US11115020B2

A signal transmission device includes a first lead frame supporting a signal transmission chip that includes first and second inductor spiral rings, a first bonding pad electrically coupled between the first and second inductor spiral rings, and a guard ring provided to roundly cover the first and second inductor spiral rings in a plan view. Bonding pads are provided outside of the guard ring. A direction of rotation between the first and second inductor spiral rings are different from each other so that the first and second inductor spiral rings are disposed substantially symmetrically about the first bonding pad. A second lead frame supports a semiconductor chip, with the signal transmission chip and the semiconductor chip facing each other.
US11115019B2

Circuitry includes a pair of switches arranged in series, and a gate driver. The gate driver, responsive to a magnitude of current through one of the switches exceeding a threshold, discharges a gate of the one through a first resistor. The gate driver also, responsive to a voltage across a parasitic inductance of the switch becoming zero, discharges the gate through a second resistor but not the first resistor.
US11115012B2

A system comprises pulse program compiler circuitry operable to analyze a pulse program that includes a pulse operation statement, and to generate, based on the pulse program, machine code that, if loaded into a pulse generation and measurement circuit, configures the pulse generation and measurement circuit to generate one or more pulses and/or process one or more received pulses. The pulse operation statement may specify a first pulse to be generated, and a target of the first pulse. The pulse operation statement may specify parameters to be used for processing of a return signal resulting from transmission of the first pulse. The pulse operation statement may specify an expression to be used for processing of the first pulse by the pulse generation and measurement circuit before the pulse generation and measurement circuit sends the first pulse to the target.
US11114983B2

An amplifier includes a first capacitor connected between an input node and a floating node, a second capacitor connected between the floating node and an output node, an amplifying element connected between a power supply voltage and the output node and operating in response to a voltage level of the floating node, a current bias source connected between the output node and a ground voltage, a first reset switch connected between the floating node and an intermediate node and operating in response to a reset bias, a second reset switch connected between the intermediate node and the output node and operating in response to the reset bias, and a reset bias generator circuit that outputs the reset bias in response to a reset signal. The reset bias is one of a reset voltage of the intermediate node, the power supply voltage, and the ground voltage.
US11114982B2

A power amplifier circuit includes an amplifier transistor having a first terminal supplied with a power supply voltage that changes in accordance with an amplitude level of an input signal, and a second terminal supplied with the input signal and a bias current, an amplified signal obtained by amplifying the input signal being outputted from the first terminal, a bias circuit that outputs the bias current from an output terminal thereof in accordance with a reference current supplied to an input terminal thereof, and a regulation circuit that generates a regulation current for regulating the bias current in accordance with a change in the power supply voltage. The regulation current increases with an increase in the power supply voltage, and decreases with a decrease in the power supply voltage. The regulation circuit extracts the regulation current from at least one of the reference current or the bias current.
US11114974B2

Surface mount assemblies for mounting to a solar panel frame to an installation surface are disclosed. In some embodiments, a base is coupled to a height-adjustable rail mount to slidably couple a track with a fastener assembly that includes of a fastener, spacer, and nut. In some embodiments, a base is coupled to a rail mount and positioned on a base plate to slidably couple to a surface track with a fastener assembly that includes a first fastener slidably coupled to a groove formed by the track, spacer, and second fastener. In some embodiments, a base is coupled to a rail mount for slidably coupling the rail to a height-adjustable base with a fastener. In some embodiments, a two-configuration, track-mounted, rectangular base is designed with a rectangular base having a pair of short-sided legs, a pair of long-sided legs, and a fastener for engaging outer surfaces of a track.
US11114970B2

A motor driver includes an inverter used for driving a motor and configured to apply an alternating-current voltage to the motor. The inverter drives, during start operation, a switching element of the inverter with a first PWM signal that is PWM modulated with a carrier frequency that is a first integer multiple of a frequency of the alternating-current voltage, and thereafter drives the switching element with a second PWM signal that is PWM modulated with a carrier frequency that is a second integer multiple of the frequency of the alternating-current voltage. The second integer is smaller than the first integer.
US11114962B2

The present disclosure starts up a three-phase motor in a stable manner. During a start-up operation of a brushless DC motor, a motor drive system detects the position of a particularly suitable rotor while the rotor is resting, and applies a drive current to two phases in accordance with the detected position of the rotor. A controller changes the time of drive current application in accordance with the magnitude of back electromotive force that is in a non-conducting phase and detected by a detector during drive current application.
US11114959B2

In a so-called dual power source and dual inverter system, in which a pair of first and second inverters controls and drives a motor that includes multiple windings of phases each having open ends based on electric power supplied from a pair of power supplies, a motor driving system capable of appropriately allocating the electric power supplied from the pair of power supplies to the pair of inverters is provided. The motor driving system includes a pair of first and second inverter control circuits to generate a pair of first and second voltage instructions supplied to the first and second inverters based on a torque command, respectively. One of the first and second inverter control circuits includes a power controller that controls sharing of the electric power supplied from the first and second power supplies in accordance with a target electric power instruction.
US11114957B2

A vacuum pump and a motor controller that make a safe transition to a regeneration mode while avoiding an overvoltage are provided. A turbo molecular pump includes a power supply unit that converts alternating-current power to direct-current power and outputs the power, the alternating-current power being obtained from an alternating-current power supply, and the motor controller that controls a motor. The motor controller includes: a motor driving circuit that drives the motor when receiving direct-current power or regenerated power; a backflow prevention diode interposed between the power supply unit and the motor driving circuit; a power-failure detection circuit that detects a primary voltage of the backflow prevention diode; a driving-voltage sensing circuit that detects a secondary voltage of the backflow prevention diode; and a motor control circuit that determines, when the primary voltage drops to a predetermined power-failure detection threshold value, whether a power failure is a primary power failure of the alternating-current power or a secondary power failure of the direct-current power based on a voltage difference between the primary voltage and the secondary voltage, and controls the motor driving circuit so as to enter a regeneration mode.
US11114956B2

The present invention relates to a magnetic levitator. The magnetic levitator comprises a first portion having a first arrangement of a plurality of permanent magnets, and the first arrangement has first and second circumferences. The magnetic levitator also comprises a second portion having a second arrangement of a plurality of permanent magnets, and the second arrangement has a third circumference. The first and second arrangements are rotationally symmetrical, and the first circumference is larger than the third circumference. In use, one of the portions is magnetically levitated by the other one of the portions, and the second circumference is arranged substantially aligned to the third circumference.
US11114951B2

An electrostatic machine includes a drive electrode and a stator electrode. The drive electrode and the stator electrode are separated by a gap and form a capacitor. The drive electrode is configured to move with respect to the stator electrode. The electrostatic machine further includes a housing configured to enclose the drive electrode and the stator electrode. The stator electrode is fixed to the housing. The electrostatic machine also includes a dielectric fluid that fills a void defined by the housing, the drive electrode, and the stator electrode. The dielectric fluid includes an ester.
US11114945B2

Controlling an active clamp field effect transistor (FET) in a secondary-controlled active clamp converter is described. In one embodiment, an apparatus includes a primary-side FET coupled to a transformer, a secondary-side FET coupled to the transformer, and an active clamp FET disposed on a primary side of the transformer. A secondary-side controller is configured to control the active clamp FET across a galvanic isolation barrier.
US11114941B2

A device includes a buck converter coupled to an input node and an output node, and a linear voltage regulator coupled to the input node and to the output node.
US11114934B2

A power supply device includes an inductor, a switch, a power supply, and a snubber circuit. A first terminal of the switch is coupled to a first terminal of the inductor. A first terminal of the power supply is coupled to a second terminal of the witch. A first terminal of the snubber circuit is coupled to the first terminal of the switch at a first voltage output terminal. A second terminal of the snubber circuit is electrically coupled to a second terminal of the power supply at a second voltage output terminal, in which the inductor, the switch, the power supply, and the snubber circuit are configured to cooperate to generate an output voltage at the first voltage output terminal and the second voltage output terminal.
US11114928B2

A pole piece for a torque motor includes two separate arcuate members and first and second diametrically opposed attachment portions formed as a single piece of material. Each arcuate member extends in opposite directions from the first attachment portion and following a generally circular path defining a perimeter of the pole piece and meeting each other at the second attachment portion. The arcuate members are devoid of any holes or apertures.
US11114923B2

A bending-forming jig used in bending and forming a protruding portion of a leg portion of a U-shaped conductor toward a circumferential direction, the protruding portion protruding from an axial end surface of a stator core, the bending-forming jig including a ring portion and a claw portion, the claw portion including a first abutting surface that rises from an axial end surface of the ring portion with the surface directed in the circumferential direction and abuts against a tip portion of the protruding portion from the circumferential direction, and a projecting portion that projects, at a tip end of the claw portion, in the circumferential direction from the abutting surface and abuts against the tip portion of the protruding portion from the axial direction toward the axial end surface of the ring portion.
US11114918B2

A differential drive for manipulating an elongated device includes a drive mechanism configured to provide rotational and linear movement to the elongated percutaneous device. The drive mechanism including a platform rotatably supported by a support and a linear drive operatively coupled to the platform. A first motor operatively rotates the platform relative to the support and moving a portion of the linear drive relative to the platform. A second motor operatively rotates the platform relative to the support and moving a portion of the linear drive relative to the platform.
US11114910B2

An EC motor is provided having a stator, in which an armature is rotatably supported, the armature including an armature shaft, on which an armature core having a plurality of permanent magnets is held, the armature core being electrically insulated against the armature shaft with the aid of a casting compound, and a balance ring being provided on at least one axial end of the armature core, which is accommodated on the armature shaft by a central recess, a gap between the armature shaft and the central recess of the balance ring being filled with casting compound, and the permanent magnets being held in pockets of the armature core by casting compound.
US11114901B2

A cradle device for providing a wireless charging function according to the present invention comprises: a cradle part provided for being mobile terminal-mountable; a wireless charging module which is disposed inside the cradle part and includes a transmitting coil, a switching part for switching a connecting passage between an external power supply and the transmitting coil, and a control part for controlling the switching part; and an NFC tag coupled to the wireless charging module, wherein, when receiving a tag recognition signal from the NFC tag, the control part performs a turn-on control of the switching part. According to the present invention, the cradle device can simultaneously provide a mobile terminal with a wireless charging function and a user via the mobile terminal with various contents provided through NFC tag information.
US11114895B2

A pinless power coupling arrangement comprises at least one pin-less power jack, the power jack comprising a primary coil shielded behind an insulating layer for inductive coupling to a pin-less power plug. The power plug comprises a secondary coil wherein said insulating layer is substantially flat and the power plug and the power jack may be aligned by an alignment means. Various such alignment means are discussed as are enabled surfaces for supporting inductive power jacks and inductive plugs coupled to various appliances.
US11114878B2

A portable power source for power tools. The portable power source includes a housing defining a battery support and an power outlet, a circuit supported by the housing and including an input terminal on the battery support, an output terminal on the power outlet, and an inverter electrically connected between the input terminal and the output terminal, a battery power source including a battery housing supported on the battery support, at least one battery cell, and a battery terminal connected to the battery cell and electrically connectable to the input terminal, power being transferrable from the battery cell to the circuit to be output through the power outlet, and a frame connected to the housing and extending beyond a periphery of the housing and of the supported battery power source, the frame inhibiting contact with the housing and the battery power source.
US11114873B2

The system and method described herein provide a contingency battery charging system that can be deployed on demand to a location in need of an alternate power system to power industrial vehicles (such as forklifts or other industrial vehicles used in a transportation and distribution operation). The contingency battery charging system can be transported from a centrally-located standby location to support a fleet of industrial vehicles at a deployment location. The contingency battery charging system may include a truck trailer that is wired to facilitate quick deployment of one or more transportable battery charging stations. Each transportable battery charging station may include at least one battery charger capable of concurrently charging multiple lead-acid batteries for use in industrial vehicles.
US11114866B2

An energy system for a motor vehicle and a method for charging at least one electrical energy storage device of the energy system.
US11114850B2

An electrostatic discharge protection circuit includes a first internal circuit formed between a first power line and a first ground line, and configured to operate in a range between a first power and a first ground; a second internal circuit formed between a second power line and a second ground line, and configured to operate in a range between a second power having a level higher than the first power and a second ground; a signal line connecting an output terminal of the first internal circuit and an input terminal of the second internal circuit; and a protection circuit configured to form a bypass path for bypassing a stress due to electrostatic discharge when the electrostatic discharge occurs, between the signal line and the second ground line, to protect a semiconductor device of the second internal circuit from the electrostatic discharge.
US11114849B2

The present invention provides both a margin of a discharge start voltage with respect to a power supply voltage and a margin of a clamp voltage with respect to a breakdown withstand voltage of an internal circuit. The semiconductor device according to the embodiment includes a first amplifier circuit for amplifying a detection signal and outputting a drive signa, a second amplifier circuit for feedback-amplifying the detection signal to be input to the first amplifier circuit, and a discharge element whose discharge capability changed according to the magnitude of the drive signal.
US11114839B2

A system and method for mitigating overvoltage on a DC link of a power converter of an electrical power system connected to a power grid includes receiving a voltage feedback signal from the DC link for a predetermined time period. The method also includes determining a rate of change of the voltage feedback signal during the predetermined time period. Further, the method includes predicting a future voltage value on the DC link as a function of the voltage feedback signal and the rate of change of the voltage feedback signal. Moreover, the method includes controlling the electrical power system based on the future voltage value.
US11114830B2

It comprises a receptacle subassembly, a lid subassembly telescopically interacting with the receptacle subassembly by partially penetrating into or by retracting from the receptacle subassembly and a magnetic unit attached to the receptacle subassembly and to the lid subassembly and intended to align and interlock the receptacle subassembly with the lid subassembly; the lid subassembly incorporating supplementarily an optionally detachable frame unit, intended to cover an unaesthetic transitional zone between a contour of the enclosure assembly and a wall opening wherein the enclosure assembly is installed.
US11114811B2

An object is to improve the efficiency of amplification by rare earth ion while maintaining beam quality of output light in a multi-mode fiber doped with rare earth ion. A multi-mode fiber (11) that includes a rare-earth-ion-doped core and that has a normalized frequency of not less than 2.40 includes a filter portion (111) that is formed by bending a partial section of or entirety of the multi-mode fiber (11), the filter portion (111) having a smallest diameter (diameter R1) that is set so that (1) only LP01, LP11, LP21, and LP02 modes propagate or only LP01 and LP11 modes propagate and (2) a loss of a highest-order one of the modes that propagate is not more than 0.1 dB/m.
US11114797B2

A cage includes a housing and a partition assembly mounted in the housing and separating an inner space of the housing into an upper space and a lower space. The partition assembly includes a first support plate and a second support plate arranged horizontally, and at least a pair of support frames disposed between the first support plate and the second support plate to separate the first support plate from the second support plate by a predetermined height. The support frames have a plurality of through holes. The support frames are formed by bending a front end of one of the first support plate and the second support plate.
US11114791B1

A connector includes a main body, a terminal module, a cable module, a housing and an insulating material. The main body has a first opening and a second opening. The terminal module includes a terminal portion and an insulating portion partially covering the terminal portion. The terminal portion includes plural terminals protruding beyond one side of the insulating portion, a middle portion covered by the insulating portion, and a pin portion exposed from the opposite side of the insulating portion. The cable module has a connecting portion electrically connected to the pin portion. The housing covers the main body and the terminals. The housing has an end portion disposed adjacent to the insulating portion. The end portion is configured with plural third openings. The insulating material which may be poured through the third openings covers the end portion, the connecting portion, the pin portion and the insulating portion, and fills the third openings.
US11114789B2

The electrical connector includes a main body including an insertion opening into which a connection target is inserted and an accommodation space to accommodate the connection target inserted into the insertion opening, conductive contact held in the main body so as to be connected to the connection target in the accommodation space, a cover member rotatably mounted on the main body so as to be rotatable around a rotation axis passing through the main body, and a stopper portion which restricts a rotation range of the cover member with respect to the main body.
US11114779B2

A terminal base includes a plurality of terminals configured to electrically connect a first device and a second device to each other, each of the plurality of terminals being electrically conductive and a housing configured to hold the plurality of terminals, the housing being made of an electrically insulating resin in which each of the plurality of terminals includes a first connection portion exposed to an outside of the housing so as to be connected to the first device, a second connection portion exposed to the outside of the housing so as to be connected to the second device, and an insert portion insert-molded in the housing and in which he insert portion has a solid cylindrical shape or a hollow cylindrical shape.
US11114778B2

A device includes a coaxial connector that has a signal portion to electrically couple with a signal portion of a printed circuit board (PCB) to enable transmission of a signal therebetween, a ground portion to electrically couple with a ground portion of the PCB, and a mounting portion to interact with a mounting component to secure the coaxial connector to the PCB. The device also includes a compressible and conductive component to be positioned and deformed between the ground portion of the coaxial connector and the ground portion of the PCB, and a standoff positioned between the coaxial connector and the PCB and to accurately control deformation of the compressible and conductive component.
US11114776B2

Various implementations include a method of connecting wire to conductive fabric. The method includes (1) providing a conductive fabric having a main portion and a protrusion extending along a protrusion central axis from the main portion, the protrusion having a distal edge spaced apart from the main portion along the central axis and side edges that extend between the main portion and the distal edge; (2) placing a wire along at least a portion of the protrusion, the wire having a first end and a second end opposite the first end; (3) folding the distal edge of the protrusion over the wire one or more times to form a folded portion of the protrusion; and (4) after folding the distal edge, securing the folded portion of the protrusion with a securing device.
US11114775B2

A contacting device for contacting a shielding conductor of an electrical line with a grounding portion includes: a housing which encloses a receptacle space into which the electrical line including the shielding conductor is insertable, the housing being attachable to the grounding portion such that the grounding portion extends in the receptacle space; and a spring element which is arranged on the housing so as to be pivotable about a pivot axis from an open position into a clamping position, in order, in the clamping position, to contact the shielding conductor of the electrical line inserted into the receptacle space with the grounding portion to which the housing is attached.
US11114768B2

An antenna system that includes a lens portion having a radiation-side curved surface and a feed-side reception surface, the lens portion structured to focus radio frequency radiations entering from the radiation-side curved surface on a focal point located at the feed reception surface and one or more antenna elements at or near the focal point, the one or more antenna elements being separated from each other by a fractional multiple of a center wavelength of a frequency band of operation, and each antenna element communicatively coupled to one or more radio frequency transmit and/or receive chain and being able to transmit and/or receive data from the radio frequency transmit chain according to a transmission scheme.
US11114764B2

Disclosed is an antenna module that combines a vertical winding type antenna and a horizontal winding type antenna, thus minimizing a mounting space, manufacturing costs, and design considerations. That is, the antenna module combines the vertical winding type antenna and the horizontal winding type antenna to form an antenna for resonating in the first frequency band and the second frequency band, and an antenna for wireless power transmission, thus implementing antenna performance that is equal to or greater than that of the multi-band antenna composed of the horizontal winding type radiation pattern while minimizing a mounting space.
US11114762B2

An electronic device is provided and includes a first housing forming a portion of an outside surface of the electronic device, a second housing coupled with the first housing and forming another portion of the outside surface of the electronic device, an antenna formed in at least a portion of the second housing, a connector including one or more connection pins for connection with an external device, at least a portion of an outside surface of the connector being formed of a conductive member, an adjusting circuit electrically connected with, at least, the portion of the outside surface of the connector formed of the conductive member, wherein an impedance of the adjusting circuit is variable. The electronic device may further include a processor configured to vary the impedance of the adjusting circuit based on a signal to be output through the antenna, and output the signal through the antenna, with the impedance of the adjusting circuit being varied.
US11114750B1

A satellite antenna includes first and second extensible booms and first and second sets of ribs carried by the respective first and second extensible booms. A Radio Frequency (RF) reflective film is carried by the first and second sets of ribs. First and second phased array antenna feeds are carried by the respective first and second extensible booms and directed toward the RF reflective film. First and second sets of fiducial devices are carried by the respective first and second sets of ribs. At least one camera is directed toward the first and second sets of fiducial devices to sense a physical distortion of the RF reflective film. A controller cooperates with the at least one camera to operate the first and second sets of phased array antenna feeds to account for sensed physical distortion of the RF reflective film.
US11114749B2

A communication apparatus and method, an antenna apparatus, and a communication system that prevent reduced communication characteristics are disclosed. In one example, a coupled antenna element positioned in the vicinity of a communication apparatus is detected, adaptation of impedance is controlled on the basis of the detection result, and wireless communication is performed via the coupled antenna element with the adapted impedance. In addition, an antenna element is excited by a wireless signal from a communication apparatus positioned in the vicinity of the antenna element, and this communication apparatus is notified of being positioned in the vicinity of this antenna element.
US11114746B2

A terminal includes a conductive substrate and a printed circuit board that are disposed opposite to each other, a first slot is disposed in a direction from a first side edge of the conductive substrate to a center of the conductive substrate, and a projection of the printed circuit board on the conductive substrate is located inside the conductive substrate, and a first feeder is disposed inside the first slot, a first connection end of the first feeder is coupled to a lap joint of the first side edge, a second connection end of the first feeder is coupled to a first feeding source on the printed circuit board, and projections of the lap joint of the first side edge and the first feeding source on the conductive substrate are located on two sides of the first slot.
US11114741B2

An electronic device is provided. The electronic device including a housing comprising a front plate which faces a first direction, a back plate which faces a second direction opposite from the first direction, and a lateral member which surrounds a space between the front plate and the back plate and has at least one part formed from a metal material, a display seen through a first part of the front plate, an antenna module positioned inside the space, and a wireless communication circuit. The antenna module includes a first surface facing a third direction forming an acute angle with the second direction, a second surface facing a fourth direction opposite from the third direction, at least one first conductive element disposed on the first surface or inside the antenna module so as to face the third direction, and at least one second conductive element which is adjacent to the lateral member between the first surface and the second surface and extends in a fifth direction different from the third direction and the fourth direction and facing between the lateral surface and the first part of the front plate.
US11114737B2

An improved system for simplifying a complex waveguide network in a satellite system is described herein. A waveguide network device may be configured with at least two housing portions attached together. This enables the waveguide network device to receive an arbitrary number of waveguide routes and output the routes in any configuration, effectively simplifying the overall waveguide network architecture.
US11114735B2

A coaxial waveguide transducer includes: a waveguide having a substantially L shape formed of a first waveguide part and a second waveguide part arranged substantially orthogonal to each other; a stepwise step bend part formed in an outer corner part of an L-shaped bent part of the waveguide; a first conductor and a second conductor arranged in respective inner side walls of the waveguide in such a way that they are extended in a direction in which a central conductor of the coaxial line is extended and are positioned on a plane the same as that where the central conductor is provided; and a third conductor having one end connected to the central conductor and another end connected to one of the first conductor and the second conductor, the third conductor being arranged obliquely with respect to the direction in which the central conductor is extended.
US11114732B2

A waveguide unit (2) is closed at one end thereof by a short circuit plane (2a) provided with through holes (3-1 to 3-6). Radio wave absorbers (4-1 to 4-6) absorb a frequency signal being a non-reflective target in the state of being inserted through the through holes (3-1 to 3-6) toward the inside of the waveguide unit (2) and contacting inner surfaces (3′-1 to 3′-6) of the through holes (3-1 to 3-6).
US11114725B2

A battery system includes a battery cell, a thermally insulating layer, and a thermally conducting layer which includes a fin. The fin pushes against an interior surface of a case which surrounds the battery cell, the thermally insulating layer, and the thermally conducting layer. The thermally conducting layer includes a discontinuity where the discontinuity is configured to reduce a capacitance associated with the thermally conducting layer compared to when the thermally conducting layer does not include the discontinuity.
US11114717B2

The present invention provides a lithium secondary battery which includes an electrode assembly to which an electrode tap is attached, an electrode tap receptor configured to house a portion of the electrode assembly such that a portion of the electrode tap protrudes to an outside, and a case configured to surround the electrode assembly and seal the electrode assembly together with the electrode tap receptor, wherein the electrode tap receptor includes a gas barrier layer.
US11114713B2

Thermal management systems for battery cells and methods for their additive manufacture are provided. The thermal management systems include at least one heat pipe that physically contacts the battery cell and conforms to its geometry. Each battery cell is deposited within a separate heat pipe, and each heat pipe is disposed on a base plate, which itself connects to a heat sink. In many embodiments, the heat pipe is a two-phase heat exchanger having three major components: liquid channels, wick elements, and vapor channels. In such embodiments, the wick component comprises a porous body configured to be disposed between the liquid channels and vapor channels. The wick component may be made using a stochastic additive manufacturing process such that the wick component may take any configuration and/or such that the wick component may be directly integrated into the body of the heat pipe as a unitary piece thereof. In other embodiments, the heat pipe is a cavity with flow channels in which fluid can be pumped through. In some such embodiments, the fluid can occupy the heat pipe in a one-phase or two-phase state. This unitary heat pipe is part of a monolithic thermal management system.
US11114703B2

A battery pack according to various embodiments is provided. The battery pack includes: a battery including a plurality of battery cells; a first pack terminal and a second pack terminal, each connected to a charger; a cut-off switch arranged on a path through which charge and discharge currents of the battery flow; and a battery manager which monitors a state of the battery, turns off the cut-off switch when there is a risk of the battery being damaged, and determines whether the charger is a dedicated charger, wherein, when the charger is different from the dedicated charger, the battery manager turns off the cut-off switch when a pack voltage that is a voltage between the first pack terminal and the second pack terminal reaches a first reference voltage.
US11114698B2

The present invention relates to a method of preparing a pouch type secondary battery, and particularly to a method of preparing a pouch type secondary battery which includes preparing a pouch type preliminary secondary battery by accommodating an electrode assembly in an inner space of a pouch type case, disposing a metallic ultrasonic member by being closely attached to both surfaces of the pouch type preliminary secondary battery, injecting a composition for a gel polymer electrolyte into the pouch type preliminary secondary battery, applying ultrasonic vibration to the pouch type preliminary secondary battery while pressurizing the pouch type preliminary secondary battery using the ultrasonic member, performing formation on the pouch type preliminary secondary battery, curing the composition for a gel polymer electrolyte, and degassing, wherein the ultrasonic member is maintained at a temperature of 30° C. to 80° C., and the pressurizing of the pouch type preliminary secondary battery is performed while applying a pressure of 0.1 kgf/cm2 to 3,000 kgf/cm2 per area of the pouch type preliminary secondary battery.
US11114695B2

To provide an electrolytic solution that suppresses increase in the OH− ion concentration even in the case of electrochemical changes and thereby reduces deterioration or corrosion of resin, rubber, or metal to improve the reliability of an electrochemical device, an electrolyte used in the electrolytic solution, and an electrochemical device comprising the electrolytic solution. The electrolyte, for example, comprises a compound having a cation unit represented by the following formula and an electrolyte (a quaternary ammonium salt or the like). (In the formula, R1, R2, R3, and R4 are the same or different and each represent an alkyl group or an alkoxyalkyl group; R1 and R2 may together form a ring such as a pyrrolidine ring and a piperidine ring; and R3 and R4 may together form a ring such as a pyrrolidine ring and a piperidine ring.)
US11114692B2

The present invention relates to a polymer electrolyte for a secondary battery and a lithium secondary battery comprising the same, and particularly, to a polymer electrolyte for a secondary battery, in which mechanical properties, ionic conductivity, and electrical conductivity are improved by comprising a polymer and an electron-acceptor having at least one double bond, as a dopant, and a lithium secondary battery in which electrochemical stability at high temperature and high voltage is enhanced by comprising the polymer electrolyte.
US11114691B2

A sulfide solid electrolyte including: a sulfide electrolyte for a lithium battery; and a metal-organic framework.
US11114687B2

A battery includes a first electrode layer; and a second electrode layer disposed on the first electrode layer and serving as a counter electrode for the first electrode layer, wherein the first electrode layer includes a first current collector, a first active material layer, and a first solid electrolyte layer, the first active material layer is disposed to be in contact with the first current collector and to occupy a smaller area than the first current collector, the first solid electrolyte layer is disposed to be in contact with the first current collector and the first active material layer and to occupy the same area as the first current collector, the first active material layer faces the second electrode layer with the first solid electrolyte layer therebetween, and the first electrode layer includes a peripheral portion including a first rounded portion.
US11114675B2

The bipolar plate of the invention for electrochemical cells, especially for proton-exchange membrane (PEM) fuel cells, is made with a metallic substrate and on the surface is made with an electrical contact resistance-reducing, carbon-based layer, a layer system or a boundary layer which is made of a near-surface, primarily sp2-bonded, carbon-based layer having a carbon fraction ranging from 50% to 100%, this layer being applied on a metallic substrate surface that is modified relative to the starting material. There may also be a surface region of the substrate in the form of an edge layer made with nitride and/or carbon by nitriding and/or carburizing. On the surface which is in touching contact with a gas-permeable element within the electrochemical cell, the metallic substrate may have a structuring made with elevations and/or depressions in the respective surface.
US11114667B2

The present invention pertains to an electrode-forming composition, to use of said electrode-forming composition in a process for the manufacture of an electrode, to said electrode and to an electrochemical device comprising said electrode. The electrode-forming composition comprises at least one partially fluorinated fluoropolymer comprising recurring units derived from at least one fluorinated monomer and at least one functional hydrogenated monomer comprising at least one carboxylic acid end group, at least one electro-active compound, at least one liquid medium comprising at least one organic carbonate or at least one ionic liquid, and at least one metal salt.
US11114658B2

Provided are a positive active material for a rechargeable lithium battery and a positive electrode including the same. The positive active material for a rechargeable lithium battery includes a first positive active material and a second positive active material, wherein the first positive active material includes at least one nickel-based lithium composite oxide, and the second positive active material is represented by Chemical Formula 2 and has an average particle diameter of about 300 nm to about 600 nm: Lia1Fe1-x1M1x1PO4.  [Chemical Formula 2] In Chemical Formula 2, 0.90≤a1≤1.8, 0≤x1≤0.7, and M1 may be Mg, Co, Ni, or a combination thereof.
US11114645B2

Provided is a display device including a display panel and a polarization member on the display panel, wherein the polarization member includes a polarizer, and a plurality of functional layers on at least one surface of the polarizer, wherein at least one of the plurality of functional layers includes a first light absorbing dye that absorbs light having a wavelength of greater than about 380 nm and equal to or less than about 450 nm.
US11114640B2

The present disclosure provides a display substrate and a method for manufacturing the same, and a display device. The display substrate includes a display area and an edge area surrounding the display area. The edge area is provided with bonding adhesive. The bonding adhesive is used to bond the display substrate and a counter substrate with which the display substrate is to be assembled together. A support structure is provided on the edge area and on a side of the bonding adhesive away from the display area. The support structure forms support between the display substrate and the counter substrate which have been assembled with each other.
US11114639B2

The present disclosure provides a flexible OLED display panel, a fabricating method thereof and a display apparatus. The flexible display panel includes a light emitting display unit including a display light emitting device, and a controllable deformation unit including a control light emitting device and a photo-deformable layer disposed in a light emitting direction of the control light emitting device, the photo-deformable layer configured to deform under illumination of the control light emitting device. An optical path of the control light emitting device and an optical path of the display light emitting device do not coincide with each other. Since the optical path of the control light emitting device and the optical path of the display light emitting device do not coincide with each other, crosstalk between display light and control light is prevented, and the display quality is improved.
US11114633B2

A method for constructing a solar rectenna array by growing carbon nanotube antennas between lines of metal, and subsequently applying a bias voltage on the carbon nanotube antennas to convert the diodes on the tips of the carbon nanotube antennas from metal oxide carbon diodes to geometric diodes. Techniques for preserving the converted diodes by adding additional oxide are also described.
US11114631B2

Embodiments of the present disclosure provide a flexible display substrate, a manufacturing method thereof and a flexible display device. The manufacturing method includes: forming a plurality of protrusions on a base substrate; forming a base film at one side of the plurality of protrusions facing away from the base substrate; forming a display structure at a surface of the base film facing away from the base substrate; peeling off the base film along with the display structure from the base substrate, and remaining the plurality of protrusions on the base substrate; and attaching the surface of the base film facing away from the display structure onto an elastic substrate and stretching the elastic substrate so that the base film is fractured at positions of the plurality of concaves.
US11114620B2

