US11387356B2
A semiconductor structure includes a seed layer on a substrate and an epitaxial stack on the seed layer. The epitaxial stack includes a first superlattice part and a second superlattice part on the first superlattice part. The first superlattice part includes first units repetitively stacked M1 times on the seed layer. Each first unit includes a first sub-layer that is an Aly1Ga1-y1N layer, and a second sub-layer that is an Alx1Ga1-x1N layer, wherein y1
US11387353B2
A structure includes a first source/drain region and a second source/drain region in a semiconductor body; and a trench isolation between the first and second source/drain regions in the semiconductor body. A first doping region is about the first source/drain region, a second doping region about the second source/drain region, and the trench isolation is within the second doping region. A third doping region is adjacent to the first doping region and extend partially into the second doping region to create a charge trap section. A gate conductor of a gate structure is over the trench isolation and the first, second, and third doping regions. The charge trap section creates a charge controlled e-fuse operable by applying a stress voltage to the gate conductor.
US11387352B2
An object of the present disclosure is to suppress a shrinkage cavity without affecting the layout or the insulation performance of the semiconductor element in a power semiconductor device. A power semiconductor device includes a heat radiation plate; an insulating substrate bonded in a bonding region on an upper surface of the heat radiation plate with a bonding material containing a plurality of elements having different solidification points; a semiconductor element mounted on an upper surface of the insulating substrate; and a bonding wire bonded in the bonding region on the upper surface of the heat radiation plate such that the bonding wire surrounds the semiconductor element in plan view.
US11387348B2
Disclosed herein is a transistor structure that is formed by forming a sidewall spacer along a first vertical component sidewall of a trench wherein no sidewall spacer is formed along a second vertical component sidewall of the trench. During an etching of a dielectric layer in the trench, the sidewall spacer protects a first portion of the dielectric layer from being etched while a second portion of the dielectric layer along the second sidewall is etched. A portion of a control terminal can be formed in the space where the second portion is removed.
US11387346B2
A method includes providing first and second channel layers in a p-type region and an n-type region respectively, forming a gate dielectric layer around the first and second channel layers, and forming a sacrificial layer around the gate dielectric layer. The sacrificial layer merges in space between the first channel layers and between the second channel layers. The method further includes etching the sacrificial layer such that only portions of the sacrificial layer in the space between the first channel layers and between the second channel layers remain, forming a mask covering the p-type region and exposing the n-type region, removing the sacrificial layer from the n-type region, removing the mask, and forming an n-type work function metal layer around the gate dielectric layer in the n-type region and over the gate dielectric layer and the sacrificial layer in the p-type region.
US11387345B2
A semiconductor device includes a substrate, a gate structure on the substrate and a first conductive connection group on the gate structure. The gate structure includes a gate spacer and a gate electrode. The first conductive connection group includes a ferroelectric material layer. At least a part of the ferroelectric material layer is disposed above an upper surface of the gate spacer. And the ferroelectric material layer forms a ferroelectric capacitor having a negative capacitance in the first conductive connection group.
US11387344B2
A semiconductor device and method of manufacture are provided. In some embodiments a treatment process is utilized to treat a work function layer. The treatment prevents excessive oxidation of the work function layer during subsequent processing steps, such as application of a subsequent photoresist material, thereby allowing the work function layer to be thinner than otherwise.
US11387342B1
A semiconductor structure including nanosheet stacks on a substrate, each nanosheet stack including alternating layers of sacrificial semiconductor material and semiconductor channel material and a crystallized gate dielectric layer surrounding the semiconductor channel layers of a first subset of the nanosheet stacks, a dipole layer on top of the crystallized gate dielectric and surrounding the layers of semiconductor channel material of the first subset of the nanosheet stacks and a gate dielectric modified by a diffused dipole material surrounding the semiconductor channel layers of a second subset of the nanosheet stacks. A method including forming nanosheet stacks on a substrate, each nanosheet stack including alternating layers of sacrificial semiconductor material and semiconductor channel material, removing sacrificial semiconductor material layers of the set of nanosheet stacks, forming a gate dielectric surrounding the semiconductor channel layers of the nanosheet stacks, and crystalizing the gate dielectric of a subset of the nanosheet stacks.
US11387333B2
An integrated circuit (IC) includes a first field-plated field effect transistor (FET), and a second field-plated FET, and functional circuitry configured together with the field-plated FETs for realizing at least one circuit function in a semiconductor surface layer on a substrate. The field-plated FETs include a gate structure including a gate electrode partially over a LOCOS field relief oxide and partially over a gate dielectric layer. The LOCOS field relief oxide thickness for the first field-plated FET is thicker than the LOCOS field relief oxide thickness for the second field-plated FET. There are sources and drains on respective sides of the gate structures in the semiconductor surface layer.
US11387332B2
A resist (4) is applied on a semiconductor substrate (1) and a first opening (5) and a second opening (6) whose width is narrower than that of the first opening (5) are formed at the resist (4). The semiconductor substrate (1) is wet-etched using the resist (4) as a mask to form one continuous recess (7) below the first opening (5) and the second opening (6). After forming the recess (7), a shrink material (8) is cross-linked with the resist (4) to block the second opening (6) without blocking the first opening (5). After blocking the second opening (6), a gate electrode (11) is formed within the recess (7) via the first opening (5).
US11387329B2
Transistor structures including a fin structure having multiple graded III-N material layers with polarization layers therebetween, integrated circuits including such transistor structures, and methods for forming the transistor structures are discussed. The transistor structures further include a source, a drain, and a gate coupled to the fin structure. The fin structure provides a multi-gate multi-nanowire confined transistor architecture.
US11387327B2
A transistor includes a polarization layer above a channel layer including a first III-Nitride (III-N) material, a gate electrode above the polarization layer, a source structure and a drain structure on opposite sides of the gate electrode, where the source structure and a drain structure each include a second III-N material. The transistor further includes a silicide on at least a portion of the source structure or the drain structure. A contact is coupled through the silicide to the source or drain structure.
US11387326B2
A silicon carbide semiconductor device includes: a silicon carbide semiconductor substrate that has a front surface and a rear surface; and a plurality of ohmic electrodes that are in ohmic contact with a surface of silicon carbide on at least one of the front surface and the rear surface of the silicon carbide semiconductor substrate. The plurality of ohmic electrodes are scattered on the surface of the silicon carbide to provide a concavity and convexity. The concavity and convexity has a height due to the ohmic electrodes less than 1.0 μm.
US11387315B2
A patterned shielding structure is disposed between an inductor structure and a substrate. The patterned shielding structure includes a shielding layer. The shielding layer includes a first main portion and a plurality of branch portions. The first main portion is T-shaped. The branch portions are connected to the first main portion.
US11387306B2
A display device may include a substrate including a display area and a non-display area, pixels provided in the display area and each pixel including a pixel transistor and a light emitting element connected to the pixel transistor, a first driver provided in the non-display area and configured to provide a scan signal to the pixel, a scan line configured to transfer the scan signal to the pixel, a first fan-out line provided in the non-display area and connected to the scan line, and a first electrostatic discharge portion provided in the non-display area and located between the first fan-out line and the scan line. The first electrostatic discharge portion may include a bottom metal layer disposed on the substrate and a transistor disposed on and electrically connected to the bottom metal layer.
US11387300B2
A display apparatus includes a thin film transistor disposed in a display area of a substrate and a display device in the display area that is electrically connected to the thin film transistor, an encapsulation layer that protects the display device, at least one through portion formed in the display area that vertically penetrates the substrate and a plurality of layers stacked on the substrate, and a first groove and a second groove that are spaced apart from each other and that surround the at least one through portion. A flow-restriction portion is disposed in a region between the first groove and the second groove that protrudes upwards from the substrate and confines an organic encapsulation layer of the encapsulation layer.
US11387295B2
A terminal device includes a display screen module, wherein the display screen module comprises a passive matrix organic light-emitting diode (PMOLED) display panel, and an electrode cable of the PMOLED display panel comprises a transparent cable and a camera, wherein an orthographic projection of a lighting region of the camera on a display surface of a PMOLED display panel is located in the display region in which the transparent cable is located.
US11387292B2
An electronic device is provided. The electronic device includes: a housing; a light-permeable display screen received in the housing and including a display area and a black matrix area surrounding the display area; an emitter received in the housing, arranged between the light-permeable display screen and the housing, opposed to the black matrix area, and configured to emit an infrared light through the black matrix area; and a receiver received in the housing, arranged between the light-permeable display screen and the housing, opposed to the black matrix area, and configured to receive the infrared light through the black matrix area.
