US11369048B2
Electromagnetic wave absorbing particles are provided that include hexagonal tungsten bronze having oxygen deficiency, wherein the tungsten bronze is expressed by a general formula: MxWO3-y(where one or more elements M include at least one or more species selected from among K, Rb, and Cs, 0.15≤x≤0.33, and 0
US11369038B2
The light irradiation device includes a housing an air inlet through which cooling wind is introduced into the housing, an air outlet through which the cooling wind is discharged, a wind flow path through which the cooling wind taken in through the air inlet into the housing flows toward the air outlet, a light source part configured to be able to emit light toward the outside of the housing, and a heat sink provided at a position opposite to the first surface based on the light source part, in the wind flow path, wherein the wind flow path includes a first wind flow region and a second wind flow region located closer to the air outlet than the first wind flow region and having a smaller flow path cross sectional area than the first wind flow region.
US11369030B2
An electronic device includes a slot, and a backboard that is disposed on the depth side in the slot and is electrically connected to a printed circuit board inserted in the slot. The electronic device further includes a casing having the slot formed therein, the casing being configured to accommodate therein at least part of the backboard, and a cover member configured to be attachable to and removable from the casing. When attached to the casing, the cover member together with the casing forms the external appearance of the electronic device. The cover member is attached to the backboard integrally.
US11369002B2
Apparatuses, methods, and systems are disclosed for WLAN selection. One apparatus includes a transceiver that receives a WLAN selection/routing command. The apparatus further includes a controller that identifies whether the apparatus has selected a WLAN. The controller further determines whether to accept WLAN selection/routing commands based on a device configuration and/or whether the apparatus has selected a WLAN. In certain embodiments, the WLAN selection/routing command is a LWA command, RCLWI command, or LWIP command.
US11368986B2
Embodiments of the present disclosure provide methods, apparatuses and computer program products for random access in a wireless communication system. A method in a terminal device comprises receiving a random access configuration from a network device, the random access configuration including information for determining a set of candidate subframe numbers and a set of candidate system frame numbers for transmitting a random access preamble; transmitting the random access preamble in a subframe within a radio frame, the subframe being associated with a subframe number, and the radio frame being associated with a system frame number; wherein the subframe number is selected from the set of candidate subframe numbers, and/or, the system frame number is selected from the set of candidate system frame numbers t, based on a size of a Message 3 (Msg3) to be transmitted by the terminal device to the network device during the random access.
US11368985B2
An example method in a user equipment comprises generating a random access preamble signal and transmitting the random access preamble signal. This generating of the random access preamble signal comprises generating a random access preamble signal comprising two or more consecutive preamble symbol groups, each preamble symbol group comprising a cyclic prefix portion and a plurality of identical symbols occupying a single subcarrier of the random access preamble signal. The single subcarrier for at least one of the preamble symbol groups corresponds to a first subcarrier frequency and the single subcarrier for an immediately subsequent one of the preamble symbol groups corresponds to a second subcarrier frequency.
US11368982B2
For mobile phone network random access, a method transmits a connection release message (200) to communication device (110). The connection release message (200) includes a transmission identifier (205) and the transmission identifier derives a paging frame (280) and a paging occasion for the communication device. The method further transmits a group paging (250) at the paging frame (280) and the paging occasion. The group paging includes a scrambling value (255) and a listening window duration (260). In addition, the method transmits scheduling information (296) via a Physical Downlink Control Channel (PDCCH) scrambled by the scrambling value (255).
US11368979B2
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a node may identify a listen-before-talk (LBT) success time at which an LBT procedure, performed by the node, succeeds; determine a lag between the LBT success time and a most recent synchronization reference boundary that occurred prior to the LBT success time; and determine a maximum channel occupancy time for transmissions on an unlicensed radio frequency spectrum band based at least in part on comparing the lag and a threshold. Numerous other aspects are provided.
US11368976B2
Some of the example embodiments are directed towards a base station for determining a control timing configuration in order to provide a subframe timing setting for configuring downlink HARQ-ACK control timing for a cell serving a user equipment in a multiple cell communications network. The user equipment is served by a TDD based cell and a FDD based cell. Some example embodiments are directed towards user equipment for determining the control timing configuration as discussed above.
US11368974B2
A control information processing method and system includes: receiving, by a first device, first control information sent by a network device; determining, by the first device based on first information, that the first control information is used to schedule a target device, where the target device is one of the first device and at least one second device. The first information is related to the first control information. When the target device is at least one second device, determining, by the first device, second control information based on resource information that is used for data transmission and that is included in the first control information, and sending the second control information to the target device, so that the target device transmits data based on the second control information. When the target device is the first device, transmitting, by the first device, data based on the first control information.
US11368966B2
A method and apparatus are disclosed from the perspective of a UE. In one embodiment, the method includes triggering a first SR by a first LCH, wherein the first LCH is associated with a first SR configuration. The method also includes triggering a second SR by a second LCH while the first SR is pending, wherein the second LCH is associated with a second SR configuration, and the first SR configuration and the second SR configuration are configured for the same serving cell. The method further includes using a first SR opportunity and a second SR opportunity to transmit SRs to a network node until the SRs are cancelled, wherein the first SR opportunity corresponds to the first SR configuration and the second SR opportunity corresponds to the second SR configuration.
US11368965B2
Disclosed in the embodiments of the present disclosure are a wireless communication method, a terminal device and a network device. The method includes a terminal device that determines a first frequency domain resource within a pre-configured resource block (RB) range; and performs interference measurement or received energy measurement over the first frequency domain resource.
US11368958B2
Disclosed is a method and apparatus for determining a frequency resource and a user equipment. In the method, for a hop in frequency domain, when a first part of a frequency resource of the hop is outside a first bandwidth part (BWP), the UE moves the frequency resource of the hop, such that the whole frequency resource of the hop is turned inside the first BWP.
US11368955B2
An apparatus and method for broadcast signal frame using layered division multiplexing are disclosed. An apparatus for generating broadcast signal frame according to an embodiment of the present invention includes a combiner configured to generate a multiplexed signal by combining a core layer signal and an enhanced layer signal at different power levels; a power normalizer configured to reduce the power of the multiplexed signal to a power level corresponding to the core layer signal; a time interleaver configured to generate a time-interleaved signal by performing interleaving that is applied to both the core layer signal and the enhanced layer signal; and a frame builder configured to generate a broadcast signal frame including a bootstrap and a preamble using the time-interleaved signal.
US11368954B2
An operation method performed by a first communication node for receiving a frame in a communication system is provided. A part of the frame is received from a second communication node during a first interval. A delay period is determined for delaying a switching time point from the first interval to a second interval is later than a preconfigured switching time point based on a result of receiving the part of the frame. Then a reception of the frame is completed during the delay period and the first interval is switched to the second interval.
US11368953B2
A method and an apparatus for processing scheduling information in a terminal into which a plurality of forward carriers and reverse carriers are aggregated are provided. The method includes receiving a control message from a base station, the control message including information on a reverse carrier added by the carrier aggregation, and determining a new buffer state table to be used for reporting the state of buffers to the base station, based on the information included in the control message.
US11368945B2
The present invention may provide a method for receiving a physical downlink control channel (PDCCH) by a terminal in a wireless communication system, the method comprising: receiving at least one piece of parameter information for acquisition of a control channel element (CCE) index corresponding to a candidate PDCCH, and period information on at least one period during which a configuration related to each of the at least one piece of parameter information is maintained; acquiring the CCE index, using an identical parameter based on each of the at least one piece of parameter information, for each of the at least one period; and receiving the PDCCH by monitoring the candidate PDCCH on the basis of the CCE index.
US11368939B2
Systems, apparatuses, and methods for performing cellular relay for an accessory device. A relay device may establish cellular communication with a base station and an accessory device. Establishing communication with the accessory device includes establishing synchronization with the accessory device using a cellular sidelink synchronization channel and a cellular broadcast channel. Establishing communication with the accessory device includes configuring resources for performing communication with the accessory device. Establishing communication with the accessory device includes indicating the resources to the accessory device. The relay device may relay information between the base station and the accessory device using the resources.
US11368935B2
Wireless communications systems and methods related to monitoring a paging signal are provided. A wireless communication device may receive a first system information signal from a base station (BS) and may configure a counter with an initial counter value in response to receiving the first system information signal. Additionally, the wireless communication device may receive a second system information signal from the BS and may modify the counter value of the counter in response to receiving the second system information signal. The wireless communication device may monitor for a paging signal from the BS while the counter is outstanding.
US11368920B2
Disclosed are a method and apparatus for dynamically adjusting an SAR value, a mobile terminal, and a computer storage medium. The method for dynamically adjusting the SAR value is applied to the mobile terminal. The mobile terminal comprises a WiFi antenna used for connecting a WiFi network. The method comprises: monitoring the change of a cell or the change of a network type of the mobile terminal; when monitoring the change of the cell or the change of the network type of the mobile terminal, obtaining a working frequency band on which the mobile terminal currently camps; and adjusting the transmit power of the WiFi antenna according to a difference value between a pre-stored SAR value corresponding to the working frequency band and an SAR standard value.
US11368915B2
Systems and methods are disclosed herein for fast uplink power control. In some embodiments, a method performed by a wireless device for fast uplink power control comprises receiving a transmit power control command from a network node and determining one of two or more predefined transmit power control mapping tables to be used by the wireless device to interpret the transmit power control command. The method further comprises determining a power adjustment value based on the transmit power control command received from the network node using the one of the two or more predefined transmit power control mapping tables and adjusting a transmit power of the wireless device based on the power adjustment value. In this manner, different transmit power control mapping tables can be used in different scenarios, which allows fast uplink power control.
US11368914B2
A power control method, a terminal device and a network device are provided. The method includes: a terminal device resets a first closed loop adjustment factor associated with first Sounding Reference Signal Resource Indicator (SRI) information in condition that a first open loop power control parameter associated with the first SRI information or a first downlink Reference Signal (RS) associated with the first SRI information is reconfigured, the first open loop power control parameter being configured for power control of a Physical Uplink Shared Channel (PUSCH) and the first downlink RS being configured to measure a path loss value for power control of over the PUSCH; and the terminal device determines transmit power of the PUSCH according to the reset first closed loop adjustment factor.
US11368910B2
The present invention relates to a wireless communication system and, particularly, to a method and a device therefor, the method comprising the steps of: receiving a WUS sequence in a WUS resource on a carrier, wherein the WUS resource is defined as a plurality of consecutive OFDM symbols and a plurality of consecutive subcarriers; and attempting to detect a physical channel corresponding to the WUS, wherein the WUS sequence exists in the same pattern regardless of the position of a frequency band of the carrier, in the Nth (N>1) to last OFDM symbols of the WUS resource, and the WUS sequence exists selectively on the basis of the position of the frequency band of the carrier, in the first to (N−1)th OFDM symbols of the WUS resource.
US11368909B2
A data transmission method provided in embodiments of the present application includes: determining, by a mobility management entity MME, that user equipment UE changes from an unreachable state to a reachable state; sending, by the MME, a request message to a serving gateway SGW; receiving, by the MME, downlink data sent by the SGW; and sending, by the MME, the downlink data to the UE. In this way, when the UE changes to a reachable state for downlink data, the MME requests the SGW to send the downlink data, and the MME then sends the downlink data to the UE, thereby avoiding loss of the downlink data caused by delivery of the downlink data to the UE that is in an unreachable state, and improving real-time accuracy of transmission.
US11368906B2
Systems, methods, and computer-readable media for controlling link selection and aggregation across multiple wireless networks based on a location of a mobile device. A location of a mobile device in a physical environment can be identified. At least portions of the physical environment can be in wireless range of a first wireless network and a second wireless network. Whether to access network services through either or both the first wireless network and the second wireless network can be determined based on the location of the mobile device in the physical environment. Further, a first interface at the mobile device to the first wireless network and a second interface at the mobile device to the second wireless network can be selectively toggled according to whether it is determined to access the network services through either or both the first wireless network and the second wireless network based on the location.
US11368896B2
A communication system includes multiple distributed antenna circuits and an access point (AP). The AP is coupled to the distributed antenna circuits and includes multiple transmit chains, multiple receive chains, and an antenna control circuit communicatively coupled to the transmit chains and the receive chains. The antenna control circuit is configured to determine a subset of the distributed antenna circuits to communicatively couple to at least some of the transmit chains to transmit data to a wireless station (STA) that is in range of the subset. A corresponding method includes determining the subset to communicatively couple to the at least some of the transmit chains of the AP. The method includes communicatively coupling the subset to the at least some of the transmit chains. The method includes directing the data from the at least some of the transmit chains to the subset of the distributed antenna circuits.
US11368893B2
The communication device collects information regarding the communication quality of communication by the first other communication device and information regarding the type of the first other communication device; and transmits information regarding the communication quality corresponding to at least one of the types along with the information regarding the types to a second other communication device based on the information collected.
US11368885B2
A first base station receives, from a wireless device, one or more temporary mobile group identities (TMGIs) of one or more multimedia broadcast multicast service (MBMS) services that the wireless device is receiving or interested to receive. A message requesting resource configuration for the wireless device and comprising the one or more TMGIs is sent to a second base station. An acknowledge message comprising a group-radio network temporary identifier (G-RNTI) of at least one of the one or more MBMS services associated is received from the second base station. A radio resource control message comprising the G-RNTI is transmitted to the wireless device.
US11368880B2
An access point advertises a management frame quality of service (MFQ) policy that defines an access category used for transmitting a first type of management frame. Each mobile station associated with the access point is to prioritize transmission of management frames according to the MFQ policy advertised by the access point, unless a policy configuration request for the mobile station to prioritize transmission of management frames according to a different MFQ policy has been accepted.
US11368879B2
The disclosure relates to a mobile device configured to receive from a network a notification of a predicted change of a Quality-of-Service, QoS related to a local end-to-end data communication path; and configured to provide a report to the network, the report comprising at least one of the following information: location information, application layer information, mobile device status information, experienced QoS at mobile device side, radio channel conditions. The disclosure further relates to a network device configured to transceive communication data via a communication path, in particular a local end-to-end data communication path between a mobile device and another mobile device, based on a Quality-of-Service, QoS, requirement for the communication path; and configured to notify the mobile device about a predicted change of the QoS related to the communication path.
US11368878B2
The present invention describes a radio base station and a method for integrated access and backhaul by using backhaul capacity requests. The radio base station is configured to allocate a first part of its capacity to access traffic and a second part of its capacity to backhaul traffic. It is further configured to form a self-backhauled network with a plurality of other radio base stations and select a backhaul route through the self-backhauled network for uplink and downlink backhaul traffic.
US11368877B2
Systems and methods relate to a Self-Organizing Network (SON) that makes changes to operating parameters for the purpose of load balancing, to increase data communication throughput and capacity. A device may determine load balancing ratios and unused throughput for a first frequency band and a second frequency band for a cell site. The device may also determine, based on the load balancing ratios and the unused throughputs, whether a load balancing procedure for the cell site should be performed to increase a traffic throughput at the cell site.
US11368867B2
A method performed by a terminal according to the disclosure may comprise: receiving configuration information related to a measurement including measurement object information, wherein the measurement object information including a frequency of a synchronization signal block (SSB) and a measurement timing configuration information of the SSB; determining a reference cell to which the measurement timing configuration information of the SSB is applied based on a type of a signaling radio bearer (SRB) for which the configuration information is provided; measuring the SSB on the frequency of the SSB based on the reference cell and the measurement timing configuration information of the SSB; and transmitting a measurement report including a measurement result of the SSB on the frequency of the SSB.
US11368857B1
Optimal determination of wireless antenna configurations may be provided. A computing device may direct an antenna array of an Access Point (AP) to generate a wide beamwidth, to locate a cluster of two or more stations. Upon locating the cluster, the AP can narrow the beamwidth, and, with the narrower beamwidth, receive a key performance indicator (KPI) from at least one of the two or more stations in the cluster. The computing device may then generate a statistical model, based on the KPI and an antenna vector of the antenna array. Based on the statistical model, the computing device can determine a second antenna vector to optimize the KPI for one or more of the client stations. The computing device can then modify the antenna state of the AP to generate the determined antenna vector.
US11368853B2
Methods and apparatus for provision of resources from one or more devices within a wireless communication network to one or more devices that are outside of the wireless communication network. In one embodiment, the methods and apparatus utilize so-called “quasi-licensed” CBRS (Citizens Broadband Radio Service) wireless spectrum in conjunction with a cellular wireless communication network (e.g. 4G, 5G, or LTE-based) for the delivery of services to a number of installed fixed wireless apparatus (CPE/FWA) at user or subscriber premises. The CPE/FWAs may act as relays and/or supplementation devices to provide service to the CPEs that are out of the network coverage, effectively enabling addition of new customers to the network. As such, additional CAPEX (capital expenditure) on infrastructure is largely avoided.
US11368851B2
An electronic device that transmits traffic in a wireless network is described. During operation, the electronic device transmits, using a first transceiver, a first type of traffic in a shared frequency band that is unlicensed. Then, the first transceiver reserves time for transmitting a second type of traffic in the shared frequency band. The reserved time may be determined in response to a request to reserve the time from a second transceiver in the electronic device transmitting the second type of traffic in the shared frequency band. Next, the first transceiver permits, in the reserved time, transmission by the second transceiver of the second type of traffic in the shared frequency band. Furthermore, the first transceiver prevents transmission of the first type of traffic during the reserved time, thereby segregating the first type of traffic from the second type of traffic in the shared frequency band.
US11368842B2
An exemplary method, device, and system for configuring a session for communication between electronic devices. The method includes sending, by a session management entity of a wireless network, a first request message to a policy control entity of the wireless network, the first request message comprising a key identifier, receiving, by the session management entity, a first response message from the policy control entity, wherein the first response message corresponds to a response to the first request message, and the first response message comprises a session policy for a communication session corresponding to the key identifier, and configuring, by the session management entity, the communication session based at least in part on the session policy.