Disclosed is an organic light-emitting diode device including: a first electrode; a second electrode disposed opposite to the first electrode; m light-emitting units (where m is an integer of 2 or more) disposed between the first electrode and the second electrode, and including at least one light-emitting layer; and m-1 charge generation layers each interposed between two adjacent light-emitting units of the m light-emitting units; wherein at least one of the m-1 charge generation layers includes a compound for a charge generation layer, which includes a boron-containing compound bonded to a metal halide by a one-electron sigma bond.
US11114614B2

A oxide-based direct-access resistive nonvolatile memory may include within the interconnect portion of the integrated circuit a memory plane including capacitive memory cells extending in orthogonal first and second directions and each including a first electrode, a dielectric region and a second electrode. The memory plane may include conductive pads of square or rectangular shape forming the first electrodes. The stack of the dielectric layer and the second conductive layer covers the pads in the first direction and forms, in the second direction, conductive bands extending over and between the pads. The second electrodes may be formed by zones of the second bands facing the pads.
US11114604B2

Provided is a method of manufacturing a MEMS device including forming, in a metal layer, an opening that enables a first space and a second space to communicate with each other by exposing the metal layer to an etching solution in a state where the metal layer is left at a boundary between the first space and the second space, and covering an inner surface of an opening of each of an adhesive layer and the metal layer by forming a protective layer from an inner surface of the first space to an inner surface of the second space after the opening of the metal layer is formed.
US11114594B2

A radiation emitting device comprising light scattering particles of different sizes that at least partially surround an emitter, improving the spatial color mixing and color uniformity of the device. Multiple sizes of light scattering particles are dispersed in a medium to at least partially surround a single- or multiple-chip polychromatic emitter package. The different sizes of light scattering particles interact with corresponding wavelength ranges of emitted radiation. Thus, radiation emitted over multiple wavelength ranges or sub-ranges can be efficiently scattered to eliminate (or intentionally create) spatially non-uniform color patterns in the output beam.
US11114592B2

A light emitting assembly comprising a solid state device, when and if coupleable with a power supply constructed and arranged to power the solid state device to emit from the solid state device a first wavelength radiation, and an enveloping vessel enhancing the luminescence of the solid-state device and providing a mechanism for arranging luminophoric medium in receiving relationship to said first, radiation, and which in exposure to said first radiation, is excited to responsively emit second wavelength radiation or to otherwise transfer its energy without radiation to a third radiative component. In a specific embodiment, monochromatic blue or UV light output from a light-emitting diode is converted to achromatic light without hue by packaging the diode with fluorescent organic and/or inorganic fluorescers and phosphors on the walls of the solid-state light envelope which keeps the diode and the fluorescers and phosphors under a vacuum or a rare or Noble gas.
US11114588B2

A semiconductor light emitting element according to the present invention is obtained by forming a first semiconductor layer, an active layer, and a second semiconductor layer on a substrate. The semiconductor light emitting element includes a first insulating layer, a first electrode, and a second electrode. The first insulating layer is formed in a position closer to the substrate than the first semiconductor layer in a first direction orthogonal to a surface of the substrate and is formed so as to protrude outward from a first surface being a surface on a side of the substrate of the first semiconductor layer as seen in the first direction. A first region where the first surface and the first insulating layer face each other and a second region where the first surface and the first electrode face each other are spaced apart in a direction parallel to the surface of the substrate.
US11114586B2

According to one embodiment, a semiconductor light emitting device includes a substrate, and a multi quantum well layer provided on the substrate, and including a plurality of barrier layers sandwiched between three or more InGaAs well layers and two InGaAs well layers. The barrier layers include at least two regions having different mixed crystal ratios or at least two regions having different thicknesses.
US11114583B2

A light emitting element includes a light emitting element having a first face on which a first electrode and a second electrode are provided. A wavelength converting material covers a whole of the light emitting element except for the first face such that a surface of the wavelength converting material and the first face constitute a substantially flat plane. A first electrically conductive material is provided on the first face and the surface of the wavelength converting material to be electrically connected to the first electrode. A second electrically conductive material is provided on the first face and the surface of the wavelength converting material to be electrically connected to the second electrode. An insulating member is disposed on the first electrically conductive material, the second electrically conductive material, and the first face between the first electrode and the second electrode.
US11114582B2

A display apparatus includes a substrate, a first electrode on the substrate, the first electrode including a first portion that has a flat upper surface and a second portion that protrudes from the first portion and has an inclined surface, a second electrode facing the first electrode in parallel on the substrate, the second electrode including a first portion that has a flat upper surface and a second portion that protrudes from the first portion and has an inclined surface, and a plurality of light-emitting devices separate from each other on the first electrode and the second electrode, the light-emitting devices each having a first end contacting the upper surface of the first portion of the first electrode and a second end contacting the upper surface of the first portion of the second electrode.
US11114580B2

Embodiments of a photovoltaic device are provided herein. The photovoltaic device can include a layer stack and an absorber layer disposed on the layer stack. The absorber layer can include a first region and a second region. Each of the first region of the absorber layer and the second region of the absorber layer can include a compound comprising cadmium, selenium, and tellurium. An atomic concentration of selenium can vary across the absorber layer. The first region of the absorber layer can have a thickness between 100 nanometers to 3000 nanometers. The second region of the absorber layer can have a thickness between 100 nanometers to 3000 nanometers. A ratio of an average atomic concentration of selenium in the first region of the absorber layer to an average atomic concentration of selenium in the second region of the absorber layer can be greater than 10.
US11114574B2

A semiconductor sensor includes a detector chip that detects green light and an interference filter that optically precedes the detector chip and is permeable to green light and impermeable and reflective to red light and near-infrared radiation. A color filter optically precedes the interference filter. The color filter has a transparency of at least 60% for green light and has an absorbing effect for red light and near-infrared radiation. The semiconductor sensor appears gray or black in the region of the interference filter independently of the angle.
US11114567B2

A manufacturing method of TFT substrate and a TFT substrate are provided. The method provides a dual-gate structure symmetrically disposed on both sides of active layer, which prevents TFT threshold voltage from changing and improve TFT conduction state switching; by first manufacturing the active layer before the gate insulating layer to make the insulating layer directly grow on active layer, the contact interface between the gate insulating layer and active layer is improved, leading to further improving TFT conduction state switching. The TFT substrate makes the gate located between the source and the pixel electrode in vertical direction, and the dual-gate is symmetrically disposed on both sides of active layer to prevent TFT threshold voltage from changing and improve TFT conduction state switching, as well as improve the contact interface between the gate insulating layer and active layer, leading to further improving TFT conduction state switching.
US11114560B2

A silicon carbide semiconductor device includes a silicon carbide semiconductor substrate, a first semiconductor layer and a first semiconductor region each of a first conductivity type, and a first base region, a second semiconductor layer and a second semiconductor region each of a second conductivity type. The first base region opposes the second semiconductor region in a depth direction. A distribution of point defects in a depth direction from a first surface of the second semiconductor region, opposite a second surface of the second semiconductor region facing toward a front surface of the silicon carbide semiconductor substrate has two peaks at positions deeper than an interface between the first semiconductor layer and the first base region, where a first peak at a deeper position of the two peaks has a greater quantity of the point defects than does a second peak at a shallower position of the two peaks.
US11114553B2

A lateral insulated gate turn-off device includes an n-drift layer, a p-well formed in the n− drift layer, a shallow n+ type region formed in the well, a shallow p+ type region formed in the well, a cathode electrode shorting the n+ type region to the p+ type region, a trenched first gate extending through the n+ type region and into the well, a p+ type anode region laterally spaced from the well, an anode electrode electrically contacting the p+ type anode region, and a trenched second gate extending from the p+ type anode region into the n-drift layer. For turning the device on, a positive voltage is applied to the first gate the reduce the base width of the npn transistor, and a negative voltage is applied to the second gate to effectively extend the p+ emitter of the pnp transistor further into the n-drift layer to improve performance.
US11114522B2

A display device includes a plurality of picture elements, wherein a first electrode is formed in each of the plurality of picture elements, a cover layer is formed such that an opening of the first electrode is formed, a spacer in a layer identical to the cover layer is provided between two of the first electrodes, the spacer is formed with a height greater than a height of the cover layer, and an outer edge portion of the spacer is spaced from an outer edge portion of the cover layer.
US11114521B2

A display device includes a substrate and a pixel disposed on the substrate. The pixel includes a first transistor, a second transistor electrically connected to the first transistor, a third transistor electrically connected to the first transistor, and a light-emitting diode element electrically connected to at least one of the first transistor and the third transistor. The first transistor includes a first semiconductor member and a first gate electrode. The first semiconductor member includes an oxide semiconductor material. The first gate electrode is disposed between the first semiconductor member and the substrate. The second transistor includes a second semiconductor member and a second gate electrode. The second semiconductor member includes the oxide semiconductor material. The second semiconductor member is disposed between the second gate electrode and the substrate. The third transistor includes a third semiconductor member including silicon.
US11114520B2

A display device includes a display panel having a display area and a non-display area, signal wires disposed in the display area, connection wires disposed in the display area and electrically connected to the signal wires, and touch electrodes disposed on the connection wires. The connection wires include diagonal portions extending in a diagonal direction, and first protrusion patterns protruding from the diagonal portions of the connection wires. Parts of the first protrusion patterns overlap the touch electrodes.
US11114519B2

An organic light emitting display device and a method of manufacturing the same are provided that may reduce the resistance of a second electrode and may prevent corrosion and metal migration of a pad electrode without adding a separate mask process, or while reducing the number of mask processes. In the organic light emitting display device, an auxiliary line is connected to a second electrode through an auxiliary electrode, which is provided in the same layer as a first electrode, and a pad cover electrode is configured to cover an upper surface and a side surface of a pad connection electrode so as to prevent the pad connection electrode connected to a pad from being exposed outward.
US11114508B2

A display panel and a display device are described. The display panel includes three-pixel units representing three different colors. In each pixel unit there are six sub-pixels dividing an anode formed on the pixel unit; in the same pixel unit, anodes of all sub-pixels are insulated from each other; three closest sub-pixels of different colors form a main pixel; and a center point of the main pixel is in one-to-one association with an image point of a display source image, and the image point falls within 10% proximity of the associated center point of the main pixel. The six sub-pixels in each pixel unit are formed simultaneously in a manner of pixel printing.
US11114500B2

A display device includes a substrate including a display area having a plurality of pixel areas and a non-display area located around the display area; a circuit element layer including a circuit element in each of the pixel areas and a reference voltage wiring in the non-display area, the reference voltage wiring being electrically coupled to the circuit element; and a display element layer including a first pixel electrode on the circuit element layer in each of the pixel areas, a second pixel electrode located opposite to the first pixel electrode, a plurality of light emitting elements between the first pixel electrode and the second pixel electrode, and a first wiring on the circuit element layer in the non-display area, wherein the first wiring is directly coupled to the reference voltage wiring in the non-display area.
US11114498B2

An image signal output unit is controlled in accordance with a first control signal indicating either voltage state of an on voltage for causing a conductive state and an off voltage having a polarity different from that of the on voltage, and outputs an analog image signal corresponding to the electric charge held by an electric charge holding unit in the conductive state. A reset unit is controlled in accordance with a second control signal indicating either voltage state of the on voltage and the off voltage, resets the electric charge holding unit in the conductive state, transmits a fluctuation in the off voltage to the electric charge holding unit, and fluctuates the analog image signal. A reference signal generation unit generates a reference signal being a signal serving as a reference used when conversion from an analog image signal output from the image signal output unit into a digital image signal is performed. A reference signal correction unit corrects the generated reference signal in accordance with the fluctuation in the off voltage. An analog-to-digital conversion unit performs the conversion on the basis of the corrected reference signal.
US11114493B2

Image sensors may include multiple vertically stacked photodiodes interconnected using vertical deep trench transfer gates. A first n-epitaxial layer may be formed on a residual substrate; a first p-epitaxial layer may be formed on the first n-epitaxial layer; a second n-epitaxial layer may be formed on the first p-epitaxial layer; a second p-epitaxial layer may be formed on the second n-epitaxial layer; and so on. The n-epitaxial layers may serve as accumulation regions for the different epitaxial photodiodes. A separate color filter array is not needed. The vertical transfer gates may be a deep trench that is filled with doped conductive material, lined with gate dielectric liner, and surrounded by a p-doped region. Image sensors formed in this way may be used to support a rolling shutter configuration or a global shutter configuration and can either be front-side illuminated or backside illuminated.
US11114491B2

An image sensor utilizes a pure boron layer and a second epitaxial layer having a p-type dopant concentration gradient to enhance sensing DUV, VUV or EUV radiation. Sensing (circuit) elements and associated metal interconnects are fabricated on an upper surface of a first epitaxial layer, then the second epitaxial layer is formed on a lower surface of the first epitaxial layer, and then a pure boron layer is formed on the second epitaxial layer. The p-type dopant concentration gradient is generated by systematically increasing a concentration of p-type dopant in the gas used during deposition/growth of the second epitaxial layer such that a lowest p-type dopant concentration of the second epitaxial layer occurs immediately adjacent to the interface with the first epitaxial layer, and such that a highest p-type dopant concentration of the second epitaxial layer occurs immediately adjacent to the interface with pure boron layer.
US11114490B2

Disclosed is a light receiving element including an on-chip lens, a wiring layer, and a semiconductor layer disposed between the on-chip lens and the wiring layer. The semiconductor layer includes a photodiode, a first transfer transistor that transfers electric charge generated in the photodiode to a first charge storage portion, a second transfer transistor that transfers electric charge generated in the photodiode to a second charge storage portion, and an interpixel separation portion that separates the semiconductor layers of adjacent pixels from each other, for at least part of the semiconductor layer in the depth direction. The wiring layer has at least one layer including a light blocking member. The light blocking member is disposed to overlap with the photodiode in a plan view.
US11114484B2

A photoelectric conversion apparatus includes, a semiconductor substrate having a photoelectric conversion unit performing photoelectric conversion on entering light and accumulating first electric charges, a first transistor electrically connected to the photoelectric conversion unit and having a first gate on a second surface, and a second transistor having a second gate shorter than the first gate on the second surface, a first fixed charge film continuously provided directly or with an insulating film in between in an area overlapping the photoelectric conversion unit on a first surface and the second transistor, the first fixed charge film having fixed charges of the first polarity, and a second fixed charge film provided directly or with an insulating film in between in an area overlapping the second transistor and the first fixed charge film, the second fixed charge film having fixed charges of a second polarity.
US11114482B2

Photodetection elements within an integrated-circuit pixel array are dynamically configurable to any of at least three uniform-aspect-ratio, size-scaled pixel footprints through read-out-time control of in-pixel transfer gates associated with respective photodetection elements and binning transistors coupled between the transfer gates for respective clusters of the photodetection elements and a shared reset node.
US11114480B2

A photodetector device comprising n-type and p-type light absorbing regions arranged to form a pn-junction and n+ and p+ contact regions connected to respective contacts. The light absorbing regions and the contact regions are arranged in a sequence n+ p n p+ so that, after a voltage applied between the n+ and p+ contacts is switched from a reverse bias to a forward bias, electrons and holes which are generated in the light absorbing regions in response to photon absorption drift towards the p+ and n+ contact regions respectively, which causes current to start to flow between the contacts after a time delay which is inversely proportional to the incident light intensity.
US11114474B2

A thin film transistor (TFT), a manufacturing method thereof, an array substrate and a display panel are disclosed. The manufacturing method includes: providing a base substrate; forming a first electrode, an isolating layer, an active layer and a gate insulating layer on the base substrate; simultaneously forming a second electrode and a gate electrode, wherein the second electrode is connected to the active layer.
US11114466B2

One illustrative IC product disclosed herein includes an (SOI) substrate comprising a base semiconductor layer, a buried insulation layer and an active semiconductor layer positioned above the buried insulation layer. In this particular example, the IC product also includes a first region of localized high resistivity formed in the base semiconductor layer, wherein the first region of localized high resistivity has an electrical resistivity that is greater than an electrical resistivity of the material of the base semiconductor layer. The IC product also includes a first region comprising integrated circuits formed above the active semiconductor layer, wherein the first region comprising integrated circuits is positioned vertically above the first region of localized high resistivity in the base semiconductor layer.
US11114462B1

A memory device includes an alternating stack of insulating layers and electrically conductive layers located over a substrate, and a memory stack structure extending through the alternating stack. The memory stack structure includes a composite charge storage structure, a tunneling dielectric layer, and a vertical semiconductor channel. The composite charge storage structure may include a vertical stack of tubular charge storage material portions including a first charge trapping material located at levels of the electrically conductive layers, and a charge storage layer including a second charge trapping material extending through a plurality of electrically conductive layers of the electrically conductive layers. The first charge trapping material has a higher charge trap density than the second charge trapping material. Alternatively, the composite charge storage material portions may include discrete charge storage elements each containing a silicon nitride portion and a silicon carbide nitride liner.
US11114461B2

A three-dimensional (3D) semiconductor memory device including: first and second semiconductor layers horizontally spaced apart from each other; a buried insulating layer between the first and second semiconductor lavers; a first cell array structure disposed on the first semiconductor layer, and a second cell array structure disposed on the second semiconductor layer; and an isolation structure disposed on the buried insulating layer between the first and second cell array structures, wherein the first cell array structure includes: an electrode structure including electrodes, which are stacked in a direction perpendicular to a top surface of the first semiconductor layer; and a first source structure disposed between the first semiconductor layer and the electrode structure, the first source structure is extended onto the buried insulating layer, and the isolation structure is between the first source structure of the first cell array structure and a second source structure of the second cell array structure.
US11114459B2

A three-dimensional memory device includes alternating stacks of insulating layers and electrically conductive layers located over a substrate, a first memory array region and a second memory array region that are laterally spaced apart along the first horizontal direction by an inter-array region therebetween, and memory stack structures extending through the alternating stacks in the first or second memory array region. Each of the alternating stacks includes a respective terrace region in which layers of a respective alternating stack have variable lateral extents within an area of the inter-array region, and a respective array interconnection region laterally offset from the respective terrace region and which continuously extends from the first memory array region to the second memory array region. Each of the alternating stacks has a width modulation along a second horizontal direction that is perpendicular to the first horizontal direction within the area of the inter-array region.
US11114452B2

Various embodiments of the present application are directed towards a method to integrate NVM devices with a logic or BCD device. In some embodiments, an isolation structure is formed in a semiconductor substrate. The isolation structure demarcates a memory region of the semiconductor substrate, and further demarcates a peripheral region of the semiconductor substrate. The peripheral region may, for example, correspond to BCD device or a logic device. A doped well is formed in the peripheral region. A dielectric seal layer is formed covering the memory and peripheral regions, and further covering the doped well. The dielectric seal layer is removed from the memory region, but not the peripheral region. A memory cell structure is formed on the memory region using a thermal oxidation process. The dielectric seal layer is removed from the peripheral region, and a peripheral device structure including a gate electrode is formed on the peripheral region.
US11114448B2

The present application discloses a semiconductor device and a method for fabricating the semiconductor device. The semiconductor device includes a substrate having a first region and a second region, a first semiconductor element positioned in the first region of the substrate, a second semiconductor element positioned in the first region of the substrate, a bridge conductive unit electrically connected the first semiconductor element and the second semiconductor element, and a programmable unit positioned in the second region and electrically connected to the bridge conductive unit.
US11114447B2

An SRAM device includes first, second and third transistors, which are used as a pass gate transistor, a pull-down transistor, and a pull-up transistor, respectively. A channel region of each transistor may include a plurality of semiconductor sheets that are vertically stacked on a substrate. The semiconductor sheets used as the channel regions of the first and second transistors may have a width greater than the semiconductor sheets used as channel regions of the third transistor.
US11114445B2

A semiconductor device includes a substrate having an active pattern, a cell region on the substrate and having a cell circuit, and a core region on the substrate having a peripheral circuit. In plan view, the active pattern on the core region includes a plurality of corners. Each of the corners has a rounding index that is equal to or less than about 15 nm. The rounding index is a distance between a respective tip of each of the corners and a right-angled corner.
US11114443B2

Systems, apparatuses, and methods related to semiconductor structure formation are described. An example method may include patterning a working surface of a semiconductor wafer. The method may further include performing a vapor etch on a first dielectric material at the working surface to recess the first dielectric material to a first intended depth of an opening relative to the working surface and to expose a second dielectric material on a sidewall of the opening. The method may further include performing a wet etch on the second dielectric material to recess the second dielectric material to the intended depth.
US11114439B2

Disclosed is a method for forming a staircase structure of 3D memory. The method includes providing a substrate, forming an alternating layer stack over the substrate, forming a plurality of block regions over a surface of the alternating layer stack, forming a first plurality of staircase structures to expose a portion of a first number of top-most layer stacks at each of the block regions and removing the first number of the layer stacks at a second plurality of staircase structures at each of the block regions.
US11114436B2

Provided is a metal gate structure and related methods that include performing a metal gate cut process. The metal gate cut process includes a plurality of etching steps. For example, a first anisotropic dry etch is performed, a second isotropic dry etch is performed, and a third wet etch is performed. In some embodiments, the second isotropic etch removes a residual portion of a metal gate layer including a metal containing layer. In some embodiments, the third etch removes a residual portion of a dielectric layer.
US11114433B2

Provided is a three dimensional integrated circuit (3DIC) structure including a first die, a second die, and a hybrid bonding structure bonding the first die and the second die. The hybrid bonding structure includes a first bonding structure and a second bonding structure. The first bonding structure includes a first bonding dielectric layer and a first bonding metal layer. The first bonding metal layer is disposed in the first bonding dielectric layer. The first bonding metal layer includes a first via plug and a first metal feature disposed over the first via plug, wherein a height of the first metal feature is greater than or equal to a height of the first via plug. A method of fabricating the 3DIC structure is also provided.
US11114430B2

A leakage current detection and protection device coupled between input and output ends of power lines, and includes first and second switching modules, a leakage current detection module, a self-test module, and first and second drive modules. When the leakage current detection module detects a leakage current on the power lines, the second drive module controls the second switching module to disconnect power to the output end. When the self-test module detects a fault in the leakage current detection module, the first drive module controls the first switching module to disconnect the power to the output ends. The first switching module is coupled between the input end and a point where the leakage current detection module, the self-test module, and the first and second drive modules are coupled, so that these modules are de-powered when the first switching module disconnects the electrical connection to output ends.
US11114427B2

A 3D semiconductor device, the device including: a first level including first single crystal transistors; and a second level including second single crystal transistors, where the first level is overlaid by the second level, where a vertical distance from the first single crystal transistors to the second single crystal transistors is less than four microns, where the first level includes a plurality of processors, and where the second level includes a plurality of memory cells.
US11114413B2

A package structure includes a plurality of stacked die units and an insulating encapsulant. The plurality of stacked die units is stacked on top of one another, where each of the plurality of stacked die units include a first semiconductor die, a first bonding chip. The first semiconductor die has a plurality of first bonding pads. The first bonding chip is stacked on the first semiconductor die and has a plurality of first bonding structure. The plurality of first bonding structures is bonded to the plurality of first bonding pads through hybrid bonding. The insulating encapsulant is encapsulating the plurality of stacked die units.
US11114412B2

An electronic package is provided, including: a first carrying structure having a first circuit layer; a package module disposed on the first carrying structure and electrically connected to the first circuit layer; a first electronic component disposed on the first carrying structure and electrically connected to the first circuit layer; and a second electronic component stacked on and electrically connected to the first electronic component. As the second electronic component is stacked with the first electronic component, a surface area of the first carrying structure that the first and second electronic components occupy is reduced, and the electronic package can have sufficient space to accommodate the package modules. A method for fabricating an electronic package is also provided.
US11114400B2

A semiconductor device includes a semiconductor die, a redistribution structure, a interconnection structure, and a thermal path structure. The redistribution structure includes an insulation layer over a first surface of the semiconductor die and a conductive trace separated from the first surface by the insulation layer. The conductive trace extends laterally over the first surface from a first end toward a second end that is electrically coupled to a bond pad on the first surface of the semiconductor die. The interconnection structure is coupled to the first end of the conductive trace. The thermal path structure provides a thermal path between the semiconductor die and the interconnection structure. In some embodiment, the thermal path structure comprises a thermal pad that passes through the insulation layer. In other embodiments, the thermal path structure comprises a dummy pad on the first surface of the semiconductor die.
US11114394B2

An electronic device and associated methods are disclosed. In one example, the electronic device includes an article having a substrate, a semiconductor die thereon, a routing carrier attached to the substrate, and a transmission pathway electrically connected to the semiconductor die and the substrate, wherein the transmission pathway runs through the routing carrier. In selected examples, the article is made by manufacturing a substrate, attaching a semiconductor die to the substrate, fabricating a routing carrier comprising a transmission pathway, and integrating the routing carrier into the substrate.
US11114393B2

An electronic package and a method for fabricating the same are provided. A plurality of electronic components are disposed in a packaging structure. At least one antenna structure is stacked via a plurality of conductive elements on the packaging structure. The antenna structure is electrically connected to at least one of the electronic components. The electronic components have different radio frequencies. In mass production, the antenna structures of different antenna types are stacked on the packaging structure, and a radio frequency product of various frequencies can be produced. Radio frequency chips of different frequencies need not be fabricated into a variety of individual packaging modules. Therefore, the production cost is reduced, and the production speed is increased.
US11114389B2

A substrate structure includes a chip attach area and an upper side rail surrounding the chip attach area. The upper side rail includes an upper stress relief structure and an upper reinforcing structure. The upper stress relief structure surrounds the upper chip attach area. The upper reinforcing structure surrounds the upper stress relief structure. A stress relieving ability of the upper stress relief structure is greater than a stress relieving ability of the upper reinforcing structure. A structural strength of the upper reinforcing structure is greater than a structural strength of the upper stress relief structure.
US11114384B2

A power semiconductor die has a semiconductor body, an insulation layer on the semiconductor body, a passivation structure arranged above the insulation layer so as to expose a first insulation layer subsection that extends to an edge of the power semiconductor die, and an interruption structure in the first insulation layer subsection.
US11114383B2

Semiconductor devices having optical routing layers, and associated systems and methods, are disclosed herein. In one embodiment, a method of manufacturing a semiconductor device includes forming conductive pads on a first side of a substrate and electrically coupled to conductive material of vias extending partially through the substrate. The method further includes removing material from a second side of the substrate so that the conductive material of the vias projects beyond the second side of the substrate to define projecting portions of the conductive material. The method also includes forming an optical routing layer on the second side of the substrate and at least partially around the projecting portions of the conductive material.
US11114381B2

A semiconductor device is provided. The semiconductor device includes a transistor stack having a plurality of transistor pairs that are stacked over a substrate. Each transistor pair of the plurality of transistor pairs includes a n-type transistor and a p-type transistor that are stacked over one another. The plurality of transistor pairs have a plurality of gate electrodes that are stacked over the substrate and electrically coupled to gate structures of the plurality of transistor pairs, and a plurality of source/drain (S/D) local interconnects that are stacked over the substrate and electrically coupled to source regions and drain regions of the plurality of transistor pairs. The semiconductor device further includes one or more conductive planes formed over the substrate. The one or more conductive planes are positioned adjacent to the transistor stack, span a height of the transistor stack and are electrically coupled to the transistor stack.
US11114379B2

A method used in forming integrated circuitry comprises forming a stack of vertically-alternating tiers of different composition materials. A stair-step structure is formed into the stack and an upper landing is formed adjacent and above the stair-step structure. The stair-step structure is formed to comprise vertically-alternating tiers of the different composition materials. A plurality of stairs individually comprise two of the tiers of different composition materials. At least some of the stairs individually have only two tiers that are each only of a different one of the different composition materials. An upper of the stairs that is below the upper landing comprises at least four of the tiers of different composition materials. Structure independent of method is disclosed.
US11114374B2

Interconnect structures and method of forming the same are disclosed herein. An exemplary interconnect structure includes a first contact feature in a first dielectric layer, a second dielectric layer over the first dielectric layer, a second contact feature over the first contact feature, a barrier layer between the second dielectric layer and the second contact feature, and a graphene layer between the second contact feature and the first contact feature.
US11114369B2

A thin semiconductor device with enhanced edge protection, and a method of manufacturing thereof. For example and without limitation, various aspects of this disclosure provide a thin semiconductor device comprising a substrate with an edge-protection region, and a method of manufacturing thereof.
US11114361B2

Electronics assemblies and methods of manufacturing electronics assemblies having improved thermal performance. One example of these electronics assemblies includes a printed circuit board (PCB), an integrated circuit package mounted to the PCB, the integrated circuit packing having a heat generating component, and a heat spreader soldered to the PCB such that the heat spreader is thermally coupled to the heat generating component of the integrated circuit package to dissipate heat generated by the heat generating component.
US11114355B2

A power module includes a power wiring line provided with a power element, a glass ceramic multilayer substrate provided with a control element to control the power element, and a highly heat-conductive ceramic substrate made of a ceramic material having higher thermal conductivity than a glass ceramic contained in the glass ceramic multilayer substrate. The power wiring line is disposed on the highly heat-conductive ceramic substrate, and the glass ceramic multilayer substrate is disposed directly on the highly heat-conductive ceramic substrate.
US11114351B2

A dummy element includes: a semiconductor substrate; a lower insulating film deposited on the semiconductor substrate; a first resistive layer deposited on the lower insulating film; an interlayer insulating film covering the first resistive layer; a first pad-forming electrode deposited on the interlayer insulating film so as to be connected to the first resistive layer, and including an extending portion to be in Schottky contact with the semiconductor substrate; a relay wire connected to the first resistive layer and connected to the semiconductor substrate with an ohmic contact; and a counter electrode allocated under the semiconductor substrate, the dummy element simulating a defective state in the lower insulating film and the interlayer insulating film immediately under the first pad-forming electrode included in a corresponding resistive element as a target to be examined.
US11114344B1

Integrated circuit (IC) dies and method for manufacturing the same are described herein that mitigate pattern loading effects during manufacture. In one example, the IC includes a die body having a first circuit block separated from an adjacent second circuit block by a buffer zone. The first and second circuit blocks have first and second transistors that are at least partially fabricated from a gate metal layer and disposed immediately adjacent the buffer zone. A dummy structure is formed in the buffer zone and is also at least partially fabricated from the gate metal layer. An amount of gate metal layer material in the dummy structure is selected to mitigate differences in the amount of gate metal layer material in regions of first and second circuit blocks that neighbor each other across the buffer zone.
US11114332B2

A method is provided for preparing a semiconductor-on-insulator structure comprising a silicon nitride layer deposited by plasma deposition.
US11114330B2

A workpiece support has a support surface where one or more standoffs are selectively removably coupled to the support surface. The one or more standoffs are operable to support a workpiece at a predetermined standoff distance from the support surface. A gap may be defined between the support surface and the workpiece. The one or more standoffs may be an electrically insulative film, such as a polyimide film that is selectively removably coupled to the support surface by an adhesive. The workpiece support may be an electrostatic chuck (ESC). Electrodes positioned below the support surface may electrostatically attract the workpiece toward the support, where a gas may be introduced in the gap.
US11114306B2

Embodiments of the present invention provide an apparatus and methods for depositing a dielectric material using RF bias pulses along with remote plasma source deposition for manufacturing semiconductor devices, particularly for filling openings with high aspect ratios in semiconductor applications. In one embodiment, a method of depositing a dielectric material includes providing a gas mixture into a processing chamber having a substrate disposed therein, forming a remote plasma in a remote plasma source and delivering the remote plasma to an interior processing region defined in the processing chamber, applying a RF bias power to the processing chamber in pulsed mode, and forming a dielectric material in an opening defined in a material layer disposed on the substrate in the presence of the gas mixture and the remote plasma.
US11114302B2

A substrate processing apparatus includes an upper cup part including a first tubular portion and a second tubular portion that are formed each in a tubular shape capable of surrounding a substrate held by a substrate holder, the second tubular portion being connected to an upper side of the first tubular portion. The substrate processing apparatus also includes a cup moving unit that moves the upper cup part in a vertical direction with respect to the substrate holder to stop the upper cup part at each of a position where the first tubular portion surrounds the substrate, and a position where the second tubular portion surrounds the substrate.
US11114301B2