US11387291B2
Disclosed herein is a photoelectric sensor, display panel and their manufacturing method. The photoelectric sensor may comprise a photodeformable unit and a piezoelectric unit in contact with the photodeformable unit.
US11387287B2
A method of manufacturing a display device includes providing a display substrate divided into a plurality of emission regions, and a non-emission region adjacent the emission regions; forming a black matrix on the display substrate, the black matrix corresponding to the non-emission region; and forming a plurality of color patterns on the display substrate through a solution process, the plurality of color patterns corresponding to the emission regions.
US11387283B2
A display device includes a plurality of subpixels. The plurality of subpixels include a first subpixel including a first light-emitting layer, and a first subpixel circuit, a second subpixel including a second light-emitting layer, and a second subpixel circuit, a third sub subpixel including a third light-emitting layer, and a third subpixel circuit, a fourth subpixel including a fourth light-emitting layer, and a fourth subpixel circuit, and a fifth subpixel including a fifth light-emitting layer, and a fifth subpxiel circuit. A plurality of scanning lines include a first scanning line connected to the fifth subpixel circuit and a second scanning line adjacent to the first scanning line and connected to the first subpixel circuit. A plurality of data lines include a first data line connected to the first subpixel circuit and the fifth subpixel circuit.
US11387279B2
An imaging element according to an embodiment of the present disclosure includes a first photoelectric conversion section and a second photoelectric conversion section that are stacked in order from light incident side and that selectively detect and photoelectrically convert light beams of different wavelength bands, and the second photoelectric conversion section is disposed at an interval narrower than a pixel pitch of the first photoelectric conversion section.
US11387278B2
An electronic device includes a plurality of pixel electrodes, an active layer on the plurality of pixel electrodes, an opposed electrode on the active layer and covering an entirety of an upper surface of the active layer, and a first encapsulation film on the opposed electrode wherein the opposed electrode and the first encapsulation film have a common planar shapes.
US11387274B2
A method of fabricating a semiconductor device includes forming a first film having a first film stress type and a first film stress intensity over a substrate and forming a second film having a second film stress type and a second film stress intensity over the first film. The second film stress type is different than the first film stress type. The second film stress intensity is about same as the first film stress intensity. The second film compensates stress induced effect of non-flatness of the substrate by the first film.
US11387264B2
A substrate includes a photoelectric converting unit in a pixel unit and a reflection ratio adjusting layer provided on the substrate in an incident direction of incident light with respect to the substrate for adjusting reflection of the incident light on the substrate. The reflection ratio adjusting layer includes a first layer formed on the substrate and a second layer formed on the first layer, the first layer has an uneven structure provided on the substrate, and a recess portion on the uneven structure is filled with a material having a lower refractive index than that of the substrate forming the second layer, and a thickness of the first layer is optimized for a wavelength of light to be received. The present technology may be applied to an imaging device.
US11387261B2
The present disclosure provides an array substrate and a display device. The array substrate includes a display region and a non-display region located at a periphery of the display region. The display region includes a plurality of pixel structures, and an outgoing line of each of the pixel structures is overlapped with and connected to a connection line. The connection line receives a signal provided by a signal supply circuit. An area of a contact interface between at least part of the connection line and the outgoing line is larger than an area of an orthographic projection of the contact interface on a plane where the array substrate is located.
US11387257B2
An array substrate and a manufacturing method thereof, a display panel and a display device are provided. The array substrate includes: a base substrate including a driving thin film transistor region and a switching thin film transistor region; and a buffer layer containing oxygen, the buffer layer including a first buffer part located in the driving thin film transistor region and a second buffer part located in the switching thin film transistor region; the first buffer part has a first thickness, the second buffer part has a second thickness, and the second thickness is greater than the first thickness.
US11387252B2
A non-volatile memory device may include a semiconductor substrate, a stack structure and a source structure. The stack structure may be formed on the semiconductor substrate. The source structure may be formed in a slit configured to divide the stack structure. The source structure may include a sealing layer, a source liner, a gap-filling layer and a source contact pattern. The sealing layer may be formed on an inner wall of the slit. The source liner may be formed on a surface of the sealing layer and a bottom surface of the slit. The gap-filling layer may be formed in the slit. The source contact pattern may be formed on the gap-filling layer in the slit. The source contact pattern may be electrically connected with the source liner.
US11387239B2
A transistor structure of a semiconductor memory device comprises: an active area having a plurality of trenches and a substrate surface, the trenches having openings oriented toward the substrate surface; a plurality of gate structures embedded in the trenches, wherein the substrate surface comprises source regions located on outer sides of the gate structures and a drain region located between the gate structures; node contacts each disposed on one of the source regions; a bit line contact disposed on the drain region and connectable to a bit line, the node contacts sharing the bit line contact through adjacent gate structures, wherein the drain region comprises a first ion implantation layer extending inwardly from the bit line contact, each of the source regions comprising a second ion implantation layer extending inwardly from a corresponding node contact, the first ion implantation layer being deeper than the second ion implantation layer.
US11387232B2
A semiconductor device includes a substrate; a first gate stack disposed on the substrate; a second gate stack disposed on the substrate, wherein a metal component of the first gate stack is different from a metal component of the second gate stack; and a dielectric structure disposed over the substrate and between the first gate stack and the second gate stack, in which the dielectric structure is separated from the first gate stack and the second gate stack, and a distance between the dielectric structure and the first gate stack is substantially equal to a distance between the dielectric structure and the second gate stack.
US11387231B2
The semiconductor device that supplies a charging current to a bootstrap capacitor includes a semiconductor layer, an N+-type diffusion region, an N-type diffusion region, a P+-type diffusion region, a P-type diffusion region, an N+-type diffusion region, a source electrode, a drain electrode, a back gate electrode, and a gate electrode. The N+-type diffusion region and the N-type diffusion region are electrically connected to a first electrode of the bootstrap capacitor. The N+-type diffusion region is supplied with a power supply voltage. The source electrode is connected to the N+-type diffusion region and is supplied with the power supply voltage. The back gate electrode is connected to a region separated from the N+-type diffusion region and is grounded. The breakdown voltage between the source electrode and the back gate electrode is greater than the power supply voltage.
US11387230B2
A system in package structure and an electrostatic discharge protection structure thereof are provided. The electrostatic discharge protection structure includes a redistribution layer and a first transistor array. The redistribution layer has a first electrode and a second electrode. The first transistor array is coupled to a pin end of at least one integrated circuit, the first electrode and the second electrode. The first transistor array has a plurality of transistors. A plurality of first transistors of the transistors are coupled in parallel, and a plurality of second transistors of the transistors are coupled in parallel. The first transistors and the second transistors are configured to be turned on for dissipating an electrostatic discharge current.
US11387229B2
Disclosed is a semiconductor device comprising a logic cell including first and second active regions spaced apart in a first direction on a substrate, first and second active patterns on the first and second active regions and extend in a second direction, first and second source/drain patterns on the first and second active patterns, gate electrodes extending in the first direction to run across the first and second active patterns and arranged in the second direction at a first pitch, first lines in a first interlayer dielectric layer on the gate electrodes and each electrically connected to the first source/drain pattern, the second source/drain pattern, or the gate electrode, and second lines in a second interlayer dielectric layer on the first interlayer dielectric layer and extending parallel to each other in the first direction.
US11387227B2
According to one embodiment, a memory device includes: a first chip including a first insulating layer and a first pad; a plurality of memory units provided in a first area of the first insulating layer and arranged at first intervals in a first direction parallel to a surface of the first chip; a plurality of mark portions provided in a second area of the first insulating layer and arranged at second intervals in the first direction; a second chip including a second pad connected to the first pad and overlapping the first chip in a second direction perpendicular to the surface of the first chip; and a circuit provided in the second chip.
US11387225B2
A fan-out type semiconductor package may include a frame, an upper chip stack, a first redistribution pattern, a lower chip stack, a second redistribution pattern and a redistribution post. The frame may have a cavity. The upper chip stack may be arranged in the cavity. The first redistribution pattern may be arranged under the frame. The first redistribution pattern may be electrically connected with the upper chip stack. The lower chip stack may be arranged under the first redistribution pattern. The second redistribution pattern may be arranged under the lower chip stack. The second redistribution pattern may be electrically connected with the lower chip stack. The redistribution post may be electrically connected between the first redistribution pattern and the second redistribution pattern. Thus, the fan-out type semiconductor package may have an improved heat dissipation characteristic with a thin thickness.
US11387219B2
A power semiconductor module has a first and second intermediate circuit rail, an AC potential rail and with a packaged first and second power semiconductor switch. The respective power semiconductor switch has a first and second load current terminal and a control terminal, wherein the first power semiconductor switch is between the first intermediate circuit rail and the AC potential rail and the second power semiconductor switch is between the second intermediate circuit rail and the AC potential rail. The first load terminal of the first power semiconductor switch is contacted to the first intermediate circuit rail and the second load terminal of the first power semiconductor switch is electrically conductively contacted to the AC potential rail.
