the central conductor of the first trench to form a first capacitor plate, a second capacitor plate formed by the first well; and a second polysilicon portion over the second well forming a floating gate electrode of a floating gate transistor of a memory cell having an access transistor whose control gate is formed by the central conductor of the second trench.
US11004780B2

A hard macro includes a periphery defining a hard macro area and having a top and a bottom and a hard macro thickness from the top to the bottom, the hard macro including a plurality of vias extending through the hard macro thickness from the top to the bottom. Also an integrated circuit having a top layer, a bottom layer and at least one middle layer, the top layer including a top layer conductive trace, the middle layer including a hard macro and the bottom layer including a bottom layer conductive trace, wherein the top layer conductive trace is connected to the bottom layer conductive trace by a via extending through the hard macro.
US11004778B1

A ball grid array (BGA) package for an integrated circuit device includes an integrated circuit device having a plurality of terminals, and two largest dimensions that define a major plane. A package substrate material encloses the integrated circuit device, and is formed, in a plane parallel to the major plane, into a polygon having at least five sides. An array of contacts on an exterior surface of the package substrate material is electrically coupled to the plurality of terminals. Contacts in the array of contacts are distributed in a pattern of contact positions, and the center of each contact position may be separated from the center of each nearest other position by a separation distance that is identical throughout the pattern. Each position may be occupied by a contact, or positions in a sub-pattern may lack a contact and may be available for insertion of at least one via.
US11004772B2

A cooling structure according to the present invention is provided with: a base material formed with a cooling water flow passageway; a pipe which includes a first layer formed on an outer surface of the base material, and a second layer formed on the outside of the first layer; and a plate having the pipe cast therein. The base material is configured from a highly thermally conductive first material. The first layer is configured from a heat-resistant second material. The second layer is configured from a third material having high affinity with the second material. The plate is configured from a highly thermally conductive fourth material. The second material and the third material respectively have high affinity with the fourth material.
US11004770B2

A method of forming an on-chip heat sink includes forming a device on a substrate. The method also includes forming a plurality of insulator layers over the device. The method further includes forming a heat sink in at least one of the plurality of insulator layers and proximate to the device. The heat sink includes a reservoir of phase change material having a melting point temperature that is less than an upper limit of a design operating temperature of the chip.
US11004763B2

An integrated circuit is provided that comprises a first thermal sink layer, a first ground plane associated with a first set of circuits that have a first operational temperature requirement, a first thermally conductive via that couples the first ground plane to the first thermal sink layer, a second thermal sink layer, a second ground plane associated with a second set of circuits that have a second operational temperature requirement that is higher than the first operational temperature requirement, and a second thermally conductive via that couples the second ground plane to the second thermal sink layer. The first thermal sink layer is cooled at a first temperature to maintain the first set of circuits at the first operational temperature requirement and the second thermal sink layer is cooled at a second temperature to maintain the second set of circuits at the second operational temperature requirement.
US11004762B2

Provided is a vehicle-mounted semiconductor device enabling a temperature increase of active elements to be restricted. A vehicle-mounted semiconductor device includes: a semiconductor substrate; a plurality of active elements formed on the semiconductor substrate; a plurality of trenches surrounding the plurality of active elements to insulate and separate the active elements; and a terminal connecting in parallel the plurality of active elements insulated and separated by different trenches among the plurality of trenches and connected to an outside.
US11004751B2

A semiconductor device includes a substrate with a first semiconductor fin and a second semiconductor fin formed thereon. A pair of opposing dielectric trench spacers are between the first and second semiconductor fins. The opposing dielectric trench spacers define an isolation region therebetween. The semiconductor device further includes a shallow trench isolation (STI) element formed in the isolation region. The STI element includes a lower portion on the substrate and an upper portion located opposite the lower portion. The upper portion extends above an upper end of the dielectric trench spacers.
US11004750B2

Methods for forming semiconductor devices are disclosed including forming a semiconductor structure having a semiconductor substrate containing two or more fins. The method includes etching a first optical planarization layer on the semiconductor structure exposing a top surface of each of a gate spacer, a gate cap layer and a portion of a source/drain contact adjacent to the exposed gate spacer to form a first gate contact opening. The method further includes depositing a sacrificial place-holder material in the first gate contact opening. The method further includes removing the first optical planarization layer. The method further includes recessing a first conductive material.
US11004739B2

Gate contact structures disposed over active portions of gates and methods of forming such gate contact structures are described. For example, a semiconductor structure includes a substrate having an active region and an isolation region. A gate structure has a portion disposed above the active region and a portion disposed above the isolation region of the substrate. Source and drain regions are disposed in the active region of the substrate, on either side of the portion of the gate structure disposed above the active region. A gate contact structure is disposed on the portion of the gate structure disposed above the active region of the substrate.
US11004738B2

The present disclosure describes a method for forming metal interconnects in an integrated circuit (IC). The method includes placing a metal interconnect in a layout area, determining a location of a redundant portion of the metal interconnect, and reducing, at the location, the length of the metal interconnect by a length of the redundant portion to form one or more active portions of the metal interconnect. The length of the redundant portion is a function of a distance between adjacent gate structures of the IC. The method further includes forming the one or more active portions on an interlayer dielectric (ILD) layer of the IC and forming vias on the one or more active portions, wherein the vias are positioned about 3 nm to about 5 nm away from an end of the one or more active portions.
US11004725B2

An embodiment is a device including a first fin extending from a substrate, a first gate stack over and along sidewalls of the first fin, a first gate spacer disposed along a sidewall of the first gate stack, and a first source/drain region in the first fin and adjacent the first gate spacer. The first source/drain region including a first insulator layer on the first fin, and a first epitaxial layer on the first insulator layer.
US11004722B2

Apparatuses for substrate transfer are provided. A lift pin assembly can include a lift pin, a purge cylinder, and a lift pin guide. The lift pin guide is disposed adjacent the purge cylinder. The lift pin guide and the purge cylinder have a passage formed therethough in which the lift pin is disposed. The purge cylinder includes one or more nozzles that direct the flow of gas radially inward into a portion of the passage disposed in the purge cylinder. The one or more nozzles are disposed radially outward from the lift pin. The purge cylinder reduces particle deposition on the substrate by preventing contact between the lift pin and the support assembly as the lift pin is in motion.
US11004706B2

A substrate treating apparatus includes a treating section for treating substrates, and an interface section disposed adjacent the treating section and adjacent an exposing machine provided separately from the apparatus. The interface section has a first treating-section-side transport mechanism, a second treating-section-side transport mechanism, and an exposing-machine-side transport mechanism. Each of the first and second treating-section-side transport mechanisms is arranged to receive the substrates from the treating section, pass the substrates to the exposing-machine-side transport mechanism, receive the substrates from the exposing-machine-side transport mechanism and pass the substrates to the treating section. The exposing-machine-side transport mechanism is arranged to receive the substrates from the first and second treating-section-side transport mechanisms, transport the substrates to the exposing machine, receive the substrates after exposing treatment from the exposing machine, and pass the substrates to the first and second treating-section-side transport mechanisms.
US11004703B1

A semiconductor processing apparatus is disclosed, which comprises a chamber body having an interior volume, a substrate support pedestal disposed in the interior volume, a gas outlet member positioned above the substrate support pedestal inside the interior volume, having a plurality of dispense nozzles, and a gas guiding device positioned between the gas outlet member and the substrate support pedestal. The gas guiding device includes a plurality of petal elements pivotally arranged around the dispense nozzles of the gas outlet member and circumferentially overlapping one another, configured to dynamically adjust an output gas distribution over the substrate support pedestal.
US11004699B2

An electronic device comprises: an electronic component; a resin molded body in which the electronic component is embedded and fixed; and a bendable bend portion continuous with the resin molded body. For example, the bend portion is molded integrally with the resin molded body. Thus, electronic device can be reduced in size and thickness.
US11004698B2

Provided is a power module package including: a substrate; at least one electrode arranged on the substrate; and an encapsulation member covering at least a portion of the substrate, the encapsulation member including a housing unit housing the at least one electrode. The at least one electrode is spaced apart from the encapsulation member.
US11004689B2

Exemplary methods for selectively removing silicon (e.g. polysilicon) from a patterned substrate may include flowing a fluorine-containing precursor into a substrate processing chamber to form plasma effluents. The plasma effluents may remove silicon (e.g. polysilicon, amorphous silicon or single crystal silicon) at significantly higher etch rates compared to exposed silicon oxide, silicon nitride or other dielectrics on the substrate. The methods rely on the temperature of the substrate in combination with some conductivity of the surface to catalyze the etch reaction rather than relying on a gas phase source of energy such as a plasma.
US11004686B2

A method for bonding a first substrate and a second substrate includes: forming a protrusion at a partial region of the first substrate; measuring a position of the first substrate after the protrusion is formed in the first substrate; and bonding the first substrate and the second substrate by contacting the protrusion of the first substrate with a surface of the second substrate to form a contact region and enlarging the contact region.
US11004681B2

In example implementations of a heterogeneous substrate, the heterogeneous substrate includes a first material having an air trench, a second material coupled to the first material, a dielectric mask on a first portion of the second material and an active region that is grown on a remaining portion of the second material. An air gap may be formed in the air trench by the second material coupled to the first material. Defects in the second material may be contained to an area below the dielectric mask and the active region may remain defect free.
US11004676B2

A method for improving a film formation rate and forming a film having a high dry etching resistance is disclosed. The method includes forming a metal nitride layer containing the metal element and the nitrogen element by performing a predetermined number of times in a time division manner supplying a halogen-based source gas containing the metal element to the substrate and supplying a reaction gas containing the nitrogen element and reacting with the metal element to the substrate; and forming a metal carbonitride layer containing the metal element, the carbon element, and the nitrogen element by performing a predetermined number of times in a time division manner supplying an organic-based source gas containing the metal element and the carbon element to the substrate and supplying the reaction gas to the substrate.
US11004674B2

Provided are a substrate treatment method and a substrate treatment equipment enabling greater suppression of corrosion or oxidation of metal wiring exposed on a substrate surface. The present invention relates to a substrate treatment equipment having a treatment chamber wherein a substrate is disposed, and whereto a substrate treatment solution for treating the substrate is supplied. This equipment is provided with an inert gas filling mechanism for filling with an inert gas the interior of the treatment chamber wherein the substrate is disposed, and, near or inside the treatment chamber, a catalytic unit filled with a platinum-group metal catalyst wherethrough a hydrogen-dissolved water including hydrogen added to ultra-pure water is passed. Obtained by passing the hydrogen-dissolved water through the platinum-group metal catalyst, a hydrogen-dissolved treatment solution is supplied as the substrate treatment solution into the treatment chamber by the equipment.
US11004672B2

A mass selective ion trapping device includes a linear ion trap and a RF control circuitry. The ion trap includes a plurality of trap electrodes configured for generating a quadrupolar trapping field in a trap interior and for mass selective ejection of ions from the trap interior. The RF control circuitry is configured to apply a balanced AC voltage to the trap electrodes during a first period of time such that an AC voltage applied to a first pair of trap electrodes is of the same magnitude and of opposite sign to an AC voltage applied to a second pair of trap electrodes; apply unbalanced RF voltage to the second pair of trap electrodes during a second period of time; ramp the balanced AC voltage down and the unbalanced RF voltage up during a transition period; and eject ions from the linear ion trap after the second period of time.
US11004669B2

A method and apparatus for analyzing samples using mass spectrometry are disclosed. The apparatus includes a reaction device configured to dissociate sample ions into fragments by reacting the sample ions with a charged species (e.g., electrons) such as through ECD, EID, or EIEIO. The kinetic energy of the charged species is such that the fragments may be detected and produce spectra that allow for the determination of isomeric species in the sample and the location of double bonds and/or the orientation of those double bonds within the sample molecules. The fragments may include radical fragments and non-radical fragments. Spectra resulting from analysis of the fragments may allow for the determination of the oxygen-radical fragments resulting from the dissociation of the sample molecules as confirmation of the presence of those radical fragments.
US11004667B2

A portable ion mobility spectrometry apparatus (1) for detecting an aerosol and a method for using the apparatus. The apparatus comprises an ion mobility spectrometer (3); a portable power source (5) carried by the apparatus for providing power to the apparatus (1); an inlet (7) for collecting a flow of air to be tested by the spectrometer (3); a heater (4) configured to heat the air to be tested to vapourise an aerosol carried by the air and a controller (2) configured to control the spectrometer (3) to obtain samples from the heated air, wherein the controller is configured to increase a heat output from the heater (4) for a selected time period before obtaining samples from the heated air.
US11004665B2

A plasma processing apparatus includes a vacuum container, a conveyance unit including a rotator and circulating and carrying a workpiece through the conveyance path, a cylindrical member having an opening at one end extended in the direction toward the conveyance path, a window member provided at the cylindrical member, and dividing a gas space from the exterior thereof, a supply unit supplying the process gas in the gas space, and an antenna generating inductive coupling plasma on the workpiece. The supply unit supplies the process gas from plural locations where a passing time at which the surface of the rotator passes through a process region is different, and the plasma processing apparatus further includes an adjusting unit individually adjusting the supply amounts of the process gas from the plural locations of the supply unit per a unit time in accordance with the passing time.
US11004663B2

Embodiments described herein provide an apparatus for improving deposition uniformity by improving plasma profile using a tri-cut chamber liner. The apparatus also includes a lid assembly having a split process stack for reducing downtime and a bottom heater support for more efficient heating of chamber walls.
US11004654B2