US11368840B2
An always-listening-capable computing device is disclosed, comprising: a first electronic sensor configured to receive user input, a second electronic sensor configured to receive a signal indicating that a user depressed a physical button, a gate-keeping module implemented by a processor, wherein data from the first electronic sensor passes through the gate-keeping module while a gatekeeping function is disabled, no data from the first electronic sensor passes through the communications module while the gatekeeping function is enabled, all data input to the gate-keeping module is received via an exclusive input lead from the first electronic sensor, and all data output from the gate-keeping module is transmitted via an exclusive output lead to a component other than the first electronic sensor. The device receives the signal indicating that the user has depressed the physical button; and enables or disables a functionality of a second computing device.
US11368838B2
Embodiments of the present invention provide a gateway system and a communication method. The gateway system includes: a control plane entity, connected or integrated with a mobility management network element, and configured to allocate an IP address to UE and configure a data path for connecting a user plane entity with an RAN, a PDN or another gateway; one or more user plane entities, located between the PDN and the RAN, independent of the control plane entity, configured to forward data on the data path configured by the control plane entity. The gateway system is composed of the control plane entity and the user plane entity which are independent of each other, the number of the user plane entities may be independently changed to adapt to the change of network traffic without replacing all gateway entities, the network deployment is more convenient and the cost is lower.
US11368833B2
ANNOUNCED ROAMING LOCATION (ARoL) SERVICE is a telecom service that permits a better management of received calls when travelling abroad. The ARoL service main idea is to inform a caller—calling an ARoL subscriber—where he is roaming and the local time there. This service is proposed with two levels: Basic ARoL Level—where the caller is simply informed about the country where the called ARoL subscriber is roaming and the local time there. Advanced ARoL Level—where the caller is further offered the option of assuming roaming charges. By offering this service, a Mobile Operator aims further enhancements of its customers' retention and loyalty, and creation of a new revenue stream.
US11368829B2
An electronic device includes a narrowband internet of things (NB-IoT) circuit; a shared central processor to control the narrowband internet of things circuit; a shared memory to store data or code from the shared central processor; and a communicator controlled by the shared central processor. The communicator stores the data or the code in the shared memory.
US11368815B2
A tracking system determines a location of a tracking device associated with a user using one or more access points at the location. Each access point at the location is configured to detect and couple with the tracking device when the tracking device is within a communicative range of the access point. An access point provides updates on the tracking device's presence, as well as the tracking device's arrival to and departure from the communicative range of the access point, to a tracking server. The tracking server determines, from these updates, whether the tracking device is at the location. The user may be notified, via a mobile device, of the tracking device's location.
US11368814B2
Techniques for tracking an evacuation of a location in an environment that utilizes physical tokens to prove physical presence at the location are presented. The techniques include receiving data representing of subordinates of an evacuation facilitator; receiving physical token based location status information for at least one of the subordinates, where the physical token based location status information is based on electronic readings of the physical tokens; determining based on the physical token based location status information, a physical presence status at the location for the at least one of the subordinates; receiving evacuation status information for each of the at least one of the subordinates that has a physical presence status that indicates a presence at the location; and recording the evacuation status information for each of the at least one of the subordinates that has a physical presence status that indicates a presence at the location.
US11368809B2
Single antenna direction finding is performed by physically moving a device to different device positions. As the device is physically moved, signal processing hardware within the device is used to make a plurality of signal response measurements of a wireless signal detected by a single antenna of the device. The wireless signal emanates from an object. The plurality of signal response measurements are made by sampling signal response at a plurality of sample times. An inertial measurement system makes a plurality of inertial measurements at the plurality of sample times. The plurality of signal response measurements and the plurality of inertial measurements are used to produce a virtual response array vector. The virtual response array vector is used to calculate a direction of arrival from the object to the device.
US11368799B2
Methods and systems for customizing a hearing device. The disclosed methods involve receiving an audio sample associated with a target entity, calculating at least one acoustic parameter from the audio sample, generating an audio stimulus using the at least one calculated acoustic parameter, presenting the audio stimulus to a user, receiving a response to the audio stimulus, and adjusting the hearing device based on an optimal parameter.
US11368796B2
The present disclosure relates to a method of performing bilateral dynamic range compression of first and second microphone signals generated by first and second hearing aids, respectively, of a binaural hearing aid system. The method comprises to pick-up sound pressure inside an ear canal of the user's left or right ear by a first microphone to generate a first microphone signal in response to incoming sound and pick-up sound pressure inside an ear canal of the user's opposite ear by a second microphone to generate a second microphone signal in response to the incoming sound.
US11368787B1
A speaker system comprises a first speaker subsystem comprising a first active driver and a first passive radiator that is forward facing; and a second speaker subsystem comprising a second active driver and a second passive radiator that is backward facing. The first speaker subsystem has a corner frequency that is a first predetermined harmonic of the resonance frequency of the first passive radiator, and the first active driver has a resonance frequency that is a second predetermined harmonic of the resonance frequency of the first passive radiator. The second speaker subsystem has a corner frequency that is the first predetermined harmonic of the resonance frequency of the second passive radiator, and the second active driver has a resonance frequency that is the second predetermined harmonic of the resonance frequency of the second passive radiator.
US11368782B2
A system and method for converting a passive protector earmuff to a communication and/or active noise reduction (ANR) headset include mounting active components to a frame subassembly configured for insertion into the passive earcup to divide the earcup volume into a front cavity without additional passive leak paths and a back cavity having a volume that improves speaker/driver power efficiency with a resistive vent to atmosphere. An earcup having an external shell includes a frame configured for positioning within the external shell and having a first support adapted to contact an interior of the shell and a second circumferential support cooperating with a seal to contact an ear seal plate of the earcup to form the front and back cavities. The frame may support a speaker between the front and back cavity, and secure circuitry within the back cavity.
US11368777B2
Provided are a program upgrade method, a TWS headphone, a method and system for upgrading a program of a TWS headphone. The program upgrade method, applied to a TWS headphone including a first wireless headphone and a second wireless headphone arranged in pairs, includes, establishing a wireless communication connection between the first wireless headphone and terminal, and receiving, by the first wireless headphone, a first upgrade file sent by the terminal for upgrade; and establishing a wireless communication connection between the second wireless headphone and the terminal, and receiving, by the second wireless headphone, a second upgrade file sent by the terminal for upgrade after the first wireless headphone completes upgrade.
US11368767B2
A transmission apparatus includes circuitry configured to perform high dynamic range (HDR) opto-electronic conversion on HDR video data to obtain HDR transmission video data. An encoder receives input of at least the HDR transmission video data and output a video stream including coded video data, and a transmitter sends the video stream. The circuitry is further configured to insert HDR conversion characteristic meta-information into the video stream, the HDR conversion characteristic meta-information indicating a characteristic of the HDR conversion.
US11368766B2
The disclosed technology relates to methods, devices, systems and computer program products that facilitate access to metadata associated with a content. In one example, a method is described that includes receiving a multimedia content at a receiver device, extracting a watermark message from a first segment of the multimedia content, using at least a portion of the first watermark message to obtain additional information regarding the first segment of the multimedia content that includes the first watermark message, and associating and storing one or more values of the first watermark message and the additional information. The method further includes repeating the above operations to extract additional watermark messages from additional segments of the content and to form a table or array of items that can be accessed by specifying the one or more values of the first watermark message or one or more values of the additional watermark messages.
US11368758B2
A video on demand (VOD) service system is based on an artificial intelligence (AI) video learning platform. A VOD service system based on an AI video learning platform may perform video learning according to AI-based Super Resolution Convolutional Neural Networks (SRCNNs) to calculate a weight required for restoring a high image quality video from a high image quality VOD file, and then restore a low image quality VOD file to a high image quality VOD file using the calculated weight corresponding to the VOD file later on.
US11368757B2
One embodiment of the present invention provides a method and a device for transmitting and receiving service guide information. The service guide information transmission method, according to one embodiment of the present invention, comprises the steps of: generating service guide information including information on broadcast service and content; encoding the generated service guide information; and transmitting the encoded service guide information.
US11368756B1
A system and method for correlating video frames in a computing environment. The method includes receiving first video data and second video data from one or more data sources. The method further includes encoding the received first video data and the second video data using machine learning network. Further, the method includes generating first embedding video data and second embedding video data corresponding to the received first video data and the received second video data. Additionally, the method includes determining a contrastive IDM temporal regularization value for the first video data and the second video data. The method further includes determining temporal alignment loss between the first video data and the second video data. Also, the method includes determining correlated video frames between the first video data and the second video databased on the determined temporal alignment loss and the determined contrastive IDM temporal regularization value.
US11368749B2
A process that incorporates teachings of the subject disclosure may include, for example, detecting a video cue frame within the multimedia data. The video cue frame has an image portion including alternative multimedia content and an encoded message, wherein the alternative multimedia content is imperceptible at a display device during a normal display rate presentation. The alternative multimedia content is obtained from the video cue frame responsive to receiving a first selection of a first alternative display rate that differs from the normal display rate. The alternative multimedia content is provided for display at a display device based on the encoded message. Other embodiments are disclosed.
US11368748B2
The present technology relates to a demodulation device, a processing device, a reception device, and a data processing method for more flexibly coping with change in transmission method.
Provided is a demodulation device including a demodulation unit configured to demodulate a first transmission packet obtained from a broadcast signal, and an output unit configured to output a divided packet via a predetermined interface, the divided packet being obtained by dividing the first transmission packet that is a variable-length packet used in a first transmission method into a packet length according to a second transmission packet that is a fixed-length packet used in a second transmission method and arranging the first transmission packet in a payload, and adding a header including information for restoring the first transmission packet to the payload. The present technology can be applied to, for example, a demodulation IC incorporated in a television receiver or a set top box.
US11368747B2
Methods for generating an AV bitstream (e.g., an MPEG-2 transport stream or bitstream segment having adaptive streaming format) such that the AV bitstream includes at least one video I-frame synchronized with at least one audio I-frame, e.g., including by re-authoring at least one video or audio frame (as a re-authored I-frame or a re-authored P-frame). Typically, a segment of content of the AV bitstream which includes the re-authored frame starts with an I-frame and includes at least one subsequent P-frame. Other aspects are methods for adapting such an AV bitstream, audio/video processing units configured to perform any embodiment of the inventive method, and audio/video processing units which include a buffer memory which stores at least one segment of an AV bitstream generated in accordance with any embodiment of the inventive method.
US11368746B2
A method for generating a special effect program file package includes: importing a group of sub-materials, where the group of sub-materials include a plurality of sub-materials; obtaining parameter values of playback parameters of the group of sub-materials; and generating a special effect program file package according to the group of sub-materials and the parameter values of the playback parameters.
US11368743B2
Systems, devices and processes and described herein to improve the generation of video content in video production systems. In general, the systems, devices and processes facilitate the incorporation of remotely generated user telestration inputs into output video streams generated by the video production systems. In one embodiment user telestration inputs are received at a control device. Minimum capture shapes corresponding to the user telestration inputs are then determined and images corresponding to the minimum capture shape are captured. The captured images are then transmitted from the control device to the video access point device. At the video access point device the captured images can then be combined with previously captured and transmitted images and overlaid with a selected input video stream. The video input stream with the overlaid image can then be transmitted as an output video stream.
US11368737B2
An electronic device, according to various embodiments, comprises: a communication unit; and a control unit, wherein the control unit may be configured to: receive, from one or more second electronic devices, via the communication unit, data regarding feedback on an image while transmitting the image that is received from a first electronic device to the one or more second electronic devices for displaying in the one or more second electronic devices; create a partial image for the one or more second electronic devices from the image on the basis of the data regarding the feedback; and provide the one or more second electronic devices with the partial image as an image corresponding to a user's preference associated with the one or more second electronic devices.
US11368730B2
A broadcast content transmission method includes checking input of moving caption data, configuring signaling information of the moving caption data based on signaling and description defined in a broadcast service system, configuring broadcast content data, into which the signaling information of the moving caption data is inserted, and transmitting the broadcast content data, into which the signaling information of the moving caption data is inserted.
US11368728B2
Systems and methods include receiving, at a server, a content data and a set of timepoints relating to the content data and storing, by the server, the set of timepoints in a database. The method also includes sending, by the server, the content data and the set of timepoints to a portable device, generating, at the portable device, display signals based on the content data and sending display signals, by the portable device, to a display device that represent the content data. The method also includes receiving, by the server, a notification from the portable device over the internet. The notification indicates that the content data has reached a first time associated with a first timepoint of the set of timepoints. The method further includes sending, from the server, via the Internet, an identification of one or more particular additional content; interrupting, by the portable device, presentation of the content data and presenting the one or more particular additional content and after presenting the one or more particular additional content, resuming, by the portable device, presentation of the content data.
US11368724B2
To enable a good HDR image or video coding technology, being able to yield high dynamic range images as well as low dynamic range images, we invented a method of encoding a high dynamic range image (M_HDR), comprising the steps of: converting the high dynamic range image to an image of lower luminance dynamic range (LDR_o) by applying a) scaling the high dynamic range image to a predetermined scale of the luma axis such as [0,1], b) applying a sensitivity tone mapping which changes the brightnesses of pixel colors falling within at least a subrange comprising the darker colors in the high dynamic range image, c) applying a gamma function, and d) applying an arbitrary monotonically increasing function mapping the lumas resulting from performing the steps b and c to output lumas of the lower dynamic range image (LDR_o); and outputting in an image signal (S_im) a codification of the pixel colors of the lower luminance dynamic range image (LDR_o), and outputting in the image signal (S_im) values encoding the functional behavior of the above color conversions as metadata, or values for the inverse functions, which metadata allows to reconstruct a high dynamic range image (Rec_HDR) from the lower luminance dynamic range image (LDR_o).
US11368722B2
Disclosed herein is a method for decoding a video including determining a coding unit to be decoded by block partitioning, decoding prediction syntaxes for the coding unit, the prediction syntaxes including a skip flag indicating whether the coding unit is encoded in a skip mode, after the decoding of the prediction syntaxes, decoding transform syntaxes including a transformation/quantization skip flag and a coding unit cbf, wherein the transformation/quantization skip flag indicates whether inverse transformation, inverse quantization, and at least part of in-loop filterings are skipped, and the coding unit cbf indicates whether all coefficients in a luma block and two chroma blocks constituting the coding unit are zero, and reconstructing the coding unit based on the prediction syntaxes and the transform syntaxes.
US11368719B2
A method of encoding a three-dimensional (3D) image including a point cloud includes grouping a plurality of points included in the point cloud into at least one segment; generating patches by projecting the points included in the segment onto a predetermined plane in a first direction or a second direction; generating two-dimensional (2D) images by packing the patches; and generating and outputting a bitstream including information about a direction in which each point is projected to generate the patches and information about the 2D images.
US11368710B2
A decoding method and apparatus are provided. A first candidate having a first motion vector that has been used to decode a first block, a first prediction direction that corresponds to the first motion vector, and a first reference picture index that identifies a first reference picture is derived. A second candidate having a second motion vector that has been used to decode a second block, a second prediction direction that corresponds to the second motion vector, and a second reference picture index that identifies a second reference picture is derived. When a total number of candidates is less than a maximum number, a third candidate is derived by combining the first motion vector and the first reference picture index for the first prediction direction of the first candidate and the second motion vector and the second reference picture index for the second prediction direction of the second candidate.
US11368703B2
An image decoder splits a block of a picture into a plurality of sub blocks in a first direction using a first partition mode; and decodes the plurality of sub blocks, wherein, when the block is sized N pixels by 2N pixels and the first direction is along the 2N pixels, N being an integer, the first partition mode includes splitting the block into the plurality of sub blocks including at least one sub block sized N/4 pixels by 2N pixels, and excludes splitting the block into two sub blocks sized N/2 pixels by 2N pixels.
US11368701B2
A method is provided for encoding a digital video to improve perceptual quality. The method includes receiving a digital video at a video encoder, providing a perceptual quantizer function defined by P Q ( L ) = ( c 1 + c 2 L m 1 1 + c 3 L m 1 ) m 2 , wherein L is a luminance value, c1, c2, c3, and m1 are parameters with fixed values, and m2 is a parameter with a variable value, adapting the perceptual quantizer function by adjusting the value of the m2 parameter based on different luminance value ranges found within a coding level of the digital video, encoding the digital video into a bitstream using, in part, the perceptual quantizer function, transmitting the bitstream to a decoder, and transmitting the value of the m2 parameter to the decoder for each luminance value range in the coding level.
US11368698B2
Aspects of the disclosure provide methods, apparatuses, and non-transitory computer-readable storage mediums for video encoding/decoding. Prediction information for a current block in a current picture that is a part of a coded video sequence is decoded. The prediction information indicates an intra sub-partition (ISP) mode for the current block. The ISP mode indicates that the current block is to be partitioned in one of a vertical mode and a horizontal mode. The current block is partitioned into a plurality of sub-partitions based on the ISP mode. Each sub-partition is associated with at least one different reference sample that is in one of (1) a row above the current block and (2) a column left to the current block. Each sub-partition is reconstructed based on the at least one different reference sample associated with the respective sub-partition. The current block is reconstructed based on the reconstructed plurality of sub-partitions.
US11368697B1
A method includes compressing an image using a quality setting, determining a quality of the compressed image based on a quality metric, and determining if the quality of the compressed image is within a quality range. In response to determining the quality of the compressed image is within the quality range, store the compressed image; and in response to determining the quality of the compressed image is not within the quality range, modify the quality setting, and repeat the compressing step with the modified quality setting, both determining steps, and the applicable in response to step.