US11387212B2
The present application discloses a method for transferring a plurality of micro light emitting diodes (micro LEDs) to a target substrate. The method includes providing a first substrate having an array of the plurality of micro LEDs; providing a target substrate having a bonding layer having a plurality of bonding contacts; applying the plurality of bonding contacts with an electrical potential; aligning the plurality of micro LEDs with the plurality of bonding contacts having the electrical potential; and transferring the plurality of micro LEDs in the first substrate onto the target substrate.
US11387209B2
A package structure and method of forming the same are provided. The package structure includes a die, a first dielectric layer, a second dielectric layer and a conductive terminal. The first dielectric layer covers a bottom surface of the die and includes a first edge portion and a first center portion in contact with the bottom surface of the die. The first edge portion is thicker than the first center portion. The second dielectric layer is disposed on the first dielectric layer and laterally surrounding the die. The second dielectric layer includes a second edge portion on the first edge portion and a second center portion in contact with a sidewall of the die. The second edge portion is thinner than the second center portion. The conductive terminal is disposed over the die and the second dielectric layer and electrically connected to the die.
US11387203B2
A side wettable package includes a molding compound, a chip and multiple conductive pads exposed from a bottom surface of the molding compound. The conductive pads include peripheral conductive pads arranged near a side wall of the molding compound. Each of the peripheral conductive pads is over etched to form an undercut. When the side wettable package is connected to a circuit board via solder, the solder ascends to the undercut of the peripheral conductive pads for improving connection yield and facilitating inspection of soldering quality.
US11387201B2
A chip package includes a semiconductor substrate, a supporting element, an antenna layer, and a redistribution layer. The semiconductor substrate has an inclined sidewall and a conductive pad that protrudes from the inclined sidewall. The supporting element is located on the semiconductor substrate, and has a top surface facing away from the semiconductor substrate, and has an inclined sidewall adjoining the top surface. The antenna layer is located on the top surface of the supporting element. The redistribution layer is located on the inclined sidewall of the supporting element, and is in contact with a sidewall of the conductive pad and an end of the antenna.
US11387200B2
Embodiments of the invention include a microelectronic device that includes a first die formed with a silicon based substrate and a second die coupled to the first die. The second die is formed with compound semiconductor materials in a different substrate (e.g., compound semiconductor substrate, group III-V substrate). An antenna unit is coupled to the second die. The antenna unit transmits and receives communications at a frequency of approximately 4 GHz or higher.
US11387197B2
An electronic integrated circuit chip includes a semiconductor substrate with a front side and a back side. A first reflective shield is positioned adjacent the front side of the semiconductor substrate and a second reflective shield is positioned adjacent the back side of the semiconductor substrate. Photons are emitted by a photon source to pass through the semiconductor substrate and bounce off the first and second reflective shields to reach a photon detector at the front side of the semiconductor substrate. The detected photons are processed in order to determine whether to issue an alert indicating the existence of an attack on the electronic integrated circuit chip.
US11387180B2
A power module including a carrier assembly and a power device disposed on the carrier assembly is provided. The carrier assembly includes a bottom board, a circuit board, a lead frame, and a pad group. The circuit board is disposed on the bottom board and includes a device mounting portion and an extending portion protruding from a side of the device mounting portion. The lead frame disposed on the bottom board includes a first conductive portion and a second conductive portion insulated from each other. The extending portion of the circuit board is disposed between the first and second conductive portions, and an upper surface of the lead frame is flush with a top surface of the extending portion. A pad group includes a first pad disposed on the extending portion, a second pad and a third pad respectively disposed on the first and second conductive portions.
US11387170B2
The present disclosure relates to a radio frequency device that includes a transfer device die and a multilayer redistribution structure underneath the transfer device die. The transfer device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion and a transfer substrate. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. A top surface of the device region is planarized. The transfer substrate resides over the top surface of the device region. Herein, silicon crystal does not exist within the transfer substrate or between the transfer substrate and the active layer. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the transfer device die.
US11387162B2
A packaged power transistor device includes a Direct-Bonded Copper (“DBC”) substrate. Contact pads of a first lead are attached with solderless welds to a metal layer of the DBC substrate. In a first example, the solderless welds are ultrasonic welds. In a second example, the solderless welds are laser welds. A single power transistor realized on a single semiconductor die is attached to the DBC substrate. In one example, a first bond pad of the die is wire bonded to a second lead, and a second bond pad of the die is wire bonded to a third lead. The die, the wire bonds, and the metal layer of the DBC substrate are covered with an amount of plastic encapsulant. Lead trimming is performed to separate the first, second and third leads from the remainder of a leadframe, the result being the packaged power transistor device.
US11387161B2
A device package and a method of forming a device package are described. The device package includes a lid with one or more legs on an outer periphery of the lid, a top surface, and a bottom surface, where the lid is disposed on the substrate. The legs of the lid are attached to the substrate with a sealant. The device package also has one or more dies disposed on the substrate. The die(s) are below the bottom surface of the lid, where each of the dies has a top surface and a bottom surface. The device package further includes a retaining structure disposed between the bottom surface of the lid and the top surface of the die, where the retaining structure has one or more inner walls. The device package includes a thermal interface material disposed within the inner walls of the retaining structure and above the top surface of the die.
US11387159B2
A chip package including a lead frame, a first chip, a heat dissipation structure, and an insulating encapsulant is provided. The lead frame includes a chip pad having a first surface and a second surface opposite to the first surface and a lead connected to the chip pad. The first chip is disposed on the first surface of the chip pad and electrically connected to the lead of the lead frame and to the outside of the insulating encapsulant via the lead. The head dissipation structure is disposed on the second surface of the chip pad and includes a thermal interface material layer attached to the second surface. The insulating encapsulant encapsulates the first chip, the heat dissipation structure, and a portion of the lead frame.
US11387157B2
The present disclosure relates to a radio frequency device that includes a mold device die and a multilayer redistribution structure underneath the mold device die. The mold device die includes a device region with a back-end-of-line (BEOL) portion and a front-end-of-line (FEOL) portion over the BEOL portion, a barrier layer, and a first mold compound. The FEOL portion includes isolation sections and an active layer surrounded by the isolation sections. The barrier layer formed of silicon nitride resides over the active layer and top surfaces of the isolation sections. The first mold compound resides over the barrier layer. Herein, silicon crystal does not exist between the first mold compound and the active layer. The multilayer redistribution structure includes a number of bump structures, which are at a bottom of the multilayer redistribution structure and electrically coupled to the FEOL portion of the mold device die.
US11387155B2
An integrated circuit (IC) includes a substrate including circuitry configured for a function, the circuitry including at least one stress sensitive circuit portion, with at least a portion of nodes in the circuitry electrically coupled to bond pads provided by a top metal layer. A metal wall that is ring-shaped is positioned above the top metal layer that is not electrically coupled to the circuitry. The stress sensitive circuit portion is with at least a majority of its area within an inner area of the substrate that is framed by the metal wall to provide a cavity.
US11387154B2
A memory device includes a first wafer including a first bonding pad disposed on a first surface; a second wafer, including a second bonding pad disposed on a second surface of the second wafer, the second surface of the second wafer bonded on the first surface of the first wafer; and a first test pattern. The first test pattern includes a pair of first test pads disposed on the first surface and electrically coupled to each other; a pair of second test pads disposed on the second surface of the second wafer and respectively coupled to the pair of first test pads, when no misalignment failure between the first bonding pad and the second bonding pad occurs; and a pair of third test pads disposed on a third surface of the second wafer, which is opposite to the second surface, and respectively coupled to the pair of second test pads.
US11387147B2
A method is provided for producing a component based on a plurality of transistors on a substrate including an active area and an electrical isolation area, each transistor including a gate and spacers on either side of the gate, the electrical isolation area including at least one cavity formed as a hollow between a spacer of a first transistor of the plurality of transistors and a spacer of a second transistor of the plurality of transistors, the first and the second transistors being adjacent, the method including: forming the gates of the transistors; forming the spacers; and forming a mechanically constraining layer for the transistors; and after forming the spacers and before forming the mechanically constraining layer, forming a filling configured to at least partially fill, with a filling material, the at least one cavity within the electrical isolation area, between the spacers of the first and the second transistors.