Systems and methods are disclosed that remove noise from roughness measurements to determine roughness of a feature in a pattern structure. In one embodiment, a method for determining roughness of a feature in a pattern structure includes generating, using an imaging device, a set of one or more images, each including measured linescan information that includes noise. The method also includes detecting edges of the features within the pattern structure of each image without filtering the images, generating a biased power spectral density (PSD) dataset representing feature geometry information corresponding to the edge detection measurements, evaluating a high-frequency portion of the biased PSD dataset to determine a noise model for predicting noise over all frequencies of the biased PSD dataset, and subtracting the noise predicted by the determined noise model from a biased roughness measure to obtain an unbiased roughness measure.
US11004653B2

An edge detection system is provided that generates a scanning electron microscope (SEM) linescan image of a pattern structure including a feature with edges that require detection. The edge detection system includes an inverse linescan model tool that receives measured linescan information for the feature from the SEM. In response, the inverse linescan model tool provides feature geometry information that includes the position of the detected edges of the feature.
US11004647B2

A source for generating ionizing radiation and in particular x-rays, to an assembly includes a plurality of sources and to a process for producing the source. The source for generating ionizing radiation comprises: a vacuum chamber; a cathode that is able to emit an electron beam into the vacuum chamber; an anode that receives the electron beam and that comprises a target that is able to generate ionizing radiation from the energy received from the electron beam; and an electrode that is placed in the vicinity of the cathode and forming a wehnelt. The electrode is formed from a conductive surface adhering to a concave face of a dielectric.
US11004643B2

A electrical distribution system has been developed to provide a remote central control point for individual circuits, and methods have been developed for retrofitting it to existing service panels or installing it into new service panels. This system provides a power circuit monitoring and control system that fits inside standard residential service panels, both new and retrofitted panels. The entire system can be retrofitted into existing breaker panel systems without the need of removing any permanent structure such as a wall. During this retrofit process, the panel cover on the existing distribution panel is first removed after the power to it is disconnected. The old breaker assembly is removed from the panel, and a circuit controller is then installed in the now available space within the panel. A new service panel enclosure with a circuit breaker assembly is installed directly over top of the enclosure.
US11004640B2

A relay has a case, a first fixed terminal including a first fixed contact, a second fixed terminal including a second fixed contact, a movable touch piece including a first movable contact that is disposed facing the first fixed contact and a second movable contact that is disposed facing the second fixed contact, the movable touch piece being disposed in the case and disposed so as to be movable in a direction in which the first movable contact and the second movable contact come into contact with the first fixed contact and the second fixed contact and in a direction in which the first movable contact and the second movable contact separate from the first fixed contact and the second fixed contact, a drive shaft connected to the movable touch piece and extending in a movement direction of the movable touch piece, and a coil.
US11004635B2

The present application relates to an electric circuit breaker device and has an object to reduce in size while maintaining a required strength. The electric circuit breaker device includes, in a resin housing (10), an igniter (20), a rod-like projectile (40), a conductor portion (50), which are disposed in this order from a first end portion (11) of the housing toward a second end portion (12) opposite the first end portion in an axial direction, and an insulating closed space (60) between the second end portion of the housing and the conductor portion, wherein the conductor portion is a plate portion including connection portions (51, 52) on both end sides; and a cut portion (53) at an intermediate portion, the conductor portion extending in a width direction orthogonal to a housing axial direction, the rod-like projectile is disposed to face the cut portion in the axial direction, and the cut portion includes fragile portions (55a, 55b) formed at two locations on the second end portion side of the conductor portion, each of the fragile portions being a notch portion.
US11004634B2

A breaker 1 includes a fixed piece 2 having a fixed contact 21, a movable piece 4 including a movable contact 41 and having the movable contact 41 so as to be pressed against and in contact with the fixed contact 21, a thermally actuated element 5 shifting the movable piece 4 from a conductive state to a cut-off state in accordance with a temperature change, and a case 7 accommodating the fixed piece 2, the movable piece 4, and the thermally actuated element 5. The case 7 includes a case main body 71 accommodating the movable piece 4 and the thermally actuated element 5, a lid member 81 covering a housing concave portion 73 of the case main body 71, and a metal plate 9 embedded in the lid member 81. Heat capacity of the metal plate 9 is larger than heat capacity of the fixed piece 2.
US11004629B2

A lever switch which is capable of preventing loud operating noise from being generated during stepwise operation of an operating lever. The lever switch has a case, a click feeling generator placed inside the case, and a switch moving body placed inside the case and rotated with respect to the case by operating the operating lever. The click feeling generator has trough portions that abut against a convex portion of the switch moving body. Click feelings are given by the convex portion of the switch moving body sequentially abutting against the trough portions in response to stepwise operations of the operating lever. The convex portion of the switch moving body is urged toward the click feeling generator. The click feeling generator and the case are placed away from each other with a space left between them in a direction in which the first case is urged.
US11004625B2

An improved high speed breaker for industrial or railways applications wherein a high D.C. current must be interrupted with high efficiency and extremely fast intervention times. The breaker includes, in a casing, a base portion supporting an activating a switching mechanism including a holding mechanism and a release mechanism, an intermediate switching or breaking contacts portion, including fixed contacts and movable contacts, and a top arc chute extinguishing portion covering the switching or breaking contact portion, wherein intermediate delimiting portions are provided on both sides of the casing to delimit laterally the intermediate switching or breaking contact portion and to provide lateral guides for the arc chute extinguishing portion, wherein the arc chute extinguishing portion is slidably mounted in the casing, and wherein at least a lever mechanism is extended transversally between the opposite intermediate delimiting portions for moving or raising the arc chute extinguishing portion for inspection.
US11004620B2

A circuit interrupter includes a temperature detection system that is configured to detect a measured temperature of at least one of a line conductor, a load conductor, a movable contact, and a stationary contact during operation of the circuit interrupter. The measured temperature is representative of an extent of wear of the set of separable contacts. In one embodiment the temperature detection system includes a temperature sensor that is an infrared sensor. In another embodiment, the temperature detection system includes a temperature sensor that is in physical contact with an electrically conductive structure within the circuit interrupter and therefore additionally employs a voltage filter that filters a line voltage from the signal from the temperature sensor. In another embodiment, the temperature detection system employs a temperature sensor that is in physical contact with an electrically conductive structure, but a wireless transceiver is used to wirelessly communicate the measured temperature.
US11004610B2

A method for manufacturing a multilayer electronic component having an element body in which a functional part and a conductor part are laminated. The green multilayer body 11 is formed on the temporary holding film 62 formed on the release substrate. The green multilayer body 11 is formed by repeating the first step forming a green functional part using the first ink containing the functional particles and the second step forming the green conductor part using the second ink containing the conductive particles. The temporary holding film 62 has conductivity.
US11004606B2

The present disclosure provides advantageous composite films/coatings, and improved methods for fabricating such composite films/coatings. More particularly, the present disclosure provides improved methods for fabricating composite films by trapping at least a portion of a layered material (e.g., hexagonal boron nitride sheets/layers) at an interface of a phase separated system and then introducing the layered material to a polymer film. The present disclosure provides for the use of boron nitride layers to increase the properties (e.g., dielectric constant and breakdown voltage) of polymer films. The exemplary films can be produced by an advantageous climbing technique. Exemplary boron nitride films are composed of overlapping boron nitride sheets with a total thickness of about one nanometer, with the film then transferred onto a polymer film, thereby resulting in significant increases in both dielectric and breakdown properties of the polymer film.
US11004600B2

A method includes mixing first and second alloys to form a mixture, pressing the mixture within a first magnetic field to form a magnet having anisotropic particles of the first alloy aligned with a magnetic moment of the magnet, and heat treating the magnet within a second magnetic field to form elongated grains from the second alloy and align the elongated grains with the moment.
US11004593B2

A coil conductive wire has a coil part wound around a pillar part, and flat-shaped connection end parts provided at respective ends of the coil part. Terminal electrodes are electrically connected to the connection end parts, each of which terminal electrodes has an electrode layer and a conductive layer covering the electrode layer. Each connection end part has a first principle face connected to a surface of the electrode layer, a second principle face projecting from a surface of the conductive layer, and a side face. The conductive layer has a flat area, and a skirt area provided between the flat area and the side face and sloping onto the side face. The thickness of the flat area is smaller than that of each connection end part, while the thickness of the skirt area decreases in the direction away from the side face.
US11004592B2

An electric device comprises a core having a center section and two outer sections, a high current winding, and a low current winding. The high current winding includes a plurality of half-turn coils connected in parallel between a first high current terminal and a second high current terminal. Each of the plurality of half-turn coils is wound around a fraction of the center section and forms a loop around one of the two outer sections along with the first and second high current terminals. The low current winding includes a plurality of full-turn coils connected in series between a first low current terminal and a second low current terminal, each of the plurality of full-turn coils wound around the center section of the core substantially fully. The plurality of half-turn coils of the high current winding are interleaved with the plurality of full-turn coils of the low current winding.
US11004591B2

A power conversion circuit has a multilayer transformer and a plurality of rectifying transistors coupled to the secondary windings of the multilayer transformer. The multilayer transformer is formed as multiple layers within a PCB stack, where primary winding conductors and secondary winding conductors are vertically aligned and stacked. The secondary winding conductors are constructed to have one or more secondary winding arms that provide area to which the plurality of rectifying transistors are physically connected. The primary winding conductors are constructed to have a primary winding arm. A footprint of each primary winding conductor is configured to substantially overlap an entire footprint of each of the secondary winding conductors. As such, an entirety of the secondary current flowing through the secondary winding conductors is vertically aligned with the primary winding conductors, and therefore with the primary current flowing through the secondary winding conductors.
US11004586B2

Provided is a permanent magnet for a permanent magnet machine, a permanent magnet machine, and a method of manufacturing a permanent magnet for a permanent magnet machine. The permanent magnet includes a base body having a first side and a second side which is an opposite side with respect to the first side, wherein at least one first slit is formed in the base body such that the at least one first slit extends from the first side in the direction of the second side.
US11004585B2

A permanent magnet, a rotor, a motor and a compressor are provided. A work face of the permanent magnet includes a first edge and a second edge, a head endpoint of the first edge is connected to a tail endpoint of the second edge by means of a transition edge, the transition edge is located at a side, adjacent to a center of the work face, of a line connecting the head endpoint with the tail endpoint, and the transition edge includes at least one sub-arc segment, or a combination of at least one sub-arc segment and at least one sub-straight segment.
US11004584B2

The present invention relates to an electric track system which can accommodate various appliance module using magnetic positioning. It supplements the missing functions of the current electric tracks, i.e., permitting the mixed use of the track-based fans and lights. This newly designed track can also be mounted to the wall for safe use of various electric appliances. The electric track system with magnetic positioning provides great flexibility, personal comfort and energy efficiency in both air circulation and room illumination for commercial and residential environments. With this system, various electric appliances can be mounted onto the track in a safe and quick way. A magnetic telescopic control rod is used to adjust the positions of the electric appliances in the ceiling-mounted track, like fans and lights. It brings safety and convenience to everyday life at affordable cost.
US11004580B2

The invention relates to an explosion-proof assembly (22) having an electrically conductive stud (23) made of a material which is not deformable radially. The stud (23) is coaxially surrounded in a central portion (23a) by an electrically insulating, electrically insulating sleeve (30). The sleeve (30) is in turn coaxially surrounded by a connecting portion (41) of a plastically deformable connecting body (40). Plastic deformation of the connecting portion (41) reduces the outer dimension thereof and the connecting portion (41) presses inwardly against the sleeve (30) to form a frictionally engaged form-fitting connection therebetween such that the connecting body (40), the sleeve (30) and the stud (23) form a structural unit with at least one stop surface (26) on the stud (23) resting against a counter stop surface of the sleeve (30).
US11004578B1

Twisted pair communication cables that include reduced or minimal use of colorant may include a plurality of twisted pairs of individually insulated conductors, and the respective insulation formed around each conductor included in the plurality of twisted pairs may include one or more polymeric materials that are not blended or compounded with any colorant. A plurality of dielectric separators may be provided including a dielectric separator respectively positioned between the individually insulated conductors of each of the plurality of twisted pairs. Physical indicia may be selectively formed on at least two of the plurality of dielectric separators, and the physical indicia may facilitate identification of the plurality of twisted pairs. A jacket may be formed around the plurality of twisted pairs and the plurality of dielectric separators.
US11004576B2

A flame retardant cable for low-voltage applications is disclosed which comprises at least one conductor individually electrically insulated by a layer of polymeric material, a fire-resistant tape containing an inorganic material wrapped around said at least one individually electrically insulated conductor and an multilayered outer sheath having flame-retardant properties which encloses said at least one individually electrically insulated conductor and said fire-resistant tape, wherein said multilayered outer sheath comprises an inner layer and an outer layer, the inner layer being made of a flame-retardant polymeric material having a limiting oxygen index (LOI) higher than the LOI of the flame-retardant polymeric material forming the outer layer of said sheath. Such a cable has improved flame retardant performances, especially regarding a lower generation of droplets during burning, which render it capable of being certified in higher classes of the current international standards, for example of the European standard EN 50399:2011/A1 (2016).
US11004574B2