US11368694B1
A quantized transform coefficient matrix is partitioned into a sequence of partition portions. The coefficients of the matrix are grouped into the sequence of partition portions based on a hardware implemented scan order. Each partition portion is processed in an order of the sequence in a first pass. For each partition portion, a group of coefficients in the partition portion is determined. For each partition portion, a first data rate estimation for the quantized transform coefficient matrix is updated based on at least some coefficients of the group of coefficients in the partition portion and a maximum end-of-block. For each partition portion, an end-of-block estimation of the quantized transform coefficient matrix is updated based on at least some coefficients of the group of coefficients in the partition portion. A first resulting data rate estimation and a true end-of-block of the quantized transform coefficient matrix are determined after the first pass.
US11368693B2
A quantization scheme substitutes the division operation by forward and inverse quantization look-up tables to improve efficiency.
US11368692B2
Systems, apparatuses, and methods for generating a model for determining a quantization strength to use when encoding video frames are disclosed. A pre-encoder performs multiple encoding passes using different quantization strengths on a portion or the entirety of one or more pre-processed video frames. The pre-encoder captures the bit-size of the encoded output for each of the multiple encoding passes. Then, based on the multiple encoding passes, the pre-encoder generates a model for mapping bit-size to quantization strength for encoding video frames or portion(s) thereof. When the encoder begins the final encoding pass for one or more given video frames or any portion(s) thereof, the encoder uses the model to map a preferred bit-size to a given quantization strength. The encoder uses the given quantization strength when encoding the given video frame(s) or frame portion(s) to meet a specified bit-rate for the encoded bitstream.
US11368683B2
An image decoding method according to the present document derives a left mode, which is a candidate intra prediction mode for a left peripheral block of a current block, derives an upper mode, which is a candidate intra prediction mode for an upper peripheral block of the current block, constructs an MPM list on the basis of the left mode and the upper mode, derives an intra prediction mode of the current block on the basis of the MPM list, generates prediction samples of the current block on the basis of the intra prediction mode, generates a restoration picture of the current block on the basis of the prediction samples, and derives the left mode or the upper mode as one from among candidate intra prediction modes of the MPM list, on the basis of when the left mode and the upper mode are not the same and the left mode and the upper mode are respectively a planar mode and a DC mode.
US11368682B2
A device for encoding/decoding the image according to the present invention includes an intra prediction module configured to: determine an intra prediction mode of a current block; determine a scanning order of multiple sub blocks in the current block on the basis of the determined intra prediction mode; and perform intra prediction of the current block on the basis of the determined scanning order.
US11368672B2
Devices, systems, and methods are provided for testing and validation of a camera. A device may capture a first image of a target using a camera, wherein the camera is in a clean state, and wherein the target is in a line of sight of the camera. The device may apply an obstruction to a portion of a lens of the camera. The device may apply a camera cleaning system to the lens of the camera. The device may capture a post-clean image after applying the camera cleaning system. The device may determine a post-clean SSIM score based on comparing the post clean image to the first image. The device may compare the post-clean SSIM score to a validation threshold. The device may determine a validation state of the camera cleaning system based on the comparison.
US11368664B2
There is provided an information processing apparatus to realize communication between users via a network in a more favorable manner, the information processing apparatus including: a communication unit configured to perform communication with an external device via a predetermined network and a control unit configured to perform control regarding presentation of a second image to a second user, the second image being generated by applying image processing based on first setting associated with a first user and second setting associated with the second user to a first image associated with the first user.
US11368660B2
A system and method are disclosed to display advertisements in an augmented window implemented within a capsule traversing an evacuated tube transportation (ETT) structure, where advertisement(s) are displayed within different perspectives rendered in an augmented window. Additional perspectives are continuously computed for rendering in the augmented window each time a passenger moves to a different location within the capsule, where such additional perspectives are derived from pre-recorded video data in real-time and displayed in the display along with the advertisement.
US11368654B2
A security device is disclosed herein, comprised of a body having a first end connectable into a standard light socket or plug, and a second end having a rotatable/extendable mount with a camera mounted thereon. The body may also include a controller, a wireless communication module, lights, one or more optional sensors (such as a motion sensor, ambient light sensor, etc.), a back-up battery, a 2-way speaker, and/or a microphone.
US11368650B2
A system includes a downstream facing port (DFP) coupled to a video source, an upstream facing port (UFP) coupled to a video sink, and a cable. The cable includes a first end that is connected to the DFP and a second end that is connected to the UFP. The cable is configured to carry a differential auxiliary transmission signal and detect polarity in the differential auxiliary transmission signal.
US11368635B2
A controller for a vehicle includes: a disaster determining section that determines presence or absence of damage caused by a disaster; and an activating section that activates a capturing section mounted on the vehicle. An information processing system is an information processing system that includes plural vehicles and a server. The vehicle activates the capturing section mounted on the vehicle at the time of the disaster, and sends a video image captured by the capturing section and location information to the server. The server accumulates the video images sent from the plural vehicles, and associates the video images with map information.
US11368634B2
A switching device determines a video parameter value of a switching point of a first video stream, and determines a video parameter value of a switching point of a second video stream. The video parameter value includes a timestamp and/or a sequence number. The switching device determines an audio parameter value of a switching point of a first audio stream based on a timestamp of the switching point of the first video stream, and determines an audio parameter value of a switching point of a second audio stream based on a timestamp of the switching point of the second video stream. The audio parameter value includes a timestamp and/or a sequence number. The switching device performs switching based on determined switching points.
US11368629B2
An image capturing apparatus includes: an image capturing unit that includes an imaging device and outputs an image signal obtained by image capturing of a subject by the imaging device through an image capturing optical system; a control unit that, in a case of controlling an exposure for each of three or more division regions obtained by dividing an image represented by the image signal and in a case of dividing the image into a plurality of segment regions that are different from the division regions and among which a segment region extends across a boundary between some of the division regions, controls an exposure of the segment region in accordance with information about at least one division region among the some of the division regions over which the segment region extends; and a display unit that displays the image for which the exposure is controlled by the control unit.
US11368616B2
A vehicle display control device is configured to perform operations including: performing processing for hindering visual recognition of an occupant of a vehicle on a captured image captured by an image-capturing device; generating a display image; acquiring information indicating a state of the vehicle and information regarding a surrounding environment of the vehicle; and determining whether the vehicle is in a first condition. In a case where it is determined that the vehicle is in the first condition, a display image obtained by prohibiting application of the processing to the captured image or by reducing an application degree of the processing is generated, and is displayed by the display device.
US11368615B2
Systems and methods are presented for modifying image parameters of an image to be captured by an image capturing device based on input from a wearable computing device. In some embodiments, the system receives image data, determines an image parameter based on the image data, and receives data from a wearable computing device positioned proximate to a subject of the image. The system modifies the image parameter based on the data received from the wearable computing device and captures the image data using the modified image parameter.
US11368605B2
An information processing device includes a memory and a processor configured to instruct an image output unit to output a colorimetric pattern including plural test images, the image output unit being configured to output, onto a recording medium, an image based on image data processed by an image processing unit, and notify, based on a difference between a measured value obtained by measuring a color of each test image in the colorimetric pattern output by the image output unit and a target value determined according to characteristics of the recording medium used for outputting the image, whether resetting is to be performed in relation to the image processing unit or be performed in relation to the image output unit.
US11368600B2
Embodiments disclosed include systems and methods for computer automated print services control comprising authenticating a user credential input via a user device. The system and method includes generating, by a printer driver comprised in the user device, a user interface comprising features supported by a plurality of printing devices. Further, it includes receiving via the user device over the network, a print instruction comprising the features supported by the plurality of printing devices connected to the computer system over the network. And based on the print instruction, generating a print job in an embodiment. Further, based on the user authentication at one of the plurality of printing devices, converting via a gateway, the received print instruction into a format compatible with that printing device and releasing the generated print job for printing at that printing device, according to an embodiment.
US11368599B2
An image processing method is an image processing method of a recording device. The image processing method includes inputting the image data having a resolution in a sub scanning direction of X×N dpi, performing data processing on the image data for each N-unit region, performing resolution reduction processing of reducing, to 1/N, a resolution in the sub scanning direction, and generating a recording data based on the reduced image data. In the data processing step, when the N-unit region is formed of a pixel having a black gradation value and a pixel having a gradation value that is equal to or greater than a predetermined value when expressed by RGB, and the pixel having the black gradation value is consecutive from another N-unit region adjacent to the N-unit region, a black dot is generated in a pixel after the resolution reduction processing.
US11368596B2
A sheet feeding device includes a stacking tray for stacking a sheet; a sheet detector for detecting presence/absence of the sheet on the stacking tray; a feeder for feeding the sheet detected by the sheet detector; an LED, provided adjacent to the sheet stacked on the stacking tray, for emitting light; a display, provided substantially in parallel with an optical axis of the LED, for being illuminated by the light emitted from the LED; a reflector, provided opposed to the display portion, for reflecting and scattering the light emitted by the LED, toward the display; and a controller for controlling emission of the light of the LED on the basis of a signal outputted by the sheet detector.
US11368594B2
Conveyance modes include a registration mode accompanied with skew correction and a registrationless mode unaccompanied with skew correction. When a jam occurs, the controller interrupts a job, and invokes blank-feed processing starting from a state with all sheets re-set. On invoking blank-feed processing, the controller checks the conveyance mode and recognizes the number of jams. If the conveyance mode is the registration mode and in addition the number of jams has not reached a threshold number of jams, the controller invokes blank-feed processing in the registrationless mode.
US11368593B2
An image forming system that is capable of reducing time and effort of a user for setting a display language. The image forming system including the following members. An image forming device forms an image on a sheet. A display device displays information. A microphone obtains voice. An obtainment unit obtains a plurality of pieces of word information based on audio information on the phrase obtained through the microphone. A specification unit specifies a language using the plurality of word information. An update unit updates a display language of the display unit based on the language specified by the specification unit.
US11368592B1
A printing system is disclosed. The printing system includes at least one physical memory device to store calibration logic and one or more processors coupled with the at least one physical memory device to execute the calibration logic to generate a uniformity compensated transfer function for each of a plurality of pel forming elements, generate a missing neighbor corrected transfer function for each of the pel forming elements, generate a missing neighbor transfer function based on the uniformity compensated transfer functions and the missing neighbor corrected transfer function and compute an average of the missing neighbor transfer functions to generate an average missing neighbor transfer function.
US11368589B2
Systems, methods, and computer program products include smart capacity workload routing with workload modeling. One example involves storing a workload model in memory regarding a set of different factors associated with user communications, with each factor is associated with a measurement of workload. A received request including information regarding one or more of the factors is processed and used in identifying a workload measurement for the requested user communication based on comparing the received request information to the stored workload model. An agent with capacity that is available to handle the requested user communication is identified. A communication slot for the identified agent is activated and defined by the identified workload measurement, and the request is routed to the identified agent and updating available workload capacity in the system.
US11368582B1
One example method of operation may include receiving one or more data messages, identifying calls and corresponding call data from the one or more messages, identifying call parameters from the call data, applying a call activity filter criteria to the call parameters to identify a suspect sub-set of the call parameters which indicate an elevated likelihood of call scam, forwarding the call parameters and the suspect sub-set of call parameters to one or more call data tables, and assigning one or more scam designation threshold scores to the suspect sub-set of the call parameters in the one or more call data tables.
US11368575B2
Call originator feedback may be gathered from members of a call group for a call originator. This feedback may be stored in a contact firewall data structure indexed by call originator identification information, where a contact firewall function can intercept a call to a member of the group when the contact firewall data structure indicates that an action to impact the call should be taken. In another aspect, a method may include receiving an indication of no-answer by a recipient of a call, activating a sender-controlled media (SCM) content selection/generation interface on the caller's phone, and delivering the item of content to the recipient's call message storage system, where the item of content is linked to the missed call. For example, a SCM data structure, or a link to the SCM data structure, may be delivered to the recipient's call message storage system.
US11368568B2
The present disclosure relates to a mobile terminal and an image acquisition module. The image acquisition module includes a mounting seat, a camera assembly, and a light source. The mounting seat includes a pedestal and a light transmission member, the light transmission member is coupled to the pedestal, wherein the pedestal and the light transmission member cooperatively define a receiving cavity; the camera assembly has an incident face, the camera assembly is arranged in the receiving cavity, and the incident face exposes from the light transmission member; a light source is configured to emit light transmitting through the light transmission member.
US11368567B2
A system and method is provided for using a case and/or skin having various components for improving and/or enhancing a camera (e.g., photographic, video, etc.) feature of a portable electronic device, such as a smartphone. The system preferably includes a case and/or skin having a lens (e.g., focusable lens) that is aligned with a lens on the smartphone, a light (e.g., a flash, etc.), and at least one shutter release button. An application operating on the smartphone may then be used to control the light (or flash) and to capture an image in response to a user depressing the shutter release button. Communications between the smartphone and the case can be accomplished via either a wired or wireless communication link, which may involve the inclusion of at least one transceiver (e.g., Bluetooth transceiver) and/or processor on the case.
US11368564B2
Various example embodiments for supporting fragmentation and reassembly of packets in communication networks are presented. Various example embodiments for supporting fragmentation and reassembly of packets in communication networks may be configured to support fragmentation and reassembly of labeled packets, such as Multiprotocol Label Switching (MPLS) packets or other types of labeled packets, in communication networks. Various example embodiments for supporting fragmentation and reassembly of labeled packets may be configured to support fragmentation and reassembly of labeled packets at various contexts of the labeled packets where the contexts of the labeled packets may be indicated within the labeled packets using sets of context labels for the contexts of the labeled packets.
US11368554B2
Systems and methods for regulating service behavior include a system provider device where a policy is registered. The policy defines a modified service behavior for a service running one or more remote servers. In some embodiments, the registered policy is transmitted to a first satellite agent located at a first remote server. By way of example, and after transmitting the registered policy to the first satellite agent, data is received from the first satellite agent corresponding to the service having the modified service behavior running on the first remote server. Thereafter, the system provider may verify that the service having the modified service behavior running on the first remote server satisfies a metric. In various embodiments, and in response to the verifying, the registered policy is transmitted to a second satellite agent located at a second remote server.
US11368553B1
Supporting a scalable and Highly Available (HA) virtual Cable Modem Termination System (vCMTS). A software component receives, from the vCMTS, an update about a particular cable modem (CM) or customer premises equipment (CPE). The update may be sent in response to the particular CM or CPE becoming online or offline. In response to receiving the update, the software component provides, to at least one edge router, route data for the particular CM or CPE. The route data informs the edge router of a next hop network address for a network address of the particular CM or CPE. The edge router is not and need not be provided with either (a) any Address Resolution Protocol (ARP) data for the particular CM or CPE and (b) any Neighbor Discovery (ND) data for the particular CM or CPE.
US11368552B2
Apparatus and methods related to on-boarding software applications on a platform used in a content delivery and/or service provider network. In one embodiment, a centralized platform such as a premises gateway is provided to act as an application portal or store for all consumer devices that connects to a service provider network. In one variant, a software architecture is provided for the gateway which includes at least one of an open-sourced OS (e.g., OpenWrt) and containerization engine (e.g., Docker) which enables a broader range of application compatibility with the gateway itself and end user devices within the premises by abstracting the services and functions above the specific hardware/firmware configurations of each of the end user devices.
US11368548B2
A computer-implemented method in a content delivery network (CDN) comprising multiple content delivery (CD) services including at least one beacon service, the method comprising: at particular CD service in the CDN: (A) obtaining and responding to at least one first request; (B) obtaining and responding to at least one second request; and (C) making a beacon request to a beacon CD service, the beacon request including particular information about: (i) the at least one first request, and (ii) the at least one second request, wherein at least some of the particular information is encoded in the beacon request, wherein the beacon request comprises an HTTP request.
US11368544B2
Disclosed are techniques and apparatuses that are configured to receive an indication that a web browsing session executing on an enterprise server needs additional information based on a request for additional information being sent to a client device. The request may include an identifier of the web browsing session and an identifier of an enterprise server that initiated the web browsing session. A globally unique identifier related to the web browsing session and an identifier of the enterprise server is stored in a common data store. The web browsing session may be paused when the web browsing session requests additional information from a client device. The client device may respond with the additional information. The system may provide the identifier of the enterprise server to a load balancing component so the identified web browsing session executing on the enterprise server may continue to be used.
US11368533B2
In one aspect, a system includes an electronic control unit (ECU) and an integrated circuit (IC). The IC is configured to transmit, to the ECU, absolute data on a message line at a first rate; and transmit, to the ECU, incremental data on an index line at a second rate. The second rate is faster than the first rate and the incremental data includes data associated with changes in the absolute data.
US11368526B2
Systems and methods are provided for managing server loads that accounts for various measures of risk associated with different workloads assigned to servers. The systems and methods may include a memory storing instructions for server load management operations, and a processor configured to execute the stored instructions. The processor may receive a workload, determine a value associated with the workload indicating a predetermined importance of the workload, receive information for a plurality of active servers in a server cluster associated with the processor, determine risk levels associated with the active servers based on the received information, and assign the received workload to one of the active servers based on the determined value and the determined risk levels.
US11368518B2
Management of communication systems is facilitated. A method comprises: processing, by a device comprising a processor, first information representative of human-readable language and indicative of terms of agreements associated with respective software for a communication system, wherein the communication system is arranged according to a first configuration of virtual machines and server devices, and wherein the agreements comprise license agreements for the respective software; converting, by the device, the first information into machine-readable rules indicative of the terms of the agreements associated with the respective software for the communication system; and based on a result of comparing the machine-readable rules and first information indicative of the first configuration, determining, by the device, whether the first configuration of the communication system satisfies a defined criterion.
US11368516B1
A proxy server for uploading a file according to an embodiment of the present disclosure improves the upload speed of a file and to minimize upload delay due to the occurrence of an error in the upload process. Due to the fact that the upload of the upload target file is started by the client delivering only one HTTP request to the proxy server to start the upload of the upload target file instead of requesting an upload link for each divided chunk to the backend server and receiving the response message from the backend server, a transaction over a network having a relatively slow communication speed can be minimized and the upload speed can be improved accordingly.