US11387146B2
Semiconductor device and the manufacturing method thereof are disclosed herein. An exemplary semiconductor device comprises a first semiconductor fin and a second semiconductor fin formed over a substrate, wherein lower portions of the first semiconductor fin and the second semiconductor fin are separated by an isolation structure; a first gate stack formed over the first semiconductor fin and a second gate stack formed over the second semiconductor fin; and a separation feature separating the first gate stack and the second gate stack, wherein the separation feature includes a first dielectric layer and a second dielectric layer with an air gap defined therebetween, and a bottom portion of the separation feature being inserted into the isolation structure.
US11387138B2
Examples of a technique for forming a dielectric material for an integrated circuit are provided herein. In an example, an integrated circuit workpiece is received that includes a recess. A first dielectric precursor is deposited in the recess. The first dielectric precursor includes a non-semiconductor component. A second dielectric precursor is deposited in the recess on the first dielectric precursor, and an annealing process is performed such that a portion of the non-semiconductor component of the first dielectric precursor diffuses into the second dielectric precursor. The non-semiconductor component may include oxygen, and the annealing process may be performed in one of a vacuum or an inert gas environment.
US11387137B2
A self-centering susceptor ring assembly is provided. The susceptor ring assembly includes a susceptor ring support member and a susceptor ring supported on the susceptor ring support member. The susceptor ring support member includes at least three pins extending upwardly relative to the lower inner surface of the reaction chamber. The susceptor ring includes at least three detents formed in a bottom surface to receive the pins from the susceptor ring support member. The detents are configured to allow the pins to slide therewithin while the susceptor ring thermally expands and contracts, wherein the detents are sized and shaped such that as the susceptor ring thermally expands and contracts the gap between the susceptor ring and the susceptor located within the aperture of the susceptor ring remains substantially uniform about the entire circumference of the susceptor, and thereby maintains the same center axis.
US11387126B2
An apparatus includes a base configured to receive at least one component. The apparatus also includes a handle connected to the base and extending away from the base. The apparatus further includes a clip configured to slide along at least part of the handle towards and away from the base. The clip is configured to secure the at least one component to the apparatus and to release the at least one component from the apparatus. The clip is configured, after the at least one component is secured, to be locked in order to prevent release of the at least one component from the apparatus. The handle may include a lock configured to selectively prevent movement of the clip along the handle passed the lock.
US11387125B2
Proposed is an EFEM configured to perform wafer transfer between a wafer storage device and process equipment. More particularly, proposed is an EFEM that prevents harmful gases inside a transfer chamber in which wafer transfer is performed from escaping out of the EFEM.
US11387106B2
A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process is disclosed. The method may include: contacting the substrate with a first vapor phase reactant comprising a metalorganic precursor, the metalorganic precursor comprising a metal selected from the group consisting of a cobalt, nickel, tungsten, molybdenum, manganese, iron, and combinations thereof. The method may also include; contacting the substrate with a second vapor phase reactant comprising ruthenium tetroxide (RuO4); wherein the ruthenium-containing film comprises a ruthenium-metal alloy. Semiconductor device structures including ruthenium-metal alloys deposited by the methods of the disclosure are also disclosed.
US11387100B2
A method for manufacturing a mixed substrate having, on a main face of a support substrate, a first region and a second region, includes a) providing a starting substrate which comprises an intermediate layer, consisting of the second material, and the support substrate; b) forming a mask which comprises an aperture delimiting the first region; c) forming a cavity; and d) forming the first region by epitaxially growing the first material in a single crystal form in the cavity The method includes step c1), performed before step d), of forming a protective layer, made of an amorphous material, overlaying the flank of the cavity and leaving the bottom of said cavity exposed to the external environment.
US11387099B2
A spin coating method includes dispensing a coating material including a nonvolatile film material and a volatile solvent over a substrate, and spin coating the coating material over the substrate by spinning the substrate while applying ultrasound waves to the coating material to reduce a viscosity of the coating material during the spin coating.
US11387096B2
A method for forming sequencing flow cells can include providing a semiconductor wafer covered with a dielectric layer, and forming a patterned layer on the dielectric layer. The patterned layer has a differential surface that includes alternating first surface regions and second surface regions. The method can also include attaching a cover wafer to the semiconductor wafer to form a composite wafer structure including a plurality of flow cells. The composite wafer structure can then be singulated to form a plurality of dies. Each die forms a sequencing flow cell. The sequencing flow cell can include a flow channel between a portion of the patterned layer and a portion of the cover wafer, an inlet, and an outlet. Further, the method can include functionalizing the sequencing flow cell to create differential surfaces.
US11387092B2
The disclosure provides a thermal desorption (TD) tube sampler. The sampler comprises a first connector configured to reversibly connect to a TD tube containing a sample, and a second connector configured to couple to a direct injection mass spectrometer. The TD tube sampler is configured to desorb a sample in a TD tube connected thereto, and feed the desorbed sample from the TD tube to a direct injection mass spectrometer such that the desorbed sample does not pass through a cold trap.
US11387089B2
A direct sample introduction device includes: a pre-evacuating chamber that has an internal space extending in a first direction through which a sample introduction probe extends in the first direction; a first ventilation unit that is allowed to be opened and closed, with a first end thereof being connected to the pre-evacuating chamber; and a second ventilation unit a first end of which is connected to the pre-evacuating chamber and a second end of which is connected to a low pressure source.
US11387087B2
A method, apparatus, and computer-readable storage medium for analyzing component separation/mass spectrometer data for a sample having known characteristic includes analyzing reference ion data for a relationship between ion mass, retention time, and intensity. The analyzed data is added to a repository, wherein each ion therein has an intensity maxima within a characteristic retention time range for a characteristic ion mass. If the reference ion is in the repository, the range is modified according to the characteristic retention time of the reference ion intensity maxima. Based on the known characteristic, an ion expected in the sample is selected from the repository, and sample data is compared to data for the ion selected from the repository to determine whether the ion is present in the sample. The range in the repository is then modified according to the characteristic retention time of the intensity maxima for the ion present in the sample.
US11387086B2
A machine for the deposition of material on a substrate by the cathodic sputtering technique is provided, of the type provided with a cathode assembly having a tubular support extending substantially along a first axis (A), and a plurality of magnetic elements constrained to the tubular support and spaced from one another along the first axis (A), and wherein each of the magnetic elements has at least one second axis (M) of magnetic orientation, linking the respective magnetic poles (N; S) and has an outer side jutting from the tubular support and an inner side constrained to the tubular support, wherein the second axis (M) linking the poles of each magnetic element is transverse to the first axis (A) of the tubular support and the polarity (S; N) of the outer sides of two consecutive magnetic elements along the first axis (A) on the tubular support is alternating.
US11387080B2
A substrate support is provided. The substrate support includes a main body having a substrate supporting region and an annular region surrounding the substrate supporting region. The substrate support further includes a first ring disposed on the annular region and having a through-hole, a second ring disposed on the first ring and having an inner peripheral surface facing an end surface of a substrate on the substrate supporting region. The substrate support further includes a lift pin including a lower rod and an upper rod, wherein the lower rod has an upper end surface to be in contact with the first ring, and the upper rod extends upward from the upper end surface of the lower rod to be in contact with the second ring through the through-hole of the first ring and has a length greater than a length of the through-hole.
US11387079B2
A plasma etching chamber including within a vacuum recipient: an etching compartment with a central axis and a surrounding wall enclosing the etching compartment; a pumping compartment with a metal surrounding wall having a feed through opening; a metal partition wall traverse to the axis separating the etching compartment from the pumping compartment; a pumping slit in or along the partition wall; a workpiece support; a metal tubular arrangement through the opening, including a first part coupled to the workpiece support and a second part coupled to the metal surrounding wall, the second part being electrically conductively joint to the metal surrounding wall; an Rf feed line through the tubular arrangement connected to the workpiece support; a system ground connector at an end of the second part; distributed metal connectors establishing electric contact from the metal surrounding wall, across the pumping slit via the partition wall to the first part.
US11387077B2
A disclosed plasma processing method includes generating plasma in a chamber of a plasma processing apparatus by supplying radio frequency power from a radio frequency power source in a first period. The plasma processing method further includes stopping supply of the radio frequency power from the radio frequency power source in a second period following the first period. The plasma processing method further includes applying a negative direct-current voltage from a bias power source to a substrate support in a third period following the second period. In the third period, the radio frequency power is not supplied. In the third period, the negative direct-current voltage is set to generate ions in a chamber by secondary electrons that are emitted by causing ions in the chamber to collide with a substrate.