An anisotropic conductive film manufacturing method capable of reducing manufacturing costs. Also, an anisotropic conductive film capable of suppressing the occurrence of conduction defects. The anisotropic conductive film manufacturing method includes: a holding step of supplying conductive particles having a plurality of particle diameters on a member having a plurality of opening parts, and holding the conductive particles in the opening parts; and a transfer step of transferring the conductive particles held in the opening parts to an adhesive film. In the particle diameter distribution graph (X-axis: particle diameter (μm), Y-axis: number of particles) of the conductive particles held in the opening parts, the shape of the graph is such that the slope is substantially infinite in a range at or above a maximum peak particle diameter.
US11004573B2

The present invention relates to a method creating highly concentrated quantum entangled particles which can be embedded into substrates such that the particles, and therefore substrates they are embedded upon are remotely controllable. The invention includes streaming a beam of particles through a beam splitter and then applying a selected correlation system, such as NMR or supercooling, to the particles in order to align the particle spins. The particles are then released from the correlation system resulting in an unnaturally high saturation of concentrated quantum entangled particles on a macro scale. The particles and substrates are then in a salve-x relationship configuration and are therefore remotely controllable. Through stimulation and detection, changes in state may be observable in order to determine the level of concentration and remote control.
US11004569B2

A tool is provided for use in conjunction with a pressure support system that is structured to provide therapy to a patient to treat a condition of the patient by delivering a flow of breathing gas to the patient. The tool may be implemented on a portable electronic device or a PC and is configured to, among other things, provide customized/personalized education and feedback to the patient based, at least in part, on data that is measured by the pressure support system during the provision of therapy to the patient. The tool utilizes certain patient/therapy metrics, where each patient/therapy metric includes raw data that was measured by the pressure support system and that has been processed (e.g., summarized and/or otherwise manipulated) to form the patient/therapy metric.
US11004566B2

Systems, devices, and methods are provided that allow detection of episodes in analyte measurement, prompting a patient to self-report possible causes for the episodes. Correlation of possible causes with detected episodes assists patient behavior modification to reduce the occurrence of episodes.
US11004565B2

A system for recording, storing and processing diagnostic information, including: a computer implementing a computer-readable media including digital data and ground truth; a registry constructed and arranged to store and associate transactions or accesses on the data; and a machine learning system that considers each learning step modification a microtransaction for the data used in that step and which is recorded in the transaction registry. Other embodiments of this aspect include corresponding computer systems, apparatus, and computer programs recorded on one or more computer storage devices, each configured to perform the actions of the methods.
US11004563B2

Techniques regarding pain treatment are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can include: a data collection component that can determine at least one parameter associated with a pain perception of a subject, a computing component that can determine a relationship between the pain perception and the at least one parameter using artificial intelligence, and can determine a treatment for the subject based on the relationship; and a treatment component that can cause a device associated with the subject to apply at least a portion of the treatment.
US11004556B2

The disclosure describes techniques for associating therapy adjustments with posture states using a timer. The techniques may include detecting a patient adjustment to electrical stimulation therapy delivered to the patient, sensing a posture state of the patient, and associating the detected adjustment with the sensed posture state if the sensed posture state is sensed within a first period following the detection of the adjustment and if the sensed posture state does not change during a second period following the sensing of the sensed posture state.
US11004551B2

A sleep improvement system includes a lifestyle pattern generator configured to generate a lifestyle pattern from at least one of sleep information about sleep of a user, lifestyle information about the user, and living condition information about the user.
US11004549B2

Techniques for the mapping, selection and import of patient medical objects can include receiving metadata of a plurality of patient medical objects from one or more data sources. Metadata icons can be generated for the received metadata of the plurality of patient medical objects. The metadata icons can be filtered based on one or more received criteria. A patient map including the filtered metadata icons can be generated. In addition, the selection of one or more metadata icons in the patient map can be received and used to determine one or more selected patient medical objects. The selected patient medical objects can thereafter be imported from the one or more data sources.
US11004536B2

Provided herein are methods and arrangements and related cell-free biomolecular breadboards configured to design, build, implement, debug, and/or test a genetic circuit to be operated in a target environment, by testing in a cell-free system under conditions of the target environment, molecular components of the genetic circuit and/or combinations thereof to select the molecular components and/or combinations thereof of a genetic circuit operative in the target environment.
US11004531B2

A test control circuit includes a test mode generation circuit. The test mode generation circuit may be configured to generate, while in a fast access mode, a fast test mode signal based on information included in one of a plurality of mode signals and a fast set signal. The test mode generation circuit may be configured to generate, while in a normal mode, a normal test mode signal based on information included in two or more mode signals from the plurality of mode signals and a normal set signal.
US11004529B2

The present technology includes a memory controller that controls auxiliary power cells of which the charge counts is small to be preferentially charged, based on charge count information of each of a plurality of auxiliary power cells included in an auxiliary power device that supplies power to a memory device and a memory controller.
US11004518B2

Methods for reducing read disturb using NAND strings with poly-silicon channels and p-type doped source lines are described. During a boosted read operation for a selected memory cell transistor in a NAND string, a back-gate bias or bit line voltage may be applied to a bit line connected to the NAND string and a source line voltage greater than the bit line voltage may be applied to a source line connected to the NAND string; with these bias conditions, electrons may be injected from the bit line and annihilated in the source line during the read operation. To avoid leakage currents through NAND strings in non-selected memory blocks, the threshold voltages of source-side select gate transistors of the NAND strings may be set to a negative threshold voltage that has an absolute voltage value greater than the source line voltage applied during the read operation.
US11004517B2

A storage device includes a nonvolatile memory device including a memory block and a memory controller. The memory block includes a first memory region connected with a first word line and a second memory region connected with a second word line. The memory controller sets a read block voltage based on a first read voltage of the first memory region. The memory controller determines a second read voltage of the second memory region based on variation information and the read block voltage.
US11004515B2

There may be provided a controller including an erase count monitor and a command generator. The erase count monitor may store and update an erase count value for the memory block. The erase count value may indicate a number of times an erase operation is performed for the memory block. The command generator may be configured to generate, based on the erase count value, a set command for setting a first select transistor among the select transistors to which an erase operation voltage is to be applied during the erase operation of the memory block, and a second select transistor among the select transistors to be floated when the erase operation voltage is to be applied to the first select transistor.
US11004514B2

A memory device includes a first cell above a substrate, a first line connected to the first cell, a second cell above the first cell connected with the first cell, a second line connected to the second cell, a third cell above the second cell connected with the second cell, a third line connected to the third cell, a fourth cell above the third cell connected with the third cell, a fourth line connected to the fourth cell, and a driver applying voltages to the lines when data is written to a cell in a write operation. To write data to the second cell, the driver applies a write voltage to the second line, applies a first voltage lower than the write voltage to the first line, and applies a second voltage higher than the first voltage and lower than the write voltage to the third and fourth lines.
US11004507B2

A memory controller may detect degradation in accordance with a bit error rate (BER) of the resistive memory device including memory cells. The memory controller may control the memory cells to be programmed to a first resistance state, read the programmed memory cells, and receive the BER of the memory cells generated during a read operation from the resistive memory device. The memory controller may determine a quantity of program cycles of the memory cells based on the BER. The quantity may be determined based on reference to a lookup table indicating a correlation between the BER and the quantity of program cycles.
US11004505B1

A non-volatile memory cell includes a floating gate transistor having a floating gate. A method for operating the non-volatile memory cell includes, during a program operation, performing an initial program searching operation to identify a first initial value of a threshold voltage of the floating gate transistor, coupling the floating gate of the floating gate transistor to a first program voltage to raise the threshold voltage of the floating gate transistor, performing a program searching operation to identify a first variation of the threshold voltage, generating a second program voltage according to the first variation of the threshold voltage, and coupling the floating gate of the floating gate transistor to the second program voltage to raise the threshold voltage of the floating gate transistor.
US11004499B1

A latency control circuit and method are provided. The latency control circuit includes a DLL circuit, a latency counter circuit, a synchronization circuit, and a delay line circuit. The DLL circuit enters an inactive state after locking the delay time and provides an active signal at a disable state, delay locking information and loop delay information during the inactive state. The synchronization circuit stops providing a first clock signal according to the active signal at the disable state and then synchronously outputs an operation enabling signal and a second clock signal in response to an enablement of the operation signal. The delay line circuit receives the delay locking information, the operation enabling signal, and the second clock signal and outputs an operation delay signal and an output clock signal after the delay time.
US11004491B2

The present disclosure generally relates to semiconductor structures and, more particularly, to twisted wordline structures and methods of manufacture. The memory array structure includes: a plurality of bitcells comprising memory elements and access transistors; a plurality of bitlines and wordlines which interconnect the bitcells; a plurality of dummy bitcells which intersect with the bitlines and wordlines; and a plurality of twisted wordline strap cells which twist wordlines in the dummy bitcells and connect a higher metal layer in the bitcells to a gate structure of the access transistor.
US11004490B2

The disclosed technology relates generally to magnetic random access memory, and more particularly to spin-orbit-torque (SOT) magnetoresistive random access memory (MRAM). According to an aspect, a MRAM device comprises a first transistor, a second transistor, and a resistive memory element. The resistive memory element comprises a magnetic tunnel junction (MTJ) pillar arranged between a top electrode and bottom electrode having a first terminal and a second terminal. According to another aspect, a method of using the MRAM device is disclosed.
US11004489B2

A perpendicular spin transfer torque MRAM memory cell includes a magnetic tunnel junction stack comprising a pinned layer having a fixed direction of magnetization, a free layer having a direction of magnetization that can be switched, a tunnel barrier between the pinned layer and the free layer, a cap layer above the free layer and one or more in-stack multi-layer thermal barrier layers having multiple internal interfaces between materials. The thermal barrier layers have high enough thermal resistivity to maintain the heat generated in the memory cell and low enough electrical resistivity to not materially change the electrical resistance of the memory cell. One embodiment further includes a thermal barrier liner surrounding the free layer, pinned layer, tunnel barrier and cap layer.
US11004480B2

A device for reducing leakage current includes a memory cell array, a power switch and a core logic. The memory cell array is electrically connected to a first power rail which supplies a first voltage level. The core logic circuitry is electrically connected to a second power rail via the power switch when the power switch is turned on. The second power rail supplies a second voltage level which is lower than the first voltage level. The power switch is to be turned off by the first voltage level supplied to a gate terminal of the power switch, to thereby disconnect the core logic circuitry in a sleep state from the second power rail.
US11004475B2

Methods and apparatuses are provided for aligning read data in a stacked semiconductor device. An example apparatus includes a stacked semiconductor device comprising stacked first and second die. The stacked semiconductor device includes a first path having a first align (first die) and second align (second die) circuits for providing read data from the second die and a second path having a first replica align (first die) and second replica align (second die) circuits. During a timing align operation, a first control circuit sets the first align and replica align circuits to a first delay value based on a propagation delay of a clock signal through the second replica align circuit. After setting of the first delay value, a second control circuit sets the second align and replica align circuits to a second delay value based on a difference in propagation delays through the first and second replica align circuits.
US11004466B1

A recording head that includes a reader having a front end at a bearing surface of the recording head and a rear end behind the bearing surface. The reader has a non-rectangular shape with a front-end width that is less than an average width of the reader. A first bias element is positioned proximate to a first side of the reader, and a second bias element is positioned proximate to a second side of the reader. Each of the first and second bias elements has a bias level that is a function of a ratio of the front-end width to the average width of the reader.
US11004464B1

According to one embodiment, a magnetic head includes first and second shields, a magnetic pole, a first magnetic layer, and a first nonmagnetic member. The first shield includes first, second, and third partial regions. A first direction is from the second toward third partial region. The first partial region is between the second and third partial regions. A second direction from the first toward second shield crosses the first direction. The magnetic pole between the second and third partial regions in the first direction is provided between the first partial region and the second shield in the second direction. The first magnetic layer is provided between the magnetic pole and the second shield. The first nonmagnetic member includes first and second portions. The first portion is between the magnetic pole and the first magnetic layer. The second portion is between the second partial region and the second shield.
US11004461B2

Embodiments of the present systems and methods may provide techniques for extracting vocal features from voice signals to determine an emotional or mental state of one or more persons, such as to determine a risk of suicide and other mental health issues. For example, as a person's mental state may indirectly alters his or her speech, suicidal risk in, for example, hotline calls, may be determined through speech analysis. In embodiments, such techniques may include preprocessing of the original recording, vocal feature extraction, and prediction processing. For example, in an embodiment, a computer-implemented method of determining an emotional or mental state of a person, the method comprising acquiring an audio signal relating to a conversation including the person, extracting signal components relating to an emotional or mental state of at least the person, and outputting information characterizing the extracted emotional or mental state of the person.
US11004453B2

Techniques for avoiding wake word self-triggering are provided. In one embodiment, an electronic device can receive an audio-out signal to be output as audio via a speaker of the device and can attempt to recognize a wake word in the audio-out signal using a first recognizer. If the wake word is recognized in the audio-out signal, the electronic device can further determine whether a wake word match is made using a second recognizer with respect to a mic-in audio signal captured via a microphone of the device at approximately the same time that the audio-out signal is output via the speaker. If so, the electronic device can ignore the wake word match made using the second recognizer.
US11004451B2