US11368505B2
Techniques for improved media streaming are provided. A request for a variant list for streaming media content is received from a requesting entity, where the request includes a predefined flag. A set of predefined rules corresponding to the predefined flag is identified. The variant list is pruned based on the set of predefined rules, and the pruned variant list is transmitted to the requesting entity.
US11368476B2
Techniques are disclosed relating to data management. A computer system may evaluate network traffic to extract and group data objects based on their content satisfying similarity criteria, and to identify baseline behavior with respect to those data objects. The computer system may generate data-defined network (DDN) data structures that include a content class and one or more behavioral classes. The content class may be indicative of one or more of the data objects that have been grouped based on them satisfying the similarity criteria. The one or more behavioral classes may indicate baseline behavior of those data objects within the content class as determined from evaluation of the network traffic. The computer system may detect, using the DDN data structures, anomalous data behavior within network traffic. In response to detecting anomalous data behavior, the computer system may prevent network traffic corresponding to the anomalous data behavior from being communicated.
US11368467B2
An information handling system operating a data integration protection assistance system may comprise a processor linking first and second data set field names identified within a previous execution of a data integration process for transferring a data set field value identified by the first data field name at a source geographic location to a destination geographic location for storage under the second data field name. The processor may receive a user instruction to associate data set field names labeled as sensitive private individual data with a barred geographic location, determine the second data set field name is labeled as sensitive private individual data and the destination storage location matches the barred geographic location. A graphical user interface may display a notice that the data set field value was stored during the previously executed integration process within the barred geographic location.
US11368463B2
The present disclosure provides a method and device for sharing control rights of appliances, a storage medium, and a server. The method includes that: a sharing request is received from a first user for sharing a control right of at least one appliance with at least one second user; and in response to the sharing request, a sharing operation of sharing the control right of the at least one appliance with the at least one second user is performed, so that both the first user and the at least one second user share the control right of the at least one appliance.
US11368449B2
In an embodiment, a system for asserting a mobile identity to users and devices in an enterprise authentication system includes a communication interface and a processor coupled to the interface. The processor is configured to receive, via the communication interface and from a first device, a request to authenticate a user to a service using a unique identity associated with a second device. The processor is configured to determine, based at least in part on the unique identity, an identity certificate associated with the request, generate an identity assertion based at least in part on the identity certificate, and provide the identity assertion via the communication interface to a requesting node with which the request to authenticate is associated.
US11368448B2
Systems and methods for network security are provided. Various embodiments of the present technology provide systems and methods for an identity security gateway agent that provides for privileged access. Embodiments include a system and method that uses a single sign-on (SSO) (or similar) mechanism to facilitate a user accessing web-based service providers, but separates the assertion and entire SSO process from the user credential.
US11368445B2
The present disclosure describes techniques that allow for a client-side application, located on a first client device, to generate a random encryption key and encrypt locally-stored application data with the random encryption key. The random encryption key is used in lieu of a password-derived encryption key. In order to ensure that the client-device application is unable to decrypt the locally-stored encrypted application data prior to authenticating with an external authentication source (i.e., SSO, IdP), the random encryption key is encrypted with a key-encrypting key derived using a pseudorandom function (PRF). By using a PRF, the first device is able to authenticate to the first server and derive a secure key as part of the authentication process. Accordingly, the present disclosure describes techniques for securing data on a client device when credentials are managed by an external authentication system.
US11368442B2
The present disclosure describes a method, system, and non-transitory computer readable medium that includes instructions that permit users of different secure communication networks to exchange secure communications. A secure communication platform includes a user database that allows users from different secure communication networks to access keys for recipients outside of their network. Additionally, the secure communication platform provides a high degree of trust regarding the sender's identity, allowing the receiving network to trust the sender.
US11368436B2
A zero knowledge communications protocol is provided that can unconditionally secure communications sent through a communications network by encrypting all messages, continuously sending noise messages through the network, and routing all network activity through an anonymity network. This combination of components prevent an eavesdropper on the network from garnering any information about when a communication is sent, the contents and statistics of a communication, the sender, or the intended recipient of the communication.
US11368431B2
Some embodiments provide a method for applying a security policy defined for a logical network to an MHFE that integrates physical workloads (e.g., physical machines connected to the MHFE) with the logical network. The method applies the security policy to the MHFE by generating a set of ACL rules based on the security policy's definition and configuring the MHFE to apply the ACL rules on the network traffic that is forwarded to and/or from the physical machines. In order to configure an MHFE to implement the different LFEs of a logical network, some embodiments propagate an open source database stored on the MHFE, using an open source protocol. Some embodiments propagate a particular table of the database such that each record of the table creates an association between a port of an LFE stored in a logical forwarding table and one or more ACL rules stored in an ACL table.
US11368427B1
A device may identify network interfaces of the device and may create a list of the network interfaces of the device. The device may receive a cell site name associated with the device and may generate dynamic host configuration protocol (DHCP) requests with a DHCP option that includes data identifying the cell site name and the network interfaces of the list. The device may broadcast the DHCP requests to one or more components that are connected, via connections, to the network interfaces, and may cause, based on broadcasting the DHCP requests to the one or more components, a user equipment to receive an indication of whether the connections to the network interfaces are valid.
US11368422B1
Methods and systems for controlling electronic message transmission are described. An example method may include: receiving, via a network, an error report generated based on a response from a recipient email server responsive to an attempt to send a message to an email address associated with the recipient email server, the error report indicating that the attempt to send the message was rejected by the recipient email server; adding the email address to a block list, wherein any subsequent attempt to send messages to the email address is blocked based on the email address being in the block list; and removing the email address from the block list after a defined period of time.
US11368414B1
One example method of operation may include identifying a content thread in a content sharing forum, ranking topics of the content thread to identify highest weighted topics based on content of messages included in the topics, creating a share link to access the highest weighted topics, and posting the share link in one or more other content threads of one or more other content sharing forums, and the one or more other content threads include topics with similar content to content of the highest weighted topics of the content thread.
US11368411B2
In a communication system including first virtual CPE and second virtual CPE, the first virtual CPE includes a band acquisition unit configured to acquire a first contract band set for a subscriber under control of the first CPE and acquire a value of decrease in the first contract band when at least one subscriber terminal of the subscriber transitions from being under control of the first CPE to being under control of the second CPE, and a band control unit configured to control a communication band for the first CPE, and the second virtual CPE includes a band acquisition unit configured to acquire a second contract band set for a subscriber under control of the second CPE and acquire a value of increase in the second contract band, and a band control unit configured to control a communication band for the second CPE.
US11368400B2
Application data may be transmitted while oscillating a transmission parameter. A metric associated with a complementary network property is analyzed to identify a transition point between a stochastic error state and a deterministic error state of the complementary network property. Additional network properties or states may be inferred from the transition point, and the transmission of the application data may be optimized based on the inferred additional properties or states.
US11368399B2
An apparatus comprises a host device comprising a processor coupled to memory. The host device is configured to obtain a network congestion notification from a portion of a network that is utilized by the host device for submitting IO operations to a storage system. The network congestion notification comprises an indication that the portion of the network is experiencing network congestion. The host device is further configured to identify a first path of a plurality of paths as a path that utilizes the portion of the network and to adjust a dispatch weight of the first path based at least in part on the network congestion notification. The host device is further configured to submit an IO operation to the storage system along a second path instead of the first path based at least in part on the adjusted dispatch weight of the first path.
US11368397B2
The present subject matter relates to a method comprising receiving at a first gateway a data packet from a first host in destination to a second host. A first portion of a header information of the data packet may be replaced by the first gateway by information comprising an identity information of at least one of the first host and the second host. The data packet may be transmitted by the first gateway in accordance with a second portion of the header information to a second gateway serving the second host.
US11368395B2
A Multiprotocol Storage Controller (MPSC) System on a Chip (SOC) comprising multiple heterogeneous network interface ports, a switch core, a global memory mapper and a frame router. The interface ports capable of interconnecting networks of devices with differing data and signaling protocols and differing number of data and signal lines.
US11368392B2
A method and an apparatus for forwarding a packet in a Multi-Protocol Label Switching (MPLS) network are provided. Based on an example of the method, a Provider Edge (PE) device assigns a private network application identifier to a received Internet Protocol (IP) packet and sends a Multi-Protocol Label Switching (MPLS) packet that is generated based on the IP packet and carries the private network application identifier in an extension label. In this way, when receiving the MPLS packet, a Provider (P) device may identify the private network application to which the MPLS packet belongs based on the private network application identifier in the extension tag.
US11368390B2
A first network device is configured with a rule preventing network traffic from travelling from the first network device to one or more other network devices. The first network device is configured to receive and distribute network traffic to the one or more other network devices. A second network device receives and distributes network traffic to the one or more other network devices. The first network device determines that the second network device has failed. In response to determining that the second network device has failed, the first network device removes the rule so that the first network device receives and distributes network traffic to the one or more other network devices.
US11368366B2
Embodiments of the present invention provide for group policy object (GPO) update compliance. A method for GPO update compliance includes selecting both a compliance update and also a computing system as an endpoint targeted for receiving the compliance update, directing execution of a remediation process that applies the compliance update onto the selected endpoint and performing a re-scan of the selected endpoint subsequent to the execution of the remediation process. The method further includes executing a GPO update within a threshold period of time after the re-scan and repeating the re-scan after the GPO update and then comparing a log produced by the repeated re-scan after the GPO update with a log produced by the re-scan before the GPO update, detecting an out-of-compliance update in the comparison and responding to the out-of-compliance update by directing a repair of the out-of-compliance update using a domain login for the selected endpoint.
US11368358B2
A method of automated ticket resolution comprises training and testing feature-specific classifier models using ticket database records. The feature-specific classifier models include machine-learning-based classification models related to features of a ticket system. The method includes training and testing feature-specific solution models using resolved ticket solution database records. The feature-specific classifier models include machine-learning-based solution models related to the features. The method includes receiving a ticket inquiry including a ticket indicative of an issue related to the features, generating a problem statement representative of the issue using the tested classifier models, and communicating the problem statement to the tested solution models. The method includes predicting a solution to the problem statement by using the tested solution models. The solution includes directions to resolve the ticket. The method includes implementing the solution in the system to resolve the issue based on certainty characteristics of the solution and recover a system if required.
US11368356B2
A computer includes a central processing unit, a first network adapter, a second network adapter, and an embedded switch. The embedded switch has a port coupled to the central processing unit, a port coupled to the first network adapter, and a port coupled to the second network adapter. The embedded switch provides a central processing unit with access to an external network using a selected one of the first and second network adapters, runs a baseboard management controller module that includes the functionality of a baseboard management controller, and provides the baseboard management controller module with access to an external network through the embedded switch to communicate with a remote management node.
US11368341B2
According to one aspect of the invention, there is provided a signal processing method, wherein a frame is generated in which at least one position of occurrence of a transition in a pulse value is determined from an input bitstream. According to another aspect of the invention, there is provided a signal processing method, wherein a frame including at least one pulse having a pulse width not less than a minimum pulse width is generated from an input bitstream.
US11368338B2
A network system includes a first network through which a frame of a first type is transmitted in accordance with a first communication protocol and includes a second network in which a frame of a second type is transmitted in accordance with a second communication protocol. A gateway device is connected to the first network and the second network. The gateway device sequentially receives frames of the first type from the first network and determines whether to transmit data regarding the received frames of the first type to the second network. The gateway device transmits, to the second network, a frame of the second type including data regarding a plurality of the frames of the first type determined to be transmitted to the second network when a condition relating to a number of frames of the first type received by the gateway device is satisfied.
US11368327B2
A system comprises premises devices located at a premises. A gateway device is located at the premises and may communicate with the premises devices. A server is configured to interact with the premises devices and the gateway device. A touchscreen device may communicate with the server and configured to interact with the premises devices. The touchscreen device includes a user interface configured to interact with the gateway device. The user interface is configured to control interactions between the premises devices and the gateway device and trigger, based on at least one automation rule, an action of at least one of the premises devices. Corresponding methods, apparatuses and other systems are also provided.
US11368325B2
Systems for communicating over a network and between two or more network connected devices. In particular, the disclosure reveals systems which may utilize multicast communication protocols to facilitate secure communication among one or more network connected devices. A system for secured messaging may include a network system including a first server, a second server and a first node. Further, the first server is configured to authenticate the first node for secure multicast messaging, and the second server is configured to authenticate the first node for secure multicast messaging.
US11368319B2
The present disclosure relates to an integrated circuit and a method of using the integrated circuit used to perform authentication using a challenge-response method. The challenge-response method includes an internal challenge generator, a physically unclonable function (PUF) block, and a response generator. The internal challenge generator is configured to receive a challenge, generate a plurality of internal challenges corresponding to the challenge, and generate at least one valid internal challenge among the plurality of internal challenges using screen information. The physically unclonable function (PUF) block is configured to generate a plurality of valid internal responses respectively changing according to the plurality of valid internal challenges. The response generator is configured to output a response generated using the plurality of valid internal responses.
US11368314B2
A public-private key cryptographic scheme is described for granting authenticating a client to a remote device or service in order to access a secure resource. The client is provided the public key, but the private key is stored in a hardware security module (HSM) that the client is not able to access. The client requests a digital signature be generated from the private key from a secure vault service. The secure vault service accesses the HSM and generates the digital certificate, which is then passed to the client. The digital certificate may be added to a security token request submitted to an identity provider. The identity provider determines whether the digital signature came from the private key. If so, the identity provider provides authenticates the client and provides an access token that is usable by the client for authentication to the remote device with the secure resource.
US11368309B2
Disclosed herein are methods, devices, and apparatuses, including computer programs stored on computer-readable media, for generating and verifying password. One of the methods includes: receiving a password setup request, the password setup request including a list identifying at least one verifier and data representing a user-provided password; forming a basis password based on the user-provided password; generating a plurality of system-generated passwords based on the basis password; encrypting the plurality of system-generated passwords to generate a plurality of encrypted passwords including a first encrypted password; submitting the plurality of encrypted passwords to a blockchain system for recordation; and providing a first address of the first encrypted password on the blockchain system to a first verifier identified in the list.
US11368306B2
Techniques for using signed nonces to secure cloud shells are provided. The techniques include receiving, by a session manager service, a request to connect a user device to a secure connection to a secure shell instance. The session manager service may authorize the user device to access the secure shell instance and may configure the secure shell instance, being described by a shell identifier of the secure shell instance. The techniques also include generating, by the session manager service, a nonce token and providing the shell identifier, and a router address of the secure shell router to the user device. The techniques also include generating, by the session manager service, a signed nonce token using the nonce token; and providing the signed nonce token and the shell identifier to a user device.
US11368297B2
Embodiments of the present disclosure disclose a method and apparatus for updating a digital certificate. A specific embodiment of the method includes: receiving digital certificate data, the digital certificate data including a number of times of forwarding and a first forwarding moment; determining whether the following conditions are satisfied: the number of times of the forwarding being less than a preset threshold, or a time length between a current moment and the first forwarding moment being less than a preset time length; and increasing, in response to determining at least one of the conditions being satisfied, the number of times of the forwarding by a preset number, and forwarding the digital certificate data to another proxy server.
US11368292B2
Methods and systems for securing customer data in a multi-tenant database environment are described. A key identifier received from a security server may be stored by an application server. The key identifier may be associated with a private key that is accessible by the security server and not accessible by the application server. A request to derive a symmetric key may be transmitted from the application server to the security server, the request including a public key generated by the application server, a salt value, and the key identifier. The symmetric key may then be derived based on the transmitted public key and the private key using a key derivation function. The application server may then receive and store the symmetric key in an in-memory cache, and be used to securely encrypt data received by the application server from client devices.
US11368286B1
Compression techniques by pre-sorting transactions in a consistent way. In at least one embodiment, the compression does not rely on consistent mempool across full nodes. Transactions in a block can be hashed and sorted. Ambiguity can arise from the hashes, which can be resolved using various techniques.
US11368284B2
A system is disclosed that may comprise: one or more processors of a center node, wherein the center node is a vehicle computer; and memory of the center node, wherein the memory stores instructions executable by the one or more processors, the instructions comprising to: determine a first network comprising the center node and a plurality of member nodes based on a mesh network of the center node and the plurality of member nodes; add at least one virtual node to the first network; and using the first network, exchange cryptographic data between the at least one virtual node, the center node, and the plurality of member nodes.
US11368282B2
Some embodiments are directed to an electronic cryptographic device arranged to perform a cryptographic operation on input data obtaining output data. The cryptographic device stores an internal state as sets of shares. Fourier coefficients corresponding to the sets of shares satisfy a predetermined relationship among them. The cryptographic operation is performed by repeatedly updating the internal state.
US11368281B2
The present disclosure involves systems, software, and computer implemented methods for a efficient distributed secret shuffle protocol for encrypted database entries using dependent shufflers. Each of multiple clients provides an encrypted client-specific secret input value. A subset of clients are shuffling clients who participate with a service provider in a secret shuffling of the encrypted client-specific secret input values. The protocol includes generation and exchange of random numbers, random permutations and different blinding values. A last protocol step includes using homomorphism, for each client, to perform computations on intermediate encrypted data to homomorphically remove a first blinding value and a second blinding value, to generate a client-specific rerandomized encrypted secret input value. As a result, the client-specific rerandomized encrypted secret input values are generated in an order that is unmapped to an order of receipt, at the service provider, of the encrypted secret input values.