US11387076B2
Some embodiments include a high voltage waveform generator comprising: a generator inductor; a high voltage nanosecond pulser having one or more solid state switches electrically and/or inductively coupled with the generator inductor, the high voltage nanosecond pulser configured to produce a pulse burst having a burst period, the pulse burst comprising a plurality of pulses having different pulse widths; and a load electrically and/or inductively coupled with the high voltage nanosecond pulser, the generator inductor, and the generator capacitor, the voltage across the load having an output pulse with a pulse width substantially equal to the burst period and the voltage across the load varying in a manner that is substantially proportional with the pulse widths of the plurality of pulses.
US11387074B2
A charged particle beam optical apparatus has a plurality of irradiation optical systems each of which irradiates an object with a charged particle beam and a first control apparatus configured to control a second irradiation optical system on the basis of an operation state of a first irradiation optical system.
US11387072B2
Provided is a charged particle beam device using a detector that detects electromagnetic waves, in which a circumstance in a sample chamber can be checked, and a sample is observed with the detector at the same time. The charged particle beam device that observes a sample by using a charged particle beam, including: a component used for observing the sample; a detector that detects electromagnetic waves; a chamber scope that photographs a picture while irradiating the sample with the electromagnetic waves; and a control unit that controls the detector, the component, and an operation of the chamber scope, in which the control unit can be selectively operated in any one of a pre-photographing mode and an observation mode, the control unit causes the chamber scope to photograph the picture, in a state in which an operation of observing the sample by the detector is not performed in the pre-photographing mode, and the control unit, in the observation mode, does not cause the chamber scope to apply the electromagnetic waves, generates a guide image showing a positional relationship between the sample and the component based on the picture, and outputs the guide image.
US11387063B2
A contact point device includes a fixed contact, a movable contactor that has a movable contact capable of being in contact with the fixed contact by moving in parallel with a first direction, a containing chamber that contains the fixed contact and the movable contact, and a shielding wall disposed inside the containing chamber. The shielding wall is located in the first direction from the fixed contact and the movable contact when viewed in a second direction orthogonal to the first direction, the shielding wall extends along the first direction, and the shielding wall is provided with one or a plurality of through holes that penetrate the shielding wall.
US11387056B2
A key preloading structure including a base, a set of switches and a set of keys is provided. The set of switches is arranged on the base. The set of keys has a rotating shaft and two actuators. The rotating shaft is assembled on the base. One end of each actuator is fixedly connected to the rotating shaft, and another end is disposed on a switch of the set of switches. Each of the two actuators preloads the set of switches with a force less than a triggering force for starting the set of switches.
US11387044B2
A multilayer ceramic capacitor includes a ceramic body including a dielectric layer and first and second internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween, and first and second external electrodes disposed outside of the ceramic body and connected to the first and second internal electrodes, respectively. The ceramic body includes an active portion including of the first and second internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween to form capacitance, and a cover portion disposed in upper and lower portions of the active portion. The cover portion has a larger number of pores than the dielectric layer of the active portion, and the cover portion includes a ceramic-polymer composite filled with a polymer in the pores of the cover portion.
US11387043B2
A high energy density dielectric layer having relative dielectric permittivity greater than εR≥70 and thickness less than 1 micron that when formed between a primary electrode and the secondary electrode of a capacitor, wherein the high energy density dielectric has a dielectric polarization response that is determined solely by orbital deformations of the atomic species forming said high energy density dielectric.
US11387035B2
The present disclosure provides a wireless charging coil, and the wireless charging coil comprises a first coil layer, a second coil layer and a first magnetic material. The second coil layer is stacked in parallel on a surface of the first coil layer to form a stacked structure, and it has a winding path identical to a winding path of the first coil layer. The first magnetic material is disposed on one side of the first coil layer and has a winding path which is different from the winding path of the first coil layer and with said side away from the second coil layer. Currents generated by a power source are evenly distributed in the stack structure to reduce a skin effect when the wireless charging coil is electrically connected to the power source.
US11387033B2
A device includes a dielectric layer having a first surface and a second surface. The device also includes a first set of high-aspect ratio electroplated structures disposed on the first surface of the dielectric layer and a second set of high-aspect ratio electroplated structures disposed on the second surface of the dielectric layer opposite the first set of high-aspect ratio electroplated structures.
US11387023B2
A sintered body that includes ceramic layers and an internal electrode which are alternately stacked on one another is prepared. A first external electrode is formed on a side surface of the sintered body such that the first external electrode is connected to the internal electrode. An insulating layer is formed on a surface of the sintered body by applying a glass coating over an entire of the sintered body having the formed first external electrode. The insulating layer is exposed from the first external electrode. A second external electrode is formed on the first external electrode. This method provides the produced multilayer electronic component with a stable electric connection between the internal electrodes and the external electrodes.
US11387022B1
The present invention is a modified potentiometer shaft that includes a light source for illuminating the top of the shaft. The shaft further includes electrical connections for providing power to the light source through the potentiometer assembly.
US11387021B2
A ceramic member includes a perovskite compound including La, Ca, Mn, and Ti as main components, wherein the amount of Ti is about 5 parts by mole or more and about 20 parts by mole or less, the amount of Ca is about 10 parts by mole or more and about 27 parts by mole or less, and the total amount of La and Ca is about 85 parts by mole or more and about 97 parts by mole or less based on the total amount of Mn and Ti of 100 parts by mole.
US11387018B2
When temperature raising is performed, temperature of a superconducting cable is uniformly raised over an entirety of the superconducting cable. The superconducting cable assumes a linear shape when cooled, and deforms into a helical shape when temperature raising is performed. In a former having a twisted wire structure, twisting directions of an outermost layer and a layer next to the outer most layer are set to be the same, enabling stabilization of the helical deformation of the superconducting cable including the former when the temperature raising is performed.
US11387017B2
The following two problems arise when carbon is added to a starting material powder in the process of production of an MgB2 superconductor: (1) an impurity phase increases; and (2) the degree of substitution of carbon at boron sites is spatially non-uniform. This superconductor production method comprises: a mixing step of mixing a starting material powder and an additive; and a heat treatment step of heat-treating the mixture prepared in the mixing step. The starting material powder is MgB2 powder or a mixed powder of magnesium and boron, and the additive is an Mg—B—C compound containing three elements of magnesium, boron and carbon.
US11387015B2
A wiring member includes a sheet material and a wire-like transmission member fixed on the sheet material. For example, the sheet material is considered to be made by combining a plurality of base materials to be processed to extend to regions different from each other.
US11387011B2
An apparatus for manufacturing a radioisotope comprises a container. The container comprising a portable neutron source and a solution that comprises a particular isotope. The portable neutron source is surrounded by the solution. The solution comprises at least one of copper phthalocyanine or copper salicylaldehyde o-phenylene diamine. The portable neutron source emits neutrons that react with the particular isotope resulting in the transformation of the particular isotope into the radioisotope.
US11387000B2
An interface displaying a plurality of previously determined wellness scores for a plurality of patients may be generated and provided to a display device. The patients may each be associated with a patient characteristic, a treatment, and/or a diagnosis. In some instances, the patients may be associated with a particular treatment provider or group of treatment providers and plurality of previously determined wellness scores may enable a treatment provider to quickly view (via the interface) the current wellness of patients under his or her care. In other instances, the plurality of previously determined wellness scores may be associated with a diagnosis and a corresponding treatment so that the interface provides the wellness scores for patients who have undergone the treatment and a viewer may observe how the treatment impacted the wellness scores for the patients.
US11386991B2
Systems and methods for detecting and classifying clinical features in medical images are disclosed. Natural language processes are applied to speech received from a dictation system to determine clinical and anatomical information for a medical image being viewed. In some examples, gaze location information identifying an eye position is received, as well as an image position for the medical image being viewed. Features of the medical image are detected and classified based on machine learning models. Anatomical associations are generated based on one or more of the classifications, the anatomical information, the gaze information, and the image position. The machine learning models can be trained based on the anatomical associations. In some examples, reports are generated based on the anatomical associations.
US11386988B2
Presented herein are systems and methods that provide for improved 3D segmentation of nuclear medicine images using an artificial intelligence-based deep learning approach. For example, in certain embodiments, the machine learning module receives both an anatomical image (e.g., a CT image) and a functional image (e.g., a PET or SPECT image) as input, and generates, as output, a segmentation mask that identifies one or more particular target tissue regions of interest. The two images are interpreted by the machine learning module as separate channels representative of the same volume. Following segmentation, additional analysis can be performed (e.g., hotspot detection/risk assessment within the identified region of interest).
US11386983B2
A method is provided for anonymizing statistical data for a secure transfer. The method calculates statistical information for each of the statistical data. The method aggregates the statistical information to calculate a valid range for each of the statistical information. The method removes outlier data based on the valid range for each of the statistical data. The method creates pair lists from each of the statistical data and target data, the pair lists having a respective member from both the statistical data and the target data. The method replaces each respective member of the target data by a random number existing in a range of a corresponding one of a plurality of target data bins. The method swaps each pair in each pair list in a random order using the randomized number, wherein the random number used for swapping is different for different ones of the pair lists.