A semiconductor device includes a semiconductor substrate, a gate structure, and source/drain regions. The gate structure comprises an yttrium oxide layer over the semiconductor substrate, an aluminum oxide layer over the yttrium oxide layer, and a gate electrode on the aluminum oxide layer. The source/drain regions are on the semiconductor substrate and on opposite sides of the gate structure.
US11114299B2

A method of forming surface features in a hardmask layer, including etching a first surface feature into the hardmask layer, the first surface feature having a first critical dimension, performing an ion implantation process on the first surface feature to make the first surface feature resistant to subsequent etching processes, etching a second surface feature into the hardmask layer adjacent the first surface feature, wherein the first critical dimension is preserved.
US11114293B2

A space-time buffer includes a plurality of discrete trapping regions and a controller. The plurality of discrete trapping regions is configured to trap ions as individual trapping regions or as combinations of trapping regions. The controller is configured to combine at least a portion of the plurality of trapping regions into a larger trap region; fill the larger trap region with a plurality of ions; split the larger trap region into individual trapping regions each containing a portion of the plurality of ions; and eject ions from the trapping regions.
US11114291B2

A method of filtering ions (16) is disclosed comprising: providing an ion filter (6) having an ion entrance, an ion exit and a plurality of electrodes (18); applying an AC and/or RF voltage to at least a first electrode so as to generate a pseudo-potential barrier; and urging ions towards the pseudo-potential barrier as they travel from the entrance to the exit whilst maintaining the ion filter (6) at a pressure such that first ions are repelled by the pseudo-potential barrier and so are transmitted through the filter to said exit, whereas second ions having substantially the same mass to charge ratio as the first ions but a lower mass are not capable of being repelled by the pseudo-potential barrier and reaching said exit.
US11114289B2

Embodiments of the invention generally relate to an anode for a semiconductor processing chamber. More specifically, embodiments described herein relate to a process kit including a shield serving as an anode in a physical deposition chamber. The shield has a cylindrical band, the cylindrical band having a top and a bottom, the cylindrical band sized to encircle a sputtering surface of a sputtering target disposed adjacent the top and a substrate support disposed at the bottom, the cylindrical band having an interior surface. A texture is disposed on the interior surface. The texture has a plurality of features. A shaded area is disposed in the feature wherein the shaded area is not visible to the sputtering target. A small anode surface is disposed in the shaded area.
US11114288B2

Methods and apparatus for physical vapor deposition are provided. The apparatus, for example, includes A PVD apparatus that includes a chamber including a chamber wall; a magnetron including a plurality of magnets configured to produce a magnetic field within the chamber; a pedestal configured to support a substrate; and a target assembly comprising a target made of gold and supported on the chamber wall via a backing plate coupled to a back surface of the target so that a front surface of the target faces the substrate, wherein a distance between a back surface formed in a recess of the backing plate and a bottom surface of the plurality of magnets is about 3.95 mm to about 4.45 mm, and wherein a distance between the front surface of the target and a front surface of the substrate is about 60.25 mm to about 60.75 mm.
US11114285B2

Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes an exhaust cooling apparatus located downstream of a plasma source. The exhaust cooling apparatus includes at least one cooling plate a device for introducing turbulence to the exhaust flowing within the exhaust cooling apparatus. The device may be a plurality of fins, a cylinder with a curved top portion, or a diffuser with angled blades. The turbulent flow of the exhaust within the exhaust cooling apparatus causes particles to drop out of the exhaust, minimizing particles forming in equipment downstream of the exhaust cooling apparatus.
US11114274B2

A method for analyzing an integrated circuit includes: applying an electric test pattern to the IC; delivering a stream of primary electrons to a back side of the IC on an active region to a transistor of interest, the active region including active structures such as transistors of the IC; detecting light resulting from cathodoluminescence initiated by secondary electrons in the IC; and analyzing the detected light regarding a correlation with the electric test pattern applied to the IC. A system for analyzing an IC is provided.
US11114271B2

Correctors for correcting axial aberrations of a particle-optical lens in a charged particle microscope system, according to the present disclosure include a first primary multipole that generates a first primary multipole field when a first excitation is applied to the first primary multipole, and a second primary multipole that generates a second primary multipole field when a second excitation is applied to the second primary multipole. The first primary multipole is not imaged onto the second primary multipole such that a combination fourth-order aberration is created. The correctors further include a secondary multipole for correcting the fourth-order aberration and the sixth-order aberration. Such correctors may further include a tertiary multipole for correcting an eighth-order aberration.
US11114266B1

A sub-structure element support system is disclosed. The sub-structure element support system includes a novel molded structure designed to support an electrical element, such as a fuse. The molded structure is a protective and insulative sleeve for the electrical element and reduces forces on the electrical element during free-fall and operation conditions. The molded structure also facilitates automation during manufacturing and reduces cost.
US11114259B2

The switch body includes: a wiring substrate where first to fourth fixed contact members are formed; and a movable contact member including a pressure receiving part opposite from the second fixed contact member, a first outer edge facing the first fixed contact member, and a second outer edge facing the third fixed contact member. The fourth fixed contact member is formed in a region outside a projection region being a projection of the movable contact member on the wiring substrate and is in a position facing the first outer edge when the second outer edge is moved to a region where the second fixed contact member is formed.
US11114254B2

A circuit breaker including at least two contact tip that comprise an electrical contact material comprising silver (Ag) and tungsten (W). The contact tip further comprises a graphene material (Gr) additively mixed in Ag as being denoted as AgGr0.3% or AgGr0.5% which is mixed with tungsten (W) to form (AgGr0.3)W50 or (AgGr0.5)W50 called a silver-graphene tungsten composite material.
US11114248B2

A thin film capacitor includes a capacitance portion in which a plurality of electrode layers and dielectric layers are alternately laminated, a cover layer, an insulating layer, a via hole in which one electrode layer different from an uppermost electrode layer among the plurality of electrode layers is exposed at a bottom surface thereof, and an opening which is provided inside the via hole and in which the one electrode layer is exposed at a bottom surface thereof, and in which the cover layer and the insulating layer are exposed at a side surface. The opening includes a first opening portion which passes through the insulating layer and a second opening portion which is provided below the first opening portion and passes through the cover layer, and when an inner diameter of the first opening portion is D1 and an inner diameter of the second opening portion is D2, D1>D2.
US11114247B2

The object of the present invention is to provide the multilayer ceramic capacitor having no deterioration of dielectric properties even in case an inhibitor of an internal electrode layer is pushed out to a dielectric layer when sintering. The multilayer ceramic capacitor 1 including a capacitor element body 10 comprising a dielectric layer 2 and an internal electrode layer 3 stacked in an alternating manner, wherein when Za represents Zr concentration of an dielectric particle in a center part 6 of the dielectric layer 2 and Zb represents Zr concentration of a dielectric particle near the internal electrode layer, 0<(Za/Zb)<1 is satisfied.
US11114242B2

A capacitor including a conductive metal base material having a porous part, a dielectric layer on the porous part, an upper electrode on the dielectric layer, and an oxide film on a surface of the conductive metal base material. The oxide film on the surface of the metal base material operates as an insulating layer between a lower electrode and an upper electrode, and the metal base material and the oxide film are preferably integrated so that separation of the insulating layer can be prevented, and a short circuit between the lower electrode and the upper electrode can be suppressed.
US11114237B2

A method of improving coercivity of an Nd—Fe—B magnet includes a first step of providing an Nd—Fe—B magnet having a first surface and a second surface. Next, a first solidified film of at least one pure heavy rare earth element is formed and attached to the first surface of the Nd—Fe—B magnet to prevent a reduction in corrosion resistance caused by oxygen and fluorine and hydrogen. After forming the first solidified film, the Nd—Fe—B magnet is subjected a diffusion treatment in a vacuum or an inert atmosphere. After the diffusion treatment, the Nd—Fe—B magnet is subjected to an aging treatment in the vacuum or the inert atmosphere.
US11114230B2

A monitoring device for use in a cryogenic system. The monitoring device comprises first and second conducting elements and a current detector. The first conducting element comprises high temperature superconducting, HTS, material and is configured for connection to a current source and insertion into the cryogenic system. The second conducting element comprises HTS material and is connected in parallel to the first conducting element by first and second joints. The current detector is configured to detect a current in the second conducting element. When the HTS material in each of the first and second conducting elements is in a superconducting state, the resistance, RT, of the first conducting element between the first and second joints, is less than the sum, RB, of the resistance of the second conducting element between the first and second joints and the resistances of the first and second joints.
US11114226B2

A magnetic iron alloy and process of making the same. The alloy includes iron, approximately 2 wt. % to approximately 8 wt. % cobalt, approximately 0.05 wt. % to approximately 5 wt. % manganese, and approximately 0.05 wt. % to approximately 5 wt. % silicon. The alloy may also include up to approximately 0.3 wt. % chromium, up to approximately 2 wt. % vanadium, up to approximately 1 wt. % nickel, up to approximately 0.05 wt. % niobium, and up to approximately 0.02 wt. % carbon.
US11114223B1

A three-dimensional thermistor device and a manufacturing method thereof. The three-dimensional thermistor device comprising a thermistor array formed on a base layer extending in first and second directions. Where the thermistor array comprises: thermistor pattern layers and insulating layers stacked alternately on the base layer in a third direction; each thermistor pattern layer including a continuous electrically conductive first trace disposed along a first path extending in both the first and second directions, and each insulating layer including an electrically conductive first via extending through the insulating layer in the third direction to electrically connect the first traces to each other. Where successive electrical connections between the respective first vias on the stacked insulating layers and the respective first traces on the stacked thermistor layers form a continuous electrical first thermistor element extending in the first, second and third directions across multiple of the thermistor pattern layers.
US11114219B2

A strand leadthrough device for leading a plurality of strands in the form of cables or cable bundles, pipes, and/or tubes through a passage in a wall includes: a frame which is fastenable to an outer side of the wall and encloses at least one clearance through which the strands are led; a first sealing membrane which has a plurality of leadthrough openings through which a strand is led; and a second sealing membrane having a plurality of leadthrough points through which a strand is led. In order to form a leadthrough channel for a strand, in each case one leadthrough point of the second sealing membrane is assigned in each case to one leadthrough opening in the first sealing membrane. In a region of the leadthrough points, the second sealing membrane has elastically deformable sealing lamellae which, in a starting state, lie against one another closing the leadthrough channel.
US11114216B2

The present invention relates to an aluminum-resin composite and provides the aluminum-resin composite which is excellent in adhesive property between metal and resin and is applicable to a continuous production process such as a wire production process. Specifically, the present invention uses the aluminum-resin composite including a metal made of aluminum or an aluminum alloy and resin adhering to the metal via an alumina nanoporous layer formed on a surface of the metal. The alumina nanoporous layer contains alumina nanoparticles of 5 nm to 10 nm in average particle diameter and holes three-dimensionally communicating with one another.
US11114206B2

Determining a physical state of a person includes detecting positions of different portions of the person, transforming detected positions into a point cloud having a density that varies according to movement of each of the portions, correlating movement and position data from the point cloud with known physical state positions and transitions between different states, choosing a particular physical state by matching the data from the point cloud with the particular physical state, and obtaining vital signs of the person during an optimal period of time for automatic capturing of vital signs by detecting when the person is in a particular state. The particular state may be a static state. The static state may be standing, sitting, or laying down. The vital signs may include measuring a breathing rate and measuring a heartbeat rate. Vital signs may be obtained by detecting pulsations in the point cloud representing breathing and heartbeats.
US11114193B2

A system for optimizing dietary levels utilizing artificial intelligence. The system includes at least a server designed and configured to receive at least a dietary request from a user device. The at least a server includes an alimentary instruction set generator module designed and configured to generate at least an alimentary instruction set as a function of the at least a dietary request. The at least a server includes a physical performance instruction set generator designed and configured to receive at least a provider datum, receive at least a physical performance datum, select at least a provider and at least a physical performance executor and generate at least a provider instruction set and at least a physical performance instruction set.
US11114191B1

A computing system for redirecting electronic prescription refills is disclosed herein. A server computer device executing an electronic health records application constructs an electronic prescription for a patient and causes the electronic prescription to be routed to a first pharmacy device of a first pharmacy. The electronic prescription includes at least one refill. Subsequently, the server computing device receives an identifier for the electronic prescription and an identifier for a second pharmacy from a second server computing device executing a patient portal application, wherein the identifier for the second pharmacy is specified by the patient. The server computing device identifies the electronic prescription, determines a number of refills remaining on the electronic prescription, and constructs a second electronic prescription including the number of refills. The server computing device then causes the second electronic prescription to be routed to a second pharmacy device of the second pharmacy.
US11114183B2

In one embodiment, a method for identifying and forming a simulant includes identifying a composition, identifying a plurality of ingredients, the simulant being a combination of the ingredients, identifying for evaluation one or more metrics of the simulant, determining proportions of each of the ingredients by optimizing a quadratic function based on the one or more metrics of the simulant, rendering, via a GUI, a 3D plot that depicts the metrics and a target point specified by the target values of the composition, when the target point is contained within a convex set defined by the identified ingredients, outputting the determined proportions of each of the identified ingredients and, otherwise, receiving user input to adjust the convex set by user selecting and moving the data points of the 3D plot to modify the metrics of the simulant to produce a new 3D plot, and identifying alternative ingredients and/or alternative proportions.
US11114175B1

A Read Only Memory (ROM) cell array includes: a first transistor coupled to a first word line; a second transistor coupled to a second word line; and a third transistor disposed between the first transistor and the second transistor, the third transistor having a first gate terminal permanently coupled to a power rail.
US11114172B2

Provided herein may be a memory system and a method of operating the same. The memory system may include a memory device including super blocks, each of the super blocks including a plurality of memory blocks, and a controller configured to control the memory device so that a program operation is performed on a selected memory block within any one of the super blocks based on a request from a host, wherein, when a program fail occurs during the program operation that is performed on the selected memory block of the selected super block, the controller is configured to control the memory device so that a test read operation is performed on remaining memory blocks, besides the selected memory block, of the selected super block.
US11114162B2

According to the present embodiment, a semiconductor memory device includes a first memory bunch including a first source line, a first source side selecting gate transistor, a first source side selecting gate line, a plurality of first non-volatile memory cells, a plurality of first word lines, a first drain side selecting gate transistor, a first drain side selecting gate line, and a first bit line; a second memory bunch including, a second source line, a second source side selecting gate transistor, a second source side selecting gate line, a plurality of second non-volatile memory cells, a plurality of second word lines, a second drain side selecting gate transistor, a second drain side selecting gate line, and a second bit line; a common bit line; a first bit line transfer transistor; and a second bit line transfer transistor.
US11114161B2

A reconfigurable phase change device with methods for operating and forming the same are disclosed. An example device can comprise a reconfigurable layer comprising a phase change material, and a set of contacts connected with the reconfigurable layer. The set of contacts can comprise at least a first contact, a second contact, and a third contact. The device can comprise at least one control element electrically coupled with one or more of the set of contacts. The at least one control element can be configured to supply a first control signal to one or more of the set of contacts. The first control signal can be configured to modify a first portion of the reconfigurable layer thereby isolating the first contact from the second contact and the third contact.
US11114152B1

A semiconductor memory device includes a memory cell; and a page buffer including a sensing circuit that is coupled to the memory cell through a bit line. The page buffer includes a first transistor included in the sensing circuit; and a second transistor not included in the sensing circuit. A cross-sectional dimension of a first contact which is coupled to the first transistor and a cross-sectional dimension of a second contact which is coupled to the second transistor are different from each other. The cross-sectional dimension of the second contact is smaller than the cross-sectional dimension of the first contact.
US11114149B2

Embodiments of operation methods of ferroelectric memory are disclosed. In an example, a method for reading ferroelectric memory cells is disclosed. The ferroelectric memory cells include a first set of ferroelectric memory cells and a second set of ferroelectric memory cells. In a first cycle, first data in a first ferroelectric memory cell of the first set of ferroelectric memory cells is sensed. In a second cycle subsequent to the first cycle, the sensed first data is written back to the first ferroelectric memory cell, and second data in a second ferroelectric memory cell of the second set of ferroelectric memory cells is simultaneously sensed.
US11114122B1

Described are magnetic recording heads that include an overcoat that includes a titanium oxynitride (TiON) layer.
US11114116B2

To provide an information processing apparatus, an information processing method, and a program capable of specifying the privacy risk for a user. The information processing apparatus includes a privacy risk specification unit that specifies privacy risk information indicating a privacy risk for a user on the basis of action information indicating an action state of the user.
US11114115B2

In an example implementation according to aspects of the present disclosure, a method may include identifying, via a first microphone of a device, when a user registered to use the device is speaking, and comparing a voice characteristic of the user, as detected by the first microphone, against a threshold value. If the voice characteristic exceeds the threshold value, the method may include unmuting a second microphone of the device for the user to participate in a teleconference.
US11114108B1

A method includes extracting, from multiple microphone input, a hyperset of features of acoustic sources, using the extracted features to identify separable clusters associated with acoustic scenarios, and classifying subsequent input as one of the acoustic scenarios using the hyperset of features. The acoustic scenarios include a desired spatially moving/non-moving talker, and an undesired spatially moving/non-moving acoustic source. The hyperset of features includes both spatial and voice biometric features. The classified acoustic scenario may be used in a robotics application or voice assistant device desired speech enhancement or interference signal cancellation. Specifically, the classification of the acoustic scenarios can be used to adapt a beamformer, e.g., step size adjustment. The hyperset of features may also include visual biometric features extracted from one or more cameras viewing the acoustic sources. The spatial and biometric features may be separately extracted, clustered, classified and their separate classifications fused, e.g., using frame synchronization.
US11114107B2

A method for decoding an encoded audio bitstream in an audio processing system is disclosed. The method includes extracting from the encoded audio bitstream a first waveform-coded signal comprising spectral coefficients corresponding to frequencies up to a first cross-over frequency for a time frame and performing parametric decoding at a second cross-over frequency for the time frame to generate a reconstructed signal. The second cross-over frequency is above the first cross-over frequency and the parametric decoding uses reconstruction parameters derived from the encoded audio bitstream to generate the reconstructed signal. The method also includes extracting from the encoded audio bitstream a second waveform-coded signal comprising spectral coefficients corresponding to a subset of frequencies above the first cross-over frequency for the time frame and interleaving the second waveform-coded signal with the reconstructed signal to produce an interleaved signal for the time frame.
US11114102B2

An appliance including a voice recognition device, the voice recognition device including a sound output device and a voice input device, wherein the sound output device is configured to output sound toward the inside of the panel, and the voice input device is configured to collect voice transmitted from the outside of the panel toward the panel.
US11114100B2

Methods, apparatus, and computer readable media are described related to automated assistants that proactively incorporate, into human-to-computer dialog sessions, unsolicited content of potential interest to a user. In various implementations, based on content of an existing human-to-computer dialog session between a user and an automated assistant, an entity mentioned by the user or automated assistant may be identified. Fact(s)s related to the entity or to another entity that is related to the entity may be identified based on entity data contained in database(s). For each of the fact(s), a corresponding measure of potential interest to the user may be determined. Unsolicited natural language content may then be generated that includes one or more of the facts selected based on the corresponding measure(s) of potential interest. The automated assistant may then incorporate the unsolicited content into the existing human-to-computer dialog session or a subsequent human-to-computer dialog session.
US11114090B1

Described are techniques for linking generating a skill-stored user profile, and linking same with a natural language processing (NLP) system-stored user profile. In at least some examples, a user may provide a natural language input to a NLP system. The NLP system may determine a skill is to process to perform an action responsive to the natural language input. To perform the action, the skill may require the user have a user profile stored by the skill, but the user may not have such a user profile. However, the NLP system may store a user profile for the user. The NLP system may determine the user profile stored thereby and may send, with user permission, information in the user profile to the skill. The skill may use the received information to generate and store a user profile for the user. Thereafter, the skill may provide the NLP system with a user profile identifier that the skill may use to identify the user's profile stored thereby. The NLP system may store the received user profile identifier in the user's profile stored by the NLP system, thereby linking the user profiles and enabling the skill to thereafter personalize processing with respect to natural language inputs of the user.
US11114083B2

An anti-snoring apparatus including a low frequency sound generating device that applies a low frequency sound to a subject producing a snoring sound, and a controller including circuitry that converts the snoring sound to a received signal, obtain snoring sound information from the received signal, process the snoring sound information such that an impact of the snoring sound is determined based on the snoring sound information, and cause the low frequency sound generating device to apply the low frequency sound to the subject when the impact is higher than a threshold.
US11114080B2

Sound absorption units for fluid ducts include two acoustically coupled pairs of Helmholtz resonators. The two resonators within each pair have identical resonance frequency, however the upstream resonator within each pair is partly filled with an acoustically lossy porous material, so that the upstream resonator within each pair has greater acoustic loss than its coupled downstream resonator. The upstream pair of resonators has a relatively low resonance frequency, while the downstream pair of resonators has a relatively high resonance frequency. The combination of frequency mismatch between the resonator pairs, and loss mismatch within each resonator pair, produces consistently high sound absorption across a broad frequency spectrum.
US11114074B2

A media-content augmentation system includes a processing system that receives input data in the form of temporally-varying events data. The processing system resolves the input into one or more categorized contextual themes, correlates the themes with metadata associated with at least one reference media file, and then splices or fades together selected parts of the media file, thus generating as an output, a media product in which transitions between its contextual themes are aligned with selected temporal events in the input data. The temporarily-varying events take the form of a beginning and an end in the case of a sustained feature, or a specific point in time for a hit point. A method aligns sections in digital media files with temporally-varying events data to compose a media product. The system augments a sensory experience of a user by dynamically changing and then playing selected media files within the context of the categorized themes input to the processing system.
US11114068B1

An electronic device includes a device housing and one or more displays presenting one or more user actuation targets defining one or more virtual buttons in a predefined arrangement relative to a first end of the device housing. One or more sensors detect a condition of the electronic device, such as an approaching object, change in the direction of gravity, or an object tapping or pushing the electronic device. One or more processors cause, in response to the one or more sensors detecting the condition, the one or more displays to present the one or more user actuation targets defining the one or more virtual buttons in another predefined arrangement that is different from the predefined arrangement.
US11114067B2

Disclosed is a display device for maximizing the possibility that an after image is formed in a rollable display, including a housing, a guide bar accommodated in the housing and configured to rotate, a display configured to be drawn out from the housing along with rotation of the guide bar and to be retracted into the housing, and a controller configured to display the display content in a region of the display, which is drawn out from the housing, in which a draw-out length of the display that is partially drawn out from the housing is variable.
US11114063B2

A control system for a switchable privacy display apparatus comprises an ambient light sensor and a display luminance controller arranged to control the luminance of the display in response to measured illuminance. High image visibility is provided for public mode operation while in privacy mode visual security level above a perceived privacy threshold may be obtained by means of control of image luminance, in response to the output of the ambient light sensor.
US11114060B2

A cursor image detection comparison and feedback status determination method is disclosed. The method is based on a non-invasive data-extraction system architecture, and uses an image processing unit to perform detection comparison on a cursor image shown on an operation screen outputted from a machine controller. The method includes steps of obtaining cursor foreground and background images set by a user, and selecting an algorithm to process the cursor foreground and background images to generate a cursor mask, and reading a cursor image and applying the cursor mask on the cursor image for pattern comparison, transmitting information of a comparison result and a cursor feedback status to a software control system, so as to provide a correction system to perform a cursor process program and check whether the movement of the cursor meet a position controlled by a feedback and correction system, thereby completing closed-loop control for the cursor.
US11114052B2

The utility model relates to a voltage conditioning circuit, and particularly relates to an AD voltage conditioning circuit. The conditioning circuit comprises a voltage-dividing circuit and a voltage translation circuit. The voltage-dividing circuit and the voltage translation circuit share an output end. The voltage-dividing circuit and the voltage translation circuit are integrated together and share the output end so that the voltage-dividing circuit and the voltage translation circuit can be isolated without using an isolation circuit, AD voltage can be conditioned to an appropriate value, three arithmetic units required to be used by an original conditioning circuit is reduced to only two arithmetic units, and four resistors required to be used by the voltage-dividing circuit and the translation circuit of the original conditioning circuit are reduced to only three resistors. Therefore, the circuit is simplified, cost is greatly reduced and assembling efficiency of circuit boards is enhanced in batch production.
US11114045B1

A method and system for enhancing the visibility of screen images in a high ambient light condition or environment by processing the object images comprising a first stage to increase the brightness of transmission light from the back-light of an LCD screen and a second stage to further enhance the brightness as well as the contrast of the images to be displayed.
US11114044B2

The present invention provides a blue light compensation film and an OLED display. The blue light compensation film of the present invention effectively absorbs blue light with wavelength longer than blue wavelength and excite blue light by using a blue light upconversion luminescent material, and effectively improves color shift white OLED device caused by short lifespan of blue electroluminescent material to achieve blue light compensation of the white OLED device and solve the of yellowing in traditional OLED display with age. The OLED display of the present invention comprises the blue light compensation film to avoid color shift problem and provides good display quality.
US11114039B2

A micro-display device comprises a silicon substrate in which a plurality of gate lines, a plurality of data lines, a plurality of emission signal lines, and a plurality of subpixels are disposed; a gate driver circuit disposed on a first side of a pixel array to drive the plurality of gate lines; an emission driver circuit driving the plurality of emission signal lines and disposed on a second side of the pixel array different from the first side of the pixel array where the gate driver circuit is disposed; a data driver circuit disposed on a third side of the pixel array to drive the plurality of data lines; a memory storing duty data regarding duty ratios of an emission signal applied to the plurality of emission signal lines; and a control circuit controlling signals applied to the gate driver circuit, the data driver circuit and the emission driver circuit, wherein the control circuit is set to have different emission times with respect to subpixels connected to the plurality of emission signal lines according to the duty data stored in the memory.
US11114038B2

A display apparatus includes a data driver and a light valve controller. The data driver is configured to continuously provide K display signals, all of which include a same set of image data, to a display panel. K is an integer greater than or equal to 2. The light valve controller is configured to provide a turn-off signal to a light valve whenever the data driver provides one of first T or odd-numbered display signals in the K display signals, and provide a turn-on signal to the light valve whenever the data driver provides one of last (K−T) or even-numbered display signals in the K display signals. T is an integer greater than 0 and less than K, and (K−T) refers to a difference between K and T.
US11114037B1

Embodiments of the application provide a gate driver on array (GOA) circuit and a display apparatus, which is capable of outputting signals of negative pulse waveforms using a simplified circuit design and improving output capability of the GOA circuit by changing a high voltage level of a clock signal to a voltage level of a first high level signal. Thus, the GOA circuit is improved by the first capacitor and the second capacitor, which make the GOA circuit more stable.
US11114036B2

A scan driver includes a plurality of circuit stages, each circuit stage including a first input part configured to transfer a carry signal to a first node in response to a first clock signal, a second input part configured to transfer the first clock signal to a second node in response to a signal of the first node, a first output part configured to transfer a third clock signal to an output terminal in response to a signal of the second node, a holding part configured to maintain a signal of a third node response to a second clock signal, and a second output part configured to transfer a signal of the third node to the output terminal in response to the second clock signal.
US11114026B2

A display apparatus includes a plurality of pixels, each of the pixels including an organic light emitting diode, a first transistor providing a driving current to operate the organic light emitting diode, a second transistor including a gate electrode that receives a first scan signal, a first electrode that receives a data signal, and a second electrode electrically connected to the first electrode of the first transistor, a storage capacitor including a first electrode receiving a first power voltage and a second electrode electrically connected to the gate electrode of the first transistor, and a color accuracy enhancement transistor that applies a first back bias voltage to the first transistor in response to a color accuracy enhancement signal.
US11114021B2

Provided are a display device, a method of manufacturing the same, and a glass stack. The display device includes a light emitting substrate which comprises a base and a light emitting element disposed on the base; an encapsulation substrate which is disposed on the light emitting substrate; a frit which surrounds the light emitting element and is disposed between the light emitting substrate and the encapsulation substrate; and a first coating layer which is disposed between the encapsulation substrate and the frit, and comprises a compound having an intramolecular *—(OCH2CH2)—OH structure, and at least partially contacting the frit.
US11114017B2

A Mura correction driver which corrects Mura detected in a detection image obtained by photographing a display panel. The Mura correction driver uses Mura correction data including a position value of a Mura block for a display panel and coefficient values for the Mura block, and corrects display data corresponding to the position value of the Mura block, by using a Mura correction equation to which the coefficient values of the Mura block are applied.
US11114004B2

The present disclosure provides a gate driving unit, a driving method thereof, a gate driving circuit and a display device. The gate driving unit includes an input resetting module, a storage module, a pull-up node control module, a pull-down node control module and an output module. The gate driving unit further includes a clock signal control module, connected to a first control signal end, a second control signal end, a first reference clock signal end, a second reference clock signal end, a first clock signal end and a second clock signal end, and configured to, under the control of a first control signal from the first control signal end and a second control signal from the second control signal end, output clock signals at a same frequency and in opposite phases to the first clock signal end and the second clock signal end respectively in accordance with a first reference clock signal from the first reference clock signal end and a second reference clock signal from the second reference clock signal.
US11114003B2

A foldable organic light-emitting diode (OLED) display panel is provided. The foldable OLED display panel includes a display region having a folded region, and further including a plurality rows of pixel units, a plurality of signal lines, and gate on array (GOA) unit circuits of a plurality of stage, wherein the GOA unit circuits of each stage are electrically connected to the corresponding rows of the pixel units by the signal lines; the signal lines further include first sub-signal lines overlapping the folded region, and the first sub-signal lines are configured to be waveform lines, or surfaces of the first sub-signal lines are provided with through holes.
US11113991B2

A human body model is disclosed that can make an image acquired by a medical device similar to an image of a body lumen acquired during surgery. The human body model includes a main body portion that includes a lumen passing through a portion of the main body portion between a first surface and a second surface disposed on a side opposite to the first surface, and a tubular body that is provided in at least a part of the lumen and is made of another material different from the material of the main body portion. An acoustic impedance of the material of the tubular body being equal to an acoustic impedance of a body lumen, and a hardness of the material of the main body portion being higher than a hardness of the material of the tubular body.
US11113990B2

An auscultatory sound identification training device includes a sounding body to convert an electric signal related to auscultatory sound information into an auscultatory sound; a vibration member provided to contact the sounding body so that the auscultatory sound generated by the sounding body is transmitted to the vibration member; a cover member made of a resin provided to contact the vibration member so that the auscultatory sound is transmitted to the cover member to output the auscultatory sound; and a case which has a bottom portion and in which the sounding body, the vibration member and the cover member are provided not to contact the bottom portion.
US11113980B2

Aspects of the present disclosure reduce the possibility of a collision between multiple aircraft, and provide early detection and warning capabilities to pilots and ground personnel of a potentially dangerous situation. To accomplish this function, nested 3D volumes of protected space are generated as geometric solids for each of a plurality of aircraft and monitored. Upon detecting that the volumes of protected space associated with multiple aircraft intersect each other, alarm notifications are generated to warn appropriate personnel that the aircraft could come within an unsafe distance of each other.
US11113975B2

A method for assisting in the piloting of an aircraft to observe a required time of arrival at a waypoint during a flight according to a predetermined flight plan comprising a nominal speed profile, comprising at least two flight segments, comprises the steps of determining an effective speed profile of the aircraft, and controlling by a guidance computer of the aircraft according to the effective speed profile. The step of determining an effective speed profile comprises the substeps of computing, for each segment of the nominal speed profile, a corrective term that is a function of a correction coefficient common to all the segments of the nominal speed profile, and computing, for each segment of the effective speed profile, a setpoint speed equal to the sum of a nominal speed of the nominal speed profile and of the corrective term.
US11113971B2

According to some embodiments, a system receives, at a first sensor of the ADV, a first and a second V2X communication data from a first infrastructure and a second infrastructure respectively. The system determines a first distance from the ADV to the first infrastructure and a second distance from the ADV to the second infrastructure based on the first and the second V2X communication data. The system determines a relative location of the ADV to the first or the second infrastructure based on the first and the second distances and a predetermined distance between the first infrastructure and the second infrastructure. The system retrieves lane information based on the relative location of the ADV to the first or the second infrastructure. The system generates a trajectory based on the lane information to control the ADV autonomously according to the trajectory.
US11113965B2