US11368279B2
A processing apparatus includes at least one processor configured to function as: an input unit that receives encrypted data based on homomorphic encryption as an input; and a process execution unit that executes a predetermined process by using the encrypted data while maintaining a secret state by encryption and includes one or more processing units. At least one of the processing units is a multiplication corresponding processing unit for executing a calculation in a ciphertext space corresponding to a processing of multiplying plaintext data by a predetermined multiplier. The multiplication corresponding processing unit executes a calculation in the ciphertext space corresponding to a calculation of multiplying the plaintext data by an adjustment multiplication value on first encrypted data input from a preceding stage and outputs resulting data. The adjustment multiplication value is obtained by multiplying the predetermined multiplier by a predetermined adjustment value for the multiplication corresponding processing unit and by performing an integer processing.
US11368274B2
Disclosed are a method and an apparatus for channel quality estimation in consideration of interference control and coordinated communication in a cellular system. A base station receives an SRS transmitted by a terminal to thus measure received power, and then configures, for the terminal, a CSI process which may measure SINRs for base stations having higher SRS received power. If the terminal feeds back, to the base station, channel quality information for the configured CSI process, the base station determines an SINR and a MCS to be applied to data transmission in consideration of a received CQI and a CoMP transmission scheme, and applies the determined SINR and MCS to thus transmit data.
US11368265B2
In some embodiments, an apparatus of a Fifth Generation (5G) NodeB (gNB) comprises one or more baseband processors to encode one or more channel state information reference signals (CSI-RS) to be transmitted to a user equipment (UE). The one or more CSI-RS signals comprise a complex sequence mapped to a resource element (RE) such that all CSI-RS ports use an identical sequence for the one or more CSI-RS signals in a symbol. In other embodiments, the gNB comprises one or more baseband processors to encode a scrambling identity (ID) configuration for one or more demodulation reference signals (DMRS), wherein the scrambling ID configuration indicates one of two scrambling IDs to be signaled to a UE.
US11368258B2
Disclosed is a downlink data transmission method, including determining, by a terminal device, a transmission configuration indicator (TCI) state corresponding to downlink data transmission based on downlink control information (DCI); and determining a redundancy version (RV) value corresponding to the downlink data transmission based on the DCI. The TCI state and the RV value are used for the terminal device to receive downlink data. Embodiments of the present disclosure also provide a terminal device and a storage medium.
US11368256B2
Embodiments of the present invention provide a method performed by a terminal device, comprising: sending a first data packet to a network device in a first time unit in a GUL transmission manner, where the first data packet corresponds to a first HARQ process number, and the first data packet corresponds to first new data indication information; receiving first instruction information, where the first instruction information is used to instruct the terminal device to send a second data packet in a second time unit, the second data packet corresponds to the first HARQ process number, and the second data packet corresponds to second new data indication information sent by the network device; and performing buffering processing on the first data packet or sending the second data packet, based on a value of the first new data indication information and a value of the second new data indication information.
US11368246B2
The present invention relates to a method and device for transmitting or receiving a broadcast service including a packet, which is generated using an application layer forward error correction (AL-FEC) scheme, in a multimedia service system. An embodiment of the present invention provides a method for transmitting a broadcast service by a transmitter, the method comprising the steps of: determining one forward error correction (FEC) scheme for a broadcast service among multiple FEC schemes; configuring a signaling message so as to include an identifier indicating the determined FEC scheme; and transmitting the configured signaling message.
US11368239B2
A wavelength conversion device includes a wavelength converter converts a wavelength band of a wavelength-division multiplex signal, a first wavelength filter transmits the wavelength-division multiplex signal on an input side of the wavelength converter, a second wavelength filter transmits the wavelength-division multiplex signal on an output side of the wavelength converter, and a controller controls a temperature of the wavelength converter such that a difference between a ratio of power of the wavelength-division multiplex signal which is not transmitted through the first wavelength filter on the input side to power of the wavelength-division multiplex signal which have been transmitted through the first wavelength filter on the input side and a ratio of a power of the wavelength-division multiplex signal which is not transmitted through the second wavelength filter on the output side to power of the wavelength-division multiplex signal which have been transmitted through the second wavelength filter.
US11368238B2
This disclosure relates generally to wireless communications and, more particularly, to systems and methods for bit level processing to produce a scrambled data bit sequence that, after modulation, may produce a symbol sequence that matches a symbol sequence produced by symbol spreading. In one embodiment, a method performed by a communication device includes: encoding user data to produce a first data bit sequence; generating a result bit sequence based on a first scrambling bit sequence and the first data bit sequence; and transmitting a signal based on a scrambled data bit sequence scrambled with the result bit sequence.
US11368228B2
Optical network systems are disclosed, including systems having transmitters with a digital signal processor comprising forward error correction circuitry that provides encoded first electrical signals based on input data; and power adjusting circuitry that receives second electrical signals indicative of the first electrical signals, the power adjusting circuitry supplying third electrical signals, wherein each of the third electrical signals is indicative of an optical power level of a corresponding to one of a plurality of optical subcarriers output from an optical transmitter.
US11368222B2
Apparatus and methods are disclosed for communicating between distributed automotive sensors, including radar sensors, wherein sensors transmit a synchronization (SYNC) signal, each SYNC signal transmitted via a substantially equal-length fiber optic link corresponding with each sensor. A central node receives the SYNC signals via the fiber optic links corresponding with each of the sensors and determines a master SYNC signal based on the received SYNC signals. The central node then transmits the master SYNC signal via the fiber optic links to the sensors, which receive the master SYNC signal and transmit, via fiber optic link, sensor data synchronized in accordance with the master SYNC signal. The synchronized sensor data are received at the central node and coherently aggregated, and transmitted to a compute node for post-processing. For radar data, the post-processing may include determination of an angular position of an object within detection range of at least two radar sensors.
US11368221B2
A multi-range communication system is provided that can be expanded to support communications using both RF signals and millimeter wave signals without having to install entirely new systems to support communication of the signals. The communication system can use one or more shared optical fibers to simultaneously communicate both RF signals and millimeter wave signals in different ranges between network devices and mobile devices. The communication system permits the co-location of components for the communication system for the different ranges, which can result in substantially similar coverage areas for each of the ranges supported by the communication system. In addition, the corresponding equipment used for communicating signals in each of the ranges can be powered from a common DC power source. The supplied power can be configured for each piece of equipment, and corresponding range, such that the substantially similar coverage areas are obtained.
US11368220B2
The embodiments provide a bandwidth scheduling method and an apparatus to resolve a problem in the prior art that a transmission delay is relatively large and user experience is relatively poor when a baseband unit and a radio remote unit are networked by using a passive optical network. The method includes: allocating, by a baseband unit, radio resources used for data transmission between N first radio frequency units and a terminal to the N first radio frequency units connected to the baseband unit, where N is an integer greater than 0; and then allocating, by the baseband unit based on the radio resources of the N first radio frequency units, bandwidth resources used for data transmission between the baseband unit and the N first radio frequency units to the N first radio frequency units.
US11368219B2
A polarization dependent loss (PDL) compensation device for an optical system can be configured to output a compensating PDL to at least partially cancel a PDL of the optical system. In certain embodiments, the device can include a first polarization controller configured to modify a state of polarization of an optical signal, a PDL emulator disposed upstream of the first polarization controller and configured to output the compensating PDL upstream of the first polarization controller, and a second polarization controller disposed upstream of the PDL emulator and configured to modify a state of polarization of the optical signal upstream of the PDL emulator.
US11368218B2
Communication of light signals and optical cables can be managed to mitigate error associated with using optical cables to communicate light signals. A communication management component (CMC) can embed respective timing synchronization pulses in respective lights signals having respective wavelengths. The light signals can be typical light signals or can be squeezed and twisted to generate a desired twisted light signal. The light signals can be transmitted via the optical cable to a receiver. A CMC, at the receiver end, can determine error associated with the transmission of the light signals via the optical cable and respective characteristics of the respective light signals, including respective arrival times of the respective timing synchronization pulses and respective light intensity or power levels of the respective light signals. From the respective characteristics, CMC can determine a compensation action to perform mitigate the error with regard to subsequent transmissions of light signals.
US11368216B2
A bidirectional optical repeater having two unidirectional optical amplifiers and a supervisory optical circuit connected to optically couple the optical ports thereof. In an example embodiment, the supervisory optical circuit provides one or more pathways therethrough for supervisory optical signals, each of these pathways having located therein a respective narrow band-pass optical filter. The supervisory optical circuit further provides one or more pathways therethrough configured to bypass the corresponding narrow band-pass optical filters in a manner that enables backscattered light of any wavelength to cross into the optical path that has therein the unidirectional optical amplifier directionally aligned with the propagation direction of the backscattered light.
US11368215B2
An optical link for a communication network, the optical link having an optical fibre link, a downstream transmitter, a downstream receiver, an upstream transmitter and an upstream receiver. The upstream and downstream transmitters are configured to transmit a respective pilot tone on a respective optical carrier and are configured to tune a frequency of the pilot tone within a preselected frequency range. The upstream and downstream receivers are configured respectively to determine an upstream notch frequency, fnotch-US, and a downstream notch frequency, fnotch-DS, of respective detected photocurrents from at least one respective pilot tone frequency at which the respective detected photocurrent is equal to or lower than a photocurrent threshold. The optical link also includes processing circuitry configured to receive the upstream and downstream notch frequencies and configured to estimate a propagation delay difference of the optical link depending on the upstream and downstream notch frequencies.
US11368210B2
There is provided a relay device for relaying communication between a radio base station and a communication terminal, the relay device including a relay function management switch that switches on and off a relay function for relaying communication between a radio base station and a communication terminal of a relay means; and a change command transmitter that transmits, to the communication terminal, a change command of a handover threshold for the communication terminal establishing a wireless communication connection with the relay device when the relay function management switch switches the relay function off.
US11368207B1
The present invention provides an alternative communication path which uses a buried wired and a buried wire oscillator to transmit data between a centrally located pivot panel and an end tower control panel. According to a first preferred embodiment, a pivot panel of the present invention preferably includes a machine controller, a smart relay board, a modem, a guidance controller and a buried wire oscillator. According to a further preferred embodiment, a tower control panel of the present invention preferably includes a tower board controller, a modem, and a data antenna.
US11368206B2
A configuration method for beam failure and a terminal are provided, and the method includes: receiving notification signaling used to notify a change in a state of a cell, a cell group, or a carrier group; configuring at least one of a counter and a timer according to the change in the state of the cell, the cell group, or the carrier group, and/or, stopping a specific operation during a beam failure recovery procedure according to the change in the state of the cell, the cell group, or the carrier group, wherein the counter and the timer are a counter and a timer used for beam failure detection and configured by the terminal for the cell or a cell in the cell group or a cell in a carrier group.
US11368204B2
For example, an Enhanced Directional Multi-Gigabit (EDMG) initiator station (STA) of a Beam Refinement Protocol (BRP) Transmit (TX) Sector Sweep (SS) (TXSS) may be configured to, during an initiator BRP TXSS, transmit one or more initiator EDMG BRP-TX packets to an EDMG responder STA; during a responder BRP TXSS following the initiator BRP TXSS, to receive one or more responder EDMG BRP-TX packets from the EDMG responder STA; and to transmit to the EDMG responder STA a BRP frame including feedback based on measurements on the one or more responder EDMG BRP-TX packets.
US11368197B1
The present disclosure relates generally to a network system having multiple users, multiple inputs, and multiple outputs to transmit data from a data source through a link to a data sink. One example of a Multi-user multiple input multiple output (MU-MIMO) system relates to the use of primary transceivers and secondary transceivers in respective networks that effectuate data transmission. The primary transceivers are coupled with a data source and broadcast or transmit the data source signal to a plurality of secondary transceivers in a local area network. The signal is then transmitted over a long link to another set of secondary transceivers that then pass the signal to another primary transceiver. This another primary transceiver is coupled with the data sink to effectuate signal transmission to the data sink. The data is synchronized in manner that requires minimal processing and does not require closed loop phase control.
US11368192B2
Disclosed are an electronic device and a method of short range wireless communication in an electronic device. The method of operating the electronic device may include: when a cover is connected to the electronic device through a short range wireless communication connection, determining generation of an event related to the cover. The method further comprises, when the event is generated, supplying power to the cover through wireless communication, when the cover is driven by the supplied power, transmitting event information to the cover through the short range wireless communication connection to display the information related to the generated event on the cover, and, when an operation of the cover according to the event is completed, switching to a standby mode after releasing the short range wireless communication connection with the cover.
US11368188B2
Disclosed are a carrier channel control method and apparatus, a storage medium and a processor. The carrier channel control method includes: applying an air conditioner control signal to a power line carrier to obtain a power line communication (PLC) signal, wherein, the power line carrier comprises a plurality of communication subcarriers; determining PLC noise values respectively corresponding to each of the communication subcarriers used to transmit the PLC signal; generating state data of carrier channels respectively corresponding to the communication subcarriers based on each of the PLC noise values which corresponds to one of the communication subcarriers, wherein each of the carrier channels respectively corresponds one of the communication subcarriers; and controlling each of the carrier channels respectively according to the state data of each of the carrier channels.
US11368182B2
A code acquisition module for a direct sequence spread spectrum (DSSS) receiver includes: a Sparse Discrete Fourier transform (SDFT) module configured to perform an SDFT on a finite number of non-uniformly distributed frequencies comprising a preamble of a received DSSS frame to calculate Fourier coefficients for the finite number of non-uniformly distributed frequencies; a multiplier configured to multiply the Fourier coefficients for the finite number of non-uniformly distributed frequencies of the received DSSS frame by complex conjugate Fourier coefficients for the finite number of non-uniformly distributed frequencies to generate a cross-correlation of the received DSSS frame and the complex conjugate Fourier coefficients; and a filter module configured to input the cross-correlation and output a delay estimation for the received DSSS frame.
US11368177B2
In a radio frequency module, the first inductor is disposed on the first principal surface of the mounting board and located on the first reception path through which a first reception signal of a first frequency passes, on an input side of the first low noise amplifier. The second inductor is disposed on the first principal surface of the mounting board and located on the second reception path through which a second reception signal of a second frequency lower than the first frequency passes, on an input side of the second low noise amplifier. The radio frequency component is disposed between the first inductor and the second inductor. A distance between the first inductor and the shielding layer is greater than a distance between the second inductor and the shielding layer. The first inductor overlaps the first low noise amplifier in a thickness direction of the mounting board.
US11368173B2
Wireless mesh network (WMN) architectures of network hardware devices organized in a mesh topology is described. One device communicates, using a first radio, first data with a second device via a first wireless link between the device and the second device. The device communicates, using a second radio, second data with a third device via a second wireless link between the device and the third device. The device communicates, using a third radio, third data with a fourth device via a third wireless link between the device and the fourth device. The device communicates, using a fourth radio, fourth data with a server of a content delivery network (CDN) via a point-to-point wireless link between the device and the server. The device is an only ingress point for content files for a mesh network that includes at least the device, the second device, and the third device.
US11368172B2
A radio frequency module includes a module board including a first principal surface and a second principal surface on opposite sides thereof; a transmission power amplifier; a control circuit configured to control the transmission power amplifier; a first transmission filter and a second transmission filter; and a first switch configured to switch connection of an output terminal of the transmission power amplifier between the first transmission filter and the second transmission filter. The control circuit is disposed on the first principal surface, and the first switch is disposed on the second principal surface.
US11368168B2
A method and system for decoding low density parity check (“LDPC”) codes. An LDPC code decoder includes LDPC decoding circuitry comprising a Q message generator and a P sum adder array. The Q message generator combines an R message from a previous iteration with a P message to produce a Q message. The P sum adder array adds the P message to a difference of an R message from a current iteration and the R message from the previous iteration to produce an updated P message.
US11368161B2
A signal divider includes: a dividing circuit arranged to generate an output oscillating signal according to a first input oscillating signal; and a signal generating circuit, coupled to the dividing circuit, for generating an injection signal to the dividing circuit. The dividing circuit is arranged to generate the output oscillating signal with a predetermined phase according to the injection signal and the first input oscillating signal.
US11368159B2
A clock data recovery circuit includes a phase-locked loop circuit generating a multi-phase clock signal based on input data, the phase-locked loop circuit including a multi-rate phase detector being operable at an initial rate among a plurality of rates in an initial period; a lock detector generating a lock-enable signal by detecting a lock state of the phase-locked loop circuit; a dead zone calibration circuit determining an operational rate corresponding to a data rate of the input data among the plurality of rates in response to the lock-enable signal; and a digital block controlling the multi-rate phase detector to operate at the operational rate, and generating a calibration-enable signal. The dead zone calibration circuit determines whether the multi-phase clock signal is locked within a dead zone in response to the calibration-enable signal, and changes a phase of the multi-phase clock signal based on the multi-phase clock signal.
US11368154B2
A clock gating cell includes an input logic/latch circuit, a keeper logic/signal generating circuit, and an output driver. The input logic/latch circuit generates an internal enable signal based on first and second input enable signals, and generates a first internal signal provided to a first node based on the internal enable signal and an input clock signal. The keeper logic/signal generating circuit is connected between the first node and a second node, includes a feedback path feeding back the first internal signal, generates a second internal signal provided to the second node based on the first internal signal and the input clock signal, and includes first and second paths discharging the second node. The first and second paths are different. The second path is connected to the feedback path. The output driver generates an output clock signal based on the second internal signal.
US11368151B2
This application relates to methods and apparatus for driving a transducer with switching drivers where the switching driver has an output bridge stage for switching an output node between switching voltages and a modulator for controlling the duty cycle of the output bridge stage based on an input signal. The switching driver also includes a voltage controller for providing the switching voltages which is operable to provide different switching voltages in different driver modes. A controller is provided to control the driver mode of operation and the duty cycle of the switching driver based on the input signal, and the controller is configured to transition from a present driver mode to a new driver mode by controlling the voltage controller to provide the switching voltages for the new mode and controlling the modulator to vary the duty cycle of the output bridge stage. The change in duty cycle is controlled such that there is no substantial discontinuity in switching ripple due to the mode transition.