A system, a user terminal, a method of the system, a method of the user terminal, and a computer program product are provided. The system includes a communication interface, at least one processor operatively coupled to the communication interface, and at least one piece of memory operatively coupled to the at least one processor, wherein the at least one piece of memory is configured to store instructions configured for the at least one processor to receive sound data from a first external device through the communication interface, obtain a voice signal and a noise signal from the sound data using at least some of an automatic voice recognition module, change the voice signal into text data, determine a noise pattern based on at least some of the noise signal, and determine a domain using the text data and the noise pattern when the memory operates.
US11004446B2

Intelligent assistant systems, methods and computing devices are disclosed for resolving alias identifiers. A method comprises receiving and parsing data comprising a current user input that includes an alias identifier. The data and/or other sensor data are analyzed to identify the user. Based at least on identifying the user and recognizing the alias identifier, usage pattern data comprising at least one previous user input that includes the alias identifier and corresponding context information is accessed. The usage pattern data is used to resolve the alias identifier to mean the alias identifier in an alias record of a known entity. Based at least on resolving the alias identifier, an output device is controlled to one or more of generate a message and perform an action with respect to the known entity.
US11004442B2

A system and method related to creating a reference transcript for a portion of audio data that includes natural language using a speech-to-text recognition process executed at a reference speed. A threshold deviation may be identified from the reference transcript. A plurality of generated transcripts may be generated for the portion of audio data using the speech-to-text recognition process executed at a plurality of increased speeds that each exceed the reference speed. A generated transcript of the plurality of generated transcripts that is the closest to the threshold deviation without exceeding the threshold deviation may be identified. The generated transcript may be generated at a respective increased speed of the plurality of increased speeds. An increased playback speed may be determined for the portion of the audio data based on the respective increased speed of the generated transcript.
US11004434B2

The present invention relates to systems and methods for visual image audio composition. In particular, the present invention provides systems and methods for audio composition from a diversity of visual images and user determined sound database sources.
US11004430B2

Disclosed is a pitch adjuster for a musical instrument having valves for selectively directing air flow through additional tubes and tuning slides on at least some of the additional tubes. The pitch adjuster automatically adjusts the tuning slides depending upon which valves are directing the air flow to pass through their additional tubes. There are a pair of adjustable linear solenoids connected between the additional tubes and their tuning slides, each of which adjusts the tuning slide when the solenoid is energized. There are sensors to detect whether each valve is directing the air flow through its additional tube. There is also a controller connected to sensors and solenoid for energizing the selected solenoids when the controller receives input from at least two sensors that the valves are directing the air flow to pass through their additional tubes.
US11004427B2

A data processing system for providing an output surface for display. The data processing system includes rendering circuitry operable to generate one or more input surfaces to be used for providing an output surface for display. The rendering circuitry is operable to generate a peripheral region of an input surface at a lower fidelity than the fidelity at which a central region of the input surface is generated or is operable to generate one of a plurality of input surfaces at a lower fidelity than the fidelity at which another of the plurality of input surfaces is generated. The data processing system also includes display composition circuitry operable to select part of at least one of the one or more generated input surfaces based on received view orientation data to provide an output surface for display.
US11004426B2

An augmented reality display system included in a vehicle generates an augmented reality display, on one or more transparent surfaces of the vehicle. The augmented reality display can include an indicator of the vehicle speed which is spatially positioned according to the speed of the vehicle relative to the local speed limit. The augmented reality display can include display elements which conform to environmental objects and can obscure and replace content displayed on the objects. The augmented reality display can include display elements which indicate a position of environmental objects which are obscured from direct perception through the transparent surface. The augmented reality display can include display elements which simulate one or more particular environmental objects in the environment, based on monitoring manual driving performance of the vehicle by a driver. The augmented reality display can include display elements which identify environmental objects and particular zones in the environment.
US11004422B1

In one or more embodiments, one or more systems, methods, and/or processes may: determine if the user is utilizing a previously utilized a workspace configuration; if the user is utilizing the previously utilized workspace configuration, display multiple windows respectively associated with multiple applications; and if the user is not utilizing the previously utilized workspace configuration: determine hardware resources of a current workspace configuration; modify the workspace configuration data based at least on the hardware resources of the current workspace configuration; map the multiple windows respectively associated with the multiple applications to multiple displays of the current workspace configuration based at least on the workspace configuration data; adjust a resolution of a window of the multiple windows based at least on a resolution of a display of the multiple displays that shall display the window; and translate a saved position of the window to a position associated with the display.
US11004420B2

A display gradation number acquisition unit acquires the number of display gradations of the video data during each horizontal scanning period based on a gradation histogram. A first display gradation holding period value generator generates a first display gradation holding period value based on a gradation value difference. A second display gradation holding period value generator generates a second display gradation holding period value based on the number of pixels for each display gradation. A holding period provisional value generator selects a display gradation holding period value having a larger value to generate a holding period provisional value. A holding period total value generator generates a holding period total value that is a sum of the holding period provisional value during each horizontal scanning period. A holding period optimum value generator generates a holding period optimum value of each display gradation.
US11004419B1

A Mura compensation optimization method and system for liquid crystal display panel is disclosed. The method detecting the received original picture data signal and determining whether an original picture is a grayscale transition picture or a single grayscale value picture by a timing controller; and when determining that the original picture is a grayscale transition picture or not a single grayscale value picture, turning off a Mura compensation function by the timing controller. The present invention can avoid the phenomenon of display abnormality caused by Mura compensation under some specific screens, and optimize the Mura compensation effect of the liquid crystal display panel.
US11004418B2

A driving method, a driving device, and a display device are provided. The driving method includes steps of: turning on the first and second switch transistors under control of the first scanning line and turning off the third switch transistor under control of the second scanning line and turning off the fourth switch transistor under control of the third scanning line to control the data line to input data signals into the first and the second pixel electrodes through the first and second switch transistors; turning on the third switch transistor and turning off the first and second switch transistors and turning off the fourth switch transistor to establish a preset voltage difference between the first and second pixel electrodes. Wherein, the first and second pixel electrodes, and the auxiliary electrode are made of a same material.
US11004415B2

A shift register comprises: a first switch electrically coupled to a control signal, and to a first node; a second switch electrically coupled to the first node, to a frequency signal, and to a first output signal; a third switch electrically coupled to a second node, to the first output signal, and to a low predetermined voltage level; a fourth switch electrically coupled to a second output signal, to the first node, and to the low predetermined voltage level; a fifth switch electrically coupled to the first node, to the frequency signal, and to a third node; and a pull-down control circuit electrically coupled to the frequency signal, the low predetermined voltage level and the second node.
US11004395B2

A display device includes a base layer, first pixels, second pixels, a power supply line (PSL), a power supply voltage supply circuit (PSVSC), and a feedback wire (FBW). The base layer includes a display area (DA) and a non-display area (NDA) adjacent to the DA. The DA includes a first pixel area (PA) including first pixels and a second PA including second pixels. The second PA protrudes from the first PA. The PSL extends in at least a first direction in the DA. The PSL receives a first power supply voltage (PSV) through a first end of the PSL, and supplies the first PSV to the first and second pixels. The PSVSC supplies the first PSV to the PSL through the first end. The FBW is electrically connected to a second end of the PSL disposed in the second PA. The FBW feeds back the first PSV to the PSVSC.
US11004382B2

A backlight source and a manufacture method thereof, a display device are provided. The backlight source includes a base substrate, the base substrate is divided into a plurality of light emitting regions, and at least one of the plurality of light emitting regions comprises a plurality of light emitting elements, a first common polar line, and a second common polar line. Light emitting brightness of at least one of the light emitting regions is adjustable independently.
US11004381B2

The present disclosure provides an array substrate and a display device for reducing the space occupied by the antenna inside the mobile phone, so as to reduce the thickness of the mobile phone and make the mobile phone thinner and lighter. The array substrate according to the present disclosure includes dummy signal lines and a conductive portion. The dummy signal lines and the conductive portion are disposed in different layers. An insulating layer is disposed between the dummy signal lines and the conductive portion. A via is disposed on the insulating layer. The dummy signal line is connected to the conductive portion through the via. The dummy signal line and the conductive portion are used to form an antenna.
US11004380B2

The present invention teaches a Gate Driver on Array (GOA) circuit for a display panel. The GOA circuit includes a first dummy GOA unit and/or a second dummy GOA unit not connecting scan lines of the display panel's active area, and normal GOA units connecting scan lines of the active area. The normal GOA units are cascaded into a chain. The first dummy GOA unit is cascaded to a first normal GOA unit of the chain and/or the second dummy GOA unit is cascaded to a last normal GOA unit of the chain. A start signal of the display panel's vertical scanning as a cascaded signal is input into the first dummy GOA unit and/or the second dummy GOA unit. The GOA circuit excludes the line of afterimage from the active area, thereby allowing the fast black frame insertion after abnormal shutdown.
US11004374B2

A low-power display device in which an operation method is optimized in accordance with the resolution and the frame frequency of a content is provided. The display device includes a display unit and an image receiving apparatus. In the case where the resolution of a content is lower than the resolution that can be displayed by the display device, a source driver and a gate driver included in the display unit output signals to a plurality of source lines and gate lines, and the source driver and the gate driver are operated at lower operation frequencies. Furthermore, the power supply voltages of the logic circuit portions included in the source driver and the gate driver are lowered. In the case where the frame frequency of the content is lower than the frame frequency that can be displayed by the display device, the source driver and the gate driver included in the display unit are operated at lower operation frequencies, and power supply voltages of the logic circuit portions included in the source driver and the gate driver are lowered. The image receiving apparatus detects the resolution and the frame frequency of the content.
US11004373B2

A source driver and an operating method thereof are provided. The source driver includes a high voltage circuit, a low voltage circuit and a sensing circuit. The low voltage circuit is coupled to the high voltage circuit. The high voltage circuit and low voltage circuit drive a display panel. The sensing circuit is coupled to the low voltage circuit. The sensing circuit senses the display panel during an analog-to-digital operating period. At least one of the high voltage circuit and the low voltage circuit is disabled during at least part of the analog-to-digital operating period.
US11004372B2

Examples are disclosed herein related to controlling a scanning display system. One example provides a display device comprising a light source, a scanning mirror system configured to scan light from the light source, and a controller configured to control the scanning mirror system to scan the light by synthesizing in a time domain a mirror control waveform that comprises a linear scan portion and a retrace portion stitched to the linear scan portion, the mirror control waveform being continuous and having an arbitrary timing that is adjustable by the controller between scan cycles.
US11004368B2

An easel is disclosed, where the easel may comprise a center front panel, a center rear panel positioned adjacent a top edge of the center front panel, a left front side panel positioned adjacent the center front panel, a right front side panel positioned adjacent the center front panel opposite the left front side panel, a right rear side panel positioned adjacent the center rear panel, a left rear side panel positioned adjacent the center rear panel opposite the right rear side panel. A first right slot may be positioned between the center rear panel and the right rear side panel, and a first left slot may be positioned between the center rear panel and the left rear side panel. Each of the center front panel and the center rear panel may include a pair of flaps configured to removably secure a sign. The easel may also have a presentation configuration and an unfolded configuration. When the easel is in the presentation configuration, the easel may form an A-frame structure, and when the easel is in the unfolded configuration, the center front panel and the center rear panel may be arranged substantially parallel to each other.
US11004359B2

A defibrillation training system, enabling the use of a live defibrillation unit (2), comprising a module (3) and a cable (1) interconnecting said module (3) and said defibrillation unit (2). The cable (1) being a resistance cable that has an impedance that simulates patent impedance and absorbs electric shock pulses made by said defibrillator unit (2).
US11004358B2

An educational kit for teaching mathematics includes easily manipulated elements, which serve as cognitive reinforcement during the learning process. These physical elements are used in conjunction with a set of grouping rules. The educational kit and corresponding grouping rules determine a model and process to represent both an algebraic linear equation and its algebraic solution. A simple element, such as an item/figure including a variable “X”, is used to denote the unknown quantity. An item/figure including a number is used to represent a numerical value. These items/figures contain the exact elements used to form the expressions of the linear equation and are not items/figures that simulate the elements that form the expressions of the equation. By the use of this educational kit and associated grouping, students learn to simplify a given linear algebraic equation to the point where the solution is obvious.
US11004357B2

Methods, computer-readable media, software, and apparatuses provide a tool for use by drivers and/or coaches throughout the pre-license stage of obtaining a driver's license. A pre-license program may control a computing device to collect drive data while a driver is driving a vehicle. This drive data may be used to detect a drive event. Then, the computing device may present coaching information associated with the detected drive event. The coaching information may provide a passenger, such as a coach or parent, with real-time advice for instructing the driver how to improve his/her driving skills. Moreover, the drive data collected may be used to prepare reports providing feedback to the drivers and coaches.
US11004347B1

A system and method for generation and display of a dynamic looming ball deviation symbology (DLBDS) to a pilot receives inputs from a plurality of sources and displays a single source 3D deviation indicator to limit a scan requirement of a pilot. The system generates and displays the DLBDS relative to an ownship flight path marker intuitively useful to indicate each of a lateral deviation, a vertical deviation, and a longitudinal deviation relative to a desired object or position relative to the desired object. The DLBDS is displayed relative to the ownship aircraft and indicates deviation to be corrected to position the aircraft at the desired position relative to the object.
US11004339B2