For densely-populated cities in particular, finding suitable vehicle parking may often be problematic. Vehicles range widely in size and parking characteristics, drivers and passengers may have preferences and/or physical limitations for parking space features (such as needing a wide bay or to be within a certain proximity of a destination when they park due to limited mobility or due to delivery of a heavy or large item). According to aspects of the invention there is provided a computer-implemented system and method for dynamically serving parking space requests for a vehicle.
US11113964B1

An unmanned aerial vehicle system for deployment at a scene includes an unmanned aerial vehicle, a command center, a communication suite, and a display. The unmanned aerial vehicle is configured to travel between two or more destinations. Command center is configured to monitor and regulate movement of the unmanned aerial vehicle in flight during deployment. The communication suite is transported within the unmanned aerial vehicle to permit the transfer of electronic data between itself and the command center. The display is mounted to the unmanned aerial vehicle and broadcasts information visually to observers near the scene. The command center can regulate the information broadcast on the display via the communication suite.
US11113961B2

Systems and methods provide, implement, and use using a computer-vision based methods of context-sensitive monitoring and characterization of driver behavior. Additional systems and methods are provided for unsupervised learning of action values, monitoring of a driver's environment, and transmitting visual information from a client to a server.
US11113960B2

Various systems and methods for implementing intelligent traffic management for vehicle platoons are described herein. A road controller system includes A road controller system comprising: a data store to store an active traffic policy; a processor subsystem to: determine a speed or platoon size of a vehicle platoon traveling on an area controlled by the road controller system; and determine a change to the speed or platoon size of the vehicle platoon, the change based on the active traffic policy; and a transceiver to transmit a control message to the vehicle platoon to implement the change to the speed or platoon size of the vehicle platoon.
US11113959B2

Systems, apparatuses and methods may provide for vehicle technology that detects one or more differences between a crowdsourced map of an ambient environment and a real-time volumetric map of the ambient environment and sends a first message via a vehicle-to-vehicle (V2V) link, wherein the difference(s) are represented in the first message at a first resolution. Additionally, the vehicle technology sends a second message via a vehicle-to-infrastructure (V2I) link, wherein the difference(s) are represented in the second message at a second resolution, and wherein the first resolution is less than the second resolution. Moreover, server technology may integrate a first octree representation and a second octree representation into a dynamic layer associated with the crowdsourced map.
US11113956B1

A vehicle-roadway interface for power and data exchange with roadway sensors system used along a road surface for use with at least one vehicle, with the system comprising at least one active vehicle-based adapter removably mounted to the at least one vehicle and a plurality of passive roadway-based beacons affixed to or within the road surface. The system utilizes an innovative transmitted power system that allows the vehicle-based adapter to provide power to each of the roadway beacons whenever the equipped vehicle passes within proximity of the roadway beacon, while the vehicle is normally traveling along the roadway. Each of the roadway-based beacons communicates in real time with the vehicle-based adapter to detect, collect, transmit, and receive information concerning at least temperature conditions, moisture conditions, lane management, traffic management, record-keeping of passing vehicles, and high-fidelity geographic location coordinates.
US11113954B2

In response to a detected presence of an intended target appliance within a logical topography of controllable appliances identity information associated with the intended target appliance is used to automatically add to a graphical user interface of a controlling device an icon representative of the intended target appliance and to create at a Universal Control Engine a listing of communication methods for use in controlling corresponding functional operations of the intended target appliance. When the icon is later activated, the controlling device is placed into an operating state appropriate for controlling functional operations of the intended target appliance while the Universal Control Engine uses at least one of the communication methods to transmit at least one command to place the intended target appliance into a predetermined operating state.
US11113945B2

A robot alert system includes a robot server that receives contextualized sensor data from one or more mobile robots and generates alerts to one or more individuals according to a set of configured alert rules. The contextualized sensor data includes location data indicating a location of the mobile robot and sensor data obtained by the mobile robot representing sensed conditions of an environment associated with the location. The robot server accesses staff member data associated with each of a plurality of staff members from a staff member database and accesses a set of stored alert rules specifying alert criteria for triggering the alert. Responsive to determining that the contextualized sensor data meets the alert criteria for s target staff member, the robot server generates and transmits an alert to a client device associated with the target staff member.
US11113941B2

A method of operating an alarm device including a processor and a light detector, the method including for operating the light detector to sample a light intensity within an interior space a plurality of times to produce a plurality of light intensity measurements, operating the processor to determine a light intensity value, wherein the light intensity value is based upon the plurality of light intensity measurements, and operating the processor to decide whether a night cycle can be determined based on the light intensity values.
US11113935B2

A patient support apparatus includes a frame, a support surface for supporting a patient, and a nurse call interface adapted to provide an interface between a bed and a wall-mounted nurse call outlet having a plurality of pins to thereby allow a patient supported on the bed to communicate with a remotely positioned nurse. The nurse call interface coordinates the duplex signals of the bed's microphone and speaker with the half duplex nurse audio signals from the nurse call system. More particularly, the interface includes a nurse call audio channel communicatively coupled to first and second audio pins of the plurality of pins of the nurse call outlet, a bed microphone channel to a bed microphone, a bed speaker channel to a bed speaker, and a switch controller adapted to selectively connect the nurse call audio channel to the bed microphone channel or to the bed speaker channel.
US11113929B1

Various systems and methods are provided for operating an integrated gaming system that can receive one or more parlay parameters provided by a user of a gaming terminal, determine one or more available parlay options that satisfy the one or more parlay parameters, transmit the one or more available parlay options to the gaming terminal, and receive a parlay selection that corresponds to a parlay option among the one or more available parlay options.
US11113928B2

In the information processor, the following processes are executed: (a) executing first random determination of determining whether to set the high-probability game random determination table; (b) when it is determined in the first random determination not to set the high-probability game random determination table, setting the normal game random determination table as a random determination table used in the normal game and executing second random determination based on the normal game random determination table; (c) when it is determined in the first random determination to set the high-probability game random determination table, setting the high-probability game random determination table as a random determination table used in the normal game and executing third random determination based on the high-probability game random determination table; and (d) when the predetermined benefit is to be awarded as a result of the second random determination or the third random determination, awarding the predetermined benefit.
US11113927B2

An electronic apparatus that facilitates wagers (or bets) for gaming apparatus. The electronic apparatus can be referred to as an electronic betting assistant (or electronic wager assistant). The electronic apparatus can assist dealer and/or players in placing wagers. In one embodiment, the electronic apparatus can include an electronic scale that is configured to weigh one or more objects representing a wager (e.g., chips) and then utilize at least the weight to determine a value of the wager. The electronic apparatus can be used with a multi-player gaming apparatus such as a gaming table that provides a wager-based game. Advantageously, wagers are able to be more rapidly and conveniently placed such that wager-based games are able to operate more efficiently.
US11113923B2

Gaming table systems can include multiple electronic gaming tables, multiple gaming terminals, and a system server. Each gaming terminal can have a terminal controller adapted to facilitate the overlapping or simultaneous play by a single player of multiple wager-based table games at multiple electronic gaming tables. A server in communication with the gaming tables controls starting times of the wager-based table games by sending signals to the tables indicating when each game is allowed to start. Signals can be sent due to triggering events and/or can cause staggered starting times across games, which can allow faster players to play more games. The server can also control which gaming tables starts a next game, distribute table usage, and confirm that wagers are placed within a proper time frame for their respective games. A compliance server can verify eligibility of remote gaming terminals to participate in wager-based game play in the system.
US11113919B2

An optical device includes an array of lenses and a plurality of first and second segments disposed under the array of lenses. At a first viewing angle, the array of lenses presents a first image for viewing without presenting the second image for viewing, and at a second viewing angle different from the first viewing angle, the array of lenses presents for viewing the second image without presenting the first image for viewing. In some examples, individual ones of the first and second segments can comprise specular reflecting, transparent, diffusely reflecting, and/or diffusely transmissive features. In some examples, individual ones of the first and second segments can comprise transparent and non-transparent regions. Some examples can incorporate more than one region producing an optical effect.
US11113914B2

In an embodiment, a server receives-a digital key request for a digital key to unlock a smart lock. A biometric feature request for collecting a biometric feature from the mobile device is generated and sent to the mobile device. A biometric feature corresponding to the biometric feature request is received. Identity information and a device identifier of the smart lock is received from another server. Based on the identity information, a matching biometric feature stored in a biometric feature database is determined. An identity of a user corresponding to the received biometric feature is verified based on the matching biometric feature. After the identity of the user is verified, smart lock information is identified. A digital key for unlocking the smart lock is generated based on the digital key request and the smart lock information and sent to the mobile device.
US11113913B1

The present disclosure relates to systems and methods of control access to a controlled-access area. The method includes receiving offsite sensor data, receiving offsite user identification data corresponding to the offsite sensor data, determining that the offsite sensor data satisfies an organizational standard, determining that the offsite user identification data corresponds to an approved user, and transmitting a notification to a user device. The method may also include receiving onsite user information and using the offsite sensor data and the onsite user information to determine if a user is approved for access to an access-controlled area. In some examples, the offsite sensor data may be temperature data associated with a febrile condition of a user attempting to gain access to the controlled-access area.
US11113912B2

An information processing apparatus includes: an information management unit that registers boarding information on a user regarding boarding acquired by a check-in procedure of the user and biometrics information on the user acquired in the check-in procedure in association with each other; and a display management unit that causes a display terminal to display display information in accordance with remaining time to boarding time based on the boarding information on the user identified by a comparison between target biometrics information, which is biometrics information acquired by the display terminal for the user, and registered biometrics information, which is the biometrics information registered by the information management unit.
US11113905B2

A fault detection system including one or more sensors onboard a vehicle to detect a characteristic of the vehicle and generate sensor signals corresponding to the characteristic, a processor onboard the vehicle to receive the sensor signals, generate one or more fast Fourier transform vectors based on the sensor signals so that the one or more fast Fourier transform vectors are representative of the characteristic, generate an analysis model from a time history of the fast Fourier transform vectors, and determine, using the analysis model, a degree to which the one or more fast Fourier transform vectors could have been generated by the analysis model, and an indicator to communicate an operational status of the vehicle to an operator or crew member of the vehicle based on the degree to which the one or more fast Fourier transform vectors could have been generated by the analysis model.
US11113901B2

A system includes a processor configured to determine a vehicle-specific parameter including a vehicle-specific modifier for modifying a vehicle-state reporting trigger. The processor is further configured to detect an occurrence of the vehicle-state reporting trigger that has been modified based on the vehicle-specific parameter, such that the reporting trigger triggers a report based on a different vehicle-state than an unmodified predefined version of the reporting trigger. Also, the processor is configured to report the occurrence to an occupant, responsive to the detection.
US11113900B2

Disclosed is an image processing device including a hardware processor that: specifies a position of a plurality of tires of a moving vehicle from a captured image showing at least the plurality of tires of the vehicle; makes a determination of whether or not each of the plurality of tires is in contact with a ground on the basis of a position of the specified plurality of tires; and counts the number of axle of a tire in contact with the ground of the vehicle according to a result of the determination.
US11113899B1

A system includes a display and a processor. The processor is configured to compute a point P′ on a virtual surface of a point cloud representing an anatomical volume, by projecting another point P, which corresponds to a location on an anatomical surface of the anatomical volume, onto the virtual surface. The processor is further configured to define a virtual sphere centered on a virtual line joining P to P′ such that P lies on a spherical surface of the virtual sphere, and to expand the point cloud throughout the virtual sphere or exclude the virtual sphere from the point cloud. The processor is further configured to regenerate the virtual surface such that, by virtue of having expanded the point cloud or excluded the virtual sphere, P lies on the virtual surface, and to display the regenerated virtual surface on the display. Other embodiments are also described.
US11113898B2

A method for generating an ultrasound image, comprising displaying a rendered image of a target from an edge of a full box encompassing the target. An input regarding a selection of a half box may be received from a user. When the half box is not selected, the rendered image may continue to be displayed. When the half box is selected, a new image may be rendered from a reference of the full box, and the rendered image may be displayed.
US11113894B1

Systems are configured for performing GPS-based and sensor-based relocalization. During the relocalization, the systems are configured to obtain radio-based positioning data indicating an estimated position of the system within a mapped environment. The systems are also configured to identify, based on the estimated position, a subset of keyframes of a map of the mapped environment, wherein the map of the mapped environment includes a plurality of keyframes captured from a plurality of locations within the mapped environment, and the plurality of keyframes are associated with anchor points identified within the mapped environment. The systems are further configured to perform relocalization within the mapped environment based on the subset of keyframes.
US11113893B1

The present embodiments relate to display of glints associated with real-world objects in an environment displayed on an extra reality (XR) device. The glint can include a virtual object associated with a real-world object, such as an indication of a social interaction associated with a real-world object, a content item tagged to an object, etc. The system as described herein can present glints on a display of an XR device based on a distance between the XR device and a location associated with the glint. Responsive to selection of a glint in the environment, additional information can be presented relating to the glint or another action can be taken, such as to open an application. In some instances, a glint can include a series of search results relating to a corresponding real-world object to provide additional information relating to the real-world object.
US11113880B1

Particular embodiments described herein present a technique for mesh simplification. A computing system may receive a request to render an image of a virtual scene including a virtual object. The system may determine one or more positions of the virtual object relative to one or more of a foveal focus point or a lens, respectively. The system may determine a screen coverage size of the virtual object. The system may then determine a simplification level for the virtual object based on the determined position(s) and the screen coverage size of the virtual object. The system may generate a mesh representation of the virtual object based on the determined simplification level, where the number of polygons used in the mesh representation depends on the determined simplification level. The system may render the image of the virtual scene using at least the generated mesh representation of the virtual object.
US11113879B2

Systems and methods for generating augmented reality environments from 2D drawings are provided. The system performs a camera calibration process to determine how a camera transforms images from the real world into a 2D image plane. The system calculates a camera pose and determines an object position and an object orientation relative to a known coordinate system. The system detects and processes a 2D drawing/illustration and generates a 3D model from the 2D drawing/illustration. The system performs a rendering process, wherein the system generates an augmented reality environment which includes the 3D model superimposed on an image of the 2D drawing/illustration. The system can generate the augmented reality environment in real time, allowing the system to provide immediate feedback to the user. The images processed by the system can be from a video, from multiple image photography, etc.
US11113873B1

Navigation systems can identify objects in an environment and generate representations of those objects. A representation of an articulated vehicle can include two segments rotated relative to each other about a pivot, with a first segment corresponding to a first portion of the articulated vehicle and the second segment corresponding to a second portion of the articulated vehicle. The representation can be based on a model fit to points that are derived from sensor data and are associated with the object. In some examples, the model can be fit to the points using an expectation maximization algorithm and can be parameterized using attributes of the first and second segments.
US11113871B1

A method, apparatus, and system provide the ability to crop a three-dimensional (3D) scene. The 3D scene is acquired and includes multiple 3D images (with each image from a view angle of an image capture device) and a depth map for each image. The depth values in each depth map are sorted. Multiple initial cutoff depths are determined for the scene based on the view angles of the images (in the scene). A cutoff relaxation depth is determined based on a jump between depth values. A confidence map is generated for each depth map and indicates whether each depth value is above or below the cutoff relaxation depth. The confidence maps are aggregated into an aggregated model. A bounding volume is generated out of the aggregated model. Points are cropped from the scene based on the bounding volume.
US11113869B2

Examples described herein generally relate to generating a visualization of an image. A proprietary structure that specifies ray tracing instructions for generating the image using ray tracing is intercepted from a graphics processing unit (GPU) or a graphics driver. The proprietary structure can be converted, based on assistance information, to a visualization structure for generating the visualization of the image. The visualization of the image can be generated from the visualization structure.
US11113865B2

One embodiment of the present invention provides a technique for generating a three-dimensional model from a two-dimensional sketch. The technique includes receiving input indicating a set of points defining a first sketch element and a second set of points defining a second sketch element included in a sketch. The technique further includes identifying one or more design relationships between the first sketch element and the second sketch element. The technique further includes generating a computer model of the sketch that represents a structure linking the first sketch element and the second sketch element according to the one or more design relationships. The technique further includes outputting the first sketch element, the second sketch element, and the structure for display.
US11113864B2

A set of 3D user-designed images is used to create a high volume of realistic scenes or images which can be used for training and testing deep learning machines. The system creates a high volume of scenes having a wide variety of environmental, weather-related factors as well as scenes that take into account camera noise, distortion, angle of view, and the like. A generative modeling process is used to vary objects contained in an image so that more images, each one distinct, can be used to train the deep learning model without the inefficiencies of creating videos of actual, real life scenes. Object label data can be generated for each distinct image. This and other methods can be used to artificially create new scenes that do not have to be recorded in real-life conditions and that do not require costly and time-consuming, manual labelling or tagging of objects.
US11113853B2

Systems and methods that enable blending and aggregating multiple related datasets to a blended data model (BDM), manipulation of the resulting data model, and the representation of multiple parameters in a single visualization. The BDM and each visualization can be iteratively manipulated, in real-time, using a user-directed question-answer-question response so patterns can be revealed that are not obvious.
US11113845B2

A system comprises an encoder configured to compress attribute information and/or spatial for a point cloud and/or a decoder configured to decompress compressed attribute and/or spatial information for the point cloud. To compress the attribute and/or spatial information, the encoder is configured to convert a point cloud into an image based representation. Also, the decoder is configured to generate a decompressed point cloud based on an image based representation of a point cloud.
US11113843B2

Calibrating the orientation of a camera mounted to a vehicle includes providing calibration pattern defining at least two horizontal lines and two vertical lines; acquiring an image of the calibration pattern by means of the camera, the image having a first axis and a second axis corresponding to a horizontal axis and a vertical axis, respectively; identifying the horizontal lines and the vertical lines within the image; determining a horizontal vanishing point from the representations of the horizontal lines; determining a vertical vanishing point from the representations of the vertical lines; calculating a roll angle from the location of the horizontal vanishing point based on the image, calculating a yaw angle from a first coordinate of the horizontal vanishing point measured along the first axis, and calculating a pitch angle from a second coordinate of the vertical vanishing point measured along the second axis.
US11113842B2

A gaze estimation method and apparatus is disclosed. The gaze estimation method includes obtaining an image including an eye region of a user, extracting, from the obtained image, a first feature of data, obtaining a second feature of data used for calibration of a neural network model, and estimating a gaze of the user using the first feature and the second feature.
US11113830B2

Embodiments of the present disclosure are directed to a method for generating simulated point cloud data, a device, and a storage medium. The method includes: acquiring at least one frame of point cloud data collected by a road collecting device in an actual environment without a dynamic obstacle as static scene point cloud data; setting, according to set position association information, at least one dynamic obstacle in a coordinate system matching the static scene point cloud data; simulating in the coordinate system, according to the static scene point cloud data, a plurality of simulated scanning lights emitted by a virtual scanner located at an origin of the coordinate system; and updating the static scene point cloud data according to intersections of the plurality of simulated scanning lights and the at least one dynamic obstacle to obtain the simulated point cloud data comprising point cloud data of the dynamic obstacle.
US11113819B2

In various examples, image data may be received that represents an image. Corner detection may be used to identify pixels that may be candidate corner points. The image data may be converted from a higher dimensional color space to a converted image in a lower dimensional color space, and boundaries may be identified within the converted image. A set of the candidate corner points may be determined that are within a threshold distance to one of the boundaries, and the set of the candidate corner points may be analyzed to determine a subset of the candidate corner points representative of corners of polygons. Using the subset of the candidate corner points, one or more polygons may be identified, and a filter may be applied to the polygons to identify a polygon as corresponding to a fiducial marker boundary of a fiducial marker.
US11113810B2

An image is generated where an edge of a structure in a subject is sharpened with reducing streak artifacts, within a short amount of time. X-rays at multiple angles are applied to the subject placed in imaging space, and a distribution of X-rays strength passing through the subject is detected to obtain raw data associated with multiple views. After smoothing the raw data associated with multiple views, image reconstruction is performed to generate a smoothed image of a predetermined region to be imaged in the imaging space. In the smoothed image, more intense sharpening process is applied to pixels in a region of a central part of the subject, than the pixels in a region of a peripheral part of the subject.
US11113808B2

In some embodiments, apparatuses and methods are provided herein useful to assess quality of produce at a facility. In some embodiments, there is provided a system for assessing quality of produce at a facility including a produce assessment station configured to provide a staging area to determine a quality classification of a target produce. By one approach, the produce assessment station includes a fixed surface; a rotatable base, a first arm comprising a microphone; a second arm comprising a tapping device; and a local control circuit. In one configuration, the local control circuit configured to rotate the rotatable base at a particular angle and at a particular time interval and receive audio data from the microphone. By one approach, the system includes a plurality of sensors and a portable device configured to provide a signal to the local control circuit to initiate the quality classification of the target produce.
US11113799B2

A display method and a display device are provided. The display method may be applied to a display device having a lens unit and a display unit for normal display, and may include steps of: detecting a first distance between the lens unit and the display unit; calculating correction information according to the first distance and transmitting the correction information to the display unit; and displaying a corrected image by the display unit according to the correction information, so that the corrected image is converged into eyes of a user via the lens unit, wherein the corrected image is obtained by correcting an original image according to the first distance.
US11113798B2

A camera device communicably connected to a server device includes an imaging unit that images an outdoor monitoring target area, a detection unit that detects an object appearing in a captured image of the imaged monitoring target area and generates a cut-out image of the object, an image correction unit that generates a sharpened image to be used for collating processing of the object in the server device by using the cut-out image of the object and an image correction model, and a communication unit that sends the cut-out image of the object and the sharpened image to the server device in association with identification information of the object.
US11113790B2

During the rendering of an image, specific pixels in the image are identified where antialiasing would be helpful. Antialiasing is then performed on these identified pixels, where anti-aliasing is a technique used to add greater realism to a digital image by smoothing jagged edges. This reduces a cost of performing antialiasing by reducing a number of pixels within an image on which antialiasing is performed.
US11113785B2

A movement notification is received from a display. The movement notification corresponds to a movement. A set of movement frames that reflect the movement is rendered by a graphical processing unit. The set of movement frames is transmitted to the display. A notification that the movement has ceased is received from the display. A stop command is transmitted to the display. The stop command instructs the display to not display the first subset of frames in the set of movement frames. The first subset of frames reflects the end of the movement.
US11113780B2

Examples relating to watermarking digital content are described herein. According to one example, a digital quality of digital content received for watermarking is determined. From a library of watermark tints comprising a plurality of preformed watermark tints of predefined sizes, a watermark tint set for watermarking the digital content is retrieved, the watermark tint set comprising a plurality of watermark tints having a first size. The first size of the plurality of watermark tints is determined based on the digital quality of the digital content. The plurality of watermark tints having the first size are overlaid over the digital content to watermark the digital content.
US11113779B2

A technique is described herein for adding a digital watermark to a mesh. The mesh describes a three-dimensional object using a plurality of vertices and edges, which together define a plurality of polygonal shapes (e.g., triangles). The technique involves identifying at least one anomalous element of the mesh. The technique then supplements one or more of the anomalous elements by adding a computer-readable code to the anomalous element(s). That computer-readable code includes a digital watermark. An anomalous element corresponds to a part of the mesh that qualifies as a statistically atypical occurrence within the mesh, based on a specified rule that defines what constitutes a statistically atypical occurrence. In a reading stage, the technique finds the anomalous element(s). It then reads the digital watermark that has been encoded into the anomalous element(s).
US11113774B2

Various embodiments disclosed herein relate to the access, management, and targeted display of one or more asset display profiles to a person of interest (e.g., an associated asset creator, a customer, etc.). A method includes interpreting an asset display profile corresponding to a creative asset description and an associated asset creator; determining an asset display context; and in response to the asset display profile and the asset display context, providing an asset display description to an output device.
US11113773B2

Implementations of systems and methods according to present principles provide new ways to share digital objects in computing environments, improving the user experience and also enhancing communication and relationships among people. The “sharings” can occur as a transfer of an object from one user to another or the transfer of the object into an environment (or vice versa). In one example, a user in a game designs and builds a digital object for a tower and then sells the tower in the game. The tower becomes popular and is used by many other players of the game, including as a part of their own constructions, and also begins to appear in system-generated structures. The creator of the original tower, as well as creators of components constituting the tower, may be provided with compensation for their efforts from such sales of subsequent towers or constructions using such towers.
US11113772B2

An apparatus for activity networking, comprising: a memory coupled to at least one processor, the processor being configured to: transmit, to a server, a request to form a crew, the request including an indication of an activity associated with the crew, an indication of a time for performing the activity, and an indication of a number of available spots on the crew; receive from the server a message indicating that all spots on the crew are occupied by a plurality of users; and provide the plurality of users with a calendar appointment for the activity.
US11113770B1

A data processing system for recommending insurance plans implements obtaining an electronic copy of demographic information associated with a user; analyzing the demographic information with a first machine learning model to recommend a bundle of insurance policies based on the demographic information, wherein the first machine learning model is configured to group insured people having similar demographics into clusters and to generate the bundle of insurance policies based on predicted medical insurance consumption associated with a respective group into which the model predicts that the first user falls; customizing the recommended bundle of insurance policies based on the demographic information associated with the user to generate a customized bundle of insurance policies; generating an insurance recommendation report that presents the customized bundle of insurance policies to the user; and causing a user interface of a display of a computing device associated with the user to present the insurance recommendation report.
US11113761B2

In some embodiments, a request may be received from a customer via an interface, wherein the request indicates (i) a social media stream associated with the customer to be monitored for instances of investment triggering content (ITC). A customer account of the customer may be configured based on the request. The social media stream may be monitored for instances of ITC based on the customer account configuration. Responsive to the monitoring detecting an instance of ITC, a first amount may be withdrawn from the customer account, and a purchase of a quantity of shares of an investment fund may be executed on behalf of the customer using the withdrawn first amount.
US11113758B1

Various examples are directed to systems and methods for facilitating image-based financial transactions. A computing device may display a multi-mode launch icon that is alternately selectable by a user in a first mode and in a second mode. The computing device may detect a first user input that selects the launch icon in the first mode and, in response, execute a first application. The computing device may also detect a second user input that selects the launch icon in the second mode and, in response, prompt the user to capture an image of a document with an imaging device. The computing device may determine, based at least in part on the image, that the document is of a first document type and execute a document-type routine to perform a first financial transaction based at least in part on the document.
US11113757B1

A computer implemented method for filtering information delivered via a social media service. The method includes receiving social media data from the social media service at a social media computing system and analyzing the received social media data. Analyzing the received social media data comprises categorizing content within the received social media data as one or more of restricted content elements and unrestricted content elements. The restricted content elements and the unrestricted content elements are determined based on one or more predetermined parameters associated with a user profile. The method further including transmitting the unrestricted content elements to a user device.
US11113753B1

A network access system may include first and second WiFi networks in a physical store. The network access system may also include a mobile wireless communications device associated with a shopper. The mobile wireless communications device may include a controller and a device wireless network interface associated therewith to execute a shopping application associated with the physical store, and enable the shopping application to communicate via the first WiFi network responsive to the mobile wireless communications device being geographically located within the physical store. The controller and device wireless network interface may also enable at least one other application to communicate via the second WiFi network responsive to the mobile wireless communications device being geographically located within the physical store.
US11113751B2

Systems and methods including one or more processors and one or more non-transitory storage devices storing computing instructions configured to run on the one or more processors and perform acts of: providing, via an electronic platform, access to one or more order placement user interfaces; collecting order placement information associated with the one or more order placement user interfaces; analyzing, by a conversion determination network of a machine learning architecture, the order placement information; generating actual conversion information for client sessions based on the actual availability of the order placement options during the client sessions; generating predicted conversion information for the client sessions based on a full availability of all of the order placement options during the client sessions; and generating lost demand information based, at least in part, on the actual conversion information and the predicted conversion information. Other embodiments are disclosed herein.
US11113737B2

Managing of constraint-based violations in a Product Data Management (PDM) environment is provided. A method for managing constraint-based violations associated with a product in a PDM system includes obtaining a set of constraints defined for a product from a product database. Constraints that are conflicting with requirement data associated with the product are determined from the set of constraints, and the constraints are grouped into a plurality of logical groups. Each of the logical groups is associated with an independent violation. One or more solutions corresponding to each independent violation are computed based on the logical groups, and conflicts between the constraints and the requirement data corresponding to each independent violation based on the corresponding one or more solutions are resolved.
US11113724B1

Methods, systems, and apparatus include computer programs encoded on a computer-readable storage medium for delivering content. A method includes: identifying a webview; providing a script for execution when the webview is initiated, the script causing a device associated with the webview to retrieve a unique identifier associated with the device, encode the unique identifier, construct a URL that includes an advertising system domain and the encoded unique identifier, and pass the encoded unique identifier to the advertising system; passing a cookie for the advertising domain back to the webview for inclusion in the cookie space of the webview; storing information related to interactions of a user of the device when accessing content through different browsers or applications so as to unify the cookie spaces of the different browsers; identifying a request for content as being associated with the device; and using the information to determine content for delivery.
US11113717B2

Systems and methods provide a customer engagement platform experimentation framework. Experiments are created to determine which variation of a particular promotion (i.e., an experiment) is most effective. Initially, users are split into buckets that define whether a particular user is in a control group or a treatment group for a particular experiment. Users are assigned into buckets differently for unrelated experiments and similarly for related experiments. This ensures the users are in either the control group or the treatment group for all related experiments. Key performance indicators (KPIs) of users that experienced the experiment are compared with KPIs of users that did not experience the experiment. An assessment of the experiment can then be provided based on the compared KPIs.
US11113716B2

Systems and methods are disclosed herein for attributing credit to online consumer touchpoints for a consumer performing an action. The systems and methods involve determining whether a consumer is in a particular environment for an online consumer touchpoint by detecting an external viewing condition for the consumer for the online consumer touchpoint. The systems and methods determine that the consumer performed an action, such as a conversion, following the online consumer touchpoint and additional online consumer touchpoints. An effectiveness of the online consumer touchpoint in the particular environment is determined and used to attribute relative credit to the online consumer touchpoint and the additional online consumer touchpoints for the consumer performing the action.
US11113699B2

An identity system for the Internet of Things (IOT) that enables users and machines to identify, authenticate and interact with products and collectibles without relying on a third-party-controlled authentication service. The system includes wireless tamperproof tags coupled to products and an open registry database where a chain of ownership of the items is able to be stored. The open registry enables public access to the item identity and data combined with item registration anonymity.
US11113698B2

A payment processing device can implement a monitoring system to detect for tamper attempts at a chip card interface. The monitoring system can establish a baseline when no chip card is present in the chip card interface, or in some embodiments, when it is known that an authentic chip card 14 is present in the slot 21. During subsequent evaluations of the chip card interface by the monitoring system, a response received by the monitoring system that deviates from the baseline can indicate that a tamper attempt at the chip card interface may have occurred. If a tamper attempt is determined by the monitoring system, a remedial or corrective action can be taken.
US11113693B2

A system includes one or more memory devices storing instructions, and one or more processors configured to execute the instructions to perform steps of a method providing biometric detection of coercion of a user. The system may detect a trigger event associated with a potential transfer of funds and may receive user biometric data. The system may determine, based on stored user biometric data and the detected user biometric data, a confidence level that the stored user biometric data is indicative of biological information representative of a user being in a stressed state. The system may initiate one or more precautionary safety measures.
US11113692B1

During a verification technique, claim information for a claim made by an entity (which includes an attribute characterizing an entity) is verified using verification information determined from at least an account of the entity. For example, an individual may pre-register with a provider of the verification technique and authorize the provider to access the account, such as a social network, a financial account, and/or an account associated with a financial application (e.g., an accounting application, an income-tax preparation application, etc.). Subsequently, when the individual makes or provides the claim information associated with the claim, verification information associated with the claim information is aggregated and used to verify that the claim is valid. By verifying the claim, the verification technique may make it easier for individuals to prove their reputable identity attributes without disclosing additional confidential information, thereby maintaining their privacy.
US11113691B2