US11368148B2
Driver circuitry for driving a power semiconductor switch having a control input and main terminals is described. The driver circuitry includes control terminal driver circuitry coupled to the control input and configured to provide a drive signal, a sense terminal coupled to the main terminal, a current mirror coupled to the sense terminal to mirror a current input into the sense terminal during turn-off, a first current comparator configured to compare a current signal received from the current mirror to a first current threshold and output a first signal representative of the comparison, and a second comparator configured to compare a signal received from the sense terminal to a turn-on threshold and output a second signal representative of the comparison. The turn-on threshold represents a highest voltage of the main terminal during turn-on. The first current threshold represents a highest voltage of the main terminal during turn-off.
US11368144B1
Apparatus and associated methods relate to a power supply noise disturbance rejection circuit (NDRC) having a first circuit reference potential (CRP1), a second circuit reference potential (CRP2), and a galvanic link conductively connecting CRP1 and CRP2 and providing a non-zero resistance return path for at least one current mode signal (CMS). In an illustrative example, a power supply monitor circuit (PSMC) may be referenced to CRP1 and a control circuit to CRP2. The PMSC may, for example, generate a voltage mode signal (VMS) relative to CRP1 and representing an output parameter of a power supply circuit (PSC), and convert the VMS into a first CMS (CMS1). The control circuit may, for example, generate a control signal for the PSC from CMS1. Various embodiments may advantageously attenuate a noise margin of a CMS presented at the control circuit by a factor of at least 10 relative to an equivalent VMS.
US11368137B2
Aspects of this disclosure relate to an acoustic wave device with transverse mode suppression. The acoustic wave device can include a piezoelectric layer, an interdigital transducer electrode, a temperature compensation layer, and a multi-layer mass loading strip. The mass loading strip has a density that is higher than a density of the temperature compensation layer. The mass loading strip can overlap edge portions of fingers of the interdigital transducer electrode. The mass loading strip can include a first layer for adhesion and a second layer for mass loading. The mass loading strip can suppress a transverse mode.
US11368136B2
An acoustic wave device comprises a piezoelectric material and a second material disposed on the piezoelectric material and having a temperature coefficient of frequency of a sign opposite a sign of a temperature coefficient of frequency of the piezoelectric material, the second material including one or more of Si1-x-yTixPyO2-zFz (x,y,z<0.1), Si1-x-yGexPyO2-zFz, Si1-x-yBxPyO2-zFz (x=y<0.04), Si1-3xZnxP2xO2-yFy, Si1-xPxO2-yFy, Si1-2yGaxPxO4, Si1-2yGay-xBxPyO4, Si1-2yGay-xBxPyO4-zFz, TiNb10O29, Si1-xTixO2-yFy, Si1-x-yTixPyO2, Si1-xBxO2-yFy, Si1-x-yBxPyO2, GeO2, GeO2-yFy, Si1-xGexO2, Si1-xGexO2-yFy, Si1-x-yGexPyO2, ZnP2O6, Si1-3xZnxP2xO2, Ge1-3xZnxP2xO2, TeOx, Si1-xTexO2+y, Ge1-xTexO2+y, Si1-3x-yGeyZnxP2xO2, Si1-xPxO2-xNx, Si—O—C, Si1-2yAlxPxO4, or BeF2.
US11368130B1
A direct current (DC) offset protection circuit includes: a DC offset detection circuit and a control circuit. The DC offset detection circuit is arranged to detect whether a DC component exists in pulse-width-modulation (PWM) signals and accordingly generate a DC offset detection result. The control circuit is arranged to control an audio system according to the DC offset detection result. The DC offset detection circuit comprises a PWM polarity judgment circuit, a cascaded integrator-comb (CIC) filter and a DC offset judgment circuit. The PWM polarity judgment circuit is arranged to judge a polarity of complementary PWM signals and accordingly generate a polarity indication value. The CIC filter is arranged to generate a filter output signal by averaging a plurality of polarity indication values. The DC offset judgment circuit is arranged to generate the DC offset detection result by comparing the filter output signal with a predetermined DC threshold.
US11368125B2
A crystal oscillator reducing phase noise and a semiconductor chip including the same are provided. The crystal oscillator includes a transconductance circuit electrically connected to a crystal, a load capacitor connected to the transconductance circuit, a feedback resistance circuit connected between an input terminal of the transconductance circuit and an output terminal of the transconductance circuit, the feedback resistance circuit configured to provide a feedback resistance, and a variable resistance controller configured to generate a resistance control signal for controlling the feedback resistance, the resistance control signal causing the feedback resistance to have a first value in a first period and a second value in a second period, the first value being less than the second value, the first period corresponding to a first portion of a cycle of the clock signal, and the second period corresponding to a second portion of the cycle different from the first portion.
US11368118B2
A motor driving device that is a device for driving a motor including stator windings, includes: a connection switching unit that includes relays as mechanical switches connected to the stator windings and excitation coils opening or closing the relays by being energized or non-energized with excitation current and switches connection condition of the stator windings to either of first connection condition (star connection) and second connection condition (delta connection) different from the first connection condition by opening or closing the relays; and an inverter that supplies AC drive voltages to the stator windings.
US11368115B2
A vehicle driving device is driven by a power unit. A three-phase motor includes a first stator winding and a second stator winding. The first stator winding is connected in parallel to the second stator winding, and the first stator winding and the second stator winding are synchronized with each other. A first current sensor is coupled to the first stator winding for measuring a first-phase current. A second current sensor is coupled to the first stator winding for measuring a second-phase current. A third-phase current of the first stator winding is generated according to a calculating procedure of the first-phase current and the second-phase current. A duty cycle between a first power module and a second power module is controlled according to a feedback compensation of the first-phase current, the second-phase current and the third-phase current.
US11368114B2
The invention provides an adaptive inertial control method based on IIDG (Inverter Interfaced Distributed Generator) of a virtual synchronous motor. By building an adaptive virtual inertia and IIDG output frequency model, the adaptive control sensitive factor is selected from a model according to the virtual synchronous motor dynamic response features; the adaptive inertial upper and lower limits are selected from a model according to the energy storage configuration constraint; the IIDG optimization control strategy is obtained. The control on the grid-connected inverter distributive power supply can be realized, so that the IIDG output is more stable; the interference on the system can be well handled; meanwhile, the characteristics of small overshoot and fast response are realized; the ultra-high dynamic features are realized.
US11368111B2
A circuit comprises a multiphase gate driver to be coupled to a multiphase inverter for driving a multiphase motor. For each phase, the multi-phase gate driver is to, in accordance with a pulse width modulation (PWM) control signal, turn on and off a high side transistor of a given pair of high and low side transistors of the multiphase inverter, discontinue the PWM control signal turn to the high side transistor of the given pair and turn off the high side transistor of the given pair, and turn on the low side transistor of the given pair until a current level through the low side transistor falls below a threshold, at which time, turn off the low side transistor.
US11368107B2
A multi-level switched capacitor boost inverter includes a series connection of a two-switched capacitor circuit, a source module and at least one one-switched capacitor circuit. Level-shifted pulse width modulation is used to apply gate pulses to the switches. The multi-level switched capacitor boost inverter uses only three capacitors and a single DC voltage source to generate thirteen voltage levels at load terminals with a voltage gain of three. The capacitors of the two-switched capacitor circuit are self-balancing. Additional one-switched capacitor circuits can be added in series with the inverter. Each additional one-switched capacitor circuit increases the number of levels and increases the gain by one.
US11368106B2
A pulse width modulator (PWM) of a multi-phase power converter is provided. The PWM includes a signal modulator that corresponds to each phase of the converter. Each signal modulator of the PWM is configured to receive a unique triangle carrier signal, receive a unique sine wave signal, compare the received triangle carrier signal and the received sine wave signal, and output at least one control signal based on a result of the comparison. The control signal controls an inverter that applies pulse width modulation to a DC power for converting the DC power to a multi-phase power, AC harmonics of the multi-phase power filtered by a common mode inductor.
US11368105B2
A power conversion device of an embodiment includes a power conversion unit, a first capacitor, a gate circuit, a bypass circuit, and a discharging circuit. The power conversion unit includes a plurality of switching elements each having a gate and generates alternating current (AC) power from direct current (DC) power supplied to a provided DC input terminal. The first capacitor is provided on a DC input side of the power conversion unit. The gate circuit includes a drive circuit configured to output a gate drive signal to be supplied to gates of one or more switching elements among the plurality of switching elements and a second capacitor configured to smooth a power supply voltage of power to be supplied to the drive circuit. The bypass circuit causes the second capacitor to be charged with a part of power stored in the first capacitor at the time of power supply loss of a control system circuit and enables the gate drive signal to be maintained in a negative bias by power stored in the second capacitor.
US11368104B2
A power converter path of a modular multilevel power converter includes a multiplicity of modules forming an electrical series circuit. The series circuit includes four groups of modules, of which two successive or sequential groups are disposed one above the other in a tower structure. A modular multilevel power converter with a power converter path is also provided.
US11368101B2
First to n-th (n is an integer of 2 or more) power conversion devices are connected in parallel to a load. First to n-th fuses are provided in first to n-th wirings, respectively. Each of the first to n-th power conversion devices includes a converter, an inverter, and a DC bus supplying a DC voltage from the converter to the inverter, and capacitors connected to the DC bus. An i-th (1≤i≤n−1) wiring includes the DC bus of an i-th power conversion device and the DC bus of an (i+1)-th power conversion device. The n-th wiring is connected between the DC bus of the n-th power conversion device and the DC bus of the first power conversion device.
US11368083B2
A method for the discharging a DC-link capacitor includes electrically coupling the DC-link capacitor to at least one half-bridge, wherein the half-bridge comprises at least two switches and that are connected in series. The method includes at least one step in which the switches and of the half-bridge are controlled in order to carry out a simultaneous closing of the switches.
US11368082B2
A power conversion device includes a plurality of conversion units electrically connected in parallel to each other and configured to perform voltage conversion of electric power supplied from a power supply and a control device configured to set a conversion unit that will operate within the plurality of conversion units, wherein, after the number of conversion units that are operating within the plurality of conversion units is increased, the control device makes an electric current flowing through an operation start conversion unit which is a conversion unit that has started to operate from a non-operating state larger than an electric current flowing through an operation maintenance conversion unit which is a conversion unit that continues to operate before and after the number of operating conversion units is increased.
US11368073B2
In a rotating electrical machine, of both ends of a stator winding of each phase, an end portion on a neutral point side is a first end portion, and an end portion on a connection point side of an upper arm switch and a lower arm switch of an inverter is a second end portion. The rotating electrical machine includes a neutral-point bus bar that electrically and mechanically connects the first end portions of the phases to one another. The first end portion and the second end portion of each phase is arranged in an end portion on a same side in an axial direction of a stator. The neutral-point bus bar and the second end portion of each phase are mechanically connected with an insulating sheet therebetween.
US11368070B2
A flywheel energy storage fan includes a base seat, a fan electrical apparatus serving as a motor or a generator and a flywheel energy storage device having a flywheel rotary body. The base seat has a case section and a central column section disposed on the case section. The case section has a vacuumed chamber and a bearing cup disposed in the vacuumed chamber. The fan electrical apparatus has a rotational shaft. The rotational shaft is rotatably disposed in the central column section and the bearing cup. The flywheel rotary body is disposed on the rotational shaft in the vacuumed chamber. The flywheel energy storage fan is able to save electrical energy.
US11368067B2
Provided is a covering element for covering a slot between two adjacent teeth of an electromagnetic machine, a stator for an electromagnetic machine and a method of forming a covering element. The covering element comprises a first sub-element and a second sub-element. The first sub-element and the second sub-element are arranged adjacent to each other in a first direction. Further, the second sub-element is made of a different material than the first sub-element.
US11368063B2
A rotor capable of suppressing cogging torque and heat build-up caused when an electric motor is operated. The rotor includes a sleeve fixed to a radially outside of a rotary shaft, a plurality of magnets disposed around a radially outside of the sleeve, and a reinforcing member having a cylindrical shape that surrounds the plurality of magnets while being in contact with an outer surface of each of the plurality of magnets to hold the plurality of magnets with the sleeve, each of the plurality of magnets including a central portion in a circumferential direction, in contact with the sleeve, and an end portion in the circumferential direction, having a thickness less than that of the central portion and forming a gap with the sleeve.
US11368060B2
A device including a plurality of motors is disclosed. The device includes a body comprising a plurality of magnet arrays. Each magnet array comprises a plurality of magnets which define a polygon and the plurality of magnets are arranged in a semi-Halbach configuration. The polygons of the plurality of magnet arrays form a tessellating pattern in which the magnet arrays each share at least one magnet with another one of the magnet arrays. Each magnet is configured to be rotatable relative to the body, or in the case of coils as magnets, the input of each coil can be manipulated to replicate the same or similar effect. The device further comprises a plurality of rotors, wherein each magnet array is configured to receive a rotor rotatable relative to the body.
US11368059B2
A rotating electric machine includes a non-rotating member, a stator fixed to the non-rotating member, a field coil fixed to the non-rotating member, disposed on an inner diameter side of the stator, and having an iron core and a winding wound around the iron core, and a rotor rotatably disposed between the stator and the field coil. The rotor has, at a portion facing the stator, different radial dimensions with respect to a rotary shaft of the rotor between a one end of the rotor in an extending direction of the rotary shaft and a portion different from the one end in the extending direction.
US11368052B2
Disclosed herein is a bridge rectifier and associated control circuitry collectively forming a “regtifier”, capable of both rectifying an input time varying voltage as well as regulating the rectified output voltage produced. To accomplish this, the gate voltages of transistors of the bridge rectifier that are on during a given phase may be modulated via analog control (to increase the on-resistance of those transistors) or via pulse width modulation (to turn off those transistors prior to the end of the phase). Alternatively or additionally, the transistors of the bridge rectifier that would otherwise be off during a given phase may be turned on to help dissipate excess power and thereby regulate the output voltage. A traditional voltage regulator, such as a low-dropout amplifier, is not used in this design.
US11368045B2
Provided herein are systems and methods for storing energy. A photon battery assembly may comprise a light source, phosphorescent material, a photovoltaic cell, and a waveguide. The phosphorescent material can absorb optical energy at a first wavelength from the light source and, after a time delay, emit optical energy at a second wavelength after a time delay. The photovoltaic cell may absorb the optical energy at the second wavelength and generate electrical power. In some instances, a first waveguide may be configured to direct the optical energy at the first wavelength from the light source to the phosphorescent material and/or a second waveguide may be configured to direct the optical energy at the second wavelength from the phosphorescent material to the photovoltaic cell.
US11368040B2
A power supply system includes a high voltage battery, a first DCDC converter connected to the high voltage battery, a low voltage lead battery configured to be charged from the high voltage battery via the first DCDC converter, a low voltage lithium battery connected to a low voltage power supply circuit, the low voltage lead battery, and a load, a second DCDC converter connected to the low voltage power supply circuit and disposed between the low voltage lead battery and the low voltage lithium battery, a bypass circuit connected to the low voltage power supply circuit to bypass the second DCDC converter, and a control device configured to watch the low voltage lithium battery and control on/off of a switch unit provided in the bypass circuit.
US11368037B2
An on-board charger for charging a battery, such as a traction battery of an electric vehicle, includes an AC/DC converter and a pulsating buffer (PB) converter. The AC/DC converter is configured to convert an AC input from a mains supply into an output having a DC voltage and a current ripple. The PB converter is connected to the AC/DC converter and is configured to process the output of the AC/DC converter to reduce or minimize the current ripple thereof and transform the output of the AC/DC converter into a battery-level DC output for charging the battery.
US11368035B2
An on-board charger (OBC) for an electric vehicle includes a charge unit, a controller, and a control pilot (CP) wake-up circuit. The charge unit is operable for receiving energy from an EVSE for charging a traction battery of the vehicle. The controller while awake can control the charge unit to charge the battery with energy from the EVSE. The CP wake-up circuit receives a control pilot (CP) signal from the EVSE, detects for a change in a current state of the CP signal while the controller is asleep, and generates a wake-up signal for waking up the controller in response to the current state of the CP signal changing to a new state. The CP wake-up circuit includes first/second detector circuits usable for detecting for a change in the current state of the CP signal to a first/second new state.
US11368033B2
A remote controlled battery cell monitoring and control system that utilizes empirical and theoretical data to compare performance, sensor data, stored patterns, historical usage, use intensity indexes over time and tracking information to provide a sophisticated data collection system for batteries. This tracking is designed to better the specifications, designs, training, preventative maintenance, and replacement and recycling of batteries.
US11368026B2
A power distribution assembly that includes a planar substrate, a set of switchable elements arranged on the planar substrate, a conductive bus bar underlying the planar substrate and interconnected with the set of switchable elements, and a set of power connections. The power distribution assembly distributes power from a power source to one or more loads.
US11368019B2
An active filter device includes a power module configured to generate a compensating current to suppress a harmonic current generated from a load device and a controller configured to control the power module. The controller includes a current command calculation unit configured to calculate a compensating current command to suppress the harmonic current, a control variable calculation unit configured to calculate a control variable based on a deviation between the compensating current command and an actual compensating current, a duty cycle calculation unit configured to calculate duty cycle of each of three phases based on the control variable, a duty cycle modulation unit configured to perform two-phase modulation on the duty cycle of each of three phases, and a control signal generation unit configured to, after the two-phase modulation, generate, from the duty cycle of each of three phases, a control signal to drive the power module.