US11386982B2
A patient data management platform, e.g., a community paramedicine platform, which may also be referred to as a mobile integrative health platform or system, may include a web-based, cloud-based, and/or software-based system for tracking patients and patient visits by health care providers, paramedics or other emergency medical services (“EMS”) professionals in an out of hospital, mobile, and/or non-emergency context. Such a platform performs functions and data input, visit logging, and reporting tasks that are distinct from that of a traditional EMS electronic patient care reporting system.
US11386978B2
Mathematical models for the analysis of signal data generated by sequencing of a polynucleotide strand using a pH-based method of detecting nucleotide incorporation(s). In an embodiment, the measured output signal from the reaction confinement region of a reactor array is mathematically modeled. The output signal may be modeled as a linear combination of one or more signal components, including a background signal component. This model is solved to determine the nucleotide incorporation signal. In another embodiment, the incorporation signal from the reaction confinement region of a reactor array is mathematically modeled.
US11386975B2
A three-dimensional stacked memory device includes a buffer die having a plurality of core die memories stacked thereon. The buffer die is configured as a buffer to occupy a first space in the buffer die. The first memory module, disposed in a second space unoccupied by the buffer, is configured to operate as a cache of the core die memories. The controller is configured to detect a fault in a memory area corresponding to a cache line in the core die memories based on a result of a comparison between data stored in the cache line and data stored in the memory area corresponding to the cache line in the core die memories. The second memory module, disposed in a third space unoccupied by the buffer and the first memory module, is configured to replace the memory area when the fault is detected in the memory area.
US11386969B1
Storage devices are capable of utilizing failed bit count (FBC) reduction devices to reduce FBCs for word lines in blocks. An FBC reduction device may include a FBC count component, a threshold component, a pre-verify component, and a soft program component. The FBC count component may access the FBC for the word line, where the block has unprogrammed word lines in an unprogrammed region separated from programmed word lines of a programmed region by the word line. The threshold component may determine whether the FBC of the word line exceeds a predetermined threshold. When the FBC exceeds the threshold, the pre-verify component may perform pre-verify operations on the programmed region. The soft program component may program the word line with first data equal to second data programmed in a second block. In response to disabling pre-verify operations, the program component may program the unprogrammed word lines in the unprogrammed region.
US11386968B1
A memory apparatus and method of operation is provided. The apparatus includes memory cells connected to word lines and bit lines and arranged in a plurality of planes. The apparatus also includes a control circuit coupled to the word lines and the bit lines and configured to determine whether a program operation of the memory cells involves all of the plurality of planes. In response to the program operation of the memory cells not involving all of the plurality of planes, the control circuit adjusts at least one of a bit line ramp rate of a bit line voltage applied to the bit lines and a word line ramp rate of at least one word line voltage applied to the word lines during the program operation based on a quantity of the plurality of planes associated with the memory cells being program-verified in the program operation.
US11386965B2
There are provided a memory device, a memory system including the memory device, and an operating method of the memory system. The memory device includes a memory cell array including a plurality of memory blocks, a peripheral circuit for performing a read operation by applying a read voltage to a selected memory block among the plurality of memory blocks, and control logic for controlling the peripheral circuit to perform a normal read operation using initially set voltages and a read retry operation using new read voltages. The peripheral circuit performs the read retry operation by using the new read voltage corresponding to program states other than at least one program state included in a specific threshold voltage region among a plurality of program states of the selected memory block.
US11386958B2
Generally discussed herein are apparatuses and methods. One such apparatus includes a data line, a first memory cell and a first select transistor. The first transistor has a gate and is coupled between the data line and the first memory cell. The apparatus can include a second memory cell and a second select transistor having a gate. The apparatus can include a third select transistor having a gate. The second select transistor is coupled between the second memory cell and the third select transistor. The third select transistor is coupled between the second select transistor and a source. The apparatus can include a drive transistor coupled to both the gate of the first select transistor and the gate of the second select transistor or the gate of the third select transistor.
US11386956B2
An optical mechanism and an optical system for optical-medium storage. The mechanism includes an optical-medium storage device, and an optical-medium transmission device. The optical-medium storage device is provided with an optical-medium storage module, configured to store an optical medium, and an optical-medium input-output end, configured to receive and transmit the optical medium to the optical-medium storage module and read data from the optical-medium storage module. The optical-medium receiving module is configured to receive the optical medium transmitted from outside and transmit the optical medium to the optical-medium storage module via the optical-medium input-output end, according to a receiving instruction. The optical-medium storing module is configured to form a storage path for the optical medium with the optical-medium storage module. The optical-medium reading module is configured to provide an interface for reading and read the optical medium stored in the optical-medium storage module, according to a reading instruction.
US11386952B2
A method for performing memory access of a Flash cell of a Flash memory includes: performing a first sensing operation corresponding to a first sensing voltage to generate a first digital value of the Flash cell; according to a result of the first sensing operation, performing a plurality of second sensing operations to generate a second digital value of the Flash cell representing at least one candidate threshold voltage of the Flash cell; determining the threshold voltage of the memory Flash cell according to the at least one candidate threshold voltage; determining soft information of a bit stored in the Flash cell according to the threshold voltage of the Flash cell; and using the soft information to perform soft decoding.
US11386947B2
An arithmetic device includes an auto-command/address generation circuit, a first data storage circuit, and a second data storage circuit. The auto-command/address generation circuit generates an auto-load selection signal that activates an auto-load operation based on a level of a power source voltage. In addition, the auto-command/address generation circuit generates an auto-load command for the auto-load operation. The first data storage circuit outputs look-up table data, to which an activation function is applied, to based on the auto-load command. The second data storage circuit stores the look-up table data, output from the first data storage circuit, based on the auto-load command.
US11386939B2
Disclosed herein is an apparatus that includes a memory cell array configured to output a read data and a timing signal in response to a read command signal, an input counter configured to update an input count value in response to the timing signal, an output counter configured to update an output count value in response to the read command signal, and a data FIFO circuit having a plurality of data registers, the data FIFO circuit being configured to store the read data into one of the data registers indicated by the input count value and configured to output the read data stored in one of the data registers indicated by the output count value. The output counter is configured to maintain the output count value without updating in response to the read command signal when an active judge signal is in an inactive state.
US11386937B2
Various implementations described herein refer to a method for providing single port memory with a bitcell array arranged in columns and rows. The method may include coupling a wordline to the single port memory including coupling the wordline to the columns of the bitcell array. The method may include performing multiple memory access operations concurrently in the single port memory including performing a read operation in one column of the bitcell array using the wordline while performing a write operation in another column of the bitcell array using the wordline, or performing a write operation in one column of the bitcell array using the wordline while performing a read operation in another column of the bitcell array using the same wordline.
US11386933B2
An image information processing method is provided. The method includes obtaining a to-be-processed image, and preprocessing the to-be-processed image to obtain target image information, extracting facial feature point information from the target image information, and integrating the facial feature point information to a target region image to obtain an integrated image, the target region image being part of a playback image in a preset playback interval of a video, and displaying the integrated image on the video in response to detecting that the video is played to the preset playback interval.
US11386930B2
A recording medium includes a video stream of a standard-luminance range and a video stream of high-luminance range, which are used selectively in accordance with a playback environment. The recording medium also includes a subtitle stream of the standard-luminance range and a subtitle stream of the high-luminance range, which are used selectively in accordance with the playback environment. A playlist file includes a management region where playback control information relating to a main stream is stored, and includes an extended region. The management region stores first playback control information specifying playing of the video stream of the high-luminance range and the subtitle stream of the high-luminance range in combination. The extended region stores second playback control information specifying playing of the video stream of the standard-luminance range and the subtitle stream of the standard-luminance range in combination.
US11386918B2
This disclosure generally relates to a system and method for assessing reading quality during a reading session. In one embodiment, system is disclosed that analyzes speech that corresponds to a reading session for the duration of the reading session, the consistency of the reading sessions, the speed of the speech during the reading session, the engagement level of the parent during the reading session, and the environment in which the reading session takes place in another embodiment, a method is disclosed for calculating an objective score for a reading session, communicating the score to a parent, and providing suggestions and challenges for improving future reading sessions.
US11386913B2
Methods (700, 800, 900), systems (200, 300, 400, 500, 600) and computer program products are provided. Location metadata (620) associated with an audio object is received (801). The location metadata defines a position of the audio object in an audio scene. It is estimated (630, 802), based on the location metadata, whether the audio object includes dialog. A value representative of a result of the estimation is assigned (803) to an object type parameter (231). In some example embodiments, audio objects are selected (661, 662, 804) based on values of their respective of object type parameters. In some example embodiments, at least one of the selected audio objects is submitted to dialog enhancement (690, 807).