Systems and methods for voice-enabled transactions are disclosed. A merchant system may generate a transaction request comprising a transaction amount and a merchant identifier. The merchant system may invoke an audio signal generator to generate an audio transaction signal comprising the transaction request data. A voice assistant may play the audio transaction signal. The user initiating the transaction may use a mobile device to detect and ingest the audio transaction signal. In response to detecting and ingesting the audio transaction signal, the mobile device may interact with a payment network to authorize, process, and complete the transaction request. The payment network may transmit a transaction approval to the merchant system.
US11113681B2

A peripheral controller implemented on a server facilitates a transaction initiated at a payment user interface (UI). The peripheral controller is configured to pair the payment UI with a peripheral device, which is configured to receive payment information from a user. The peripheral controller also is configured to communicate with a payment processing system to facilitate processing of a payment request.
US11113680B2

Computer-implemented methods, non-transitory, computer-readable media, and computer-implemented systems for self-service checkout counter checkout. One computer-implemented method includes: obtaining, by using a camera, an image of at least one product placed on a checkout counter; performing image segmentation on the image to obtain at least one image region; identifying a product code included in a code region in an image region of the at least one image region; determining, based on the product code, a product category of a product associated with the product code; and determining a price of the product based on the product category.
US11113668B2

In a method for determining an area milled by at least one construction machine or at least one mining machine with a milling drum (2) working a predetermined area in several milling trajectories by at least one machine (1), determining the length of the milling trajectories along which a milling operation has taken place by evaluating the continuous machine positions, adding up the previously milled partial areas taking into account the length of the milling trajectory and the installed width of the milling drum (2), wherein the partial area currently milled along the milling trajectory is checked, either continuously or subsequently, for overlapping or multiple overlapping with any previously milled partial areas, and any partial areas which overlap are deducted, as overlapping areas, from the added-up previously milled partial areas, the total added-up partial areas milled minus the total overlapping areas established give the milled area.
US11113666B2

Disclosed herein are system, method, and computer program product embodiments for improving user experiences within a cloud collaboration platform that integrates communication tools with word processor functions to enhance workflows, save time, and promote teamwork in the development of slide presentations. To improve usability, a cloud collaboration platform may furnish a reader mode to streamline the presentation review process. The reader mode may allow viewers to review the presentation as the presentation will eventually be presented to an audience. The viewers may provide comments and feedback on the presentation without being inundated with comments and metadata added to an edit mode of the presentation by the original authors.
US11113663B2

Systems and methods for providing automatic insertion of call intelligence in an information system are provided. In exemplary embodiments, new call detail records are accessed. At least one individual associated with the new call detail record may then be identified, and a subject matter associated with the new call detail record determined. A call intelligence record based on the identified individual and the subject matter is then generated and automatically inserted into the information system.
US11113660B2

A computer-implemented method includes identifying which retail items in a set of retail items have erroneous on-hands values stored in a database and removing the identified retail items from the set of retail items to form a sub-set of retail items. A nominal sales floor capacity stored in the database for the retail items in the sub-set of retail items are evaluated without evaluating the nominal sales floor capacity of the identified retail items. The nominal sales floor capacity stored in the database for at least one retail item is corrected based on evaluating the nominal sales floor capacity stored in the database.
US11113657B2

A method for tracking physical assets can include: receiving a digital asset; determining an asset identifier for the digital asset; generating an asset barcode; optionally facilitating printing and sending of the asset to an asset recipient; determining an asset event for the asset; and notifying a sender of an asset event.
US11113648B2

The customer order fulfillment system includes an order collection unit for collecting information associated with a plurality of customer orders having items and generating customer order data. Each of the plurality of customer order includes one or more items associated therewith. An order generating unit for receiving the customer order data and generating in response consolidated order fulfillment data, a pick tour generating subsystem for receiving the consolidated order fulfillment data and in response thereto generating pick tour instructions associated with a pick tour, and a bulk pick order fulfillment unit for grouping together similar ones of the items associated with the plurality of customer orders to form a plurality of bulk picks. An automated fulfillment system receives the consolidated order fulfillment data from the order generating unit and automatically selects one or more of the items from one or more carousels, employing the pick tour or the bulk pick.
US11113647B2

Architecture that enables a Database-as-a-Service (DaaS) to auto-scale container sizes on behalf of tenants. An abstraction is provided that enables tenants to reason about monetary budget and query latency, rather than resource provisioning. An auto-scaling module automatically determines a container size for a subsequent billing interval based on telemetry that comprises latencies (e.g., waits), resource utilizations, and available budget, for example. A set of robust signals are derived from database engine telemetry and combined to significantly improve accuracy of resource demand estimation for database workloads. In a more specific implementation, resource demands can be estimated for arbitrary SQL (structured query language) workloads in a relational database management system (RDBMS).
US11113645B2

A computer-implemented method for managing a product delivery process, according to one embodiment, includes receiving an actual Intelligent Routing (IR) code for a good, the good being a perishable food product. A target IR code for each of at least two receivers is also received. The actual IR code for the good is compared to the target IR codes for each of the at least two receivers. Based on the comparison of the actual IR code for the good to the target IR codes for each of the at least two receivers, a determination as to which receiver of the at least two receivers will receive the good, and the result is output. The actual IR code is updated based on sensor data received from a sensor coupled to the good, and recompared to the target IR codes for each of the at least two receivers.
US11113644B2

A computer-implemented method for managing a product delivery process, according to one embodiment, includes receiving an actual Intelligent Routing (IR) code for each good of a plurality of goods of the same type. A target IR code for each of at least two receivers is also received. The actual IR code for each of the goods is compared to the target IR codes for each of the at least two receivers. Based on the comparison of the actual IR codes for the plurality of goods to the target IR codes for each of the at least two receivers, a determination is made as to which receiver of the at least two receivers will receive which good of the plurality of goods. A result of the determination is output.
US11113642B2

One embodiment is directed to a mobile application executing on a smartphone that is used to assist a technician in carrying out electronic work orders. In some embodiments, the mobile application uses a camera in the smartphone to take photos that are associated with one or more steps of the work order. In some embodiments, the mobile application is used to cause one or more LEDs associated with a step of the work order to be illuminated or otherwise visually actuated.
US11113635B2

Methods, systems, and computer program products for re-issuing a travel reservation based on a travel category associated with the specific travel reservation. The travel reservation is associated with one of a first travel category and a second travel category. The first travel category includes a plurality of machine-readable codes associated with the travel reservation. In response to determining the travel reservation is associated with the first travel category, the travel reservation is re-issued by a computer-based on the plurality of machine-readable codes associated with the travel reservation. In response to determining that the travel reservation is associated with the second travel category, the computer determines if the travel reservation includes data expressed in machine-readable form. If the travel reservation includes the data expressed in machine-readable form, the computer generates a plurality of prepopulated fields in a format compatible with the first travel category.
US11113631B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for engineering a data analytics platform using machine learning are disclosed. In one aspect, a method includes the actions of receiving data indicating characteristics of data for analysis, analysis techniques to apply to the data, and requirements of users accessing the analyzed data. The actions further include accessing provider information that indicates computing capabilities of a respective data analysis provider, analysis techniques provided by the respective data analysis provider, and real-time data analysis loads of the respective data analysis provider. The actions further include applying the characteristics of the data, the analysis techniques, the requirements of the users, and the provider information, the analysis techniques, and the real-time data analysis loads to a model. The actions further include configuring the one or more particular data analysis providers to perform the analysis techniques on the data.
US11113629B2

An embodiment includes a method for use in managing a system comprising one or more computers, each computer comprising at least one hardware processor coupled to at least one memory, the method comprising a computer-implemented manager: generating a potential configuration for hardware resources of the system; determining whether the potential configuration satisfies accuracy and time constraints for a selected machine learning model; if the potential configuration satisfies the constraints, indicating the potential configuration to be the optimal configuration for the system; and if the potential configuration does not satisfy the constraints, adapting the potential configuration to satisfy the constraints. The adapting may comprise repeating the generating and determining steps. The adapting may be based at least in part on the hardware resources and the selected machine learning model.
US11113608B2

Implementations are directed to receiving communication data from a device, the communication data including data input by a user of the device, determining a context based on an extended finite state machine that defines contexts and transitions between contexts, transmitting a service request to at least one cloud-hosted service, the service request being provided at least partially based on masking sensitive information included in the communication data, receiving a service response from the at least one cloud-hosted service, the service response including one or more of an intent, and an entity, determining at least one action that is to be performed by at least one back-end source system based on the service response, providing a response at least partially based on an action results received from the at least one back-end source system, and transmitting the result data to the device.
US11113602B2

Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.
US11113597B2

A method for retraining an artificial neural network trained on data from an old task includes training the artificial neural network on data from a new task different than the old task, calculating a drift, utilizing Sliced Wasserstein Distance, in activation distributions of a series of hidden layer nodes during the training of the artificial neural network with the new task, calculating a number of additional nodes to add to at least one hidden layer based on the drift in the activation distributions, resetting connection weights between input layer nodes, hidden layer nodes, and output layer nodes to values before the training of the artificial neural network on the data from the new task, adding the additional nodes to the at least one hidden layer, and training the artificial neural network on data from the new task.
US11113596B2

Data is input to one of a plurality of neural networks. Each of the plurality of neural networks is to be of a different size. A propagation time is determined for the inputted data. The propagation time relates to a time for the inputted data to propagate through one of the plurality of neural networks. One of the plurality of neural networks is selected based on the propagation time.
US11113595B2

The present disclosure is directed to an on-demand intelligent assistant that obtains physical identifiers of a target individual using information received from sensors. The assistant determines an identity of the target individual using the physical identifiers. The assistant also caches the physical identifiers and the identity as baseline information of the target individual. The assistant further detects keywords used in communications of a user with the target individual. Moreover, the assistant determines that the user desires additional information of the target individual based on the keywords. Additionally, the assistant determines a query for the additional information using the baseline information and the keywords. Further, the assistant retrieves the additional information from a remote database using the query and provides the additional information to the user.
US11113593B2

Smartcards (SC) having a metal layer (ML) or metal card body (MCB) and a module opening (MO) for a transponder chip module (TCM). A slit (S) or notch (N) in the metal card body may extend from a peripheral edge of a metal layer or card body, without extending to the module opening. A flexible circuit (FC) with one or two patch antennae (PA) or sense coils (SeC) connected to a coupling loop structure (CLS) with an antenna structure (AS) on the same substrate may be incorporated into the card body (CB). A fingerprint sensing module comprising an electrically-conductive metal bezel housed in the card may be electrically isolated from the metal layer or metal card body by the application of coatings (DLC) or anodizing (oxidizing) the respective metal surfaces. The cards may be contactless only, contact only, or dual-interface (contact and contactless).
US11113587B2

There is provided an appearance search system comprising one or more cameras configured to capture video of a scene, the video having images of objects. The system comprises one or more processors and memory comprising computer program code stored on the memory and configured when executed by the one or more processors to cause the one or more processors to perform a method. The method comprises identifying one or more of the objects within the images of the objects. The method further comprises implementing a learning machine configured to generate signatures of the identified objects and generate a signature of an object of interest. The system further comprises a network configured to send the images of the objects from the camera to the one or more processors. The method further comprises comparing the signatures of the identified objects with the signature of the object of interest to generate similarity scores for the identified objects, and transmitting an instruction for presenting on a display one or more of the images of the objects based on the similarity scores.
US11113586B2

According to the embodiments of the present application, there are proposed a method and electronic device for retrieving an image, and computer readable storage medium. The method includes: processing an image to be retrieved using a first neural network to determine a local feature vector of the image to be retrieved; processing the image to be retrieved using a second neural network to determine a global feature vector of the image to be retrieved; and determining, based on the local feature vector and the global feature vector, an image having a similarity to the image to be retrieved which is higher than a similarity threshold.
US11113575B2

Disclosed are systems, methods, and non-transitory computer-readable media for automatic image selection for online product catalogs. An image selection system gathers feature data for images of an item included in listings posted to an online marketplace. The image selection system uses the feature data as input in a machine learning model to determine probability scores indicating an estimated probability that each image is suitable to represent the item. The machine learning model is trained based on a set of training images of the item that have been labeled to indicate whether they are suitable to represent the image. The image selection system compares the probability scores and selects an image to represent the item as a stock image based on the comparison.
US11113569B2

An information processing device according to an embodiment includes a determination unit and a first training unit. The determination unit determines whether an unlabeled data point whose class label is unknown is a non-targeted data point that is not targeted for pattern recognition. The first training unit trains a first classifier for use in the pattern recognition through semi-supervised learning using a first training dataset including unlabeled data determined not to be the non-targeted data and not including unlabeled data determined to be the non-targeted data.
US11113568B2

Devices, systems, and methods obtain a video of a device, wherein the device includes one or more light emitters that are visible in the video; input the video to a first machine-learning model and executing the first machine-learning model, wherein the first machine-learning model outputs a time series of light-emitting states that indicate respective light-emitting states of the light emitters at respective times in the time series; and input the time series of light-emitting states to a second machine-learning model and executing the second machine-learning model, wherein the second machine-learning model outputs a status of the device.
US11113567B1

Described are systems and methods for generating training data that is used to train a machine learning system to detect moving objects represented in sensor data. The system and methods utilize position data received from a target vehicle to determine data points within sensor data that represents that target vehicle. For example, a station at a known location may receive Automatic Dependent Surveillance-Broadcast (“ADS-B”) data (position data) corresponding to a target vehicle that is within the field of view of a station sensor, such as a camera. The position data may then be correlated with the sensor data and projected into the sensor data to determine data points within the sensor data that represent the target vehicle. Those data points are then labeled to indicate the location, size, and/or shape of the target vehicle as represented in the sensor data, thereby producing training that may be provided to train a machine learning algorithm or system to detect moving objects, such as aircraft.
US11113565B2

Systems and methods for augmenting real-time semantic information to a spatial rendering of a predefined space and providing a real-time situational awareness feed.
US11113562B2

The first apparatus (2100) computes an determination accuracy representing a probability that it is correct to use, as a determination result, the first result. The first apparatus (2100) outputs the first result as the determination result in a case where the determination accuracy is greater than a first threshold value, and outputs a second result as the determination result in a case where the determination accuracy is smaller than a second threshold value. In a case where the determination accuracy is equal to or greater than the second threshold value and is equal to or smaller than the first threshold value, the first apparatus (2100) requests the second apparatus (2200) to perform the predefined determination on the determination target. The first apparatus (2100) updates at least one of the first threshold value and the second threshold value based on the determination result output by the second apparatus (2200).
US11113560B2

Body contour key point detection methods, image processing methods, neural network training methods, apparatuses, electronic devices, computer-readable storage media, and computer programs include: obtaining an image feature of an image block including a body; obtaining a body contour key point prediction result of the body by means of a first neural network according to the image feature; and obtaining a body contour key point in the image block according to the body contour key point prediction result; where the body contour key point is used for representing an outer contour of the body.
US11113550B2

A method for reminding a driver of a motor vehicle to start at a light signal device, includes the following steps: detecting a light signal of a light signal device by evaluating an image data set; detecting the stationary state of the motor vehicle according to the motor vehicle operating parameters; producing a stop signal when the detected light signal is a stop light signal and when the motor vehicle is stationary; in the presence of the stop signal, generating a start signal when a switch to a drive light signal is detected by evaluating an additional image data set, and transferring the start signal via an interface to an output device.
US11113546B2

A lane line processing method and device are provided. The method can includes obtaining distances between lane line points in a first image, determining direction densities of the individual lane line points by using the distances between the lane line points, dividing lane line points into groups corresponding to lane lines by using the direction densities of the individual lane line points, and obtaining representation information of the lane lines corresponding to the groups by using the lane line points in the groups. By using the direction densities of the individual lane line points, lane line points in an image are divided into groups, the obtained groups are then more accurate, and thus the lane lines obtained by fitting are accurate, are less susceptible to image quality issues, and have high robustness.
US11113544B2

Disclosed is a method and apparatus for providing information for driving of a vehicle, the method includes detecting a lane region including lane demarcation lines from a driving image, determining curvature information of a road on which a vehicle is driving based on map information, estimating a lateral offset of the vehicle based on the detected lane region and a reference line having the curvature information, and outputting a signal including information for driving the vehicle based on the curvature information and the lateral offset.
US11113543B2

A facility inspection system prevents a normal part from being detected as an abnormal part caused by a deviation in an alignment due to a presence/absence of a moving object in detecting the abnormal part in a surrounding environment of a vehicle moving on a track. The system includes a photographing device, storage device, separation unit, an alignment unit, and a extraction unit. The photographing device photographs the surrounding environment of the moving vehicle. The storage device stores a reference alignment point cloud and a reference difference-extraction point cloud for each position on the track. The separation unit separates the alignment point cloud from a three-dimensional point cloud. The alignment unit aligns the reference alignment point cloud and the alignment point cloud and outputs alignment information. The extraction unit extracts a difference between the three-dimensional point cloud deformed based on the alignment information and the reference difference-extraction point cloud.
US11113525B1

Implementations are described herein for automatically generating synthetic training images that are usable as training data for training machine learning models to detect, segment, and/or classify various types of plants in digital images. In various implementations, a digital image may be obtained that captures an area. The digital image may depict the area under a lighting condition that existed in the area when a camera captured the digital image. Based at least in part on an agricultural history of the area, a plurality of three-dimensional synthetic plants may be generated. The synthetic training image may then be generated to depict the plurality of three-dimensional synthetic plants in the area. In some implementations, the generating may include graphically incorporating the plurality of three-dimensional synthetic plants with the digital image based on the lighting condition.
US11113511B2

A makeup evaluation system according to an embodiment of the present invention includes a mobile terminal for photographing a facial image and transmitting the photographed facial image to a makeup server, and the makeup server for storing makeup score data and, when receiving the facial image from the mobile terminal, detecting at least one face region in the facial image, calculating a makeup score for each of the detected face regions on the basis of the makeup score data, and transmitting the calculated makeup score to the mobile terminal.
US11113510B1

When a device is successfully unlock using a facial recognition authentication process, feature vectors generated from images obtained during the facial recognition authentication process may be stored as temporary templates on the device. After a period of time, one of the temporary templates may be selected to be used as a “virtual” template for the device. For example, a median temporary template in the temporary templates may be selected as the virtual template. The performance of the virtual template may then be assessed over time and compared to the performance of templates generated from an enrollment process to determine if and how the virtual template is implemented on the device.
US11113509B2

An identity determination system and an identity determination method are provided. The system includes: a computing node including an image acquisition device, and a server in communication connection with the computing node. The computing node is configured to: collect, by using the image acquisition device, an image according to a preset image collecting frequency; perform face recognition on the collected image to recognize a facial feature in the image; determine node identity information corresponding to the recognized facial feature according to the recognized facial feature; and upload the facial feature and the node identity information corresponding to the facial feature to the server. The server is configured to determine an identity of the facial feature based on the facial feature and the node identity information corresponding to the facial feature uploaded by the computing node.
US11113508B2

A system and method for performing automated respirator mask fit testing are described. An example embodiment is configured to obtain, with one or more processors, at least one three-dimensional facial image of an individual; convert the facial image to numerical data for analysis, the numerical data representative of facial features, facial dimensions, and/or facial locations on the face of the individual; determine, based on the numerical data, a head form category for the individual; determine, based on the head form category and the numerical data, a face volume for the individual; and generate a mask fit pass (or fail) indication responsive to the face volume satisfying (or not satisfying) face volume fit criteria for the head form category. The principles described herein may also be applied for other personal protective equipment such as industrial head protection, eye and face protection, hand protection, and clothing.
US11113503B2

A fingerprint sensor for a display device capable of suppressing loss of light due to diffraction of light and a display device with this fingerprint sensor are provided. A fingerprint sensor for a display device having a plurality of photosensors arranged in a matrix, each of the photosensors has a semiconductor film for converting incident light into an electric signal, and a bottom gate electrode as a light shielding film arranged on a lower layer side of the semiconductor film for blocking incident light from the lower layer side to the semiconductor film, wherein the bottom gate electrode has four corner portions in an outer contour shape in a top view, and each of the corner portions is rounded.
US11113501B1

A fingerprint scanner for capturing fingerprints of infant children is described. The fingerprint scanner includes a transparent tube configured for an infant child hand and an array of camera sensors spaced apart on the transparent tube so that each camera sensor captures an overlapping part of an image captured by its neighboring camera sensor. The array of camera sensors is arranged below a surface, along a periphery of a circumference and substantially along a length of the transparent tube up to a processor compartment. The fingerprint scanner also includes a processing circuitry configured to: simultaneously receive multiple images from the array of camera sensors, and process the multiple images including merging the multiple images to remove overlapping portions and recover a single image of the infant child's fingertips and palm.
US11113500B2

A fingerprint identification device is provided and includes a substrate, a fingerprint identification sensing component, a first driving assembly, and a control circuit. The fingerprint identification sensing component is disposed on the substrate and configured to receive fingerprint information about a finger of a user. The first driving assembly is disposed on the substrate. The control circuit is configured to transmit a control signal to the first driving assembly. When the finger is placed on the fingerprint identification device, the first driving assembly is configured to deform according to the control signal to drive the fingerprint identification sensing component so that the fingerprint identification sensing component is sequentially moved relative to the substrate in different directions.
US11113487B2

A spectacle lens includes a substrate and an anti-reflection or mirror interference coating covering the substrate on the side of the front face, the interference coating forming a one-dimensional or two-dimensional bar code pattern, the marking being formed by a plurality of point holes on a portion of a thickness of the interference coating, the front face having, away from the point holes, a coefficient of reflection of light having a predetermined nominal value and, in each the point hole, a coefficient of reflection of light having a particular predetermined value that is different from the nominal value.
US11113486B1

A light emitting apparatus includes a light source, and a processor configured to perform control to cause the light source to blink in a blink pattern corresponding to output information including identification information unique to the light emitting apparatus, and configured to, when causing the light source to blink by repeating the blink pattern, change a time interval between the blink patterns.
US11113475B2

An example chatbot generation platform may receive a request to generate a chatbot; determine a chatbot template for the chatbot based on the request; obtain custom chatbot information according to the chatbot template; generate a chatbot corpus for the chatbot using the custom chatbot information and the chatbot template; generate a set of question and answer (QnA) pairs based on the chatbot corpus; configure a language analysis model for the chatbot; build the chatbot according to the set of QnA pairs and the language analysis model; and deploy the chatbot to a chatbot host platform for operation. The chatbot may be built to engage in an interaction with a user via the chatbot host platform, use the language analysis model to select one or more QnA pairs from the set of QnA pairs during the interaction, and train the language analysis model based on the interaction.
US11113470B2

Examples for efficiently representing, processing and deciding amongst multiple ambiguous interpretations of human natural language text are described. Processing includes creating and augmenting an “interpretation graph” which represents all known ambiguous interpretations of some natural language text. The interpretation graph is made of vertices (junction points which lead to alternative interpretations) and ‘lexical items’ (natural language objects representing data blocks, tokens, word parts, phrases, clauses, parts of speech, entities, or semantic interpretations) that represent alternative ambiguous interpretations of portions of the text. The examples show a set of simple operations for augmenting the interpretation graph to create alternative interpretations. Finally, the method includes a notion of “confidence”, which is computed as the graph is being constructed and can be used by a selector once the graph is complete to choose the most likely interpretation followed by any number of increasingly less likely interpretations. By saving all known ambiguous or alternative interpretations in an interpretation graph, the example system can provide better accuracy, reliability and coverage since possible alternatives are not pruned until the final end-to-end interpretation is selected.
US11113459B1

Disclosed are some implementations of systems, apparatus, methods and computer program products for providing guidance in relation to the customization of web pages. An indication of user input in relation to a modification to a portion of a web page is processed, where the modification includes deletion of a user interface object from the web page, addition of a user interface object to the web page, or a change to a user interface object of the web page, and where the user interface object represents a data object field or web page component. At least the portion of the web page is analyzed using a plurality of web page customization rules. Feedback pertaining to customization of one or more web pages including the web page is provided for presentation by a client device, via a graphical user interface (GUI), based at least in part on a result of analyzing the portion of the web page using the web page customization rules.
US11113451B2

The present invention relates to the generation of customised documents using document templates or master documents in which a mark-up notation is used in a master document, for example to specify the content of a customised document generated from the master document.
US11113449B2

The present disclosure relates to methods, computer readable mediums (CRMs), and systems for creating, organizing, viewing, and connecting annotations of web documents within web browsers that are made to be annotation capable. Methods, CRMs, and systems for an annotation capable web browser transmitting annotation highlighted text, annotation comment, uniform resource locator (URL), document object model (DOM) context, screenshot with marked annotation highlighted text, and annotation symbol to an annotation server are presented. Furthermore, methods, CRMs, and systems of organizing annotations within an annotation organization context area, visual queues for viewing and recognizing annotations in web documents, and a notepad for connecting annotations between web documents are presented. This disclosure relates to note taking within web documents, organizing these notes, discussing specific aspects of a web document with multiple people, and creating guided tours across multiple web documents as a reminder for oneself or for others.
US11113448B2

Embodiments of the present disclosure relate to presenting and synchronizing views of electronic document. In particular, a view management system can synchronize and present multiple synchronized views of an electronic document for display on a client device. For example, the view management system can present multiple views of an electronic document and bind one or more of the views with a model. In response to detecting a user interaction with respect to a view, the view management system can cause a client device to apply the user interaction to each of multiple views (e.g., each view that is bound to the model). By synchronizing views, the view management system can enable a user to conveniently observe how one or more user interactions with respect to a view would appear across multiple views of an electronic document.
US11113438B2

A fluid simulating method includes extracting, based on positional information included in particle data of particles during a predetermined time period, a first particle with a predetermined value or less of distance from a fluid particle and a second particle with the predetermined value or less of distance from the first particle from among wall boundary particles related to a boundary with a wall. The method may also include setting a boundary condition of a pressure Poisson equation for calculating pressure to be applied to each of the particles, and calculating pressure to be applied to each of the particles, based on the extracted first particle and the extracted second particle. The method may also include calculating particle data of the particles during a next time period based on the calculated pressure.
US11113433B2

A design application generates feasible engineering designs that satisfy criteria associated with a particular engineering problem. The design application receives input that outlines a specific engineering problem to be solved, and then synthesizes a problem specification based on this input. The design application then searches a database to identify different classes of approaches to solving the design problem set forth in the problem specification. The design application then selects one or more such classes of approaches, and generates a spectrum of potential design solutions for each such approach. The generated solutions may then be evaluated to determine the degree to which the problems specification has been met.
US11113427B2

The present disclosure provides a method for processing display contents, a first electronic device, and a second electronic device thereof. The method of displaying contents includes the steps of: providing a first electronic device configured to display one or more virtual contents to a user, wherein the first electronic device is communicable with and coupled to a second electronic device, which includes a physical display configured to display one or more non-virtual contents; determining the user's line of sight; and prohibiting the physical display of the second electronic device from displaying the one or more non-virtual contents, in response to the user's line of sight not being on the physical display of the second electronic device.
US11113426B2

A method of interacting with an electronic device while the display screen is deactivated and the electronic device is possibly locked is described. In one embodiment, the electronic devices generate a notification regarding a new event and/or device state using a notification element in response to receiving a predetermined key input from the hardware keyboard while the electronic device is in the locked state and while the display screen is deactivated, wherein the notification is generated while the display screen remains deactivated.
US11113418B2

A method for de-identifying protected health information (PHI) associated with electronic medical records (EMRs) based on a common analysis structure (CAS) is provided. The method may include detecting a system event associated with a system comprising the EMRs. The method may further include in response to detecting the system event, detecting a first CAS associated with the EMRs. The method may further include extracting first CAS data associated with the first CAS, wherein the first CAS data comprises unstructured data associated with the EMRs and normalized annotations based on CAS objects that are associated with the unstructured data. The method may further include obfuscating the unstructured data associated with the first CAS. The method may also include generating a second CAS comprising the obfuscated unstructured data and a copied version of the normalized annotations, wherein the copied version of normalized annotations are correlated with the obfuscated unstructured data.
US11113402B2

Methods, systems and apparatuses may provide for technology that includes a system on chip (SoC) having a root of trust and an embedded controller to conduct functional safety operations and non-functional safety operations with respect to the SoC. The technology may also include an enhanced serial peripheral interface (eSPI) coupled to the SoC and the embedded controller, wherein the eSPI is to tunnel communications associated with the functional safety operations between the embedded controller and the root of trust.
US11113389B1

The disclosed computer-implemented method for providing persistent visual warnings for application launchers may include (i) loading an application launcher into a sandbox, (ii) monitoring one or more functions of an application from the application launcher, (iii) querying a malware detection manager using information obtained from monitoring the functions of the application to determine whether the application is potentially harmful, and (iv) modifying, based on determining that the application is potentially harmful, an icon for the application launched from the sandbox to notify a user that the application is potentially harmful. Various other methods, systems, and computer-readable media are also disclosed.
US11113387B2

A method and apparatus for improving security of a Java sandbox is provided. The method includes performing a permission check on a to-be-checked code, determining whether a method bypassing the permission check exists in a call stack of the code, and if a method bypassing the permission check exists, determining whether methods in the call stack have a signature. The method also includes determining that the to-be-checked code has a security problem if the methods have no signature.
US11113381B2

A device may receive an input that indicates a request to initiate a transaction at an ATM device. The device may instruct the user to capture one or more images of the ATM device. The device may determine that an image has been captured and process the image to determine first information that identifies the ATM device. The device may send the first information to a server device and receive a signal that indicates the ATM device has been validated. The device may cause an augmented reality (AR) overlay to be displayed, wherein the AR overlay includes second information related to authenticating the user to the ATM device. The device may determine whether a user action is performed with respect to the second information included in the AR overlay, and perform a device action related to the second information, the ATM device, or the AR overlay.
US11113370B2

Aspects of the disclosure relate to processing authentication requests to secured information systems using machine-learned user-account behavior profiles. A computing platform may receive an authentication request corresponding to a request for a user of a client computing device to access one or more secured information resources associated with a user account. The computing platform may capture one or more behavioral parameters and may authenticate the user of the client computing device to the user account based on the one or more behavioral parameters and one or more authentication credentials. The computing platform then may generate and send one or more authentication commands directing an account portal computing platform to allow access to the one or more secured information resources. Subsequently, the computing platform may capture activity data associated with one or more interactions in a client portal session and may update a behavioral profile associated with the user account.
US11113369B2

An information processing apparatus that manages card-related information relating to a card used by a user for authentication, includes a memory configured to store a plurality of instructions, which when executed by one or more processors, cause the one or more processors to acquire identification information of the card. The one or more processors are further caused to store, in a memory, the identification information of the card and a request date and time in association with each other in response to acquiring an authentication request using the card. The one or more processors are further caused to, when a predetermined time period or more has passed from the request date and time at a predetermined timing, delete the card-related information associated with the identification information of the card corresponding to the request date and time from which the predetermined time period or more has passed.
US11113368B2

An electronic device is provided. The electronic device includes a housing, a touchscreen display, a wireless communication circuit, a processor electrically connected to the touchscreen display and the wireless communication circuit, and a memory electrically connected to the processor, wherein the memory is configured to store an application program comprising a user interface, and store an instruction that, when executed, enables the processor to store a permission for accessing, by an application program stored in the memory, at least one among hardware components or software components of the electronic device, activate the application program, allow the application program to access the at least one among hardware components or software components based on the stored permission and display a user interface (UI) of the application program on the touchscreen display, hide a part of the user interface while the application program is executed in a background state, and monitor whether the application program uses the at least one among hardware components or software components while the application program is executed in the background state.
US11113361B2

An electronic apparatus is provided. The electronic apparatus includes a storage storing object data and kernel data, and a processor including a plurality of processing elements arranged in a matrix formation, wherein the processor is configured to input corresponding first elements among a plurality of first elements included in the object data into processing elements arranged in a first row among the plurality of processing elements, and input a plurality of second elements included in the kernel data sequentially into the processing elements arranged in the first row to perform operations between the corresponding first elements and the plurality of second elements, to identify a depth in which a first element and a second element have a non-zero value, and to input the first element and the second element corresponding to the identified depth into a calculator included in each of the processing elements arranged in the first row to perform a convolution operation.
US11113356B2