US11368018B2
A hybrid cascaded APF topology and control method therefor for improving the ability of a system to compensate for higher harmonics, raise the quality of electric energy of output currents, and reduce costs. The topology includes: a three-phase cascaded H-bridge including bridge arms of three phases, each bridge arm including a plurality of H-bridge cells connected in series, and the bridge arms of the three phases connected to a power system needing active filtering via inductors; and a three-phase H-bridge circuit connected at star connection points of the three-phase cascaded H-bridge, the three-phase H-bridge circuit including branches of the three phases and two capacitors connected in parallel across the branches of the three phases, and the branch of each phase including two switching transistors connected in series, where switching transistors of the H-bridge cells use Si devices, and the switching transistors of the three-phase H-bridge circuit use SiC devices.
US11368016B2
An integrated circuit device having insulated gate field effect transistors (IGFETs) having a plurality of horizontally disposed channels that can be vertically aligned above a substrate with each channel being surrounded by a gate structure has been disclosed. The integrated circuit device may include electrostatic discharge (ESD) protection circuit structures. The ESD protection circuit structures may be formed in regions other than the region that the IGFETs are formed as well as in the region that the IGFETs having a plurality of horizontally disposed channels that can be vertically aligned above a substrate with each channel being surrounded by a gate structure are formed. By forming ESD protection circuit structures in regions below the IGFETs, an older process technology may be used and device size may be decreased. Furthermore, planar IGFETs of FinFETs may be formed in other regions to decrease device size and improve costs.
US11368015B2
A process tests an operability of a circuit breaker device (18, 20, 34) to establish/sever a connection of two circuit areas (36, 38, 40, 42). The circuit breaker device includes a MOSFET (44) with a source terminal (46) connected with a circuit area, a drain terminal (48) connected with a circuit area, and a gate terminal (50) with a gate voltage applied by an associated gate driver device (52) to switch into a connection switching state connecting the two circuit areas during a connection phase. The gate voltage is monitored during the connection phase, a base voltage being applied to the source terminal or/and to the drain terminal during the connection phase is monitored. If a difference between the gate voltage and the base voltage falls below a predefined reference difference during the connection phase, it is determined that a circuit defect is present in the MOSFET.
US11368013B2
An overcurrent protection method is provided. The overcurrent protection method is applied to a USB with a PD function. The overcurrent protection method includes the steps of converting an input voltage into a first voltage to provide power to the first electronic device; determining whether the working current of the first electronic device is greater than a first default value; determining whether the working current of the first electronic device is greater than a second default value; in response to the working current being greater than the first default value, a first sensing signal is generated to disable a switch and to form an open circuit between the first electronic device and the second electronic device; and in response to the working current being greater than the second default value, conversion of the input voltage into the first voltage is stopped.
US11368012B2
Apparatus and method for controlling a pyro-fuse. A pyro-fuse control system includes a current sensing circuit and a diagnostic circuit. The current sensing circuit is configured to determine whether the current flowing in conductor exceeds a threshold current. The diagnostic circuit is coupled to the current sensing circuit. The diagnostic circuit is configured to determine whether an indication of current exceeding the threshold current generated by the current sensing circuit is caused by current flowing the conductor and is not caused by a fault in the current sensing circuit.
US11368011B2
An intermediate relay maloperation preventing device and method based on an improved recursive wavelet algorithm is provided. The device includes a power supply module, a voltage sampling circuit, an analog-to-digital conversion module, a DSP chip, and a relay maloperation signal shielding module. The voltage sampling circuit is connected to the analog-to-digital conversion module. The analog-to-digital conversion module is connected to the DSP chip. The DSP chip is connected to and controls a relay signal control module. The voltage sampling circuit collects a voltage. An improved recursive wavelet is used to extract a voltage feature. As such, identification of a fault signal and a normal signal is achieved, and real-time fault monitoring is accomplished. The detection method may be easily implemented, exhibits good filtering performance and anti-interference capability, delivers high detection accuracy, and may accomplish real-time online monitoring of intermediate relay faults.
US11368010B2
A system includes a first circuit breaker comprising a first solid state switch, first mechanical contacts, and a current sensor structured to sense current flowing through the first circuit breaker, and a second circuit breaker electrically coupled to the first circuit breaker and being structured to interrupt current flowing to the first circuit breaker, wherein the first circuit breaker is structured to transmit, to the second circuit breaker, a request upon detecting a failure mode, and wherein the second circuit breaker is structured to interrupt current flowing to the first circuit breaker in response to receiving the request, and the first circuit breaker is further structured to open the first mechanical contacts when the current flowing through the first circuit breaker drops to a predetermined level.
US11368009B2
An electronic control unit (ECU) operates between first and second voltage rails and includes an amplifier circuit and a single current sense circuit coupled to carry a signal to a bus pin and to protect the bus pin from both a short to ground and a short to battery. The single current sense circuit includes a switch circuit that passes the signal to the bus pin and a forward current sensing circuit that provides a second current that is proportional to an output current at the bus pin. The forward current sensing circuit causes the second current to be substantially zero when voltage on the bus pin is above a given value. The single current sense circuit also includes a forward current protection circuit and a reverse current switching circuit that receives the second current and closes a connection to the second voltage when the second current is zero.
US11368007B2
The invention relates to a strain relief bushing made of an elastic material for receiving at least one cable in at least one axial through-opening which is connected to an adjacent through-opening or to an outer side of the strain relief bushing via a slit in such a way as to be openable, wherein each of the through-openings has, one behind the other in the axial direction, at least two strain relief portions of different cross-section, wherein central axes of the at least two strain relief portions of different cross-section extent in parallel and eccentrically such that the outer circumferences of the at least two strain relief portions of different cross-section are flush with one another along the slit, and wherein the strain relief portion having the smallest cross-section of the through-opening accounts for at least 10%, preferably at least 15%, of the axial length of the respective through-opening.
US11368006B2
A clip includes first and second portions that are joined to one another by a living hinge. A snap includes first and second coupling elements that are respectively provided on the first and second portions. The first and second coupling elements are decoupled from one another in an open clip position and are coupled to one another in a closed clip position. Each of the first and second portions define an elongated slot that extends through a width of the clip that has an open end and a closed end. The open ends face a same direction. Each of the first and second portions include a first and second spring respectively. The first and second springs face one another. The first and second springs are configured to clamp about a wiring in the closed clip position.
US11368004B2
A flexible channel molding assembly may include a plurality of molding members. Each of the molding members defines a channel configured to receive a cable, and the plurality of molding members are configured to be pivotally coupled to one another along an axial direction to conform to a surface having a complex geometry.
US11368003B2
Embodiments of the present disclosure generally relate to a unitary electrical conduit that includes a central conductor, a socket coupled to a first end of the central conductor, a male insert coupled to a second end of the central conductor a dielectric sheath surrounding the central conductor, and an outer conductor surrounding the dielectric sheath, wherein a substantially 90 degree bend is formed along a length thereof.
US11367997B2
A method for manufacturing a monolithically integrated semiconductor optical integrated element comprising a DFB laser, an EA modulator, and a SOA disposed in a light emitting direction, comprising the step of forming a semiconductor wafer on which the elements are two-dimensionally arrayed and aligned the optical axes; cleaving the semiconductor wafer along a plane orthogonal to the light emitting direction to form a semiconductor bar including a plurality of the elements arranged one-dimensionally along a direction orthogonal to the light emitting direction such that the elements adjacent to each other share an identical cleavage end face as a light emission surface; inspecting the semiconductor bar by driving the SOA and the DFB laser through a connection wiring part together; and separating out the semiconductor bar after the inspection to cut the connection wiring part connecting the electrode of the SOA and the DFB laser to isolate from each other.
US11367985B2
A connector assembly (10) is disclosed in which a connector part (12) and a cable manager part (20) are provided. The cable manager part (20) can be provided with a rear housing (40), a lacing fixture part (30), and a grounding part (50). In one aspect, the grounding part (50) provides grounding contact between an inserted cable (4) and the connector part (12). In one aspect, the grounding part (50) secures the connector part (12) to the rear housing part (40). In one example, a connector assembly (110) is provided with a grounding arrangement (150) including a plurality of deflectable grounding members (152) and provides grounding contact between the inserted cable (4) and the connector part (112). In one aspect, the grounding members (152) each provide two points of contact against the cable (4).
US11367983B2
A connection system for a quantum computer that employs constant impedance connectors with attenuation or filtering components or both embedded therein or within an adaptor removably insertable within an adaptor housing for use in a cryogenically cooled quantum computer. The connection system provides a higher density of cables traversing through a hermetic sealed top plate, and which are accessible to chill blocks to reduce the thermal energy from the signal lines. Attenuators or filter circuits are embedded in the constant impedance connector housings, or provided in adaptors that connect on each end to form mating constant impedance connections, in order to reduce signal strength as the signal progresses through the cryogenic environment and to remove extraneous electrical signal noise.
US11367980B2
A board-to-board connector for connecting printed boards to each other includes a receptacle comprising a plurality of signal contact elements to be electrically connected to one of the printed boards, and a plug comprising a plurality of signal contact elements to be electrically connected to the other of the printed boards, wherein each of the signal contact elements of the plug is in contact with the corresponding signal contact element of the receptacle when the plug has been inserted into the receptacle. The receptacle comprises an electromagnetic interference shield which continuously or discontinuously surrounds the plurality of signal contact elements of the receptacle, and the plug comprises an electromagnetic interference shield which continuously or discontinuously surrounds the plurality of signal contact elements of the plug.
US11367978B2
A connector apparatus configured to connect to a connection port in order to transfer data and/or electrical power between two electronic devices or between an electronic device and an electrical outlet, the connector apparatus comprising: a first part configured to connect to the connection port by friction; two or more coupling portions which can engage or disengage when a force is applied to at least one of the coupling portions; and a retracting mechanism which pulls the two or more coupling portions towards each other when the coupling portions are separated by a separating force larger than a threshold force; wherein the first part remains connected to the connection port, while the two or more coupling portions engage or disengage when the force is applied and/or while the retracting mechanism pulls the two or more coupling portions towards each other.
US11367969B2
A wire with terminal WT1 is provided with a wire 2 including a core 2B and an insulation coating 2C covering around the core 2B, and a terminal 1 including a coating crimping portion 50 crimped to the insulation coating 2C. The wire 2 is pulled out rearward from the terminal 1. A water cut-off member 60 for suppressing liquid intrusion into the core 2B is disposed between an inner peripheral surface 20A of the coating crimping portion 50 and an outer peripheral surface 2A of the insulation coating 2C. The coating crimping portion 50 is provided with an oblique extending portion 70 for reducing the outflow of the water cut-off member 60 to outside due to crimping.
US11367954B1
An antenna system and method includes or uses a set of M antenna structures and a cross bar beam former. The analog (or digital) cross bar beam former includes a set of M N to 1 (M(N×1)) interfaces, each of the M N to 1 interfaces having a first line coupled to a respective one of the set of the M antenna structures. The cross bar beam former also includes a set of N 1 to M (N(1×M)) interfaces, each of the N 1 to M interfaces having a set of M second lines, each of the M second lines being coupled to a respective one of the M N to 1 interfaces. Each of the N 1 to M interfaces includes a third line for a respective one of N independent beams.
US11367947B2
A medical device is configured for diagnosis or treatment of a tissue within a body. The medical device comprises an elongate member and a position sensor. The elongate member is configured to be received within the body, and has a lumen extending between a proximal end and a distal end. The position sensor is disposed within the lumen proximate the distal end of the deformable member. The position sensor comprises a coil wound to form a central passage and configured to generate a current flow when subject to a magnetic field, and a high-permeability antenna having at least a portion disposed outside the central passage to concentrate the magnetic field into the coil and increase the current flow.
US11367942B2
Disclosed herein is an antenna device that includes a substrate; a conductor pattern formed on the substrate and including a spiral or loop-shaped antenna coil, a spiral or loop-shaped coupling coil being connected to the antenna coil and having a diameter smaller than that of the antenna coil, and a spiral-shaped booster coil at least partially overlapping the antenna coil through the substrate without being connected thereto; and a resonance capacitor connected to the booster coil. The number of turns of the booster coil is larger than that of the antenna coil.
US11367939B2
The present invention includes a method of creating electrical air gap low loss low cost RF mechanically and thermally stabilized interdigitated resonate filter in photo definable glass ceramic substrate. Where a ground plane may be used to adjacent to or below the RF filter in order to prevent parasitic electronic signals, RF signals, differential voltage build up and floating grounds from disrupting and degrading the performance of isolated electronic devices by the fabrication of electrical isolation and ground plane structures on a photo-definable glass substrate.
US11367935B2
The invention relates to a microwave circular polarizer including: a first outer conductor; a second outer conductor connected to the first outer conductor forming a first step discontinuity therewith; and a third outer conductor connected to the second outer conductor forming a second step discontinuity therewith. An inner conductor is provided which extends inside and is spaced apart from the first, second and third outer conductors. The first and second outer conductors are axially asymmetric with respect to the inner conductor, and the third outer conductor is axially symmetric with respect to the inner conductor. The microwave circular polarizer includes first and second rectangular waveguide ports in signal communication with an internal cavity through, respectively, a first rectangular aperture and a second rectangular aperture formed through the first outer conductor. The microwave circular polarizer further includes a first septum and a second septum.
US11367932B2
The present disclosure relates to the field of energy storage device, and particularly relates to an electrode member, an electrode assembly and a secondary battery. The electrode member comprises an electrode body and a conductive structure. The conducting layer comprises a first portion having an active material and a second portion extending from the first portion; the second portion comprises a main portion and a transition portion, the transition portion is provided between the main portion and the first portion, and a width of the transition portion is larger than a width of the main portion. The conductive structure is welded with the second portion and extends along a direction away from the first portion, and at least a part of a welding region formed by the second portion and the conductive structure is positioned at the transition portion. The present disclosure can avoid the overcurrent area being significantly reduced caused by the main portion, ensure that every position the electric current passing through has a sufficient overcurrent area, and improve the safety performance of the secondary battery.
US11367916B2
A modular cover for a battery system and a method for assembling the modular cover are disclosed. The apparatus can include a first modular segment and a second modular segment that are interconnected. The modular cover can be expanded in size for use with different types of battery systems and housings.
US11367914B2
A metal air battery cell has a sealed pouch defined by a metallocene film and a gas and liquid impermeable flexible layer, and an electrochemical cell contained within the pouch. The metallocene film and gas and liquid impermeable flexible layer are sealed to each other and around the electrochemical cell.
US11367911B2
Disclosed is a cylindrical battery cell in which a heat-shrinkable tube wraps an outer surface of a cylindrical case of the cylindrical battery cell except electrode terminals, the heat-shrinkable tube including: a base material, which is a polyester resin, capable of shrinking by heat; a supplement, which is a nylon resin, capable of increasing a tensile strength and operating temperature of the heat-shrinkable tube; and an ultraviolet stabilizer capable of inhibiting a chain reaction of free radicals generated by cleavage of polymer chains of the nylon resin or the polyester resin, when the heat-shrinkable tube is exposed to an ultraviolet ray irradiation.
US11367909B2
A power device capable of displaying various statuses and a displaying method are provided. The power device includes: a central microprocessor, a power conversion circuit, an LED bar (or a light bar) circuit, and a battery pack. The central microprocessor intrinsically has color setting and control logic and is internally provided with a color setting and control logic circuit. The power device is externally connected to a utility power source, a solar photovoltaic power source, a backup battery pack, and a load. The color setting and control logic circuit enables the LED bar circuit to correspondingly emit LED light of at least two colors according to different power sources supplied to the load or a battery capacity, and the LED light is displayed in a breathing-like manner. The central microprocessor adjusts a breathing rate of the LED light according to a power consumption of the load.
US11367904B2
An energy storage apparatus is described and claimed herein comprising, generally, a battery housing enclosing a negative electrode, a positive electrode, and an electrolyte, wherein the electrolyte comprises a salt dissolved in either an amide-based solvent. In various embodiments, the amide-based solvent is a tertiary amide. Moreover, the energy storage apparatus may be a lithium ion battery that comprises an electrolyte with a lithium salt dissolved in a tertiary amide.
US11367902B2
A lithium secondary battery including a cathode; an anode; and an electrolyte disposed between the cathode and the anode, wherein the cathode includes a cathode active material represented by Formula 1, the electrolyte includes a lithium salt; a non-aqueous solvent; and a monofluorosilane compound represented by Formula 2, wherein an amount of the monofluorosilane compound is in a range of about 0.1 percent by weight (wt %) to about 5 wt % based on the total weight of the electrolyte wherein, in Formula 1, 0.9≤x≤1.2, 0.85
US11367897B2
According to one embodiment, provided is a solid electrolyte material including an oxide, the oxide including an octahedral coordination structure that includes a metal element M and oxygen atoms arranged centering on the metal element M. The metal element M includes Nb and Ta. Amass ratio αTa/αNb of a mass αTa of Ta to a mass αNb of Nb is within a range of 5×10−5≤αTa/αNb≤3×10−3.
US11367896B2
Set forth herein are garnet material compositions, e.g., lithium-stuffed garnets and lithium-stuffed garnets doped with alumina, which are suitable for use as electrolytes and catholytes in solid state battery applications. Also set forth herein are lithium-stuffed garnet thin films having fine grains therein. Disclosed herein are novel and inventive methods of making and using lithium-stuffed garnets as catholytes, electrolytes and/or anolytes for all solid state lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these garnet catholytes, electrolytes and/or anolytes. Also set forth herein are methods for preparing novel structures, including dense thin (<50 um) free standing membranes of an ionically conducting material for use as a catholyte, electrolyte, and, or, anolyte, in an electrochemical device, a battery component (positive or negative electrode materials), or a complete solid state electrochemical energy storage device. Also, the methods set forth herein disclose novel sintering techniques, e.g., for heating and/or field assisted (FAST) sintering, for solid state energy storage devices and the components thereof.
US11367894B2
Provided is a lithium metal secondary battery ensuring electrode-separator adhesive strength and a method for fabricating the same. The lithium metal secondary battery according to the present disclosure includes a negative electrode, a separator and a positive electrode, the negative electrode including a lithium metal foil as a negative electrode material, wherein a nano imprint pattern structure is formed on a lithium metal foil surface which is a surface of the negative electrode facing the separator, and the negative electrode and the separator are adhered to each other.