A driving assistance device for a driver of a vehicle includes an electronic control unit configured to, before the vehicle passes through a predetermined position in a predetermined direction, acquire information relating to a predetermined traffic regulation to be applied when the vehicle passes through the predetermined position in the predetermined direction, acquire an observance tendency of an other driver relating to the predetermined traffic regulation, a degree of similarity between a predetermined characteristic of the other driver and the predetermined characteristic of the driver of the vehicle is equal to or greater than a predetermined value, before the vehicle passes through the predetermined position in the predetermined direction, output a warning to prompt observance of the predetermined traffic regulation, and change an output state of the warning to prompt observance of the predetermined traffic regulation based on the observance tendency of the traffic regulation of another driver.
US11004338B2

In embodiments, an apparatus for safety collaboration in autonomous or semi-autonomous vehicles may include an input interface to obtain sensor data from one or more sensors of a computer-assisted or autonomous driving (CA/AD) vehicle, an output interface, and an analyzer coupled to the input and output interfaces to process the sensor data to identify an emergency condition of the CA/AD vehicle, and in response to the identified emergency condition, cause a communication interface of the CA/AD vehicle, via the output interface, to broadcast a request for assistance to be received by one or more nearby CA/AD vehicles. In embodiments, the apparatus may be disposed in the CA/AD vehicle.
US11004324B1

A floating alerting device includes a housing enclosure which floats when closed, a rechargeable battery within the housing enclosure, a wireless transmitter circuit coupled to the rechargeable battery and housed within the housing enclosure, and one or more sensors configured for detecting objects entering a body of water or for measuring one or more among water quality, water temperature, or pool usage or tub usage where the one or more sensors are coupled to the wireless transmitter circuit and housed within the housing enclosure. The floating alerting device further includes an antenna coupled to the wireless transmitter circuit and one or more processors coupled to the wireless transmitter circuit and configured to transmit data from the one or more sensors to a remote computing device.
US11004323B2

A method for detecting an exit of a patient from a hospital bed, the method comprising: detecting a presence of the patient on the bed; upon detection of the patient on the bed, monitoring an indication that the patient has moved from a predetermined patient area on a patient receiving surface of the bed to outside the predetermined patient area; upon detection that the patient has moved outside the predetermined patient area, activating a bed alarm to indicate to a user that an exit of the patient from the hospital bed has been detected. There is also provided a system for detecting an exit of a patient from a hospital bed. There is further provided a method for limiting a height of a hospital bed and a method for recalibrating a tare weight condition of a hospital bed.
US11004319B2

Aspects of the present disclosure include methods, apparatus, and systems for configuring a security camera including establishing a first connection between the dongle and the security camera through a communication port of the dongle, establishing a second connection with a mobile device, transmitting a request to the mobile device via the second connection, receiving, in response to the request, a configuration credential from the mobile device via the second connection, wherein the configuration credential is provided by the mobile device without disclosing the configuration credential to an operator of the mobile device, transmitting, via the first connection, the configuration credential to the security camera, receiving, in response to providing the configuration credential, a video stream from the security camera via the first connection, and transmitting, via the second connection, the video stream to the mobile device.
US11004313B2

An alarm screen is provided that comprises a frame comprising a hollow interior. The alarm screen comprises a mesh attached to the frame and a detection wire for carrying electric current, where at least a portion of the detection wire is woven through or overlaid on the mesh. The alarm screen comprises an antenna and at least one circuit board embedded in the hollow interior of the frame. The circuit board comprises a processing unit and a wireless transmitter communicatively coupled to the processing unit. The processing unit is configured to detect that no current is carried through the detection wire and to send a signal to the wireless transmitter. The wireless transmitter is configured to receive signals from the processing unit and wirelessly transmit the signals received from the processing unit through the antenna.
US11004311B2

Systems and methods are provided for providing playing cards. An exemplary method may include retrieving data related to a selection of a set of numbers for bingo and determining matching bingo patterns on a predetermined number of cards from a library of bingo cards against the set of selected numbers. The method may further include selecting corresponding playing cards based on the matching bingo patterns on the predetermined number of cards and providing the corresponding playing cards for display. The exemplary method may be used to deal playing cards for poker using a set of selected numbers.
US11004293B2

A method for testing a valuable document including illuminating the valuable document line by line such that a first group of lines is illuminated with light of a first wavelength and a second group of lines is illuminated with light of a second wavelength, reflection light that is reflected from the lines and/or transmission light that passes through the lines. First data are representative of the reflection light and/or transmission light assigned to the lines of the first group and second data are representative of the reflection light and/or transmission light assigned to the lines of the second group. Further, processing the first data such that a first image generated from the first data has a first resolution, and the second data such that a further image generated from the second data has a second resolution, comparing the first and second images with first and further reference images.
US11004291B2

A system for election document processing is disclosed. Image data representative of a scanned election document is matched with a template for processing and consideration of a new elections record. The template defines areas of interest and rules for processing the image data. Data associated with picture elements defining the areas of interest is applied to predetermined validation functions to validate whether the image data includes sufficient information for populating predefined fields and accepting the scanned election document. Additional functions are applied to the image data to compare the image data with information of a voter registration database in order to verify a voter associated with the election document. The scanned election document is further processed for validation sampling.
US11004290B2

A queue management system in accordance with present embodiments may include a data server system including a processor and memory. The queue management system may include an interface system of the data server system configured to receive a reservation request including an indication of a general time period of arrival of a guest to an area. Additionally, the queue management system may include a reservation right allotment system of the data server system configured to correlate a reservation slot for accessing an attraction to identification information for the guest. Further, the queue management system may include a detection system of the data server system configured to determine when a portable identification feature associated with the identification information has arrived to the area, and a reservation assignment system of the data server system configured to establish a reservation to access the attraction at a specific time window.
US11004288B2

Visitor meeting registration and management is described herein. One device includes a user interface, memory, and processor to receive, from a user of the mobile device via the user interface, an invitation code associated with an invitation received by the mobile device for a meeting at a facility, display, on the user interface upon receiving the invitation code, a registration screen for the meeting, receive, from the user via the registration screen displayed on the user interface, registration information for the meeting, send the registration information to a computing device associated with the facility, receive, from the computing device, an identification mechanism for the user, provide the identification mechanism for the user to a visitor validation device at an entry point to the facility, and receive, from the computing device upon providing the identification mechanism to the visitor validation device, a digital badge for accessing the facility.
US11004277B2

A computing device is connected to a motor vehicle's diagnostic port or communication port to acquire vehicle sensor data, for example from various pressure, temperature, oxygen, fuel and other sensors typically installed on a motor vehicle for other reasons. Acquired sensor data is wirelessly transmitted to a remote server where the acquired sensor data can be compared to a database of stored sensor data to identify the motor vehicle. Additional functionality is described that leverages uploaded sensor data. Sensor data may be uploaded to the server in near-real time, and/or buffered locally and uploaded by periodic or episodic, push or pull communication protocols.
US11004270B2

A virtual model placement system can generate virtual floors and virtual walls to correspond to a real-world environment. Virtual items such as doors, windows, lamps, can be placed on the generated virtual walls and the system can generate dynamic updates of the placed items in response to movement by a user's device (e.g., a smartphone moving from right to left). The virtual items can be initially placed as primitives and then rendered to new positions upon the user selecting a render or lock instruction.
US11004268B2

Methods, systems, and media for enhancing one or more publications by receiving live video captured by a user, the live video comprising video of a publication, the publication comprising copyrighted content; identifying at least one first trigger in the live video, identifying one or more first three-dimensional, interactive media associated with the at least one first trigger and pertaining to the copyrighted content, and presenting to the user the first three-dimensional, interactive media; and identifying at least one second trigger in the first three-dimensional, interactive media, identifying one or more second three-dimensional, interactive media associated with the at least one second trigger and pertaining to the copyrighted content, and presenting to the user the second three-dimensional, interactive media to progressively deepen and enrich the engagement with the copyrighted content of the publication.
US11004263B1

Disclosed herein are systems and methods for reading input data into a geometry shader by rebuilding an index buffer. In one aspect, an exemplary method comprises constructing T-vectors for one-element ranges of the index buffer by defining each T-vector as a 4-component vector, calculating T-vectors for ranges [0; i] for all vertices of the index buffer by prefix scanning, for each vertex and for each primitive featuring the vertex, determining if the primitive is complete, and for each complete primitive, calculating an offset in an output index buffer using a component of the T-vector used to indicate, for the vertex, a number of complete primitives inside the range and a component that indicates a number of vertices since a last primitive restart, and writing an index value in an output index buffer, and reading input data into the geometry shader in accordance with the written index values.
US11004254B2

A ray (e.g., a traced path of light, etc.) is generated from an originating pixel within a scene being rendered. Additionally, one or more shadow map lookups are performed for the originating pixel to estimate an intersection of the ray with alpha-tested geometry within the scene. A shadow map stores the distance of geometry as seen from the point of view of the light, and alpha-tested geometry includes objects within the scene being rendered that have a determined texture and opacity. Further, the one or more shadow map lookups are performed to determine a visibility value for the pixel (e.g., that identifies whether the originating pixel is in a shadow) and a distance value for the pixel (e.g., that identifies how far the pixel is from the light). Further still, the visibility value and the distance value for the pixel are passed to a denoiser.
US11004250B2

A point cloud data display system includes a target unit including a reflection target, a scanner device configured to acquire point cloud data, a surveying instrument configured to obtain a distance and an angle to the reflection target, measured coordinates and a direction angle of the scanner device, and a display device configured to display data output from the scanner device and the surveying instrument. The scanner device outputs point cloud data in association with an observation point each time of acquisition of the point cloud data. The surveying instrument outputs coordinates, a direction angle of the scanner device at the observation point. When the point cloud data, coordinates and direction angle with respect to the observation point are obtained, the display device converts point cloud data into data in a map coordinate system and displays the converted data on a display unit in association with a map.
US11004245B2

A user interface apparatus for a vehicle including an interface unit; a display; a camera configured to capture a forward view image of the vehicle and a processor configured to display a cropped area of the forward view image on the display in which an object is present in displayed cropped area, display a first augmented reality (AR) graphic object overlaid onto the object present in the displayed cropped area, change the cropped area based on driving situation information received through the interface unit, and change the first AR graphic object to a second AR object based on the driving situation information.
US11004239B2

A repetitive structure extraction device includes an image feature extraction unit which extracts an image feature for each of a plurality of images which are captured at one or a plurality of locations and which are given different capture times, a temporal feature extraction unit which extracts, for each of the plurality of images, a temporal feature according to a predetermined period from a capture time given to the image, and a repetitive structure extraction unit which learns, on the basis of the image feature extracted for each of the plurality of images by the image feature extraction unit and the temporal feature extracted for each of the plurality of images by the temporal feature extraction unit, a repetitive structure which is used to perform interconversion between the temporal feature and a component of the image feature and which is provided according to a correlation of periodic change between the component of the image feature and the temporal feature.
US11004235B2

Embodiments of the present disclosure provide a method and apparatus for determining position and orientation of a bucket of an excavator, an electronic device and a computer readable medium. The method may include: acquiring an image of a bucket of an excavator collected by a camera provided on an excavator body, the image of the bucket including a preset marker provided on the bucket; determining position and orientation information of the camera relative to the bucket on the basis of the image of the bucket and pre-acquired three-dimensional feature information of the preset marker; and converting the position and orientation information of the camera relative to the bucket into position and orientation information of the bucket relative to the excavator body.
US11004220B2

This method (100) for automatic propagation into an (N+1)-th dimension of an image segmentation initialized in dimension N, N≥2, comprises the acquisition (102) of an ordered series of image representations of dimension N and an initial segmentation (104) in dimension N of a region of interest in the first and last image representations of the series, to obtain first and last initial segmentation masks (M0, Mn) of the region of interest. It further comprises an estimation (106) of registration parameters (La, Ld) between the first and last initial segmentation masks, and upward and downward automatic propagations (108) of the initial segmentation, from the first and last image representations, to all the other image representations of the series by step-by-step registration up to the last and first image representations. The upward and downward automatic propagations are then combined with one another (110, 112) using a reference frame change, between the first and last image representations, obtained by applying the estimated registration parameters (La, Ld).
US11004219B1

A system includes sensors and a tracking subsystem. The subsystem tracks a first object and one or more other objects in a space. After determining that re-identification of the first object is needed, candidate identifiers are determined for the first object The candidate identifiers include a subset of the identifiers of all tracked objects in the space. The subset includes possible identifiers of the first object based on a history of movements of the first object and interactions of the first object with the other objects in the space. Based on a top-view image, a first descriptor is determined for the first object. The first descriptor is associated with a characteristic of the first object. Based on results of comparing the first descriptor to a set of predetermined descriptors, an updated identifier is determined for the first object.
US11004217B2

An object tracking method includes the following operations: detecting a first area of an object in a first video frame based on a deep learning model, in order to forecast a forecast area of the object in a forecast video frame according to the first video frame and the first area; detecting a second area of the object in a second video frame based on the deep learning model; and determining a correlation between the forecast area and the second area, in order to track the object.
US11004215B2

Disclosed is an image processing apparatus that includes one or more processors; and a memory, the memory storing instructions. When executed by the one or more processors, cause the one or more processors to: generate distribution data indicating a frequency distribution of horizontal distance values of a range image based on the range image having pixel values according to distance of an object in a plurality of captured images; predict a predicted position of the object in the distribution data with respect to a range image of a current frame, based on the distribution data with respect to range images of a plurality of previous frames; and continue tracking of the object, based on a similarity between a region of the object in a previous frame and a region in the current frame with respect to the predicted position of the object.
US11004209B2