Presenting a marking element in a social networking interaction where the marking element includes a question specifier and an answer specifier, creating a knowledge element in response to a user activating the marking element on the social networking interaction or a portion thereof, and presenting a knowledge element indicator in the social networking interaction.
US11113344B2

A method for indexing network camera data across heterogeneous web page structures is disclosed, which includes receiving a list of predetermined file formats, generating a list of IP network camera IP addresses, sending requests to each of the IP addresses, including transmitting a HTTP request to each IP address in the list, based on a response or lack thereof determine if an IP address is i) a network camera thereby adding the IP address to a list of network cameras, ii) a website thereby adding the IP address to a list of websites to be further investigated, or iii) an address void of network camera information thereby skipping the IP address, and crawling the IP addresses that have been determined to be websites using a web crawler identifying IP addresses of network cameras and resource path associated therewith and adding the same to the list of network cameras.
US11113340B2

Various methods, apparatuses, and media for facilitating data generation based on a set of metadata are provided. The methodology includes operations of receiving a first input that relates to data attributes and corresponding data attribute descriptions; receiving a second input that relates to applicable data quality rules; using the received inputs to generate a set of metadata; and using the generated set of metadata to generate new data that is compatible with the data quality rules. The data quality rules may be used to determine certification metrics that are used to analyze the newly generated data, in order to ensure a result that has a high level of data quality.
US11113337B2

Embodiments herein provide a method for imputing sensor data, in a sensor data sequence with missing data based on the semantics learning, where semantics is defined by the constraints of the sensor data features. A candidate value for imputation is determined based on sensor data of corresponding instances of time instants of the sensor data sequence using learning based on semantics of features of the sensor data sequence with missing data. The nearest neighbors search has been applied in similar response data sequence using the data values corresponding to the time instant of missing data in sensor data sequence. In case similar response data sequence is not available imputation is performed based on the distribution pattern of missing data.
US11113330B2

A system, which includes a mobile device and a support server, provides real-time notifications to a user whenever imaging satellites are positioned in the vicinity of the user, such that the imaging satellite is in a position to capture imagery of the user's location or a user-specified location. The user may access and purchase, via the mobile device application, available satellite imagery. In certain embodiments, the user may also be provided with the opportunity to issue, via the mobile device, a satellite tasking request such that a satellite will be tasked to capture imagery of a specific location.
US11113318B2

Techniques for analyzing media content are described. One technique generally comprises performing a regression analysis for characters in a plurality of media content based on user demographics, content outcome measure, and character models. The technique determines an attribute of significance. In some embodiments, the technique selects media content for display that depicts a character having at least a threshold value of the attribute of significance. In some embodiments, the technique displays media analytics for the attribute of significance determined based on a value of the attribute of significance exceeding a threshold significance value.
US11113307B2

The present disclosure relates to synchronizing entity identifiers across multiple data centers. In some embodiments, an entity identifier translation server may be deployed within a cloud-based distributed environment. The entity identifier translation server may receive data from multiple different data centers and detect changes/updates to entity identifiers within the data centers. In response to detected changes, the entity identifier translation server may identify one or more corresponding entity identifiers within the other data centers. For each of the corresponding entity identifiers within the other data centers, the entity identifier translation server may determine whether or not the corresponding entity identifier is to be synchronized with the newly-changed entity identifier in the first data center, and if so, may initiate synchronization processes.
US11113305B1

A system and method are disclosed for modeling a non-relational database as a normalized relational database. In one embodiment, the system identifies a column having a first type in a column-oriented, non-relational database; determines whether the column-oriented, non-relational database includes at least one column having a second type and identifies the one or more columns having the second type; virtually divides the column-oriented, non-relational database based on column type; and generates a normalized, relational model based on the virtual division of the column-oriented, non-relational database, the normalized, relational model including catalog information representing a parent table including the column having the first type and, when the column-oriented, non-relational database includes at least one column having the second type, catalogue information representing a child table, the parent table and child table both represented as relational tables.
US11113304B2

Text is extracted from and information resource such as documents, emails, relational database tables and other digitized information sources. The extracted text is processed using a decomposition function to create. Nodes are a particular data structure that stores elemental units of information. The nodes can convey meaning because they relate a subject term or phrase to an attribute term or phrase. Removed from the node data structure, the node contents are or can become a text fragment which conveys meaning, i.e., a note. The notes generated from each digital resource are associated with the digital resource from which they are captured. The notes are then stored, organized and presented in several ways which facilitate knowledge acquisition and utilization by a user.
US11113298B2

Systems and methods are provided for collaborating with different object models. Data corresponding to one or more source objects is received. The source objects is stored in a first object model, and each of the source objects is associated with information describing an entity. Matches between the respective information associated with the one or more source objects and respective information associated with one or more target objects are determined based on a query. The target objects are stored in a second object model. The one or more source objects are ranked based at least in part on the matches. A list of the ranked source objects are provided through an interface, the interface indicating a number of matching target objects for each of the source objects.
US11113296B1

A method for managing metadata for a transactional storage system include receiving a query request at a snapshot timestamp. The query request requests return of at least one data block from a plurality of data blocks. Each data block includes a corresponding write epoch timestamp and a corresponding conversion indicator indicating whether the data block is active or has been converted at a respective conversion timestamp. The method also includes setting a read epoch timestamp equal to the earliest one of the write epoch and determining whether any of the respective conversion timestamps occurring at or before the snapshot timestamp occur after the read epoch timestamp. The method also includes determining the at least one data block requested by the query request by scanning each of the data blocks including corresponding write epoch timestamps occurring at or after the read epoch timestamp.
US11113287B1

A system may include at least one processor. The at least one processor may receive data from a plurality of independent data sources. The data from each respective data source is received at a rate determined by the respective data source. The at least one processor may further write the received data to at least one data store at a rate independent of the respective rates at which data from the plurality of independent data sources is received. A method and computer-readable medium are also disclosed.
US11113279B2

The subject technology defines a materialized view over a source table that is associated with a first account of a database. The subject technology defines cross-account access rights to the materialized view for a second account. The subject technology modifies the source table for the materialized view. The subject technology identifies that the materialized view is stale with respect to the source table by merging the materialized view and the source table. The subject technology causes the materialized view to be refreshed with respect to the source table.
US11113275B2

A processing platform in illustrative embodiments comprises one or more processing devices each including at least one processor coupled to a memory. The processing platform is configured to obtain a text document containing at least one claim about data of a relational database. Claim keywords are extracted from the text document, and query fragments are identified based at least in part on indexing of one or more relational data sets of the relational database. The relevance of the claim keywords to the query fragments is determined, and candidate queries are identified based at least in part on probabilistic inferencing from the determined relevance of the claim keywords to the query fragments. The candidate queries are evaluated against the relational database, and consistency of the claim with the data of the relational database is determined based at least in part on results of the evaluation of the candidate queries.
US11113268B2

Disclosed are a device and a method for restoring missing operational data. The method for restoring missing operational data includes determining whether missing data is present in a first event defining operational data or a first resource constituting the operational data, extracting candidate data from a missing table, depending on a form in which the first resource is defined by the first event and a location where the missing data is identified, and processing the candidate data to restore the missing data, based on a predetermined restoration scheme.
US11113260B2

Various technologies described herein pertain to accessing records of an in-memory database. A memory can include a primary storage and a data store can include a secondary storage. The primary storage includes a first subset of the records of the database, and the secondary storage includes a second subset of the records of the database. Moreover, the memory includes an update memo that includes timestamp notices. The timestamp notices specify statuses of records of the database having updates that span the primary storage and the secondary storage. The memory further includes a database management system that is executable by a processor. The database management system processes a transaction. Further, the database management system includes a storage interface component that accesses a record of the database for the transaction based on at least one of the timestamp notices of the update memo.
US11113257B2

A system of managing key entity records required by a user. The system includes a database arrangement operable to store a structured database including entity records and a processing module communicably coupled to the database arrangement. The processing module is operable to receive the structured database including entity records; determine an importance score for each of the entity records; identify key entity records based on the determined importance scores of the entity records; receive a tuning-input from the user; calculate a tuned importance score for each of the entity records based on the tuning-input from the user; and identify the key entity records required by the user based on the tuned importance scores of the entity records.
US11113255B2

In order to facilitate entity resolution, systems and methods include a processor receiving first records associated with one or more entities, and second records associated with the one or more entities. The processor generates candidate pairs based on a similarity between first entity data and second entity data. The processor generates features for each candidate pair based on similarity measures between the first entity record and the second entity record. The processor utilizes a scoring machine learning model to determine a match score for each candidate pair based on each feature. The processor determines clusters of candidate pairs based on the match score of each feature for each candidate pair. The processor merges records of candidate pairs of each cluster into a respective entity record. The processor determines an entity associated with each entity record and updates an entity database with the entity record.
US11113250B2

Techniques for activity tracking, data classification, and in-database archiving are described. Activity tracking refers to techniques that collect statistics related to user access patterns, such as the frequency or recency with which users access particular database elements. The statistics gathered through activity tracking can be supplied to data classification techniques to automatically classify the database elements or to assist users with manually classifying the database elements. Then, once the database elements have been classified, in-database archiving techniques can be employed to move database elements to different storage tiers based on the classifications. However, although the techniques related to activity tracking, data classification, and in-database archiving may be used together as described above; each technique may also be practiced separately.
US11113247B1

Systems, apparatuses, methods, and computer readable mediums for implementing an I/O router to route requests based on characteristics of the requests. The I/O router may receive requests targeting a single file, and the I/O router may route requests to multiple extent maps based on characteristics of the requests. For example, requests of a first size may be mapped to a first extent map, requests of a second size may be mapped to a second extent map, requests of a third size may be mapped to a third extent map, and so on. Additionally, the system may utilize different deduplication policies for the different types of requests which are mapped to different extent maps.
US11113245B2

Embodiments relate to policy-based, multi-scheme data reduction for a computer memory. An aspect includes receiving a plurality of policy rules by a policy engine of the computer memory, wherein a first policy rule specifies applying a first data reduction scheme to data in the computer memory based on the data matching first characteristics, wherein a second policy rule specifies applying a second data reduction scheme to data in the computer memory based on the data matching second characteristics, wherein the first data reduction scheme is different from the second data reduction scheme. Another aspect includes determining, by the policy engine, that first data in the computer memory matches the first characteristics, and that second data in the computer memory matches the second characteristics. Yet another aspect includes applying the first data reduction scheme to the first data, and applying the second data reduction scheme to the second data.
US11113242B2

A method includes receiving trace data representing access information about files stored in a large-scale distributed storage system, identifying file access patterns based on the trace data, receiving metadata information associated with the files stored in the large-scale distributed storage system, and generating a preferred storage parameter for each file based on the received metadata information and the identified file access patterns. The method also includes receiving, file reliability or accessibility information of a new file, determining whether the received file reliability or accessibility information of the new file matches information of a file group of the files in the large-scale distributed storage system, and when the file reliability or accessibility information of the new file matches the information of the file group, storing the new file in the large-scale distributed storage system using the preferred storage parameter associated with the file group.
US11113240B2

In a system for efficiently organizing, storing, accessing, and analyzing project data and for visualizing project progress, for a specified project, a reference fractal-based structure is selected based on, at least in part, the type of the specified project and/or a mapping between project types and reference fractal-based structures. The project files are organized and stored in a file structure that corresponds to the selected reference fractal-based structure, so that the file structure can be transmogrified displayed as a viewable fractal-based structure, that can indicate process of different tasks and subtasks of the project based on, in part, the status of the tasks and subtasks that is derived from the project files.
US11113239B2

The present teaching generally relates to detecting providing pre-validated data buckets for online experiments. In a non-limiting embodiment, user activity data representing user activity for a first plurality of user identifiers may be obtained. A first set of values and a second values, representing first and second user engagement parameters, respectively, may be generated for each user identifier based on the user activity data. A first ranking and a second ranking may be determined for the first and second sets, respectively. A first exclusion range including a first number of values to be removed from the first and second sets may be determined. A homogenous value set may be generated by removing the first number of values from the first and second sets, where each value from the homogenous value set corresponds to a user identifier available to be placed in a data bucket for an online experiment.
US11113229B2

A pause point during consumption of media data is identified. The pause point is a point at which identify a user stops the consumption of the media data. A portion of content preceding the identified pause point is determined. The portion of content is analyzed to identify changes in content concepts in the portion of content. One or more continuation points for the user to return to the content based on changes in the content concepts in the portion of content are identified. The one or more continuation points are indicated to the user.
US11113223B1

Examples herein describe techniques for communicating between data processing engines in an array of data processing engines. In one embodiment, the array is a 2D array where each of the DPEs includes one or more cores. In addition to the cores, the data processing engines can include streaming interconnects which transmit streaming data using two different modes: circuit switching and packet switching. Circuit switching establishes reserved point-to-point communication paths between endpoints in the interconnect which routes data in a deterministic manner. Packet switching, in contrast, transmits streaming data that includes headers for routing data within the interconnect in a non-deterministic manner. In one embodiment, the streaming interconnects can have one or more ports configured to perform circuit switching and one or more ports configured to perform packet switching.
US11113205B2

An example apparatus for die addressing can include an array of memory cells and a memory cache. The memory cache can be configured to store at least a portion of an address mapping table. The address mapping table can include entries that map translation units (TUs) to physical locations in the array. The entries can include data that indicate a location within the array that stores a particular TU without including data that indicates which die of the array the TU is stored in.
US11113203B2

Provided herein may be a controller and a method of operating the same. The controller for controlling an operation of a semiconductor memory device may include a request analyzer, a map cache controller, and a command generator. The request analyzer receives a first request from a host. The map cache controller generates a first mapping segment including a plurality of mapping entries and a flag bit based on the first request, and sets a value of the flag bit depending on whether data corresponding to the first mapping segment is random data or sequential data. The command generator generates a program command for programming the mapping segment.
US11113202B2

A memory system includes: a memory device including a memory block, a page buffer, and first and second memory dies; a write buffer suitable for temporarily storing first and second data; a program managing unit suitable for controlling the memory device to sequentially perform first and second program operations on the memory block with the first and second data; a buffer managing unit suitable for managing the write buffer based on a scatter-gather scheme; a failure processing unit suitable for forcing the second program operation to fail, when the first program operation is a failure; and an error handling unit suitable for controlling the program managing unit to perform the first and second program operations again for the first and second data that are temporarily stored in the write buffer when the second program operation is forced to fail.
US11113201B2

The present invention provides a flash memory controller, wherein the flash memory controller includes a read-only memory, a microprocessor and a decoder, wherein the read-only memory is configured to store a program code, and the microprocessor is configured to execute the program code to access a flash memory module. In the operations of the flash memory controller, when the flash memory controller is powered on, the microcontroller reads a plurality of pages of a specific block of the flash memory module, and the decoder decodes data of the plurality of pages. When any one of the pages cannot be decoded successfully, the microcontroller seals the specific block, and increase a priority of the specific block for quality detection or garbage collection.
US11113187B2

Systems of the present disclosure provide a versatile, reusable mock server to respond to Application-Programming-Interface (API) requests. The mock server receives an API request and a cookie associated with the API request. The API server identifies response instructions found in the cookie. The response instructions may include a static response value, a name of an API server for the mock server to imitate, or code for the mock server to execute in the process of generating a mock API response. The mock server generates a mock API response based on the response instructions and sends the mock API response in reply to the API request.
US11113181B2

A connection can be made to a processing element of a remotely deployed and live streaming application executed by a first data processing system, the processing element containing at least one operator that processes at least one tuple. As the live streaming application is executed, without slowing or modifying data flow of the live streaming application execution to client devices, a copy of the tuple and a memory dump of state data for a state of the operator can be received, and the tuple can be tracked through a call graph. The state data can be loaded into a local instance of the operator loaded into a debugger. At least a portion of the call graph can be presented to a user, and a flow of the tuple through the call graph based on the state data for the operator can be indicated.
US11113172B2

A method, terminal and computer-readable storage medium are provided for displaying activity record information. The method includes: acquiring specified activity record information after switching to a specified interface; and displaying the specified activity record information in the specified interface. In the present disclosure, after the specified activity record information is obtained by an operating system from extracting and integrating the activity record information of at least one application installed in the terminal, the specified activity record information may be displayed in a specified interface. Since the specified activity record information may come from at least one application in the terminal, the activity record information scattered in various applications may be displayed in the specified interface.
US11113169B2

Best known configurations can be automatically created for particular platforms. An update tool can be installed on end user devices and can include a health monitor engine that creates health reports for drivers and/or firmware installed on the corresponding end user device. The health reports generated on the end user devices can be provided to a best known configuration engine that can evaluate them to calculate a best known configuration for each platform. The best known configurations can then be distributed to the update tool on the end user devices to cause them to configure the end user devices to match the corresponding best known configuration.
US11113162B2

Apparatuses and methods for repairing memory devices including a plurality of memory die and an interface are disclosed. An example apparatus includes a first stack that includes a plurality of first dies stacked with one another, the first dies include a plurality of first channels, at least one of which is designated as a first defective channel, and further includes a second stack stacked with the first stack and including a plurality of second dies stacked with one another, the second dies including a plurality of second channels, at least one of which is designated as a second defective channel. A control circuit is configured, responsive to a command for accessing the first defective channel, to access one of the plurality of second channels in place of accessing the first defective channel, wherein the one of the plurality of second channels corresponds to the first defective channel and is not designated as the second defective channel.
US11113160B2

Disclosed are an apparatus for performing data migration and a method of operating the same for processing data migration between memories according to a monitoring result of a change in performance while applications are executed in a High Performance Computing (HPC) environment adapting hybrid memories.
US11113148B2

Systems and methods for metadata tag inheritance during backup are disclosed. The method includes maintaining a plurality of data storage systems in communication with an external metadata management system, operating the metadata management system to store metadata corresponding to data residing on the data storage systems as a plurality of entries that include or more custom tags, detecting an execution of a backup data operation command on data residing in a data storage system that causes creation of a backup copy of a data set in that data storage system in a destination data storage system, and operating the metadata management system to create a new metadata entry corresponding to the execution of the backup data operation command in response to detecting the execution of the backup data operation command. The new metadata entry includes at least one custom tag created before the execution of the backup data operation command.
US11113143B2

Systems and methods for provided for detecting compatible modules for replacing anomalous elements in computing systems. The described technique includes receiving system parameters specifying functionality of a first computing system, and querying a state model using the received system parameters to detect an anomaly within the first computing system. In response to detecting an anomaly in the first computing system based on the state model, the system determines a recovery method based on a recovery-method model and information about the detected anomaly, and selecting, from a tool database, a third-party, system-compatible tool configured to implement the determined recovery method.
US11113133B2

Systems, apparatuses and methods may provide for technology that detects a successful boot of a first firmware component in a computing system, receives a signal from a second firmware component in the computing system, and detects an incompatibility of the first firmware component with respect to the second firmware component based on the signal. In one example, only the first firmware component is repaired in response to the incompatibility.
US11113131B2

First information for a first event of a computer system is captured, including first event parameters. A first event key is generated, based on the first event parameters. The first information and first key are both stored as a first event in a storage structure, in which the first event key indexes the first event and the captured first information. When second information is captured for a second event, a second event key is generated based on second event parameters of the captured second event. If the second event key matches the first event key, then the first event stored in the event collection system is dynamically updated to store the second event information as part of the first event, to minimize additional storage space needed in the storage structure for the second event.
US11113115B2

Dynamically allocating workloads to a fixed number of CPU resources within a compute platform. Determining whether a workload should be in a Dedicated Class of workloads and assigned to a dedicated CPU resource or in a Shared Class of workloads that is handled by a set of at least one shared CPU resource, wherein a shared CPU resource may service more than one workload. The determination may be made based on a comparison of a parameter from two samples of a parameter taken at different times. The determination may be made using metadata associated with the workload. The determination may be made repeatedly so that some workloads may change from being in the Dedicated Class to the Shared Class or from the Shared Class to the Dedicated Class. High availability virtual network functions may be handled economically by deeming the failover workloads to be in the Shared Class.
US11113114B2

Systems, methods, and computer-readable media are provided for load balancing requests and controlling object replication based on object popularity. A request for an object can be received at a dispatcher of a storage system from a client. Candidate storage nodes of the storage system for serving the object can be identified by the dispatcher by generating an ordered list of the candidate storage nodes using a two-dimensional consistent hashing function. Distribution of the request for the object through one or more candidate storage nodes for filling the request for the object can be facilitated according to the ordered list of candidate storage nodes. Specifically, the one or more candidate storage nodes can be configured to facilitate distribution of the request by selectively filling the request to the client using cache admission policies formed based on popularity characteristics of requested objects at the one or more candidate storage nodes.
US11113113B2

Systems, apparatuses, and methods for efficiently selecting compressors for data compression are described. In various embodiments, a computing system includes at least one processor and multiple codecs such as one or more hardware codecs and one or more software codecs executable by the processor. The computing system receives a workload and processes instructions, commands and routines corresponding to the workload. One or more of the tasks in the workload are data compression tasks. Current condition(s) are determined during the processing of the workload by the computing system. Conditions are determined to be satisfied based on comparing current selected characteristics to respective thresholds. In one example, when the compressor selector determines a difference between a target compression ratio and an expected compression ratio of the first codec exceeds a threshold, the compressor selector switches from hardware codecs to software codecs.
US11113110B2

Techniques are described herein for intelligent pooling and management of isolated hierarchical runtimes in a multi-tenant environment. In an embodiment, an allocation of operating system resources of a container database management system (CDBMS) is allocated to each generic nest of a pool of generic nests. The allocation includes a quota of one or more processors and a quota of memory. A configuration profile for a PDB in the CDBMS is then determined. Based on the configuration profile determined for the PDB, a matching generic nest from the pool of generic nests is determined. A matching generic nest is assigned to the PDB. The matching generic nest is then configured for the PDB.
US11113107B2

An adaptive mechanism may include a receiver, an Arithmetic Logic Unit (ALU) identifier, and an assignment module. The receiver may receive tasks representing iterations of inexact algorithms. Each task may have a corresponding iteration power level. The ALU identifier may identify a set of available ALUs. Each ALU may have a corresponding ALU power level. The assignment module may assign tasks to available ALUs to optimize a total ALU power used.
US11113101B2

Method and system embodying the method for scheduling arbitration among a plurality of service requestors encompassing: designating among the plurality of service requestors all the service requestors that have an active request; determining whether at least one of the designated service requestors has an un-served status indicator which is set; and when the determining is positive then: selecting one of the at least one designated service requestors in accordance with a pre-determined policy; and clearing the un-served status indicator for the selected service requestor, is disclosed.
US11113093B2

Disclosed are aspects of interference-aware virtual machine assignment for systems that include graphics processing units (GPUs) that are virtual GPU (vGPU) enabled. In some examples, a plurality of workloads are executed alone and co-located with other workloads in a virtual graphics processing unit (vGPU)-enabled system to determine baseline parameters and measured interferences. A machine learning model is trained to predict interference based on the measured interferences and the baseline parameters. A workload is assigned and executed on a particular GPU associated with a minimum predicted interference with the workload based on currently-assigned workloads of the particular GPU.
US11113087B2

In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus for managing a plurality of VDI systems are provided. The apparatus broadcasts or multicasts, at a first VDI system of the plurality of VDI systems, a message including a first key uniquely associated with the first VDI system and a first network locator for locating the first VDI system in a network. The apparatus further receives, from a second VDI system of the plurality of VDI systems, a web service request including the first key, a second key uniquely associated with the second VDI system, a second network locator for locating the first VDI system in the network, and operation information of the second VDI system.
US11113085B2

A method of defining a virtual network across a plurality of physical hosts is provided. At least two hosts utilize network virtualization software provided by two different vendors. Each host hosts a set of data compute nodes (DCNs) for one or more tenants. The method, at an agent at a host, receives a command from a network controller, the command includes (i) an identification a resource on a tenant logical network and (ii) an action to perform on the identified resource. The method, at the agent, determines the network virtualization software utilized by the host. The method, at the agent, translates the received action into a set of configuration commands compatible with the network virtualization software utilized by the host. The method sends the configuration commands to a network configuration interface on the host to perform the action on the identified resource.
US11113083B2

Method and system are provided for notification interaction in a touchscreen user interface. The method includes: monitoring a user interaction with a current application via the touchscreen user interface; recognizing that a notification is being prepared to be displayed as a notification display on top of the current application; selecting a distinct user interaction for input to the notification display that is distinct from the monitored user interaction with the current application; and displaying an instruction for the distinct user interaction with the notification display.
US11113081B2

According to an embodiment of the present invention, a video is generated from a communication session pertaining to support for use of a user interface. A scenario is identified within a document including content of the communication session. One or more items corresponding to the identified scenario and associated with the user interface are extracted from the document. The extracted items are mapped to corresponding aspects of the user interface, wherein at least one of the extracted items remains unmapped to the user interface. At least one question is determined for a user to receive information to map an unmapped item to a corresponding aspect of the user interface. A video is generated based on the mapped aspects of the user interface to reproduce one or more activities performed during the use of the user interface.
US11113074B2

Various embodiments of methods and systems for a modem-directed application processor boot flow in a portable computing device (“PCD”) are disclosed. An exemplary method includes an application processor that transitions into an idle state, such as a WFI state, for durations of time during a boot sequence that coincide with processing by a DMA engine and/or crypto engine. That is, the application processor may “sleep” while the DMA engine and/or crypto engine process workloads in response to instructions they received from the application processor.
US11113067B1

In one embodiment, a microprocessor, comprising: first logic configured to detect that a fetched cache address matches at least one of two previous cache addresses; and second logic configured to adjust a branch pattern used for conditional branch prediction based on the match and combine the cache address with the adjusted branch pattern to form a conditional branch predictor address.
US11113064B2

A processor core receives a request to execute application code including a trigger instruction and an instruction block that reads a row of data values from a data structure and outputs a data value from a function using the row as input. The data structure is divided into multiple portions and the trigger instruction indicates that multiple instances of the instruction block are to be executed concurrently. In response to the request and to identification of the instruction block and trigger instruction, the processor core generates multiple instances of a support block that causes independent repetitive execution of each instance of the instruction block until all rows of the corresponding portion of the data structure are used as input. The processor core assigns instances of the instruction and support blocks to multiple processor cores, and provides each instance of the instruction block with the corresponding portion of the data structure.
US11113062B2

Software instructions are executed on a processor within a computer system to configure a steaming engine with stream parameters to define a multidimensional array. The stream parameters define a size for each dimension of the multidimensional array and a pad value indicator. Data is fetched from a memory coupled to the streaming engine responsive to the stream parameters. A stream of vectors is formed for the multidimensional array responsive to the stream parameters from the data fetched from memory. A padded stream vector is formed that includes a specified pad value without accessing the pad value from system memory.
US11113060B2

A processing apparatus comprising one or more processing modules, each comprising an execution unit. The one or more processing modules are operable to run a plurality of parallel or concurrent threads, and the processing apparatus further comprises a storage location for storing an aggregated exit state of the plurality of threads. An instruction set of the processing apparatus comprises an exit instruction for inclusion in each of the plurality of threads, the exit state instruction taking an individual exit state of the respective thread as an operand. The exit instruction terminates the respective thread and also causes the individual exit state specified in the operand to contribute to the aggregated exit state.
US11113052B2

A generation apparatus includes a memory configured to store variable value information indicating variable value candidates for each variable name, and a processor configured to generate a first machine language instruction corresponding to a first code in response to receiving designation of the first code included in codes generated by a compiler, and when the generated first machine language instruction includes a variable name of a specific type, by reference to the variable value information stored in the memory, perform generation of a plurality of machine language instructions based on a plurality of pieces of variable value information associated with each of one or more variable names included in the generated first machine language instruction.
US11113028B2

An apparatus and method are provided for performing an index operation. The apparatus has vector processing circuitry to perform an index operation in each of a plurality of lanes of parallel processing. The index operation requires an index value opm to be multiplied by a multiplier value e to produce a multiplication result. The number of lanes of parallel processing is dependent on a specified element size, and the multiplier value is different, but known, for each lane of parallel processing. The vector processing circuitry comprises mapping circuitry to perform, within each lane, mapping operations on the index value opm in order to generate a plurality of intermediate input values. The plurality of intermediate input values are such that the addition of the plurality of intermediate input values produces the multiplication result. Within each lane the mapping operations are determined by the multiplier value used for that lane. The vector processing circuitry also has vector adder circuitry to perform, within each lane, an addition of at least the plurality of intermediate input values, in order to produce a result vector providing a result value for the index operation performed in each lane. This provides a high performance, low latency, technique for vectorising index operations.
US11113025B2

An interaction management device fills items with data based on user's speech content. The interaction management device includes a control unit. The control unit is configured to estimate data with which to fill in a blank item that is not yet filled in with data based on a past action history of the user when there is the blank item, inquire of the user whether the data with which to fill in the blank item is the estimated data, and determine that the estimated data is data with which to fill in the blank item if a response indicating that the estimated data is correct is received from the user.
US11113021B2

Systems and methods of using an embedded browser for displaying content from a network application in presentation mode on a secondary display are described. A method includes establishing, by a client application on a client device having a primary display and a secondary display, a session to a network application accessed via an embedded browser of the client application. The method further includes detecting, by the client application, selection of a the presentation mode while displaying a web page of the network application on a primary display of the client device. The method further includes displaying, by the embedded browser responsive to the presentation mode, content of the network application for the presentation mode on the secondary display of the client device while displaying the web page of the network application on the primary display.
US11113013B2

An image forming apparatus includes a printing device, a controller that controls the printing device, and a print job management unit that executes a secure print job by the controller based on a job request from a user. The controller executes calibration of the printing device when the controller detects that a predetermined parameter measured from a previous calibration exceeds a predetermined value. The print job management unit, upon receiving a job request for the secure print job, determines whether or not a difference between a current value of the predetermined parameter and the predetermined value is less than a predetermined threshold, and if the difference is less than the predetermined threshold, the print job management unit cancels the secure print job.
US11113006B2

A memory sub-system configured to dynamically generate a media layout to avoid media access collisions in concurrent streams. The memory sub-system can identify plurality of media units that are available to write data concurrently, select commands from the plurality of streams for concurrent execution in the available media units, generate and store a portion of a media layout dynamically in response to the commands being selected for concurrent execution in the plurality of media units, and executing the selected commands concurrently by storing data into the memory units according to physical addresses to which logical addresses used in the selected commands are mapped in the dynamically generated portion of the media layout.
US11113002B2

A data storage device includes a controller configured to recognize commands received from a host as single logical address (LA) commands or multi-LA commands. The data storage drive also includes a command overlap detection table having a plurality of records with each record configured to store multiple unrelated LAs associated with different single LA commands and configured to store multiple related LAs associated with a single multi-LA command.
US11113001B2

In some examples, fabric driven NVMe subsystem zoning may include receiving, from a non-volatile memory express (NVMe) Name Server (NNS), a zoning specification that includes an indication of a host that is to communicate with a given NVMe subsystem of an NVMe storage domain. Based on the zoning specification, the host may be designated as being permitted to connect to the given NVMe subsystem of the NVMe storage domain. An NVMe connect command may be received from the host. Based on the designation and an analysis of the NVMe connect command, a connection may be established between the given NVMe subsystem of the NVMe storage domain and the host.
US11112972B2

A method includes: receiving, at an acceleration platform manager (APM) from an application service manager (ASM), application function processing information; allocating, by the APM, a first storage processing accelerator (SPA) from a plurality of SPAs, wherein at least one SPA of the plurality of SPAs comprises a plurality of programmable processors or storage processing engines (SPEs), the plurality of SPEs comprising n SPEs, enabling the plurality of SPEs in the first SPA, wherein once enabled, the at least one SPE of the plurality of SPEs in the first SPA is configured to process data based on the application function processing information; determining, by the APM, if data processing is completed by the at least one SPE of the plurality of SPEs in the first SPA; and sending, by the APM, a result of the data processing by the SPEs of the first SPA, to the ASM.
US11112961B2