US11367893B2
Systems, methods, and apparatus for multifunctional battery packaging and insulation are disclosed. In one or more embodiments, a battery pack comprises a plurality of battery cells. The battery pack further comprises a block comprising a plurality of recesses formed within the block. In one or more embodiments, each of the recesses respectively houses one of the battery cells within the block. In at least one embodiment, the block comprises a low density ceramic fiber reinforced foam that is porous such that a gas or liquid may pass through the block to cool the battery pack. In one or more embodiments, at least a portion of the block is covered with a ceramic matrix composite (CMC) material comprising a ceramic slurry composite pre-impregnated (prepreg) with fibers. In some embodiments, the CMC material is cured via kiln firing the block.
US11367890B2
A cell including: a pair of interconnectors for electrically connecting unit cells; a membrane-electrode assembly disposed between the interconnectors; a pair of current collectors, each of which includes an abutting surface abutting against a corresponding one of the electrode layers and a first base material surface being in contact with a corresponding one of the interconnectors and electrically connecting the corresponding of the electrode layers and the corresponding one of the interconnectors; and elastic bodies biasing the abutting surface of at least one current collector toward a corresponding one of the electrode layers. The elastic bodies includes: a second base material surface being in contact with the first base material surface; and an elastic body protruding portion supporting the abutting surface and protruding from the second base material surface toward the corresponding one of the electrode layers to bias the abutting surface toward the corresponding one of the electrode layers.
US11367888B2
The invention relates to solid oxide fuel cell anodes, in particular anodes which containing porous particles coated with catalytic nickel. The use of porous particles as a carrier for the nickel catalyst helps to overcome some of the redox stability issues experienced by some systems and improves the internal reforming properties of the system and permits less nickel to be used in SOFC systems.
US11367887B2
Provided is a fuel cell system capable of further increasing electric power generation efficiency, compared to the current circumstances, with respect to a fuel cell SOFC that generates electric power by supplying a reformed gas obtained by steam reforming to a fuel electrode. A steam reformer that reforms a hydrocarbon fuel by a steam reforming reaction; a fuel cell that operates by introducing a reformed gas to a fuel electrode; and an anode off-gas circulation path that removes condensed water while cooling an anode off-gas, and introduces the anode off-gas to the steam reformer are provided. A condensation temperature in a condensing device is controlled by a control unit that controls a steam partial pressure of the anode off-gas circulated to the steam reformer, and S/C adjustment is adapted to high-efficiency electric power generation.
US11367880B2
A bipolar plate to be arranged opposite to an electrode that is supplied with an electrolyte solution to cause a battery reaction includes a plurality of groove portions in which the electrolyte solution flows and rib portions that each separate the adjacent groove portions on at least one of its front and back surfaces. A specific rib portion including a contact surface to be brought into contact with the electrode and one or more recessed portions that are open in the contact surface is included among the rib portions.
US11367875B2
A positive electrode active material includes powder of composite particles including a lithium transition metal composite oxide having a lamellar rock-salt structure and a spinel phase. The spinel phase includes an oxide including lithium and at least a first element X1 selected from the group consisting of magnesium, aluminum, titanium, manganese, yttrium, zirconium, molybdenum, and tungsten, and the lithium transition metal composite oxide includes nickel or cobalt and the first element X1.
US11367872B2
A crystalline precursor compound for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula Li1−a((Niz(Ni0.5Mn0.5)yCox)1−kAk)1+aO2, wherein A comprises at least one element of the group consisting of: Mg, Al, Ca, Si, B, W, Zr, Ti, Nb, Ba, and Sr, with 0.05≤x≤0.40, 0.25≤z≤0.85, x+y+z=1, 0≤k≤0.10, and 0≤a≤0.053, wherein said crystalline precursor powder has a crystalline size L, expressed in nm, with 15≤L≤36.
US11367858B2
Embodiments of the present disclosure provide a display module and display device. The display module comprises a display panel which is an organic electroluminescent display panel; a first phase retarder located on a side of an out-light surface of the display panel; a linear polarizer located on a side of first phase retarder facing away from the display panel; and a second phase retarder covering a side of the linear polarizer facing away from the display panel.
US11367857B2
A display device includes a display panel; a polarizing film disposed on the display panel; a touch film disposed on the polarizing film; a light control film disposed on the touch film; a barrier film disposed over the polarizing film; and a cover window disposed on the barrier film.
US11367855B2
A display panel and a method of manufacturing the same, a display device are provided. The display panel includes a first substrate and a second substrate disposed oppositely to each other, and a sealant, spacers and a solidification inhibiting layer arranged between the first substrate and the second substrate, the solidification inhibiting layer being provided between the sealant and the spacers, and configured to inhibit the spreading of the sealant to the spacer.
US11367844B2
Included are the steps of: forming a laminated body (7) by disposing a resin layer (12), an inorganic layer (3) having mean stress (Px) of 0 (zero) or having tensile stress, a TFT layer (4), an OLED element layer (5), and a sealing layer (6) in this order on an upper side of a supporting substrate (50); and separating the supporting substrate (50) from the laminated body (7).
US11367836B2
Provided is a heterocyclic compound of Chemical Formula 1: and an organic light emitting device including the same.
US11367831B2
A semiconductor device includes a semiconductor substrate having a surface perpendicular to the first direction; a vertical Hall element formed in the semiconductor substrate, and including a magnetosensitive portion having a depth in the first direction, a width in the second direction, and a length in the third direction; and an excitation wiring extending in the third direction and disposed above the semiconductor substrate and at a position that overlaps the center position of the width of the magnetosensitive portion, and the value u derived from Expression (1) is 0.6 or more: u = tan - 1 ( W + Wc 2 h ) - tan - 1 ( W - Wc 2 h ) 2 tan - 1 ( Wc 2 h ) ( 1 ) where W is the width of the magnetosensitive portion, Wc/2 is a distance from the center position of the width of the magnetosensitive portion to the first end surface closer thereto, and h is a distance from the center position of the depth of the magnetosensitive portion to the excitation wiring.
US11367823B2
A light emitting device may include: a substrate including a plurality of unit light emitting regions; and first to fourth insulating layers sequentially on the substrate. Each of the unit light emitting regions may include: at least one light emitting element on the first insulating layer, the at least one light emitting element including a first end portion and a second end portion in a length direction thereof; first and second banks on the substrate; a first electrode on the first bank and a second electrode on the second bank; a first contact electrode on the first electrode; a second contact electrode on the second electrode; and a conductive pattern provided between the first insulating layer and the first contact electrode, the conductive pattern surrounding the first and second electrodes when viewed on a plane.
US11367822B2
High-voltage solid-state transducer (SST) devices and associated systems and methods are disclosed herein. An SST device in accordance with a particular embodiment of the present technology includes a carrier substrate, a first terminal, a second terminal and a plurality of SST dies connected in series between the first and second terminals. The individual SST dies can include a transducer structure having a p-n junction, a first contact and a second contact. The transducer structure forms a boundary between a first region and a second region with the carrier substrate being in the first region. The first and second terminals can be configured to receive an output voltage and each SST die can have a forward junction voltage less than the output voltage.
US11367817B2
An optoelectronic component includes an optoelectronic semiconductor chip including a carrier substrate, a first and a second side surface facing one another, respectively, and a third and a fourth side surface that intersect the first and second side surfaces, and a first main surface, at which at least one contact area is arranged, the carrier substrate being transparent to the emitted electromagnetic radiation, a transparent first potting compound directly adjacent to the first side surface; and a reflective potting compound directly adjacent to the second side surface and the carrier substrate and applied directly to the semiconductor chip.
US11367815B2
A display device is provided including a substrate. A second semiconductor layer is disposed on the substrate. The second semiconductor layer includes Si. A second gate lower electrode overlaps a channel region of the second semiconductor layer. A second gate insulating layer is disposed on the second gate lower electrode. A second gate upper electrode and a light blocking layer are disposed on the second gate insulating layer. A first auxiliary layer is disposed on the second gate upper electrode and the light blocking layer. A first semiconductor layer overlaps the light blocking layer. The first semiconductor layer includes an oxide semiconductor. A first gate electrode overlaps a channel region of the first semiconductor layer. The first auxiliary layer includes an insulating layer including at least one compound selected from SiNx, SiOx, and SiON, and at least one material selected from F, Cl, and C.
US11367809B2
Embodiments relate to a light emitting device package and a light source device. A light emitting device package according to the embodiment may include a first package body; a second package body disposed on the first package body, and comprising an opening passing through an upper surface and a lower surface of the second package body; and a light emitting device disposed in the opening, and comprising a first bonding part and a second bonding part. The first package body may include a first opening and a second opening that pass through an upper surface and a lower surface of the first package body. The upper surface of the first package body may be coupled with the lower surface of the second package body, the first bonding part may be disposed on the first opening, and the second bonding part may be disposed on the second opening.
US11367808B2
A radiation-emitting semiconductor chip includes a semiconductor body; a first contact layer having a first contact surface for external electrical contacting of the semiconductor chip and a first contact web structure connected to the first contact surface, wherein the first contact web structure is a region of the first contact layer that, compared to the first contact surface, has a comparatively small extent at least in a lateral direction; a second contact layer, wherein first and second contact web structures overlap in places in plan view of the semiconductor chip; a current distribution layer; and an insulation layer having a plurality of openings into which the current distribution layer extends.
US11367805B2
Solar cells, absorber structures, back contact structures, and methods of making the same are described. The solar cells and absorber structures include a pseudomorphically strained electron reflector layer.
US11367804B2
A directional photodetector comprises a photosensitive element and a light selector. The photosensitive element comprises a single-photon avalanche diode, SPAD, or an array of SPADs or SPAD array. The light selector is arranged on or above the photosensitive element, in particular on or above an active surface of the photosensitive element. The light selector is configured to restrict a field of view of the photosensitive element at least for light with a wavelength within a specified wavelength range. The light selector is configured to restrict the field of view by predominantly passing light with a direction of incidence within a range of passing directions of the light selector.
US11367802B2
The present disclosure relates to a photovoltaic (PV) device that includes a first junction constructed with a first alloy and having a bandgap between about 1.0 eV and about 1.5 eV, and a second junction constructed with a second alloy and having a bandgap between about 0.9 eV and about 1.3 eV, where the first alloy includes III-V elements, the second alloy includes III-V elements, and the PV device is configured to operate in a thermophotovoltaic system having an operating temperature between about 1500° C. and about 3000° C.
US11367801B2
Angle insensitive/angle-robust colored filter assemblies are provided for use with a photovoltaic device to create a decorative and colored photovoltaic device assembly. The filter may be passive or active with an ultrathin reflective layer of high refractive index material, like amorphous silicon (a-Si). A passive filter may have transparent first and second pairs of dielectric materials surrounding the ultrathin reflective layer. An active filter may have transparent first and second electrodes and first and second doped hole/electron transport layer surrounding the ultrathin reflective layer. The filter can transmit a portion and reflect a portion of the electromagnetic spectrum to generate a reflected color output with minimal angle dependence. Angle insensitive colored photovoltaic device assemblies having high power conversion efficiencies (e.g., ≥18%) including a passive or active colored reflective filter and a photovoltaic device are also contemplated. The photovoltaic device may include a photoactive layer comprising crystalline silicon (c-Si).
US11367800B1
Optically-thin, quantum-structured solar cells incorporating III-V quantum wells or quantum dots have the potential to revolutionize the performance of photovoltaic devices. Enhanced spectral response characteristics have been widely demonstrated in both quantum well and quantum dot solar cells using a variety of different III-V materials. To fully leverage the extended spectral response of quantum-structured solar cells, new device designs are disclosed that can both maximize the current generating capability of the limited volume of narrow band gap material and minimize the unwanted carrier recombination that degrades the voltage output.
US11367786B1
A semiconductor device. In some embodiments, the semiconductor device includes a back gate layer; a buffer layer, on the back gate layer; a device quantum well layer, on the buffer layer; a cap layer, on the device quantum well layer; a top layer, on the cap layer; a first doped region of a first conductivity type, extending at least part-way through the device quantum well layer; a second doped region, of a second conductivity type, within the buffer layer; and a third doped region, of the second conductivity type extending from the top layer to the second doped region. The top layer may include a dielectric layer, and, in the dielectric layer, a plurality of conductive elements, including one or more dot gates, an ohmic contact, a bath gate, a supply gate, and a halo contact.
US11367771B2
A display device of embodiments of the present disclosure may include a substrate including a display area including a plurality of pixel areas, and a non-display area adjacent the display area, a circuit element layer on the substrate, and including a plurality of non-transmission areas in which a plurality of signal lines for transferring signals for driving a pixel are positioned, and a plurality of transmission areas for transmitting light and located between the signal lines in a plan view, a light emitting element layer on the circuit element layer, and including light emitting elements, and a light blocking layer between the substrate and the circuit element layer, and including a plurality of first opening portions overlapping the non-transmission area, and a plurality of second opening portions overlapping the transmission area, wherein one of the non-transmission areas and the transmission area are in each of the pixel areas.
US11367762B2
A pixel definition layer, a display substrate, a display device and an inkjet printing method are provided. The pixel definition layer includes a first pixel definition layer and a second pixel definition layer. The first pixel definition layer includes first openings, which include a first sub-pixel opening and a second sub-pixel opening; and an opening size of the second sub-pixel opening is larger than an opening size of the first sub-pixel opening. The second pixel definition layer is on the first pixel definition layer, and includes second openings, the second openings include a fourth sub-pixel opening and a fifth sub-pixel respectively corresponding to and connecting to the first sub-pixel opening and the second sub-pixel opening. A difference between opening sizes of the fourth sub-pixel opening and the first sub-pixel opening is larger than a difference between opening sizes of the fifth sub-pixel opening and the second sub-pixel opening.
US11367738B2
A semiconductor device (1) is manufactured which includes a SiC epitaxial layer (28), a plurality of transistor cells (18) that are formed in the SiC epitaxial layer (28) and that are subjected to ON/OFF control by a predetermined control voltage, a gate electrode (19) that faces a channel region (32) of the transistor cells (18) in which a channel is formed when the semiconductor device (1) is in an ON state, a gate metal (44) that is exposed at the topmost surface for electrical connection with the outside and that is electrically connected to the gate electrode (19) while being physically separated from the gate electrode (19), and a built-in resistor (21) that is made of polysilicon and that is disposed below the gate metal (44) so as to electrically connect the gate metal (44) and the gate electrode (19) together.
US11367736B2
A first-tier structure includes a first vertically alternating sequence of first continuous insulating layers and first continuous sacrificial material layers and a first-tier retro-stepped dielectric material portion overlying first stepped surfaces of the first vertically alternating sequence. A second vertically alternating sequence of second continuous insulating layers and second continuous sacrificial material layers is formed over the first-tier structure. A vertically alternating stack of insulating plates and dielectric material is formed over the first-tier retro-stepped dielectric material portion. Alternatively, dielectric pillar structures may be formed in lieu of the vertically alternating stack. After formation of memory stack structures, electrically conductive layers replace portions of the first and second continuous sacrificial material layers. Contact via structures are formed through the vertically alternating stack or the dielectric pillar structures, through the first retro-stepped dielectric material portion, and directly on a first subset of the electrically conductive layers.
US11367732B2
A semiconductor device having a three-dimensional (3D) structure is disclosed. The semiconductor device includes a first chip configured to include a logic circuit, and a second chip stacked on the first chip and configured to include a memory cell array. At least one transfer circuit for connecting a row line of the memory cell array to a global row line is distributed to each of the first chip and the second chip.
US11367729B2
Embodiments of semiconductor devices and fabrication methods thereof are disclosed. In an example, a semiconductor device includes a first semiconductor structure including a processor, an array of static random-access memory (SRAM) cells, and a first bonding layer including a plurality of first bonding contacts. The semiconductor device also includes a second semiconductor structure including an array of NAND memory cells and a second bonding layer including a plurality of second bonding contacts. The semiconductor device further includes a bonding interface between the first bonding layer and the second bonding layer. The first bonding contacts are in contact with the second bonding contacts at the bonding interface.
US11367724B2
A method for manufacturing a fin field-effect transistor is provided, comprising making metal gates, a gate dielectric layer, and a work function layer of the metal gate structures, followed by removing a portion of the end of each of the metal gates that protrudes from a fin region. Since the work function layer is already formed by the removing step, the process window of the work function layer is not affected. Therefore, a relatively large edge region of the metal gates can be removed, thereby minimizing the parasitic capacitance Cgs between the gate and the source or parasitic capacitance Cgd between the gate and the drain of a fin field-effect transistor device in operation. Meanwhile this step simplifies and compatible with the finFET process.
US11367723B2
A semiconductor device includes a first transistor in a first region of a substrate and a second transistor in a second region of the substrate. The first transistor includes multiple first semiconductor patterns; a first gate electrode; a first gate dielectric layer; a first source/drain region; and an inner-insulating spacer. The second transistor includes multiple second semiconductor patterns; a second gate electrode; a second gate dielectric layer; and a second source/drain region. The second gate dielectric layer extends between the second gate electrode and the second source/drain region and is in contact with the second source/drain region. The first source/drain region is not in contact with the first gate dielectric layer.
US11367716B2
The present disclosure provides a display assembly, a display device including the display assembly, and a manufacturing method of the display device. The display assembly includes: a display panel having a display surface with a fingerprint detection area, and a back surface facing away from the display surface; and a carrier adhesive including a binding surface and a grooved surface facing away from the binding surface, wherein the carrier adhesive is provided with a carrier groove having an opening formed on the grooved surface, the binding surface is attached to the back surface of the display panel and the carrier groove is opposite to the fingerprint detection area.