Techniques and systems are provided for tracking objects in one or more video frames. For example, a first set of one or more bounding regions are determined for a video frame based on a trained classification network applied to the video frame. The first set of one or more bounding regions are associated with one or more objects in the video frame. One or more blobs can be detected for the video frame. A blob includes pixels of at least a portion of an object in the video frame. A second set of one or more bounding regions are determined for the video frame that are associated with the one or more blobs. A final set of one or more bounding regions is determined for the video frame using the first set of one or more bounding regions and the second set of one or more bounding regions. Object tracking can then be performed for the video frame using the final set of one or more bounding regions.
US11004205B2

A hardware accelerator for histogram of oriented gradients computation is provided that includes a gradient computation component configured to compute gradients Gx and Gy of a pixel, a bin identification component configured to determine a bin id of an angular bin for the pixel based on a plurality of representative orientation angles, Gx, and signs of Gx and Gy, and a magnitude component configured to determine a magnitude of the gradients Gmag based on the plurality of representative orientation angles and the bin id.
US11004204B2

A computer-implemented method includes: obtaining a sample picture and corresponding mark data, in which the mark data includes a first damage mark outline, and in which the first damage mark outline frames a damaged object in the sample picture; determining a segmentation type for a plurality of pixels in the sample picture based on the first damage mark outline, to generate segmentation mark data; inputting the sample picture to a weak segmentation damage detection model, in which the weak segmentation damage detection model includes an outline prediction branch and a segmentation prediction branch, in which the outline prediction branch outputs outline prediction data including a damage prediction outline, the damage prediction outline framing a predicted damaged object in the sample picture, and in which the segmentation prediction branch includes segmentation prediction data including a predicted segmentation type of each pixel of the plurality of pixels.
US11004198B2

Methods and systems are provided for assessing the presence of functionally significant stenosis in one or more coronary arteries, further known as a severity of vessel obstruction. The methods and systems can implement a prediction phase that comprises segmenting at least a portion of a contrast enhanced volume image data set into data segments corresponding to wall regions of the target organ, and analysing the data segments to extract features that are indicative of an amount of perfusion experiences by wall regions of the target organ. The methods and systems can obtain a feature-perfusion classification (FPC) model derived from a training set of perfused organs, classify the data segments based on the features extracted and based on the FPC model, and provide, as an output, a prediction indicative of a severity of vessel obstruction based on the classification of the features.
US11004187B2

Methods and systems for facilitating photo-based estimation are described. In an aspect, a server is configured to receive, via a communications module from a remote computing device, a signal comprising image data obtained by the remote computing device through activation of a submission application. The server may obtain verification data that includes at least one of policy data obtained from at least one of the stored profiles or sensor data received from the remote computing device. The server may evaluate the image data based on the verification data to determine whether the image data is valid. The server may, upon determining that the image data is not valid, generate an error.
US11004183B2

A method for magnetic resonance imaging (MRI) includes performing an echo planar imaging acquisition using inverted up/down phase encoding directions and reconstructing acquired images having geometric distortions along the phase encoding directions due to off-resonant spins; feed-forward estimating by a convolutional neural network (CNN) a phase distortion map from the acquired images; where the CNN is trained to minimize a similarity metric between un-warped up/down image pairs; and performing geometric distortion correction of the acquired images using the phase distortion map to unwarp the acquired images.
US11004173B2

A video processing method includes: obtaining a plurality of projection faces from an omnidirectional content of a sphere, wherein the omnidirectional content of the sphere is mapped onto the projection faces via cubemap projection, and the projection faces comprise a first projection face; obtaining, by a re-sampling circuit, a first re-sampled projection face by re-sampling at least a portion of the first projection face through non-uniform mapping; generating a projection-based frame according to a projection layout of the cubemap projection, wherein the projection-based frame comprises the first re-sampled projection face packed in the projection layout; and encoding the projection-based frame to generate a part of a bitstream.
US11004171B2

Disclosed is a multi-channel image processing method including the steps of: storing a multi-channel image in one or several 2D texture units each formed of a pack of four tiles in a server; taking a selection of one or several channels of the multi-channel image into account; taking transformation and projection parameters (real-time user input) for the selected channels into account; applying the transformation on the selected channels, according to received parameters, all pixels of the selected channels being processed at the same time; projecting the selected channels into an RGB color space, according to the received parameters, all pixels of the selected channels being processed at the same time.
US11004157B2

The invention belongs to the field of cloud technology and cloud processing, it discloses an XBRL-based intelligent financial cloud platform system, provides rich accounting services for users in an efficient and convenient manner. The platform system comprises a tenant document, a document tool, an accounting tool and an administration center deployed on a server; the tenant document implements the functions such as order creation, order status query and historical order viewing; the document tool provides such cloud services as image preprocessing, element correction and total element correction; the accounting tool provides such cloud services as rule checking, simulated accounting and accounting reviewing; the administration center is used to provide private cloud management and operation services for financial cloud in an automated, intelligent and standardized manner, consisting of a grain center, a definition center, a construction center, a business center, a user center and an operation center. Furthermore, the invention also provides a construction method and a business implementation method corresponding to the cloud platform system, it is suitable for providing efficient and convenient accounting cloud services.
US11004148B2

Systems and methods for blending a plurality of swaps may include determining a fixed rate for use in blending a plurality of swaps, each of the plurality of swaps having matching economics and a different associated fixed rate. A computing device may determine a first remnant swap and a second remnant swap to blend the plurality of swaps using the determined fixed rates. This may reduce the gross notional and/or the total clearing line items associated with the original swaps. In some cases, the computing device may determine one single swap for blending the plurality of swaps.
US11004146B1

A method for generating a business health score of a business entity that includes identifying tools used to manage the business entity, obtaining business information from the tools, filtering the business information into at least one data category to obtain categorized business information, populating the categorized business information into a data silo, and analyzing, by a computer processor, the categorized business information in the data silo to create a composite business factor. The method also includes applying an algorithm to the composite business factor to generate a result, generating, based on the result, the business health score of the business entity, and providing the business health score to an interested entity.
US11004144B2

A computer-mediated reality system electronically communicates computer-mediated presentation information for a product to a purchaser device. The computer-mediated reality system electronically receives a selection of the product. The computer-mediated reality system automatically places a product code for the product in an electronic shopping cart. The computer-mediated reality system electronically communicates computer-mediated offer information for a contractor service to the purchaser device. The computer-mediated reality system electronically receives a selection of the contractor service. The computer-mediated reality system automatically places a service code for the contractor service in the electronic shopping cart, the service code electronically received from a mapping computer system, the service code automatically derived by the mapping computing system programmed to map the product with the contractor service. The computer-mediated reality system electronically communicates electronic shopping cart information to the purchaser device with a request to complete a purchase of the product and the contractor service.
US11004143B2

Various methods and systems are provided for conducting e-commerce. In one example, a method of conducting an e-commerce transaction includes a method of operating an online retail website. The method includes providing access to a computer interface for suppliers and presenting information to the suppliers through the computer interface regarding activity of the supplier's stock keeping unit (SKU). The suppliers are then enabled to directly modify at least one parameter associated with a presentation of the supplier's SKU on the retail website by way of the interface. The modification of the parameter may include, for example, modification of the presentation of the SKU including, for example, changing the title, adding video or photograph, or adding some other information. The modification of the parameter may also include, for example, modifying the price or entering into a bilateral agreement with the operator of the retail web site.
US11004137B2

A recommendation platform that provides a menu of automated recommendations from on-line information by friends, with various weighting factors, to evaluate businesses. The platform is a software deployable system that amalgamates the candidate businesses into different categories and cross-references friends' experiences with these businesses. The interface utilizes a circular-like menu and is both compact and easily navigable.
US11004135B1

The present disclosure is directed to training, and providing recommendations via, a machine learning model architected to balance relevance and diversity of sets of recommendations. For example, a neural network can be provided with user profile features and can output probabilities for each of a number of recommendations. This can be converted into a ranked list of recommendations. The ranked list of recommendations is provided to a diversity model that maximizes an optimization objective having a first objective that quantifies relevance of a recommendation and a second objective that measures diversity of a set of recommendations. The output of the diversity model is a set of recommendations that have both high relevance and high diversity.
US11004129B2

An image processing method includes partitioning an image under test to form a plurality of contiguous image segments having similar image properties, deriving feature data from a subset including one or more of the image segments, and comparing the feature data from the subset of image segments with feature data derived from respective image segments of one or more other images so as to detect a similarity between the image under test and the one or more other images.
US11004127B2

The present disclosure provides a system and method for analyzing customer communications to provide better customer service including generating customer related data from communications of a customer by at least one sensing device located in a venue, transmitting the generated customer related data to an analysis engine, determining based on an analysis of the customer related data a customer experience, identifying at least one suggestion to provide better customer service including the identification of a representative of the venue that the analysis engine has determined can assist the customer, and receiving the at least one suggestion including an indication that the representative should assist the customer from the analysis engine by a computing device associated with the representative of the venue.
US11004122B2

A system and method for identifying wireless communication assets is provided. Embodiments may include providing, on a graphical user interface (GUI), an interactive map in a first window of the GUI. Embodiments may also include defining, on the GUI, a user-defined search area on the interactive map. In some embodiments, the user-defined search area defined on the interactive map may define at least a portion of a geographic region. Embodiments may further include identifying, on the GUI, one or more wireless communication assets and a location of each of the one or more wireless communication assets within the user-defined search area on the interactive map. In some embodiments, each wireless communication asset may be capable of supporting at least one wireless communication device and the locations of each wireless communication asset on the interactive map may relate to a physical location of each wireless communication asset.
US11004107B2

A target user directing method and apparatus and provided. The method includes determining a similarity between each of candidate users and a seed user by using a similarity model. A conversion prediction model is used to predict a probability that each of the candidate users performs a conversion operation on to-be-delivered information. One or more target users for the to-be-delivered information are selected from the candidate users according to the similarity that is determined and the probability that is predicted for each of the candidate users. The to-be-delivered information is transmitted to the one or more target users.
US11004099B2

System and methods for providing a target price for a target vehicle with a target mileage are provided. One exemplary method includes receiving attributes for the target vehicle, receiving prices for sold vehicles having attributes corresponding to the target vehicle attributes, and receiving mileages for the sold vehicles. The exemplary method may further include generating a linear regression model relating the sold vehicle mileages to the sold vehicle prices, and providing the target price for the target vehicle based on the model.
US11004098B2

An example includes one or more devices may include one or more memories and one or more processors, communicatively coupled with at least one of the one or more memories, to identify a service that is provided within a region; identify a model that is associated with the service, the model having been trained based on consumer profile data, service provider data, and historical information; determine a current demand associated with the service in the region; predict, using the model and based on the current demand associated with the service, a future demand for the service during a time period; determine a current capacity to provide the service based on real-time service provider information associated with service providers that are providing the service in the region; and perform an action associated with the service based on the future demand for the service and the current capacity to provide the service.
US11004096B2

A system and method that enables usage of data embedded inside social media data to help estimate buy intent (BI), to allow companies or organizations to utilize this information to track conversations about their brand, to engage with their customers/users, to conduct advisement and investment efficiency analysis, to manage and reduce potential risk, and identify the factors that may affect company sales and revenues.
US11004091B2

A method and apparatus configure a network between users in a communication system. In a server, the method includes receiving user information from a terminal for purchasing contents, storing information on a purchaser for each of a plurality of contents, and configuring the network including users who purchase identical contents. Accordingly, the network can be automatically configured between user terminals on the basis of a contents purchase history of the user terminal in the communication system.
US11004088B1

Disclosed is a method and system for certifying product authenticity using physical feature information including digitized surface fingerprint and blockchain, each of which manages certification information, packaged by binding together unique product information and physical feature information including surface feature of a product as a unique product feature, based on a distributed ledger of a blockchain to reliably determine whether the product is authentic or not in various ways. The authenticity certification information is packaged as a unique product feature by binding a serial number of the product for which the certification information is generated, together with physical feature information of the product, including image-based surface fingerprint. The authenticity certification information is stored in the blockchain. Determination on authenticity is made by comparing the identification information and the physical feature information with the authenticity certification information stored in the blockchain.
US11004082B2

A first user device may receive, from a second user device, a request to communicatively couple to the first user device, and may establish a communication session with the second user device after receiving the request. The first user device may identify, after establishing the communication session, an inappropriate activity of the second user device relating to the communication session, and perform a set of actions based on identifying the inappropriate activity. The set of actions may include causing the communication session to be restricted, and providing, to a trust platform, a score for the second user device. The score may permit the trust platform to derive a composite score, indicative of a level of trustworthiness of the second user device, that enables other user devices, associated with the trust platform, to determine whether to grant access requests submitted by the second user device.
US11004078B2

Provided is a computer-implemented method for performing analysis of transaction data. The method may include receiving streaming data, wherein the streaming data comprises a plurality of data identifiers and transaction data associated with each transaction of a plurality of transactions, wherein each data identifier is associated with transaction data associated with a transaction so that the transaction data associated with each transaction is separated by a data identifier, filtering the streaming data using at least one predetermined data identifier value to provide filtered transaction data, determining whether the filtered transaction data corresponds to at least one predetermined transaction parameter, and asynchronously storing the filtered transaction data associated with the at least one transaction in at least one data structure. A system and computer program product are also disclosed.
US11004077B2