US11386911B1
A system configured to improve audio processing by performing dereverberation and noise reduction during a communication session. The system may apply a two-channel dereverberation algorithm by calculating coherence-to-diffuse ratio (CDR) values and calculating dereverberation (DER) gain values based on the CDR values. While the DER gain values may be calculated at a first stage within the pipeline, the device may apply the DER gain values at a second stage within the pipeline. For example, the device may calculate the DER gain values prior to performing residual echo suppression (RES) processing but may apply the DER gain values after performing RES processing, in order to avoid excessive attenuation of the local speech. In addition to removing reverberation, the DER gain values also remove diffuse noise components, reducing an amount of noise reduction required. Thus, the device may soften noise reduction when the DER gain values are applied.
US11386909B2
An audio decoder for providing a decoded audio information on the basis of an encoded audio information is configured to obtain decoded spectral values on the basis of an encoded information representing the spectral values. The audio decoder is configured to jointly decode two or more most significant bits per spectral value on the basis of respective symbol codes for a set of spectral values using an arithmetic decoding, wherein a respective symbol code represents two or more most significant bits per spectral value for one or more spectral values. The audio decoder is configured to decode one or more least significant bits associated with one or more of the spectral values in dependence on how much least significant bit information is available, such that one or more least significant bits associated with one or more of the spectral values are decoded.
US11386908B2
Example methods and apparatus to audio watermarking and watermark detection and extraction are disclosed herein. Example methods disclosed herein include determining a first watermark symbol encoded in encoded audio samples and storing the first watermark symbol in tangible memory. Disclosed example methods also include determining a second watermark symbol encoded in the encoded audio samples and storing the second watermark symbol in the tangible memory. Disclosed example methods further include, in response to determining that the first watermark symbol matches the second watermark symbol, outputting the first watermark symbol.
US11386888B2
Implementations of the disclosed subject matter provide a method of transmitting, from a mobile robot device, sound and/or at least one image captured by a sensor to a remote user device. The mobile robot device may receive at least one first control operation for the mobile robot device to move within an area via a communications network from a remote user device. An audio signal may be transmitted based on sound received at a microphone of the mobile robot device in the area. The audio signal received from the remote user device may be output at a speaker of the mobile robot device. A volume of the audio signal output by the speaker may be adjusted based on a size of the area and on an average or a median of an amplitude of frequencies in the area based on the sound received by the microphone.
US11386887B1
This disclosure proposes systems and methods for processing natural language inputs using data associated with multiple language recognition contexts (LRC). A system using multiple LRCs can receive input data from a device, identify a first identifier associated with the device, and further identify second identifiers associated with the first identifier and representing candidate users of the device. The system can access language processing data used for natural language processing for the LRCs corresponding to each of the first and second identifiers, and process the input data using the language processing data at one or more stages of automatic speech recognition, natural language understanding, entity resolution, and/or command execution. User recognition can reduce the number of candidate users, and thus the amount of data used to process the input data. Dynamic arbitration can select from between competing hypotheses representing the first identifier and a second identifier, respectively.
US11386884B2
The present disclosure relates a new platform and system for the transcription of electronic online content, such as a website, from mostly visual/text format normally seen on screens to a different audio-adapted format for being broadcasted to the user via an intelligent speaker system, such as the Echo® system. More specifically, the platform and system includes an automated engine with artificial intelligence and machine learning for the transformation of written websites into to audible-enable content for use in association with new technology intelligent speakers, for implementing data mining, processing, and summarizing tools. The system primarily relies upon a capacity to diagnose, recognize template-like patterns in html format to create different levels of importance to the content stored online. Once content is triaged, it then is given processed in one of many way to help deliver and render useful content based on one of many features. Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
US11386877B2
Sound equipment includes: a beat position acquiring unit configured to analyze a beat position of music piece data to be reproduced or acquire an analysis result; and a beat position displaying unit configured to display a scale of a differential numerical value of the number of beats in a plus direction and a minus direction of the music piece data with reference to a currently reproduced position of the music piece data.
US11386871B2
A vehicle instrument panel assembly includes a display that generates an image indicative of a vehicle operating parameter, a first sensor disposed proximate the display that senses a position of an operator relative to the display and a controller that modifies the image responsive to the sensed position of the operator.
US11386867B2
An adaptation status judging unit (112) judges an adaptation status of a driver to a color. A goal color decision unit (113) decides a goal color of a display range based on the adaptation status of the driver. An applicable color decision unit (115) decides an applicable color of a display portion on a screen of a display based on the goal color, the display portion displaying information. A control unit (116) controls the display based on the applicable color of the display portion.
US11386865B2
The disclosure relates generally to a method of changing an optical state of an electrochromic film. The electrochromic film may have a plurality of optical states. The method may include selecting a desired state of the plurality of optical states; injecting electric charges into the electrochromic film; monitoring an amount of the electric charges injected into the electrochromic film; and stopping injecting the electric charges when the electric charges reaches a pre-set amount corresponding to the desired state.
US11386864B2
A display panel includes a plurality of source driving chips, a power management circuit, and a plurality of switching units. The power management circuit includes a first output terminal, and the first output terminal is configured to provide a digital power signal to the source driving chips; and the plurality of switching units are respectively arranged corresponding to at least one of the source driving chips, the switching units are connected to the first output terminal and the corresponding source driving chips, and at least part of the switching units are configured to turn on the corresponding source driving chips and the first output terminal in different time periods in response to different control signals.
US11386860B2
According to one embodiment, a display device includes a display panel including a display area where first drive areas and second drive areas are alternately disposed, and display function layers which include first display function layers and second display function layers and which are changed to a transparent state and a scattering state, and a control unit. The control unit applies a drive voltage to the first display function layers, in a first field period. The control unit applies the drive voltage to the second display function layers, in a second field period. A polarity of the drive voltage in the first field period is different from a polarity of the drive voltage in the second field period.
US11386854B2
A pixel circuit includes: a driving switching element; a data initializer to initialize a voltage of a control electrode of the driving switching element; a data writer to write a data voltage to the driving switching element; an organic light emitting element; an organic light emitting element initializer to initialize an anode electrode of the organic light emitting element to a second initialization voltage based on an organic light emitting element initialization gate signal; and a light emitting controller to control an emission of the organic light emitting element. The organic light emitting element initializer includes: a control electrode to receive the organic light emitting element initialization gate signal; an input electrode to receive the second initialization voltage; an output electrode connected to the anode electrode; and a conductive layer to receive a compensation control signal that is different from the organic light emitting element initialization gate signal.
US11386852B2
A display device includes a display panel including a first partial panel region and a second partial panel region, and a panel driver configured to drive the display panel. The panel driver determines a first driving frequency for the first partial panel region and a second driving frequency for the second partial panel region. When the first driving frequency and the second driving frequency are different from each other, the panel driver sets a boundary portion including a boundary between the first partial panel region and the second partial panel region, and determines a third driving frequency for the boundary portion to be between the first driving frequency and the second driving frequency.
US11386849B2
An embodiment of the present invention provides a light emitting display device including a display panel including M (M being an integer equal to or greater than 2) subpixels sharing a single sensing line, and a circuit for sensing elements included in at least one of the M subpixels through the sensing line. A first subpixel from among the M subpixels can be defined as a sensing subpixel, a second subpixel can be defined as a non-sensing subpixel. The second subpixel can have an initial period for applying an initialization voltage for a time longer than a data writing period for applying a sensing voltage to the first subpixel.
US11386844B2
A display device includes: a plurality of pixels, where each of the pixels includes a light emitting device and a pixel circuit coupled to the light emitting device; a scan driver which supplies a scan signal to the pixel circuit; a data driver which supplies a data signal to the pixel circuit; a power supply which supplies a voltage to the pixel circuit; a timing controller which controls the scan driver; a first signal generator which provides a first clock signal to the timing controller; and a second signal generator which provides a second clock signal to the timing controller.
US11386840B2
The present application discloses a current-driven display device capable of preventing a decrease in display quality due to luminance gradient caused by a voltage drop in a power supply line while preventing an increase in circuit and processing necessary for driving a pixel circuit. In an organic EL display device, a high-level power supply line ELVDD includes a trunk wire ELV0 and N branch wires ELV1 to ELVN diverging from the trunk wire ELV0 and arranged along the plurality of scanning signal lines G1 to GN, respectively. A display control circuit determines estimated values of currents supplied from the power supply line to the respective pixel cicuits based on input image data, calculates a voltage drop ΔVn=V0−Vn at a connection point between the trunk wire and the branch wire on each row during a data write period for the pixel circuits on the each row based on a current in the trunk wire calculated from the estimated values, and generates a driving image data signal Sdda to be provided to a data-side drive circuit by correcting the input image data so as to compensate for the voltage drop ΔVn.