There is provided an information processing system, an information processing method, and a program capable of adaptively controlling a display on a display surface in response to an operation of moving an object in a certain display surface with respect to a transfer object. The information processing system includes a processing unit that performs, on a first display surface, a predetermined display control indicating that one or more pieces of display information in a second display surface corresponding to the first display surface is changed to be operable in the first display surface when a first operation for a first user to move a first object to a detection area having a predetermined positional relationship with one or more predetermined transfer objects positioned in the first display surface, and changes a display state of the second display surface based on a detection result of a second operation by the first user after the first operation.
US11112960B2

Method for displaying multimedia content, electronic device for performing same, and recording medium in which program for executing same is recorded are disclosed. In one embodiment, a method for displaying multimedia content comprises acquiring multimedia content including video data which is reproduced as a video, and slide data including a key scene which is matched with event time point in a reproduction time period of the video data and is displayed in a slideshow manner, acquiring a text data corresponding to the multimedia content, displaying the multimedia content in a first area according to a video mode for reproducing the video data as the video or a slideshow mode for displaying the key scene in the slideshow manner, displaying at least a portion of the text data in a second area; and adjusting the displayed text data according to the displayed multimedia content.
US11112957B2

An electronic device, while displaying a user interface of a first software application, detects a first input, including a contact that does not satisfy a first threshold and is detected at a location associated with region of the user interface associated with at least a first operation. In response to the first input, if a first tactile output setting is active for the first input, the device performs the first operation without generating a tactile output, and if a second tactile output setting is active for the first input, the device forgoes performing the first operation. In response to a second input that includes a contact that satisfies the first intensity threshold and is detected at a location associated with the region of the user interface, if the second tactile output setting is active for the second input, the device performs the first operation and generates a tactile output.
US11112956B2

A method is performed at an electronic device with a touch-sensitive display and one or more cameras. While device displays a first camera interface, which includes a first camera preview and a first capture affordance for capturing photos with the one or more cameras, the device detects an input that includes movement of a contact across the first camera preview on the touch-sensitive display. In response, the device replaces display of the first camera interface with a second camera interface, which includes a second camera preview and a second capture affordance for initiating capture of video content with the one or more cameras.
US11112955B2

The purpose is to provide a nautical chart display device which enables to easily grasp a direction centering on a reference position. The nautical chart display device includes a display, a detector, a directional symbol displaying module, and a directional symbol changing module. The display displays a nautical chart on a screen. The detector detects an operation to the screen. The directional symbol displaying module displays, on the display so as to be superimposed on the nautical chart, a directional symbol in which directional markers arranged in a circle and the center of the circle are indicated. The directional symbol changing module moves the directional symbol according to an operation to the directional symbol.
US11112954B2

A method for controlling an information terminal causes a computer of the information terminal to receive, from a case retrieval system, a plurality of similar medical images having a feature quantity of a region of interest and a certain degree of similarity in accordance with the region of interest included in a target medical image, displays a display screen displaying the plurality of received similar medical images on a touch panel display, the display screen including a display region in which at least some of the plurality of received similar medical images are displayed, displays, if selection of a first similar medical image from among the at least some of the plurality of received similar medical images displayed in the display region is detected, the first similar medical image across the display region, and displays, if a swipe operation performed on the first similar medical image is detected, a second similar medical image, which has second highest similarity next to the first similar medical image among the plurality of similar medical images, in the display region such that a corresponding region of interest included in the second similar medical image is located at a certain position in the display region.
US11112946B2

An interface information display method and apparatus are provided. The method includes: in a list display state, if a click on a list item is detected, performing operations including: acquiring object information and a position of the clicked list item; generating a screenshot image of a current page; displaying the screenshot image in full screen, displaying a first mask layer on the screenshot image, and displaying a second mask layer on the first mask layer; shrinking the screenshot image to a predetermined ratio, acquiring an object thumbnail and detailed information from the object information, displaying, in a predetermined size, the object thumbnail on the second mask layer, and displaying the detailed information in a blank area on the second mask layer; and returning to the list display state when an area of the first mask layer non-overlapping with the second mask layer is clicked.
US11112942B2

Disclosed are various embodiments for providing content via multiple display devices. First content is transmitted to a second computing device for rendering on a first display device. A current state of the first content rendered on the first display device is determined. A directive is sent to a third computing device to render second content that is synchronized to be relevant to the current state of the first content on a second display device corresponding to the third computing device. The second content comprises a list of cast members currently on screen in the first content.
US11112924B2

A touch substrate and a touch device are provided. The touch substrate has a touch region and a fan-out region, and includes: touch signal lines located in the touch region; first fan-out lines and second fan-out lines located in the fan-out region, the first fan-out lines and the second fan-out lines are located in a same layer and spaced apart from each other, first ends of the first fan-out lines are coupled with the touch signal lines in a one-to-one correspondence manner, second ends of the first fan-out lines are coupled with a driving chip, the touch substrate further includes a protection element, first ends of the second fan-out lines are coupled with the protection element, second ends of the second fan-out lines are coupled with the driving chip, and the protection element is configured to prevent static electricity from accumulating on the second fan-out lines.
US11112923B2

A touch screen, a manufacturing method thereof, and a display device. The touch screen includes: a plurality of mutually independent touch detection regions. Each touch detection region includes a plurality of strip transparent electrodes arranged along a first direction and extending along a second direction, and a plurality of mesh electrodes arranged along the second direction and extending along the first direction. The strip transparent electrodes and the mesh electrodes are insulated from each other, and the second direction is intersected with the first direction. Strip ground electrodes extending along the second direction exist between every two adjacent touch detection regions arranged along the first direction, and the strip ground electrodes and the strip transparent electrodes are disposed on the same layer.
US11112921B2

A touch display panel includes a first sensing matrix and a second sensing matrix. The first sensing matrix includes a plurality of grid units and a first switch unit. The grid units are arranged in matrix, wherein each grid unit includes at least one first electrode. The first switch unit includes a plurality of switches, and the switches are disposed between adjacent grid units. Wherein, the control end of the switches is configured to receive a first controlling signal, and one end of each of the switches is configured to output a sensing signal. The second sensing matrix includes at least one second electrode, and is configured to receive a common signal. The second sensing matrix includes a plurality of opening units, and each opening unit overlaps with the open area of each pixel circuit in a vertical projection direction of the first substrate.
US11112918B2

A touch display device includes a display panel and a touch recognition module. The touch recognition module includes a first electrode layer disposed on the display panel, an insulating layer disposed on both the first electrode layer and the display panel, and a second electrode layer disposed on the insulating layer. The first electrode layer includes a plurality of first touch electrodes spaced apart from each other, and the second electrode layer includes a touch area and a fingerprint recognition area adjacent to the touch area.
US11112914B2

A force operation sensing device is provided. The device includes an input operation unit comprising a first operating member integrally formed with a housing, a magnetic member disposed inside the input operation unit, and an oscillating circuit comprising a first inductor element and a second inductor element, wherein when a force operation is applied to the first operating member, the oscillating circuit is configured to generate a first variable resonant frequency based on an interaction between the first operating member and the first inductor element, and generate a second variable resonant frequency based on an interaction between the magnetic member and the second inductor element.
US11112906B2

An input device has: a detecting unit that generates a detection signal that changes according to the degree of the proximity of an object; a deciding unit that decides, according to a series of detection signals, whether a change due to the proximity of the object has occurred in the detection signals; and a reference value updating unit that, if the deciding unit decides that a change due to the proximity of the object has not occurred in the detection signals, updates a reference value, according to the detection signals. The deciding unit changes a decision reference so that the higher the degree, indicated by the difference between the reference value and the value of the detection signal, of the proximity of the object, is, the more likely the deciding unit is to decide that a change due to the proximity of the object has occurred in the detection signals.
US11112902B2

A touch operation processing method includes detecting a touch operation of a user, which starts from a border of a screen display area to the screen display area, and using the first point touched by the touch operation in the screen display area as a starting point; and performing, according to the touch operation, reduction processing on an operation interface displayed in the screen display area, where one edge of an operation interface after the reduction processing includes the starting point.
US11112899B2

A device having a display and a user interface incorporating buttons, switches or keys that may be programmable for various functions related to the purpose of the device and its display. The keys may be programmed for virtually any functions available to or on the device. Also, some or all of the keys may be reprogrammed for other or new functions. The device may be programmed by the user with the keys on the device to obtain a custom design having functions assigned to the keys according to a particular design, desire or choice of the user. The keys may be situated on an area having touch sensitive technology such that touching a particular key will call forth a function that is assigned to the key. The keys may be in a touch sensitive area apart from the display or be fully or in partly on a touch sensitive display.
US11112895B2

Provided is an active matrix substrate in which parasitic capacitance can be reduced and the display quality can be improved is provided, a touch-panel-equipped display device including the same, and a liquid crystal display device including the same. An active matrix substrate 1 includes a plurality of pixel electrodes 31; a plurality of counter electrodes provided so as to be opposed to the pixel electrodes 31, respectively, capacitors being formed between the counter electrodes 21 and the pixel electrodes 31; a conductive layer provided on a side opposite to the counter electrodes 21 with respect to the pixel electrodes 31; a first insulating layer 461; and a second insulating layer 462. The first insulating layer 461 is arranged between the pixel electrodes 31 and the conductive layer, and the second insulating layer 462 is arranged between the pixel electrodes 31 and the counter electrodes 21. The conductive layer includes auxiliary capacitance electrode portions 48 that are provided so as to be opposed to the pixel electrodes, respectively, and form capacitors between the same and the pixel electrodes 31, and the auxiliary capacitance electrode portions 48 and the other portions of the conductive layer than the auxiliary capacitance electrode portions 48 are positioned apart from each other.
US11112894B2

The invention provides a method for manufacturing touch panel, comprising: providing a substrate, and forming a first metal layer on the substrate; patterning the first metal layer to form a first electrode and a first pin, electrically interconnected; forming an insulating layer on the first electrode, and forming an opening in the insulating layer to expose the first pin; forming a second metal layer on the insulating layer, patterning the second metal layer to form a second electrode and a second pin, electrically interconnected; the first electrode being disposed opposite to the second electrode, the second pin being formed inside the opening, the first and second pins being arranged in a zigzag manner. The invention also provides a touch panel and a display device. The first and second electrodes form capacitive touch panel with touch function. The metal-made first and second electrodes are bendable and suitable for flexible display device.
US11112886B2

Embodiments include a method and associated system for providing an augmented reality experience. The method comprises receiving identification information from circuitry of a model removably attached to a controller device. A power source of the controller device provides power to the circuitry. The method further comprises receiving orientation information from one or more sensors of the controller device, and identifying, using a visual sensor, one or more external visual indicators of the model. The method further comprises maintaining a virtual model representing a model type indicated by the identification information. An orientation of the virtual model is based on the orientation information and referenced to the one or more external visual indicators, The method further comprises, responsive to receiving an input, displaying one or more visual effects referenced to the virtual model.
US11112885B2

A rotary input device includes a base, a cover, a column, one or more first magnets, one or more second magnets, a plurality of magnetic sensors, and a signal processing circuit. The cover includes a cap portion and a side wall vertically extending from the cap portion. The column surrounded by the side wall includes a first end for connecting to the base and a second end for connecting to the cover. The first magnet surrounds the column and is configured on the cover. The second magnet surrounds the first magnet and is configured on the base. The magnetic sensors are configured on a lateral surface of the column and coupled to the signal processing circuit.
US11112882B2

Input or control device has a flat capacitively, or resistively, or inductively, or optically, or acoustically evaluated touch layer (2), which is continuously spread over the control zone (1), and also has a graphic layer (3) with a graphical representation of at least one button (4) and/or a key (5) and/or some other control element. Graphic layer (3) is adapted for removal and replacement with at least one different graphic layer, while the first graphic layer (31) and at least one other different graphic layer (32) have different number, and/or shape, and/or layout, and/or graphical representation of the button (4), and/or key (5), and/or some other control element. Evaluation unit (6) is interconnected with the touch layer (2) and is adjusted to the different evaluation of a touch, based on the current graphic layer (3). The graphic layer (3) can be located under or on top of the touch layer (2). For every graphic layer (3) has been assigned an interpretation definition, a map stored in the memory of the evaluation unit (6). The user of the controlled device can upload the interpretation definition into the device even later.
US11112879B2

A method includes receiving, by a processor of a computing device, a first keystroke signal from a keyboard indicating that a first key has been pressed. Prior to receiving the first keystroke signal, the keyboard operates in a first state. The method further includes switching, by the processor, the keyboard from the first state to a second state in response to receiving the first keystroke signal. The method further includes receiving, by the processor during the second state, a second keystroke signal from the keyboard indicating that a second key has been pressed. The first key is different from the second key. The method further includes determining, by the processor, a plurality of keystroke signals in response to receiving the second keystroke signal during the second state. The method further includes sending, by the processor during the second state, the plurality of keystroke signals to a second computing device.
US11112874B2

Methods and systems are provided herein for analyzing, monitoring, and/or influencing a user's behavioral gesture in real-time. A gesture recognition method may be provided. The method may comprise: obtaining sensor data collected using at least one sensor located on a wearable device, wherein said wearable device is configured to be worn by a user; and analyzing the sensor data to determine a probability of the user performing a predefined gesture, wherein the probability is determined based in part on a magnitude of a motion vector in the sensor data, and without comparing the motion vector to one or more physical motion profiles.
US11112870B2

An electromagnetic feedback actuator for an operating element includes an electromagnet, a magnet armature, and a metal body. The electromagnet includes a magnetic coil and a magnetic core. The magnet armature is moveable relative to the electromagnet. The operating element includes an actuating element (e.g., touch surface, sensor surface). The magnet armature is mechanically coupled to the operating element to provide a force pulse to the operating element in response to contact with, or pressure actuation on, an actuating element of the operating element. The electromagnet is arranged in the metal body. The metal body, in integral fashion, forms the magnet armature, a magnet yoke for the magnetic core of the electromagnet, and a holder for the electromagnet. An arrangement includes at least one such electromagnetic feedback actuator coupled to an operating element.
US11112866B2

An electronic device according to the present application includes a display and a controller configured to determine a user's gaze position in a display area of the display based on user's gaze movement. In a state where a first image as an object is displayed in the display area, the controller is configured to hide the first image as the object when the gaze position separates from an area of the first image by a predetermined distance in a direction away from the first image as the object.
US11112860B2

A method and apparatus are provided for determining the orientation of an object relative to a platform likely to be exposed to buffeting. The object may be a helmet worn by a pilot in which orientation of the helmet relative the aircraft while in flight may usefully be known, in particular when determining the position of space-stabilised symbols being displayed in an associated helmet-mounted digital display system. According to the method, not only may orientation of an object may be predicted at some time ahead of a time point of validity of source sensor data, but the prediction may be dynamically configured to according to a detected severity of buffeting to reduce the effects of the buffeting upon the quality of data output by the system. The method includes measuring the severity of any buffeting using the same source data as used to determine orientation of the object.
US11112858B2

An electronic device determines information about a target and provides the information to another electronic device that has an obstructed view of the target. The other electronic device displays an image of the target with an orientation and a location of the target.
US11112856B2

In an embodiment there is provided a user interface device for interfacing a user with a computer, the computer comprising at least one processor to generate instructions for display of a graphical environment of a virtual reality simulation. The user interface device includes a sensor for detecting activation and/or a sensor for detecting proximity of a body part of the user (e.g., hand). At least partially based on detection by one of these sensors, a transition between virtual reality states is triggered.
US11112845B2

A probabilistic framework for compiler optimization with multithread power-gating controls includes scheduling all thread fragments of a multithread computer code with the estimated execution time, logging all time stamps of events, and sorting and unifying the logged time stamps. Time slices are constructed using adjacent time stamps of each thread fragment. A power-gating time having a component turned off for each time slice is determined. Power-gateable windows that reduce energy consumption of the time slice is determined according to the power-gating time. The compiler inserts predicated power-gating instructions at locations corresponding to the selected power-gateable windows into the power-gateable computer code.
US11112838B2

An electronic device is provided. The electronic device includes a first housing including a first face and a second face, a second housing including a third face and a fourth face, a folding part rotatably connecting the first housing and the second housing, a flexible display disposed on the first face and the third face, a camera exposed through at least a portion of the fourth face, a memory configured to store instructions, and a processor configured to determine an orientation of the electronic device and a direction in which the camera is pointed while a camera application is executed, identify the first area or the second area as an area in which a preview image acquired through the camera is displayed based at least on the determined direction and the determined orientation, and display the preview image, acquired through the camera, in the identified area using the flexible display.
US11112833B2

Glass-based articles are provided that exhibit improved drop performance. The relationship between properties attributable to the glass composition and stress profile of the glass-based articles are provided that indicate improved drop performance.
US11112832B2

A tablet computer includes a housing and a touch screen. The housing supports a touch screen for manipulation by a user of the computer. At least one hand pad is selectively secured to the tablet housing. The at least one hand pad is positioned at the back of the tablet for supporting the hand of a user as the user manipulates the touch screen. The pad includes a bottom surface shaped and dimensioned to rest firmly upon the tablet housing and a top surface contoured to comfortably support a hand of a user. The hand pad may also include side walls designed to wrap around the edges of the tablet housing.
US11112829B2

A docking station and a method for connecting a mobile communication device to an at least partially wire-based communication infrastructure are disclosed. The docking station has a cradle for the storage of the communication device. A detection device detects the presence of the communication device within a selected distance from the docking station and receives authentication information from the communication device. There is also an authentication device for validating the credentials of the communication terminal and for enabling communication with the communications infrastructure on the basis of authentication information. A first interface provides a first wireless communication link with the communication device and a second interface establishes a second wired communication link to the communication infrastructure. A transfer device can switch from the first communication link to the second communication link. A communication system containing the docking station is also disclosed.
US11112818B2

A reception apparatus communicating with a transmission apparatus with a clock lane and a data lane. The reception apparatus comprises a clock lane control circuit configured to determine the operation mode of the clock lane based on a clock signal transmitted through the clock lane, and performing an operation based on the determined operation mode of the clock lane, and a data lane control circuit configured to determine the operation mode of the data lane based on a data signal transmitted from the transmission apparatus, and performing an operation based on the determined operation mode of the data lane, and the clock lane control circuit is configured to set the operation mode of the clock lane to a high-speed mode, when the operation mode of the data lane is switched from a low-power mode to the high-speed mode.
US11112817B2

A control stick includes a control portion, a first electrical contact portion and a second electrical contact portion. The control portion has plural first moving contact points, the first electrical contact portion has a control board and plural first static contact points corresponding to the first moving contact points respectively, and a gap exists between the first moving contact point and the respective first static contact point. The first static contact points are electrically connected with the control board. When the control portion swings towards one of the first moving contact points, the first moving contact point is contacted and conducted with the first static contact point. This control stick is capable of achieving the control of a multiple of variables to meet the requirements of controlling a multiple variable in some occasions.
US11112814B2

The disclosure features wireless power transfer systems that include a power transmitting apparatus configured to wirelessly transmit power, a power receiving apparatus connected to an electrical load and configured to receive power from the power transmitting apparatus, and a controller connected to the power transmitting apparatus and configured to receive information about a phase difference between output voltage and current waveforms in a power source of the power transmitting apparatus, and to adjust a frequency of the transmitted power based on the measured phase difference.
US11112809B1

A system which detects gas leaks near devices which use “natural gas” or other flammable gases such as methane, ethane, propane or butane and implements multiple automatic responses to the detection of such leaks including emitting audible alarms, contacting utility and emergency service providers, and shutting off the flow of the flammable gases is disclosed. Optional to the system allowing the system to report on the approximate location of the leak and/or the approximate danger level caused by the leak by reporting on the gas/air ratios in the area are also disclosed. A method for implementing the method of the invention is also disclosed.
US11112808B2

A fluid flow restrictor device for controlling fluid flow at a connection between ducts may include a restrictor device body that is partially or fully inserted into and disposed within one of the ducts and an outboard restrictor device flange extending radially outward at an outboard end of the restrictor device body and having an outboard flange outer diameter that is greater than an inner diameter of the ducts so that the restrictor device body or the outboard restrictor device flange is engaged by an open end surface of the duct to prevent full insertion of the fluid flow restrictor device into the duct. A body inner surface defines a restrictor opening through the restrictor device body that can be varied to achieve desired fluid flow characteristics at the connection.
US11112807B1

Provided is a method of modeling behavior for a self-driving vehicle, e.g., as a follower vehicle. Also provided is a vehicle configured to execute the behavior model to cooperatively navigate at least one structural element in an environment. The structural element can be or include a door, a vestibule, and/or an elevator, as examples. The behavior model can be formed by a method that includes tracking and measuring leader-follower interactions and actions with at least one structural element of an environment, representing the leader behaviors and the follower behavior in a behavior model, and electronically storing the behavioral model. The leader-follower interactions and actions can include leader behaviors and follower behaviors, including starts, stops, pauses, and movements of the leader, follower vehicle, and/or objects.
US11112806B2

An optimum route of multiple mobile objects is estimated by: generating a time-series route candidate of a shortest route for each mobile object; generating a time-series route candidate of a detour route for each mobile object; calculating route assignment evaluation values for the shortest route and the detour route for each mobile object; calculating travel distance evaluation values for the shortest route and the detour route for each mobile object; calculating a route collision evaluation value of a combination for the shortest route and the detour route for each mobile object; and comparing a total value of the route assignment evaluation value, the travel distance evaluation value, and the route collision evaluation value for combinations of the time-series route candidates of the mobile objects, and estimating one of the combinations of the time-series route candidates of the mobile objects as the optimum route.
US11112803B2

A mobile robot includes a driving unit which changes a moving velocity and a traveling direction, a detection unit which detects a plurality of detection objects disposed along a traveling path to a target point, and a control unit which acquires a distance and a direction to the detection object detected by the detection unit, calculates a traveling direction in which the distance to the detection object and the direction of the detection object satisfy a predetermined relationship, and controls the driving unit based on the calculated traveling direction.
US11112787B2

A method of targeting, which involves capturing a first video of a scene about a potential targeting coordinate by a first video sensor on a first aircraft; transmitting the first video and associated potential targeting coordinate by the first aircraft; receiving the first video on a first display in communication with a processor, the processor also receiving the potential targeting coordinate; selecting the potential targeting coordinate to be an actual targeting coordinate for a second aircraft in response to viewing the first video on the first display; and guiding a second aircraft toward the actual targeting coordinate; where positive identification of a target corresponding to the actual targeting coordinate is maintained from selection of the actual targeting coordinate.
US11112785B2

Systems and methods for data collection and signal processing are disclosed, including a plurality of variable groups of analog sensor inputs, the analog sensors operationally coupled to an industrial environment. The inputs of the sensors may be received by an analog crosspoint switch, where the signals are monitored, data collection may be adaptively scheduled, front end signal conditioning may occur, and a noise value determined.
US11112773B2

A cluster tool assembly includes a vacuum transfer module, a process module having a first side connected to the vacuum transfer module. An isolation valve having a first side and a second side, the first side of the isolation valve coupled to a second side of the process module. A replacement station is coupled to the second side of the isolation valve. The replacement station includes an exchange handler and a part buffer. The part buffer includes a plurality of compartments to hold new or used consumable parts. The process module includes a lift mechanism to enable placement of a consumable part installed in the process module to a raised position. The raised position provides access to the exchange handler to enable removal of the consumable part from the process module and store in a compartment of the part buffer. The exchange handler of the replacement station is configured to provide a replacement for the consumable part from the part buffer back to the process module. The lift mechanism is configured to receive the consumable part provided for replacement by the exchange handler and lower the consumable part to an installed position. The replacement by the exchange handler and the process module is conducted while the process module and the replacement station are maintained in a vacuum state.
US11112769B2

A bioassembly system having a tissue/object modeling software component fully and seamlessly integrated with a robotic bioassembly workstation component for the computer-assisted design, fabrication and assembly of biological and non-biological constructs. The robotic bioassembly workstation includes a six-axis robot providing the capability for oblique-angle printing, printing by non-sequential planar layering, and printing on print substrates having variable surface topographies, enabling fabrication of more complex bio-constructs including tissues, organs and vascular trees.
US11112766B2

A method of estimating an attitude of a control device for controlling operating machines, where the control device has a plurality of pushbuttons for controlling the movement of an operating machine along respective directions, the method having the following steps: —preliminary estimating the attitude of the control device using data from an accelerometer and a magnetometer onboard of the control device; —updating of the preliminary estimate of the attitude of the control device using data from a gyroscope onboard of the control device.
US11112765B2

A control system for operation of an industrial machine includes a processor and a tangible, non-transitory, computer-readable memory communicating with the processor. The tangible, non-transitory computer-readable memory includes instructions that, in response to execution by the processor, cause the processor to perform operations including: receiving image data from an imaging device that monitors an image zone around the industrial machine, and analyzing the image data. The processor further performs operations including determining, based upon the analyzing, that the control system is functional, determining, based upon the analyzing, that the image data includes at least one of a predefined color, a predefined pattern, and a predefined shape, and transmitting a proximity signal to at least one relay module coupled between the processor and the industrial machine to halt operation of the industrial machine.
US11112763B1

System that monitors and manages a network of smart filtering containers, such as water pitchers with integrated sensors. Measurements are collected from the containers and forwarded to a centralized system, such as an Internet server; data may be analyzed to determine performance modifications or recommendations for selected containers. Centralizing the data enables discovery of patterns and correlations across containers; for example, abnormal measurements from multiple pitchers in an area may suggest contamination of the area's water supply. The centralized system may automatically update settings of containers to optimize their performance. It may send messages to users suggesting different usage patterns or configurations. It may automatically order components such as replacement filters or upgrades. A water testing capability may also be provided; users may be sent water test strips that can be imaged using an associated mobile device app, and results may be forwarded to the central database for analysis.
US11112759B2

A thermal displacement correction system performs thermal displacement correction in cooperation with a thermal displacement correction device and a computer connected via a network. The thermal displacement correction system that corrects thermal displacement caused by processing performed by a machine comprises: the thermal displacement correction device connected to the machine; and the computer connected to the thermal displacement correction device via the network. The computer comprises: a data acquisition unit that acquires environmental data on an external environment of the machine via the network; a correction value inference unit that calculates a correction value using the environmental data; and a correction value output unit that outputs the correction value to the network. The thermal displacement correction device comprises: a correction value acquisition unit that acquires the correction value via the network; and a correction execution unit that performs thermal displacement correction using the correction value.
US11112758B2

The invention relates to an escapement device (400) comprising a first escapement wheel (1), a second escapement wheel (2), and a brake-lever (3), said second escapement wheel being disposed between the first escapement wheel and the brake-lever, in particular the second escapement wheel coming into contact and engaging with both the first escapement wheel and the brake-lever.
US11112757B2

System (10) including (i) a pawl device (110) for a first wheel (6) of a first part (301) of a drivetrain (300) for winding a mainspring (7); (ii) a clutch device (120) for engaging a second part (302) of a drivetrain (300) for winding the mainsprin (7) with the first part (301) of the drivetrain (300) for winding the mainspring (7); and (iii) a coupling device (130) for coupling the pawl device and the clutch device, particularly a device (130) for coupling the states of operation of the pawl device and of the clutch device.
US11112756B2

A drum cartridge includes: a drum frame to which a developing cartridge is attachable; a photosensitive drum rotatable about an axis extending in a first direction; a memory having an electrical contact surface; and a resilient member positioned between the electrical contact surface and the drum frame. The resilient member is configured to expand and compress in a second direction crossing the electrical contact surface between a first state and a second state, the resilient member having a shorter length in the second state than in the first state. A distance between the drum frame and the electrical contact surface in the second direction when the resilient member is in the second state is smaller than a distance between the drum frame and the electrical contact surface in the second direction when the resilient member is in the first state.
US11112750B2

A development cartridge for an image forming apparatus includes a photoconductive unit including a photoconductive drum, a developing unit including a developing roller having a rotation shaft and coupled to the photoconductive unit to be rotatable to a release position where the developing roller is separated from the photoconductive drum, and to a development position where the developing roller contacts the photoconductive drum, and a coupler located between and couplable to the rotation shaft of the developing roller and a rotational power transmission member. When the coupler is coupled to the rotational power transmission member, the coupler is selectively rotatable in a first rotation direction or a second rotation direction by a rotational force from the rotational power transmission member. When the coupler is rotated in the first rotation direction and then in the second rotation direction, transmission of the rotational force to the developing roller is partially interrupted.
US11112740B2

An image forming apparatus includes a control portion that performs a double-side image forming mode after performing a single-side image forming mode on a predetermined number of sheets in a state in which a heating unit is not attached to a sheet storage portion. The control portion sets an arrival timing of a first sheet to a transfer portion in the double-side image forming mode to be later than an arrival timing of a first sheet to the transfer portion in the double-side image forming mode in a case the control portion performs the double-side image forming mode after performing the single-side image forming mode on the predetermined number of sheets in a state in which the heating unit is attached to the sheet storage portion.
US11112732B1

A bias condition determination portion of an image forming device executes each of: a first approximation expression determination operation that respectively acquires the DC component of the development current with at least three peak-to-peak voltages included in a first measurement range and determines a first expression showing a relation between the peak-to-peak voltage and the DC component of the acquired development current, a second approximation expression determination operation that respectively acquires the DC component of the development current with at least three peak-to-peak voltages included in a second measurement range larger than the first measurement range and determines a second approximation expression showing a relation between the peak-to-peak voltage and the DC component of the acquired development current, and a reference voltage determination operation that determines, as a reference peak-to-peak voltage, the peak-to-peak voltage at an intersection where the first approximation expression and the second approximation expression intersect each other.
US11112722B1

A bias condition determiner executes a direct current voltage determination mode (DC calibration) for determining a reference direct current voltage that is a reference for a direct current voltage of a developing bias applied to a developing roller in an image forming operation and an inter-peak voltage determination mode (AC calibration) for determining a reference inter-peak voltage that is a reference for an inter-peak voltage of an alternating current voltage of the developing bias applied to the developing roller in the image forming operation. A calibration executor determines whether the inter-peak voltage determination mode needs to be executed in accordance with a value of the reference direct current voltage.
US11112718B2

Provided is an electrophotographic member in which the increase in tackiness is small even in an environment of high temperature and high humidity. The electrophotographic member includes an electroconductive substrate and a surface layer, the surface layer contains resin including at least one of a urethane bond and an amide bond, the resin includes a cationic structure and an anionic structure in a molecule, and also includes a particular main-chain structure with hydrophobicity.
US11112699B2

A substrate having film type pattern and the manufacturing method, the substrate having film type pattern includes: a substrate; at least film type pattern layer which is allocated on the substrate; and a peripheral pattern layer which is allocated around the film type pattern layer.
US11112689B2

A light source device includes a light source accommodating section provided with a story structure including a first accommodation story and a second accommodation story, a red light source that emits red laser light and a blue light source that emits blue laser light being accommodated in the first accommodation story, and a green light source that emits green fluorescence being accommodated in the second accommodation story; an emission window provided on a side of the second accommodation story; a first light synthesizer that synthesizes an optical path of the red laser light from the red light source and an optical path of the blue laser light from the blue light source into one optical path, and that emits first synthesized light into which the red laser light and the blue laser light are synthesized; and a second light synthesizer that synthesizes an optical path of the green fluorescence.
US11112684B2

A projection apparatus including a projection lens, a light valve module, and an illumination system optically coupled to produce an image beam is provided. The illumination system further includes a plurality of first laser source modules adapted to emit a plurality of first laser beams, and a diffusion component disposed on transmission paths of the plurality of first laser beams, such that the plurality of first laser beams form a plurality of light spots at a plurality of locations on the diffusion component.
US11112682B1

A stand in which professional television cameras are placed includes a compact and easily storable and transportable stand for professional television cameras comprising a plurality of supporting legs pivotable upon the fixed base, and between a folded position, in which the stand is positioned coupled to a corresponding slot, and an open position, in which the stand is positioned substantially in parallel to the fixed base and thereby able to be placed on a surface. When the stand is in storage or transport, the stand may be brought into a folded position, in which each supporting leg is coupled to a corresponding slot, reducing the form factor of the stand while folded and having higher easiness in transportation.
US11112670B2