Methods and systems are disclosed for providing fraudulent transaction processes. In one embodiment, a method is disclosed for performing fraudulent transaction processes that may include receiving an indication that a payment transaction has been identified as potentially fraudulent, the payment transaction involving a payment account associated with a user. The method may also include receiving a candidate voice print and comparing the candidate voice print to a user voice print that is associated with the payment account. The method may further include determining, based on the comparison, whether the candidate voice print matches the user voice print, and providing an indication whether the candidate voice print matches the user voice print, the indication configured for use to determine whether to approve or deny the payment transaction.
US11004072B2

An authentication technique is disclosed that uses a distributed secure listing of transactions that includes encrypted data that can be used to authenticate a principal to a verifier.
US11004066B2

A system and device for adding electronics to materials of a wallet to form a smart wallet. A smart wallet stows and retrieves information stored or displayed on various transaction cards and other information typically carried within the wallet. Electronic and physical features of a smart wallet include devices and techniques for attaching electronics to accessories, and also for attaching accessories, to primary devices to form a smart wallet. The user can then interact with the smart wallet and its cards, information and accessories using an interface that governs that interaction while retaining the security of the information. Mechanical features include techniques for integrating electronics within materials to add electronic functionality to make any device a smart wallet. Several accessory styles and devices for attaching same to electronics are also disclosed.
US11004062B2

A method and a system convert the value of a gift card for use with a mobile device. The value of the gift card is determined from an issuer of the gift card. The value of the gift card is stored in a digital payment account in a storage device. The digital payment account stores values of gift cards from issuers. A financial transaction corresponding to the issuer of the gift card is performed on the digital payment account. The value of a first gift card from a first issuer of a first digital payment account is exchanged with the value of a second gift card from a second issuer of a second digital payment account.
US11004053B2

An intelligent shopping cart, an intelligent shopping system and an implementation method thereof. The intelligent shopping cart includes a cart body; and the cart body includes a storage unit and a handle, and further includes an intelligent terminal device configured on the handle. The intelligent terminal device is provided with a touchscreen computer having a display function and/or an operation function. The cart body is provided with an RFID tag for storing number information of the intelligent shopping cart. The cart body is further provided with a device in a communication connection to the touchscreen computer, and the device at least includes one or a combination of a weight sensor, a monitoring device, a code-scanning device, a positioning device, and a voice broadcasting device.
US11004045B1

Examples described herein relate to apparatuses and methods for reducing an amount of time that a user of a drive-up banking system is exposed to outdoor environmental conditions. A method includes detecting, by a drive-up banking system, a presence of a vehicle proximate the drive-up banking system; projecting, by the drive-up banking system, a user interface onto a vehicle window such that the user interface is visible to the occupant of the vehicle; receiving, by the drive-up banking system, information indicative of an identity of the occupant of the vehicle; determining, by the drive-up banking system, an account corresponding to the occupant of the vehicle; requesting, by the user interface, transaction information; receiving, by the user interface, information indicative of the transaction information; and conducting, by the drive-up banking system, a transaction based on the transaction information.
US11004038B2

A system and method to facilitate transactions between a customer and a vendor utilizing an advertising campaign reaching a plurality of potential customers is provided. The method includes receiving a request from the vendor for a bulk token for use in the advertising campaign, generating the bulk token, transmitting the bulk token to the vendor to embed into the advertising campaign associated with a mailto link, the bulk token being sent as part of the advertising campaign to at least one of the plurality of potential customer, receiving a reply SMTP email from a customer from the plurality of potential customers indicating a request for a transaction responsive to the advertising campaign by selecting the mailto link, decoding the bulk token to verify the transaction, performing an SPF and DKIM validation of the received SMTP email to validate the transaction, and processing the verified and validated transaction.
US11004033B1

Systems, methods, and computer-readable media are disclosed for fully automated order fulfillment. A method includes identifying a shelf tote having an item contained therein for transfer to an order tote; dispatching a first carrier to pick up the shelf tote and a second carrier to pick an order tote; causing the picker to pick the item from the shelf tote while the shelf tote is moving through the transfer station; and transferring the item to the order tote by the picker.
US11004027B2

Described is a method of delivery for cargo or goods from an aerial vehicle (mothership) to a designated ground delivery location via the use of a direct air shipping (DASH) package. For example an aerial vehicle may be an airplane or helicopter that remains at altitude with a DASH packaged stowed for deployment. As the mothership travels in the vicinity of the designated location the DASH package flight control computer (flight controller) calculates a preferred travel trajectory based upon the aerodynamic properties of the package and location relative to the designated delivery location such as a small delivery pad located on a patio of a home. When the mothership transits through a calculated release point the DASH package disengages the mothership. As the DASH package descends it may increase accuracy relative to the designated delivery location by altering aerodynamic properties to maintain the preferred travel trajectory and decreasing landing zone size requirements and increasing precision of delivery. To reduce the impact force at landing the designated delivery location and/or the DASH package may contain a net, airbag, parachute or similar device to provide a suitably soft landing suitable for commercial home delivery.
US11004025B1

Techniques are provided for simulation-based online workflow optimization. One method comprises obtaining a state of concurrent workflows; obtaining state similarity functions that assign a similarity score between pairs of states; generating a simulation model of the workflow executions representing different configurations of at least one control variable in the workflow executions by mapping states with a highest similarity; obtaining at least one utility function that assigns a utility score to the states in the simulation model; determining a configuration of the control variable that maximizes the utility score for states in the simulation model; and for new concurrent workflows: obtaining a current state of the new concurrent workflows; identifying a most similar state with one of the determined configurations of the control variable in the simulation model with a highest similarity to the current state; and adjusting the configuration of the control variable of the new concurrent workflows to match the corresponding configuration of the control variable of the most similar state.
US11004020B2

Disclosed are various embodiments of a food safety management system, including a web portal for management and reporting and a handheld computing device for checklist completion. A checklist of tasks to be performed in a food service establishment is obtained and displayed on a touchscreen of the handheld computing device. Confirmation is obtained on the touchscreen whether a task has been completed. Temperature readings are obtained from one or more stationary sensors monitoring a food storage environment. Task completion data and temperature data are sent to a server.
US11004016B2

Systems and methods for cross-session response tracking in a distributed computing environment using query identifiers generated based on search parameters. A search query including search parameters is received from a client device. A query identifier for the search query is generated based on the search parameters. One version of a search result among multiple versions of the search result is selected based on the query identifier and sent to the client device. A record in a transaction database is correlated with the selected version of the search result using the query identifier.
US11004009B2

The disclosure describes various aspects of optical control of atomic quantum bits (qubits) for phase control operations. More specifically, the disclosure describes methods for coherently controlling quantum phases on atomic qubits mediated by optical control fields, applying to quantum logic gates, and generalized interactions between qubits. Various attributes and settings of optical/qubit interactions (e.g., atomic energy structure, laser beam geometry, polarization, spectrum, phase, background magnetic field) are identified for imprinting and storing phase in qubits. The disclosure further describes how these control attributes are best matched in order to control and stabilize qubit interactions and allow extended phase-stable quantum gate sequences.
US11003995B2

Method and system for performing semi-supervised regression with a generative adversarial network (GAN) that includes a generator comprising a first neural network and a discriminator comprising a second neural network, comprising: outputting, from the first neural network, generated samples derived from a random noise vector; inputting, to the second neural network, the generated samples, a plurality of labelled training samples, and a plurality of unlabelled training samples; and outputting, from the second neural network, a predicted continuous label for each of a plurality of the generated samples and unlabelled samples.
US11003983B2

A computer-implemented method for training a front-end neural network (“front-end NN”) and a back-end neural network (“back-end NN”) is provided. The method includes combining the back-end neural network with the front-end neural network to form a joint layer to thereby generate a combined neural network. The method also includes training the combined neural network for a speech recognition with a set of utterances as training data, with the joint layer having a plurality of frames and each frame having a plurality of bins, and where one or more specific units in each frame are dropped during the training, each of the specific units being selected randomly or based on a bin number to which the respective unit is set within its frame, with the specific units corresponding to one or more common frequency bands.
US11003981B2

Memristive devices and methods for setting the resistance of a memristive device include a first mixed conducting layer formed from a first material having a resistance that changes depending on an ion concentration and having multiple coexisting phases from concentration-dependent metastability. A second metastable, mixed conducting layer is formed from the first material. A barrier layer between the first conductor layer and the second conductor layer is formed from a second mixed conducting material having a chemical potential that prevents thermal ion diffusion between the first and second layer. The barrier layer provides an electrical threshold, above which ions are transferred between the first and second layer and below which the resistance of the device is read.
US11003971B2

There is disclosed a surface acoustic wave sensor. An interdigital transducer (IDT) and a first reflector are formed on a surface of a piezoelectric substrate. The first reflector is displaced from the IDT in a direction of acoustic wave propagation. The first reflector includes a plurality of elongate reflective elements including a first reflective element and N additional reflective elements, where N is a positive integer. A long axis of each of the reflective elements is perpendicular to the direction of acoustic wave propagation, and a distance between adjacent reflective elements along the direction of acoustic wave propagation is a linear function of distance from the first reflective element along the direction of acoustic wave propagation.
US11003967B2

An information processing system includes: a storage unit that stores first printing information on already executed printing in association with an image for printing converted from the first printing information; and an execution unit that, when second printing information included in a printing instruction which instructs execution of printing is identical to the first printing information stored in the storage unit, executes printing according to the printing instruction using the image for printing.
US11003965B2

An image is printed by using a first, second and third ink. A surface tension difference between a first ink and a third ink is smaller than a surface tension difference between the first ink and a second ink. A first gradation value for the first ink, a second gradation value for the second ink and a third gradation value for the third ink are quantized to generate a first quantized value, a second quantized value, and a third quantized value respectively. This quantization processing is performed such that, the number of pixels for each of which the first quantized value indicates printing, a the second quantized value indicates non-printing and the third quantized value indicates non-printing is greater than the number of pixels for each of which the first quantized value indicates printing and at least the second quantized value indicates printing or the third quantized value indicates printing.
US11003959B1

Categorizing images may include training a first neural network to cluster a plurality of images to obtain a first image embedding space, wherein a vector representation is determined for each of the plurality of images based on the training, determining a vector norm value corresponding to each of the plurality of images based on the vector representation for each of the plurality of images, and identifying a first subset of the images for which a corresponding vector norm value satisfies a predetermined vector norm quality threshold. Then, a second neural network may be trained using the first subset of images to obtain a second image embedding space, and the second image embedding space may be used to categorize additional images.
US11003957B2

A method, a device, and a storage medium for certificate identification. The method may comprise: instructing a user to move a certificate according to a designated movement method within an imaging region of a camera of a terminal device; imaging the certificate in the imaging region to obtain a movement video of the certificate; extracting at least one key frame in the movement video; analyzing an image content of the at least one key frame according to a certificate identification method that corresponds to the designated movement method, to generate an analysis result of the image content; and determining, based on the analysis result, whether the certificate is a forged certificate.
US11003955B1

Techniques for compacting an ML model by replacing a linear transformation layer and a convolutional layer with a modified convolution layer. Determining the modified convolutional layer may include determining a modified bias and/or a modified filter. In some examples, before merging the layers, an output of the linear transformation layer may be provided as input to the convolution layer (e.g., the linear transformation layer may precede the convolutional layer). The linear transformation lay may include, for example, a batch normalization layer, a pooling layer, and/or the like.
US11003950B2

Disclosed is system comprising data processing arrangement including processors configured to receive sentences from unlabeled training data set; tokenize, using tokenizer module, sentences to obtain tokens; generate character level features for character of tokens of sentences; generate token level feature for each token of the sentences, wherein token level feature of token in sentence is identified using token coordinates of token and token coordinates of tokens neighboring token in sentence; train artificial neural network adapted to identify entities in sentences to determine first trend set, wherein training is based on received sentences, character level features for each character of tokens of sentences and token level feature for tokens of sentences; train the artificial neural network on set of labelled data to determine second trend set; identify, using identifier module, entity in text content, wherein identifier module uses first trend set and second trend set determined by artificial neural network.
US11003944B2

A camera system including: an image sensor that is controlled by one or more camera parameters; and a pre-processing circuit adapted to associate weights respectively with cells of a grid, wherein the weights differ from the one or more camera parameters, wherein the cells respectively include a plurality of contiguous picture elements of the image sensor.
US11003937B2

A system for extracting text from images comprises a processor configured to receive a digital copy of an image and identify a portion of the image, wherein the portion comprises text to be extracted. The processor further determines orientation of the portion of the image, and extracts text from the portion of the image considering the orientation of the portion of the image.
US11003930B2

The present invention is a method and system to verify carpool occupancy compliance for access to High Occupancy Vehicle (HOV) lanes, High Occupancy or Toll (HOT) lanes, or other vehicle-occupancy contingent rewards. The present invention uses software and hardware devices with radio-frequency transmitter modules to permit “matchmaking” between suitable drivers and riders while using GPS coordinates to confirm passenger proximity to a driver. This driver-rider co-location is performed via push notification and server analysis of driver and rider GPS data. Alternatively, co-location is performed using a combination of GPS data analysis and photographic analysis. In an embodiment, biometric data analysis aids user validation. Occupancy compliance rewards can be communicated directly to an appropriate regulatory body.
US11003928B2