A light control film and a light control system, which not only simply change the amount of transmitted light but also can be used for a wider range of applications. This light control film includes a first electrode, a second electrode, a liquid crystal material, and a dichroic dye, and has a guest-host type liquid crystal layer in which light transmittance varies with the potential difference between the first electrode and the second electrode, wherein the liquid crystal layer has a first haze value when the potential difference is a first potential difference, has a second haze value when the potential difference is a second potential difference, and has a third haze value higher than at least the second haze value when the potential difference is a third potential difference between the first potential difference and the second potential difference.
US11112667B1

A display device includes: a liquid crystal layer between a first substrate and a second substrate; a contact region electrically connecting one of horizontal gate lines to one of vertical signal lines; a plurality of data lines; and a plurality of pixels including transistors that are electrically connected to the horizontal gate lines and the data lines, wherein: the plurality of pixels includes a kickback pixel defined as a pixel that is affected by a kickback voltage caused by the one vertical signal line, and a normal pixel defined as a pixel that is less affected by the kickback voltage caused by the one vertical signal line than the kickback pixel, and the liquid crystal layer in the kickback pixel having a first cell gap, and the liquid crystal layer in the normal pixel having a second cell gap greater than the second cell gap.
US11112662B2

A black matrix substrate includes a black dielectric layer formed on a transparent substrate, a first insulating layer formed on the black dielectric layer, a first conductive layer formed on the first insulating layer and including a first conductive pattern, a second insulating layer formed on the first conductive pattern, an oxide semiconductor layer formed on the second insulating layer, a second conductive layer formed on the oxide semiconductor layer and the second insulating layer, the second conductive layer including a second conductive pattern, a transparent resin layer formed on the second conductive pattern, and a light-absorbing layer formed on the transparent resin layer. The black dielectric layer includes carbon and covers the first and second conductive patterns in a plan view. The light-absorbing layer includes carbon and covers the first and second conductive patterns in a plan view.
US11112660B2

An electrostatic discharge (ESD) device applied to a liquid crystal display (LCD) panel includes: an electrostatic concentration structure, protruded on a color film substrate of the LCD panel; and an electrostatic discharge structure, being disposed on an array substrate of the LCD panel, positionally corresponding to the electrostatic concentration structure and having an interval relative to the electrostatic concentration structure satisfying a preset interval. Or, the ESD device includes an electrostatic discharge structure disposed on an array substrate of the LCD panel and having an interval relative to a color film substrate of the LCD panel satisfying a preset interval. Therefore, the ESD device can effectively reduce damage caused by static electricity to the LCD panel, and carry out electrostatic protection on the side of color film substrate as well as on the surroundings of the display panel, so that a strong anti-static protection ability is achieved.
US11112658B2

A display device, a display system, and a method of installing an electronic component are disclosed. In one embodiment, the electronic component is junctioned to a display panel of the display device using an auto-agglutination solder. The installation method includes positioning the electronic component having an electronic component side line connection part at a substrate stack that includes two substrates, a line between the two substrates, and a substrate side line connection part at an end of the line; forming an auto-agglutination solder between the electronic component side line connection part and the substrate side line connection part; and pressurizing the electronic component side line connection part and the substrate side line connection part by heating-up the auto-agglutination solder.
US11112657B2

A liquid crystal display device includes a first substrate having a first electrode, a second substrate having a second electrode, a liquid crystal layer, a first polarizer, and a second polarizer. A chiral agent is added in a liquid crystal filled in the liquid crystal layer, a pitch of the liquid crystal is about 8-60 μm; an effective optical path difference of the liquid crystal is about 300-550 nm. By adding a chiral agent to the liquid crystal, changing the angle between the stem electrode and the branch electrode or the angle between the polarization axis of the polarizer and the stem electrode, the transmittance is maximized, thereby achieving high transmittance display.
US11112654B2

A liquid crystal display device, which includes a first substrate and a second substrate disposed to face each other with a liquid crystal sandwiched therebetween. The first substrate is an electrode-provided substrate having a first electrode and a plurality of second electrodes overlaid on the first electrode via an insulating film, formed on a pixel region on a surface on the liquid crystal side, where one of the first electrode and the second electrodes is a pixel electrode and the other is a counter electrode, having a first liquid crystal alignment film formed on the surface on the liquid crystal side of the first substrate covered with the second electrodes. The second substrate is a substrate having a second liquid crystal alignment film formed on a surface on the liquid crystal side, the second liquid crystal alignment film containing a photosensitive side chain type polymer which develops liquid crystallinity.
US11112653B2

A display device includes a planar array of blue light-emitting diodes (LEDs) that are each configured to generate a blue output light, wherein the planar array is positioned parallel to a light-receiving surface of a liquid crystal module and a nanocrystal material that is disposed between the planar array and the liquid crystal module, and the liquid crystal module. The nanocrystal material is configured to: receive the blue output light, convert a first portion of the blue output light to a green light emission, convert a second portion of the blue output light to a red light emission, and transmit a remainder portion of the blue output light. The liquid crystal module is configured to generate an image that includes a portion of the green light emission, a portion of the red light emission, and a portion of the remainder portion of the blue output light.
US11112647B2

The present disclosure provides a display device, a driving method, and an electronic apparatus. The display device includes a backlight module including a substrate and a plurality of LEDs disposed on the substrate, and the plurality of LEDs being configured to emit light having at least one color of red, green, and blue; and a display panel, configured to display red light when the plurality of LEDs emits red light, to display green light when the plurality of LEDs emits green light, and to display blue light when the plurality of LEDs emits blue light. The display device does not require a color resist layer, thereby greatly improving the light transmittance of the display device.
US11112646B2

A thin backlight module and a manufacturing method of the thin backlight module are provided. The thin backlight module includes a drive substrate, multiple light emitting sources, a fluorescence layer, and multiple particle micro-structures. The light emitting sources are arranged in an array on the drive substrate. The surface micro-structures are arranged on a surface of the fluorescence layer. Each surface micro-structure is arranged corresponding to each light emitting source. Each particle micro-structure is arranged corresponding to each surface micro-structure. Each particle micro-structure and each surface micro-structure together form a guiding layer for dispersing light from a corresponding one of the light emitting sources. Thereby, a smaller light mixing distance and an ultra-thin backlight module thickness are achieved.
US11112641B2

The present invention provides a display panel having a display region and a peripheral region, and the display panel includes a plurality of pixel units including at least one inner pixel unit and at least one first peripheral pixel unit, and a shielding layer. A shape of the display region is non-rectangular. The inner pixel unit is disposed in the display region and includes at least one inner sub-pixel unit. The first peripheral pixel unit is disposed in both the display region and the peripheral region and includes at least one first peripheral sub-pixel unit. At least a part of the shielding layer is disposed in the peripheral region, and the at least a part partially overlaps the first peripheral pixel unit. A structure of the first peripheral pixel unit is different from a structure of the inner pixel unit.
US11112640B2

There is provided an optical member capable of achieving a liquid crystal display apparatus that is thin and has extremely high brightness. An optical member of the present invention includes: a first member having a function of converting direction of light; and a second member laminated on the first member via an adhesion layer. The adhesion layer has void portions, and non-contact portions are defined at an interface between the adhesion layer and the first member and/or the second member, and the adhesion layer is brought into contact with each of the first member and the second member in four corner portions of the optical member in plan view.
US11112638B2

A touch and/or display panel with minimal border area includes a first substrate with first and second opposite surfaces. The panel further comprises a film on the first surface and bent to the second surface, the film is flexible and wires are patterned into the film. The film comprises first and second ends, the first end is located on the first surface, and the second end is located on the second surface and a chip is formed on the second end. A method for making the panel is also disclosed.
US11112631B2

A liquid crystal display includes a guide panel configured to guide a position of a liquid crystal display panel and a backlight unit, a cover bottom, and a rear cover. The guide panel includes a panel supporter extended in a first direction and including a second groove, and an extension extended from the panel supporter in a second direction intersecting the first direction and including a first groove. The cover bottom includes a horizontal portion extended in the first direction, and a vertical portion extended from the horizontal portion in the second direction. One end of the vertical portion is inserted into the second groove. The rear cover includes a body covering a back surface of the horizontal portion, and a hook protruding from the body in the first direction and inserted into the first groove.
US11112618B2

A beam-splitting apparatus arranged to receive an input radiation beam and split the input radiation beam into a plurality of output radiation beams. The beam-splitting apparatus comprising a plurality of reflective diffraction gratings arranged to receive a radiation beam and configured to form a diffraction pattern comprising a plurality of diffraction orders, at least some of the reflective diffraction gratings being arranged to receive a 0th diffraction order formed at another of the reflective diffraction gratings. The reflective diffraction gratings are arranged such that the optical path of each output radiation beam includes no more than one instance of a diffraction order which is not a 0th diffraction order.
US11112614B2

A light-emitting device improves the beam quality of emission light from a single emitter light source in the slow-axis direction, and includes a light source 10 having a single emitter and a beam shaping module that splits the emission light from the light source into to a plurality of split-lights in the slow-axis direction, and shapes the split-lights as a shaped-beam arrayed in the fast-axis direction, and outputs the shaped-beam.
US11112611B1

A display has an image generator; a partially transmissive mirror having a curved surface; a beam splitter to reflect incident light toward the curved surface; and an optical image relay that defines a path to relay light to a curved focal surface of a partially transmissive mirror, the curved focal surface is between a curved reflective surface of the partial mirror and the beam splitter. A prism has a folding surface in the optical path for light from the image generator, wherein an aperture stop for the relay lies within the prism. A first plano-aspheric lens, against the prism input surface, guides light from the image generator toward the folding surface; a second plano-aspheric lens, in optical contact against the prism output surface, directs light to the curved focal surface. The relay, curved mirror, and beam splitter form an exit pupil for viewing the scene with a 2D image superimposed.
US11112601B2

In various embodiments, a pancake lens block may include (i) a first compound retarder comprising a first plurality of retarders oriented to a plurality of first axes of orientation, respectively, where the first compound retarder is configured to selectively transmit a portion of the emitted light, (ii) a partial reflector that receives the portion of emitted light from the first compound retarder and transmits the portion of the emitted light, (iii) a second compound retarder comprising a second plurality of retarders oriented to a plurality of second axes of orientation that are substantially orthogonal to the respective plurality of first axes of orientation, and (iv) a reflective polarizer configured to reflect the portion of the emitted light selectively transmitted by the second compound retarder back to the second compound retarder.
US11112600B2

A camera module is disclosed, the camera module including a PCB (Printed Circuit Board), a base arranged at an upper surface of the PCB, a holder member arranged at an upper surface of the base and formed with a plurality of magnet reception portions, a surface of which facing the base is opened, and a plurality of magnets coupled to the magnet reception portions, wherein the base is formed with a protrusion configured to support a bottom surface of the magnet by being protrusively formed at a position corresponding to an opening of the magnet reception portions.
US11112599B2

The present invention relates to an antireflection film which includes a hard coating layer and a low refractive index layer formed on the hard coating layer, wherein a roughness skewness (Rsk) of the concavo-convex shape of the surface is greater than 0.5 and less than 5, and a slope angle of the concavo-convex shape of the surface is greater than 0.01 degree and less than 0.2 degree, and a display device comprising the antireflection film.
US11112595B2

An adaptor including: first and second optical systems; a prism comprising a mirror region, first light flux and second light flux from the respective optical systems, being incident on the prism, the light flux passing through the prism at a portion, the second light flux being reflected by a mirror region after passing through the portion, the light flux emitted from the prism to a region; and a light-shield at the region, the light-shield shields one of the first and second light flux and is disposed proximally to the prism relative to an imaging system of the endoscope when the adaptor is attached to an endoscope; the first optical system is disposed such that the first light flux is incident in a direction parallel to an optical axis, the second optical system is disposed so that the second light flux is incident in a direction orthogonal to the optical axis.
US11112594B2

A microendoscope, and a microendoscopy method related to the microendoscope, each include a tube housing, where an end of the tube housing is shaped and finished to facilitate collection of light emitted from a sample when examined using the microendoscope. In addition, a catadioptric lens assembly, an endomicroscope that includes the catadioptric lens assembly and a microendoscopy method for microscopic analysis that uses the endomicroscope are predicated upon a second element and a third element within the catadioptric lens assembly that each has a dichroic coating. The placement of the dichroic coating on the second element and the third element provides for different magnification factors as a function of illumination wavelength when using the microendoscopy method.
US11112593B2

In some instances, an apparatus can include a light sensitive imaging sensor having a surface to receive a fluid sample, a body to be moved relative to the light sensitive imaging sensor and having a surface to touch a portion of the fluid sample, and a carrier to move the body toward the surface of the light sensitive imaging sensor to cause the surface of the body to touch the portion of the fluid sample, so that as the surface of the body touches the portion of the fluid, the surface of the body (i) is parallel to the surface of the light sensitive imaging sensor, and (ii) settles on top of the fluid sample independently of motion of the carrier.
US11112582B2

A folded telephoto lens system may include multiple lenses with refractive power and a light path folding element. Light entering the camera through lens(es) on a first path is refracted to the folding element, which changes direction of the light on to a second path with lens(es) that refract the light to form an image plane at a photosensor. At least one of the object side and image side surfaces of at least one of the lens elements may be aspheric. Total track length (TTL) of the lens system may be 14.0 mm or less. The lens system may be configured so that the telephoto ratio (TTL/f) is less than or equal to 1.0. Materials, radii of curvature, shapes, sizes, spacing, and aspheric coefficients of the optical elements may be selected to achieve quality optical performance and high image resolution in a small form factor camera.
US11112578B2

Various exemplary systems for transporting and switching optical components are disclosed. The system includes carriers disposed about a housing and configured to follow a carrier guide system to switch optical components at the optical prescription center of the optical path. In one example, a device is disclosed that reduces the packaging form factor through the use of carriers rotated about an inverted radius along a track adjacent to a limiting peripheral boundary. The system and device are configured to switch optical components while minimizing the form factor of the optical device. Methods of accomplishing these tasks are also disclosed.
US11112577B2

A lens drive device includes a lens holder capable of holding at least one lens and a frame arranged around the holder and holding the holder relatively movable along a light axis of the lens. At least three stopper convex portions protruding toward the frame are formed on an outer circumference of the holder. Stopper concave portions housing each of the stopper convex portions are formed on the frame correspondingly to the stopper convex portions. A convex intersection corner between the first convex end surface and the convex side surface has a chamfering portion or an R curved surface portion to avoid touching a concave intersection corner between the concave bottom surface and the concave side surface.
US11112575B2

An imaging device includes a casing, a lens and an adjusting mechanism. The lens is disposed in the casing. The lens includes a focus ring. The adjusting mechanism includes an adjusting module and a rod member. The adjusting module is movably disposed on the casing. The adjusting module includes a slot. The rod member is disposed on the focus ring and located in the slot. When the adjusting module moves with respect to the casing, a side wall of the slot drives the rod member to move, such that the rod member drives the focus ring to rotate.
US11112574B1

Optoelectronic systems with an adapter and methods of manufacturing or assembling the same are provided. An example of an optoelectronic system according to the present disclosure includes a substrate, an interposer, an electronic component disposed on the interposer, and an optical component. The optoelectronic system includes a ferrule and an optical fiber coupled to the ferrule. The optoelectronic system also includes an optical socket configured to receive the ferrule therein. The optoelectronic system further includes an adapter positioned between the interposer and the optical socket. The adapter has a wedge-shaped configuration such that the ferrule is disposed at a non-zero angle relative to the interposer when the ferrule is received in the optical socket and the optical socket is coupled to the adapter.
US11112571B2

An optical subassembly may include a plurality of optical semiconductor devices arrayed such that a plurality of light beams respectively traveling in parallel in a first direction are emitted therefrom or incident thereon. The optical subassembly may also include a carrier on which the plurality of optical semiconductor devices are mounted. Adjacent ones of the plurality of optical semiconductor devices may be located at positions shifted in a second direction orthogonal to the first direction and may be shifted in the first direction so as not to face each other in the second direction.
US11112556B2

Edge-lit lighting systems employing a light module for mounting a LED light source with ease of installation and removal on fixtures are described where the frame for the lighting system bears an internal skeletal pre-load bar to keep the frame planar. Multiple frames may be combined with alignment plates and joining hardware and a suspension system that gives the fixtures stability, strength and great functional advantages when used in various forms of architectural lighting.
US11112554B2

The present disclosure relates to the field of display technology, and provides a back light unit, a fabricating method thereof, and a display device in embodiments. The back light unit includes a composite layer. The composite layer includes a light guide layer and a first substrate opposite to each other, and a plurality of first microprisms and a plurality of second microprisms between the light guide layer and the first substrate. Specifically, the light guide layer includes a light exit surface facing the first substrate, and the plurality of first microprisms are on the light exit surface of the light guide layer. The plurality of second microprisms are on a surface of the first substrate facing the light guide layer. Moreover, the first microprisms are fixedly connected to the second microprisms.
US11112553B2

A light source module includes an optical plate, a light source and a dimming liquid crystal panel. The dimming liquid crystal panel includes a first driving substrate, a second driving substrate and a liquid crystal material layer. The first driving substrate includes a first substrate and a common electrode. The second driving substrate includes a second substrate, independent electrodes, first signal pads, first wires, dummy wires and a transparent insulation layer. The first wires and dummy wires are disposed on the second substrate and covered by the transparent insulation layer, the first wires are exposed from the transparent insulation layer, the independent electrodes are insulated from each other, disposed on the transparent insulation layer and overlap the first wires and the dummy wires, and each independent electrode is electrically connected to one first signal pad via one first wire. A display device having the light source module is also provided.
US11112550B2

Provided is a polarizing plate that is a polarizing plate having a wire grid structure, and includes a transparent substrate and a plurality of protrusions that extend in a first direction on the transparent substrate and are periodically arranged at a pitch shorter than a wavelength of light in a use band. Each of the protrusions includes a reflective layer, a multilayer film, and an optical property improving layer located between the reflective layer and the multilayer film. The optical property improving layer contains an oxide that contains a constituent element of which the reflective layer is composed. An etching rate of the optical property improving layer with respect to a chlorine-based gas is no less than 6.7 times and no more than 15 times an etching rate of the multilayer film.
US11112544B2

Described herein is a construction comprising a microsphere layer comprising a plurality of microspheres, wherein the microspheres comprise glass, ceramic, and combinations thereof; a bead bonding layer, wherein the plurality of microspheres is partially embedded in the bead bonding layer forming a first surface comprising exposed microspheres, wherein the plurality of microspheres on the first surface are truncated. Also disclosed herein are articles comprising the construction and methods of making thereof.
US11112541B2

A tunable acoustic gradient (TAG) lens includes a lens casing in which a controllable acoustic wave generating element is arranged and that surrounds a casing cavity in which an operational volume of a refractive fluid is contained. The lens casing includes a first case end portion comprising a window mounted along an optical path, and a second case end portion comprising a mirror mounted along the optical path. The TAG lens is configured to enable light to pass through the window of the TAG lens to enter the TAG lens and make a first pass through the operational volume of the refractive fluid and be reflected by the mirror of the TAG lens and make a second pass back through the operational volume of the refractive fluid and pass back out through the window of the TAG lens to exit the TAG lens and continue along the optical path.
US11112535B2

An atmospheric precipitation rate computation system, comprising an electronic digital image/video capture apparatus to capture digital images/videos of an environment in which an atmospheric precipitation is taking place; an electronic digital image processing apparatus connected to the electronic digital image/video capture apparatus to receive therefrom and process captured digital images/videos to compute atmospheric precipitation rates of atmospheric precipitations which are taking place in the environments shown in the received digital images/videos; and an electronic display device connected to the electronic digital image processing apparatus to receive therefrom and display the computed atmospheric precipitation rate. The electronic digital image processing apparatus is configured to compute an atmospheric precipitation rate of an atmospheric precipitation which is taking place in an environment shown in a captured digital image based on the atmospheric precipitation brightness in the captured digital image and on a mathematical model that expresses the atmospheric precipitation brightness in a captured digital image as a function of an atmospheric precipitation rate of an atmospheric precipitation that is taking place in an environment shown in a captured digital image.
US11112533B2

A sensor based system for capturing localized weather data and a server system for communicating with a plurality of reporting and recipient mobile communication devices. The communication devices are enabled to capture additional weather information to supplement the sensor based system.
US11112518B2

A non-blended dataset related to a same surveyed area as a blended dataset is used to deblend the blended dataset. The non-blended dataset may be used to calculate a model dataset emulating the blended dataset, or may be transformed in a model domain and used to derive sparseness weights, model domain masking, scaling or shaping functions used to deblend the blended dataset.
US11112511B2

The present disclosure concerns a charge-accumulation radiation detector that includes a semiconductor device and specifies an incident time and energy of radiation from a transferred image signal. The radiation detector includes a semiconductor substrate and electrodes disposed on both sides of the semiconductor substrate, and includes a plurality of charge accumulation units inside the semiconductor substrate. The plurality of charge accumulation units is each configured to accumulate charges generated by radiation incident on the semiconductor substrate. The charges accumulated in the charge accumulation units are readable to outside through at least one of the electrodes.
US11112510B2

Disclosed herein is a radiation detector comprising: a scintillator configured to emit a second radiation upon receiving a first radiation from a pulsed radiation source, a plurality of pixels, and a controller; wherein each pixel is configured to detect the second radiation; wherein the pulsed radiation source is configured to emit the first radiation during a plurality of ON periods and configured not to emit the first radiation during a plurality of OFF periods; wherein the controller is configured to determine that the pulsed radiation source is at one of the ON periods or at one of the OFF periods; wherein the controller is configured to cause the pixels to integrate signals or not to integrate signals with determination that the radiation source is at one of the ON periods or at one of the OFF periods.
US11112505B2

A robotic work tool system, comprising a robotic work tool, said robotic work tool comprising a position determining device for determining a current position and at least one deduced reckoning (also known as dead reckoning) navigation sensor, the robotic work tool being configured to determine that a reliable and accurate current position is possible to determine and in response thereto determine an expected navigation parameter, compare the expected navigation parameter to a current navigation parameter to determine a navigation error, determine if the navigation error is negligible, and if the navigation error is not negligible, cause the robotic work tool to change its trajectory to accommodate for the navigation error. Wherein the robotic work tool (100) is further configured to change the trajectory by aligning the trajectory with an expected trajectory, wherein the expected trajectory is determined as an expected direction originating from an expected position and wherein the robotic work tool (100) is configured to change the trajectory by returning to a position that should have been visited and aligning the trajectory with the expected direction originating from the expected position, said position that should have been visited being aligned with the expected direction originating from the expected position.
US11112502B2

In conventional laser radar systems, the wind velocity measurement accuracy cannot be improved without changing their time gate widths, which is a problem. A laser radar system according to the present invention includes: an optical oscillator to perform laser light oscillation; an optical modulator to modulate the laser light by oscillation of the optical oscillator; an optical antenna to emit the laser light modulated by the optical modulator into the atmosphere and to receive scattered light from an irradiated target as reception light; an optical receiver to perform heterodyne detection on the reception light received by the optical antenna; and a signal processor to calculate a spectrum of a reception signal obtained by the optical receiver's performing heterodyne detection, to decompose the spectrum using signal-to-noise ratios, and to calculate a velocity of an irradiated target from a decomposed spectrum.
US11112501B2

A method for measuring and registering 3D coordinates has a 3D scanner measure a first collection of 3D coordinates of points from a first registration position. A 2D scanner collects horizontal 2D scan sets as 3D measuring device moves from first to second registration positions. A processor determines first and second translation values and a first rotation value based on collected 2D scan sets. 3D scanner measures a second collection of 3D coordinates of points from second registration position. Processor adjusts second collection of points relative to first collection of points based at least in part on first and second translation values and first rotation value. Processor identifies a correspondence among registration targets in first and second collection of 3D coordinates, and uses this correspondence to further adjust the relative position and orientation of first and second collection of 3D coordinates.
US11112499B2

A synthetic aperture sonar moving along a first axis comprises an emitting device configured to emit, in each ping, at least one acoustic pulse toward an observed zone in a set of sectors comprising at least one sector. The sonar comprises a first physical receiving antenna extending along the first axis allowing measurements of backscattered signals to be acquired and a processing device configured to form, over R pings, for each sector, synthetic aperture beams from measurements of signals backscattered by the observed zone and generated by acoustic pulses emitted in the sector. The sonar comprises at least one gyrometer. The processing device is configured to correct for variations in the movement of the first receiving antenna during the formation of the synthetic aperture beams of the set of sectors by carrying out an autocalibration by intercorrelation of the successive pings.
US11112495B2

In one form, a method for acoustic distance measurement includes generating an acoustic signal with an acoustic transducer at a first time. A pulse is detected with the acoustic transducer in response to the acoustic signal encountering an obstacle within a predetermined distance. Detecting the pulse includes detecting a second time relative to the first time when a magnitude of the pulse rises above a predetermined threshold, and detecting a peak magnitude of the pulse. A correction ratio is determined as a ratio of the predetermined threshold to the peak magnitude of the pulse. A correction time is determined in response to the correction ratio. A corrected time-of-flight is determined by adjusting the second time by the compensation time.
US11112491B2

A light ranging and detection system achieving reconfigurable very wide field of view, high sampling of spatial points per second with high optical power handling by using architecture to efficiently combine different wavelengths, time and frequency coding, and spatial selectivity. The transmitter is capable of generating multiple narrow beams, encoding different beams and transmitting in different spatial directions. The receiver can differentiate and extract range and reflectivity information of reflected beams. Three dimensional imaging of the environment is achieved by scanning the field of view of the transmitter. Control and signal processing electronic circuitries fabricated in a chip are packaged together with a chip containing the photonic components of the ranging system.
US11112488B2

A method for operating a radar sensor device, for example of a motor vehicle, including a plurality of transmitting antenna elements and a plurality of receiving antenna elements, where at least a part of the antenna elements are situated along an arc and/or intersecting planes and where the antenna elements are divided into a plurality of antenna systems that each includes at least two of the transmitting antenna elements and at least two of the receiving antenna elements, includes: operating each of the antenna systems as an independent multiple-input-multiple-output radar system, the operating including: transmitting transmit signals using the transmitting antenna elements that are of first and second ones of the antenna systems, whose transmission ranges overlap and whose transmit signals are orthogonal to one another; and receiving reflections of the transmitted transmit using the receiving antenna elements.
US11112487B2

A method serves for imaging polarimetry. A chipless, passive transponder which has a plurality of surface regions with different polarimetric properties is illuminated fully polarimetrically by radar radiation. At least one polarization-encoded image of the transponder is generated using the radar radiation reflected thereby, and the different surface regions of the transponder in the polarization-encoded image can be recognized by their at least one polarimetric property. The passive, chipless transponder has at least two surface regions with different polarimetric structures.
US11112485B2

Positioning reference signals are transmitted in a downlink direction from base stations (200) of a wireless communication network to a wireless communication device (100) or in an uplink direction from the wireless communication device (100) to base stations (200) of the wireless communication network. According to a frequency hop pattern, a radio interface of the wireless communication device is switched between multiple different frequency ranges. In this way, the wireless communication device (100) can receive the downlink positioning reference signals on multiple different frequencies defined by the frequency hop pattern or send the uplink positioning reference signals on multiple different frequencies defined by the frequency hop pattern.
US11112483B2

An apparatus, method, or computer-readable storage medium encoded with computer-executable instructions that, when executed by a computer, cause the computer to carry out a method for determining one or more directions of arrival of one or more coherent or incoherent signals with a single radio frequency channel. The apparatus may comprise: a plurality of antenna elements (110) configured to determine the one or more coherent or incoherent signals; a plurality of radio frequency switches (120) configured to selectively activate one or more of the plurality of antenna elements; and a radio frequency combiner (140) configured to combine a plurality of radio frequency signals from one or more selectively activated antenna elements of the plurality of antenna elements.
US11112481B2

An apparatus for calibrating a differential circuit that includes a differential integrator having an input, a gain, and an output connected to a comparator. The differential integrator output is chargeable to a threshold prior to an integration period. The differential integrator integrates the input during the integration period such that the differential integrator output goes toward zero from the threshold. The comparator detects the output of the differential integrator reaching zero. The apparatus includes a closed-loop gain trim circuit to perform a coarse calibration to adjust and set the gain of the differential integrator and a reference generator that generates the threshold to which the differential integrator output is pre-charged. The reference generator is trimmable during a fine calibration to adjust and set the threshold to correct for residual gain error in the differential circuit remaining after the coarse calibration is performed.
US11112480B2

A method is provided for generating a signal-to-noise improved magnetic resonance (MR) image of an object under examination in an MR system using a compressed sensing technology. The method includes determining a first MR signal data set of the object under examination in which a corresponding k-space is randomly subsampled; determining a location dependent sensitivity map for each of at least one receiving coil used to detect MR signals of the first MR signal data set in the location where the object under examination is located; and determining the MR image using an optimization process of the compressed sensing technology in which a location dependent regularization parameter is used, wherein the location dependent regularization parameter is determined based on the location dependent sensitivity map.
US11112479B2

The invention also relates to a MRI apparatus for obtaining images of a target volume of a human and/or animal subject using magnetic resonance imaging (MRI), said MRI apparatus at least comprising: a housing defining a target area for accommodating said human and/or animal subject; at least one main magnet unit and at least one magnetic gradient unit for applying—during use—one or more magnetic field gradients along three independent orthogonal spatial axes in said target area, as well as at least one radiofrequency (RF) pulse generation unit for applying one or more sets of RF pulses towards said target area; a RF receiving unit for acquiring MRI signals possibly having multi-channel spatially sensitive characteristics; and a computer processing unit for processing said acquired MRI signals and for producing said magnetic resonance image data.
US11112472B2

A gradient system characterization function (e.g., a gradient system transfer function) may be developed by measuring a behavior of the MR device at a target temperature and developing at least one gradient system characterization function for a gradient coil of a magnetic resonance (MR) device at the target temperature based on the measured behavior. A patient may be subsequently imaged by the MR device, wherein the imaging process comprises measuring a temperature of a gradient coil, determining a gradient system characterization function at the measured temperature, calculating a pre-emphasized gradient of the gradient coil, and imaging the patient using the pre-emphasized magnetic field component.
US11112464B2

An output terminal of a signal output device is connected through a branch path to a voltage dividing point in a main path, and transmits an output signal based on a voltage of the voltage dividing point to an outside. A signal generation circuit adjusts the voltage of the voltage dividing point and generates the output signal. A short circuit detection circuit detects a short circuit between the output terminal and another terminal when a current flowing in the branch path is greater than a predetermined short circuit detection threshold. A switching circuit switches a current carrying capacity or a configuration of the signal generation circuit to limit a short circuit current flowing in the branch path when the short circuit is detected. The short circuit current is set to a value equal to or greater than the short circuit detection threshold and less than a current upper limit value.
US11112442B2

A quantum power sensor has a two-level quantum system strongly coupled to a transmission line that supports a propagating wave. A method of measuring power in a transmission line includes coupling a two-level quantum system to the transmission line; and determining the coupling and the Rabi frequency of the two-level system.
US11112441B2

There is provided a portable device (100) for monitoring a subject and detecting a source of interference for the portable device (100). The portable device (100) comprises a detector (102) configured to detect the presence of interference in an environment of the portable device (100). The portable device (100) also comprises a processor (104) configured to determine a strength of the interference in the environment of the portable device (100) and to control a user interface (106) to provide an output at a frequency that depends on the determined interference strength.
US11112440B2

The present disclosure provides a measuring device, a measuring apparatus, and a measuring method for a dielectric constant of a liquid crystal. The measuring device includes: a first substrate and a second substrate disposed to be opposite to each other; a resonant structure layer disposed on a side of the first substrate facing the second substrate. a cavity for receiving the liquid crystal to be measured is defined between the first substrate and the second substrate. The above measuring device is applied to measurement of the dielectric constant of the liquid crystal in the terahertz wave band.
US11112436B2

The disclosed technology generally relates to electrical overstress protection devices, and more particularly to electrical overstress monitoring devices for detecting electrical overstress events in semiconductor devices. In one aspect, an electrical overstress monitor and/or protection device includes a two different conductive structures configured to electrically arc in response to an EOS event and a sensing circuit configured to detect a change in a physical property of the two conductive structures caused by the EOS event. The two conductive structures have facing surfaces that have different shapes.
Patent Agency Ranking