A system uses video of a vehicle or other object to detect and classify an active turn sign on the object. The system generates an image stack by scaling and shifting a set of digital image frames from the video to a fixed scale, yielding a sequence of images over a time period. The system processes the image stack with a classifier to determine a pose of the object, as well as the state and class of each visible turn signals on the object. When the system determines that a turn signal is active, the system will predict an action that the object will take based on the class of that signal.
US11003920B2

A vehicle, system for operating a vehicle and method of navigating a vehicle. The system includes a sensor and a multi-layer convolutional neural network. The sensor generates an image indicative of a road scene of the vehicle. The multi-layer convolutional neural network generates a plurality of feature maps from the image via a first processing pathway, projects at least one of the plurality of feature maps onto a defined plane relative to a defined coordinate system of the road scene to obtain at least one projected feature map, applies a convolution to the at least one projected feature map in a second processing pathway to obtain a final feature map, and determines lane information from the final feature map. A control system adjusts operation of the vehicle using the lane information.
US11003917B2

A method for monitoring a patient (22a) within a medical monitoring area (100) by means of a monitoring system (200) with a depth camera device (210). The method includes the following steps: generating a point cloud (30) of the monitoring area (100) with the monitoring system (200); analyzing the point cloud (30) for detecting predefined objects (20), especially persons (22); determining a location of at least one detected object (20) in the monitoring area (100); and comparing the determined location of the at least one detected object (20) with at least one predefined value (40) for the location of this detected object (20).
US11003914B2

A system for monitoring and recording and processing an activity includes one or more cameras for automatically recording video of the activity. A processor and memory associated and in communication with the camera is disposed near the location of the activity. The system may include AI logic configured to identify a user recorded within a video frame captured by the camera. The system may also detect and identify a user when the user is located within a predetermined area. The system may include a video processing engine configured to process images within the video frame to identify the user and may modify and format the video upon identifying the user and the activity. The system may include a communication module to communicate formatted video to a remote video processing system, which may further process the video and enable access to a mobile app of the user.
US11003912B2

Systems and methods for presenting an augmented reality view are disclosed. Embodiments include a system with a database for personalizing an augmented reality view of a physical environment using at least one of a location of a physical environment or a location of a user. The system may further include a hardware device in communication with the database, the hardware device including a renderer configured to render the augmented reality view for display and a controller configured to determine a scope of the augmented reality view authenticating the augmented reality view. The hardware device may include a processor configured to receive the augmented reality view of the physical environment, and present, via a display, augmented reality content to the user while the user is present in the physical environment, based on the determined scope of the augmented reality view.
US11003910B2

A first and second scoring endpoint with payload logging are deployed. At the second scoring endpoint, native data and a user-generated score for the native data are received, the native data is pre-processed into readable data for the deep-learning model, and the user-generated score and the readable data are output to the first scoring endpoint, which is associated directly with the deep-learning model. A raw payload that includes the native data is output to a payload store. At the first scoring endpoint, the readable data and the user-generated score are processed by the deep-learning model, which outputs a transformed payload and a prediction, respectively, to the payload store. The raw payload is matched with the transformed payload and the prediction to produce a comprehensive data set, which is evaluated to describe a set of transformation parameters. The deep-learning model is retrained to account for the set of transformation parameters.
US11003906B2

A method includes identifying a real-world object in a scene viewed by a camera of a user device, matching the real-world object with a tagged object based at least in part on image recognition and a sharing setting of the tagged object, the tagged object having been tagged with a content item, providing a notification to a user of the user device that the content item is associated with the real-world object, receiving a request from the user for the content item, and providing the content item to the user. A computer readable storage medium stores one or more computer programs, and an apparatus includes a processor-based device.
US11003905B2

A method and an apparatus for recognizing an iris is provided. The method includes acquiring an image from an iris recognition camera in response to receiving a request for iris recognition, displaying a preview image including an iris recognition area corresponding to the iris recognition camera acquired from a regular camera in response to detecting an iris in the acquired image and obtaining information for the detected iris from the iris recognition camera and performing iris recognition using the information for the detected iris.
US11003903B2

The present invention is a method of using a computer to programmatically format an existing sewing pattern for the home sewist so that the pattern, which represents a template, can be used without paper. This invention facilitates the readiness of the pattern for the home sewist's use without paper to save time as well as reduce the physical storage space required and eliminate the paper waste typically created with each new pattern.
US11003900B2

A system identifies a movement and generates prescriptive analytics of that movement. To identify a movement, a system accesses an image of an observation volume where users execute movements. The system identifies a location including an active region in the image. The active region includes a movement region and a surrounding region. The system identifies musculoskeletal points of a user in the location and determines when the user enters the active area. The system identifies a movement of a user in the active region based on the time evolution of key-points in the active region. The system determines descriptive analytics describing the movement. Based on the descriptive analytics, the system generates prescriptive analytics for the movement and provides the prescriptive analytics to the user. The prescriptive analytics may inform future and/or current movements of the user.
US11003877B2

Methods and systems for quickly and accurately identifying a coded identification tag imaged by conventional CCTV video monitoring equipment are presented herein. In one aspect, a coded identification tag includes a plurality of dark-colored polygons arranged around a light-colored central background area to maximize contrast between the polygons and the central background area. An array of dark-colored dots is arranged over the light-colored central background area. A light-colored border is located around the plurality of dark-colored polygons. A Coded Identification Tag Monitoring (CITM) system estimates the position and orientation of the coded identification tag with respect to the collected image based on the unique orientation of the coded identification tag with respect to an image frame. In some examples, the CITM system decodes the coded identification tag when the tag occupies less than 10% of the area of the image collected by the video imaging system.
US11003858B2

A method includes receiving an email addressed to a recipient user, processing the received email using a reparametrized recurrent neural network model to identify an action based on the received email, and wherein the reparametrized recurrent neural network model has been trained on an email dataset annotated with recipient corresponding actions and reparametrized on unannotated conversation data having structures similar to email data.
US11003855B2

A method includes generating entigen groups from phrases of a related topic, where the entigen groups represents most likely meanings of the phrases. The method further includes identifying a first entigen group and a second entigen group, where a first meaning of the first entigen group is similar to, but not identical to, a second meaning of the second entigen group. The method further includes determining a meaning difference between the first meaning and the second meaning. When the first meaning has priority over the second meaning, the method further includes updating the second entigen group with the meaning difference to produce an updated second entigen group. When the second meaning has priority over the first meaning, the method further includes updating the first entigen group with the meaning difference to produce an updated first entigen group.
US11003847B1

In an example embodiment, a process is introduced and acted upon a table prior to the rendering of the table. This process involves optimizing the display of the table by, among other things, automatically setting column widths to reduce extra white space, removing columns with no data, and/or generally reducing the size of the table to attempt to, if possible, remove the presence of a horizontal scroll bar.
US11003846B2

Various embodiments of the present technology generally relate to smarter copy and paste tools. More specifically, some embodiments relate to an intelligent cut and paste tool that includes functionality for tables where headers/labels are automatically determined and incorporated in the copied cells even if those headers/labels were not selected for copying. For example, in response to a request to copy selected data within the first table, a set of corresponding cells that includes labeling information for the data from the one or more cells can be identified. Once identified, the labeling information and the selected data can be copied to a clipboard. Then, in response to a request to paste the data from the clipboard, a second table can be created having cells that include the labeling information and the selected data.
US11003843B2

A system comprises a display unit; an input device configured to receive user input; and a processing unit communicatively coupled to the display unit and the input device. The processing unit is configured to cause the display unit to display a plurality of lines of natural language text on the display unit together with corresponding annotations including a plurality of relation lines. The processing unit is further configured to adjust spacing between each of the plurality of lines of natural language text based on the corresponding annotations.
US11003842B2

A system and methodology for use by a plurality of users, each of the users having a display apparatus and an input apparatus. An underlying common display presentation is provided to all of the users as a base image display. A plurality of the users input annotations while the users are viewing the base image display. The annotation data from the annotations is stored in an addressable area of memory associated with the respective said user, for at least two of the users. A modified display presentation is shown to at least two of the users, comprised of the base image display combined with a video display image generated responsive to at least some of the annotation data for at least two of said users.
US11003841B2

The present disclosure is directed toward systems and methods that efficiently and effectively generate an enhanced document image of a displayed document in an image frame captured from a live image feed. For example, systems and methods described herein apply a document enhancement process to a displayed document in an image frame that result in an enhanced document image that is cropped, rectified, un-shadowed, and with dark text against a mostly white background. Additionally, systems and method described herein determine whether a stored digital content item includes a displayed document. In response to determining that a stored digital content item does include a displayed document, systems and methods described herein generate an enhanced document image of a displayed document included in the stored digital content item.
US11003834B2

A computer-implemented method returns a third child data element from a structured tree. One or more processors traverse through a structured tree using a single direction iteration order until a first child data element and second child data element are reached. In response to reaching the second child data element, the processor(s) remove from memory any description of the structured tree that was used to reach the first child data element and the second child data element other than an element level counter that describes the level of the structured tree at which the first sibling data element and the second sibling data element are located. The processor(s) utilize a content of the element level counter to reconstruct the structured tree in order locate and return a third child data element in the reconstructed structured tree to a requester.
US11003831B2

The present disclosure relates to an asymmetric font pairing system that efficiently pairs digital fonts. For example, in one or more embodiments, the asymmetric font pairing system automatically identifies and provides users with visually aesthetic font pairs for use in different sections of an electronic document. In particular, the asymmetric font pairing system learns visually aesthetic font pairs using joint symmetric and asymmetric compatibility metric learning. In addition, the asymmetric font pairing system provides compact compatibility spaces (e.g., a symmetric compatibility space and an asymmetric compatibility space) to computing devices (e.g., client devices and server devices), which enable the computing devices to quickly and efficiently provide font pairs to users.
US11003830B2

Methods and systems for location-based digital font recommendations determine locations of the images and assign mappings between the identified digital fonts in the images and the locations of the images. Additionally, one or more embodiments detect a location related to content being viewed by a user. In response, one or more embodiments determine a location associated with the content and identify one or more digital fonts associated with the location from a font-location database. Based on the identified digital font(s), one or more embodiments provide a location-based recommendation of digital fonts for use in connection with the content.
US11003826B1

Strategies are stored in a memory arrangement, and each strategy includes a set of parameter settings for a design tool. The design tool identifies a set of features of an input circuit design and applies classification models to the input circuit design. Each classification model indicates one the strategies, and application of each classification model indicates a likelihood that use of the strategy would improve a metric of the input circuit design based on the set of features of the input circuit design. One strategy of the plurality of strategies is selected based on the likelihood that use of the one strategy would improve the metric of the input circuit design, and the design tool is configured with the set of parameter settings of the one strategy. The design tool then processes the input circuit design into implementation data that is suitable for making an integrated circuit (IC).
US11003815B2

An example method of analyzing a structure includes generating initial simulation results for at least one finite element model, each of the at least one finite element models includes a plurality of nodes representing a structure. The initial simulation results simulate a response of the plurality of nodes to boundary conditions for a plurality of sets of input variable values. Each set of input variable values represents a different geometry of the structure or a different set of boundary conditions. The initial simulation results are decomposed into a plurality of patterns that indicate correlations between values in the initial simulation results. The plurality of patterns has a quantity that is less than the plurality of nodes. A respective emulator is created for each pattern. The initial simulation results are expanded by determining additional simulation results for the plurality of nodes using the emulators and additional sets of input variable values.
US11003814B1

A technique for optimizing a physical device includes receiving an initial description of the physical device that describes the physical device with voxels that each describes one or more structural parameters of the physical device. The initial description includes a characterization including a desired output signal generated at an output region of the physical device in response to a source signal at a source region of the physical device. A field response is forward simulated from the source region to the output region to generate a forward simulated output signal. Structural parameter weights of the voxels are adjusted with an adaptive algorithm configured to reduce an error between the forward simulated output signal and the desired output signal. The structural parameters of the voxels are revised based upon the adjusting. The forward simulating, adjusting, and revising are iteratively repeated and a revised/optimized description of the physical device is generated.
US11003812B2

A feedback loop, for experience driven development of mixed reality (MR) devices, simulates application performance using various synthetic MR device configurations. Examples display, using an application, a virtual object on a first MR device, during a recording session; record, during the recording session, sensor data from the first MR device; simulate sensor data, based at least on the recorded sensor data, for the virtual object on simulated MR devices having various configurations of simulated sensors, during simulation sessions; and generate displays, using the application, of the virtual object on the simulated MR devices, during playback sessions. Some examples further collect recording key performance indicator (KPI) data during the recording session; collect simulation KPI data during the simulation sessions; compare the simulation KPI data with the recording KPI data to produce simulation KPI comparison data sets; and collect playback key performance indicator (KPI) data during the playback sessions.
US11003809B2

Repairing a model comprising a plurality of interrelated parameters defining a dynamic behavior of a simulated interactive object in an interactive computer simulation when inputs are provided on tangible instrument(s) of an interactive computer simulation station. An expected frequency response function is obtained between each of the parameters of the model and each of instruments. Discrepancy measurement(s) are identified between the expected frequency response function and an actual frequency response function obtained from a frequency sweep of the model. At least one target parameter is identified as a potential cause of the discrepancy measurement(s). Until a subsequent frequency response function matches the expected frequency response function, or until each of the target parameter(s) has been fully varied throughout a corresponding range, the target parameter(s) are dynamically and iteratively varied within their corresponding ranges and a subsequent frequency sweep providing the subsequent frequency response is thereafter performed.
Patent Agency Ranking