US11386836B1
An amplifier for driving a display panel includes an input stage, a gain stage and an output stage. The gain stage is coupled to the input stage. The output stage, coupled to the gain stage, includes a first output driving circuit and a second output driving circuit. The first output driving circuit is operated in a first voltage domain. The second output driving circuit is operated in a second voltage domain different from the first voltage domain.
US11386830B2
A display apparatus includes an addition section, a conversion section, and a control section. The addition section adds a dither signal to a digital image signal for each of a plurality of color components, the digital image signal being generated on a basis of each of the plurality of color components different from each other, and inputted in predetermined order for each sub-frame included in a frame. The conversion section performs digital to analog conversion of converting the digital image signal to which the dither signal is added into an analog image signal. The control section controls a pattern of the dither signal, at each predetermined cycle including a plurality of the sub-frames, depending on the order in which the digital image signal for each of the color components is inputted, within the frame.
US11386825B2
A multiplexer circuit and a display panel having the multiplexer circuit are provided. The multiplexer circuit includes a plurality of first transistors, a plurality of first control lines, a plurality of second control lines, a plurality of first transmission lines, and a plurality of second transmission lines. The first transistors are sequentially arranged along a first direction. The first control lines extend along the first direction and are disposed on a first side of the first transistors. The second control lines extend along the first direction and are disposed on a second side of the first transistors. The first transmission lines are respectively coupled between control terminals of a first group of the first transistors and the first control lines. The second transmission lines are respectively coupled to control terminals of a second group of the first transistors and the second control lines.
US11386817B2
The invention relates to an advertising system, comprising an advertising medium with a support, and at least one film, characterized in that the support has at least one holder for holding a flat film. The film can be introduced into the holder and can be replaced, and the holder has multiple holding elements which alone or together with the support form one or more grooves that are suited and designed to hold the film in the formed groove and guide same so as to form a cylindrical or semicylindrical structure.
US11386815B2
A system to improve the management of through traffic and vehicles entering and exiting a multilane roadway. The lanes are separated by at least one lane separator which should not be crossed by traffic along a designated portion of the roadway, such as within a predetermined distance from a roadway entrance or exit. The at least one lane separator may be any lane marking, barrier, or the like. The at least one lane separator can be any length and located anywhere with respect to the lanes.
US11386810B2
A new physical neck model where all neck injuries and particularly the “whiplash” neck injuries can be examined for “adult crash test dummies” used in vehicle crash tests in the vehicle safety field includes a number of connection interface components, five intervertebral discs, seven vertebrae, four muscle interfaces, and at least one sensor set.
US11386791B2
Systems and methods provide for optimizing dispatching of autonomous vehicles (AVs) using an AV fleet management system. The AV fleet management system can receive first data indicative of client application to the AV fleet management system being opened on a client device. The AV fleet management system can determine availability of an AV within proximity of the client device. The AV fleet management system can determine a first route from a first location of the AV to a second location of the client device. The AV fleet management system can dispatch the AV from the first location to the second location via the first route prior to determining a destination of a second route from the second location to the destination.
US11386788B2
A method and an apparatus for controlling interaction between a vehicle and a vehicle-mounted device are provided according to embodiments of the disclosure. The method includes: determining whether the vehicle is in a parking state; acquiring input operation information of a user, in response to determining the vehicle being in the parking state; determining whether there is as operation matching the input operation information based on the input operation information; and sending control information for executing the operation to the vehicle-mounted device, in response to determining there being the operation matching the input operation information. The embodiment achieves controlling the vehicle-mounted device based on the vehicle state and the user input.
US11386782B2
A method and system are provided in which maintenance vehicles collect information from sensors and operators, forward the collected information to a server, and, is response, receive maps and operator instructions.
US11386781B1
A vehicle identification system includes one or more displays associated with a vehicle, and a network-accessible controller. The one or more displays are located to be visible from an exterior of the vehicle. The controller is adapted to generate a first signal with an identifier to be transmitted to a mobile communication device associated with a vehicle or its driver in response to receiving a ride request from a user. The mobile communication device associated with the vehicle or its driver is adapted to generate a second signal indicative of the identifier to be transmitted to the one or more displays. The controller is also adapted to generate a further signal for displaying an advertisement on the one or more displays.
US11386769B2
Systems, methods, and apparatuses are provided for creating and providing reminders that involve an activity states of an application on a device. An activity state can correspond to a particular view within an application, e.g., a view that was reached after several inputs from a user. A user can provide a specification of an activity state in a variety of ways, e.g., providing a reminder command while the application is executing in the foreground with the desired activity state or by voice commands that specify the activity state. A user can provide one or more trigger criteria. Once the reminder is triggered, the specified activity state can be provided to the user.
US11386763B2
The invention relates to a luminaire network comprising a plurality of luminaires as well as a central unit, and comprising a central communication unit. A plurality of luminaires in the network comprises a communication unit configured to make it possible for the luminaires to communicate with each other and/or with the central communication unit, as well as a control unit configured to control the luminaire as well as the communication unit. The central unit comprises information about the location of the luminaires. A plurality of the luminaires in the luminaire network further comprise at least one sensor which can sense information relating to the environment of the luminaire, wherein the communication unit of said luminaires is configured to send messages relating to the sensed information to the central communication unit, and the central unit is configured to analyze the received messages and to output the results of the analysis.
US11386755B2
A method and system execute a competitive event based on poker comprising: providing random playing cards to a specific area defined as a placement area for dealer hand playing cards and providing random playing cards to a second specific area defined as a placement area for player hand playing cards; providing exactly 2, 3 or 4 random playing cards from the set to the placement area for player hand playing cards and dealing 2+3, 3+3 or 4+3 playing cards, respectively, to the dealer hand position; moving one of the random playing cards in the dealer hand position to the player hand position to form a final player hand and a final dealer hand position; and comparing the respective poker ranks of the final player hand and the final dealer hand to determine a winning, losing or tying outcome between the final player hand and the final dealer hand.
US11386752B2
A method, computer readable medium, and game machine are presented, that provide a skill-based game of a wagering machine with a predetermined return-to-player. The method includes constructing, for each initial game state of a plurality of initial game states, a decision tree that includes a root node, intermediary nodes, leaf nodes, and collective leaf nodes that each represents a class of game states and its expected minimum payout. The method further includes determining, based on the decision tree for each initial game state, an expected minimum payout for the respective initial game state; and generating, for the wagering machine, a table that weights each initial game state of the plurality of initial games states based on its respective expected minimum payout to achieve a desired minimum return-to-player.
US11386751B2
A quarantine wallet associated with a user account that support funds to be quarantined for a defined period. A user account server determines that a respective win amount satisfies one or more funds quarantine criteria and removes at least a portion of the win amount satisfying the one or more funds quarantine criteria from access by one or more wallets associated with a user account. The user account server stores the removed portion of the win amount as a quarantined fund amount in a quarantine wallet associated with the user account. The user account server sets a release time for the quarantined funds amount in the quarantine wallet and performs a transfer of the quarantined funds amount to the one or more wallets based on satisfying the release time.
US11386742B2
A gaming event is executed on electronic gaming media. A wager is accepted by a processor and a random selection of virtual letter symbols are provided to a player by a display screen outside of a grid of rows and columns on a wagering device. The player inputs commands to the processor to switch the virtual letter symbols into individual frames in the grid, for example, until available virtual letter symbols are exhausted. A final arrangement of the virtual letter symbols on the grid is evaluated at least as to how many words are formed on paylines, and paytables are used to resolve the wager.
US11386740B2
A vending system is disclosed and claimed. In particular, the disclosed vending machine system allows multiple vendors to sell food items through a vending machine. The vending machine provides multiple locked bins, each of which can authenticate to a single vendor. Also, the vending machine implements price adjustment rules, such as raising the price of a particular item during, before, and after a high traffic event. In addition, customer dietary restrictions can be tracked, and purchases of food items that would violate those dietary restrictions can be prevented. The vending system allows a consumer to perform contactless vending transactions, with the identity of the consumer being verified through biometrics and a camera. Upon verification of the consumer, the vending system transacts payment for selected items, dispenses items in a contactless manner, updates inventory of items, records the purchase history of consumer, and provides indisputable visual media evidence of the transaction.
US11386738B1
The automated teller machine that conducts transactions by a customer operation is provided. The automated teller machine comprises a customer service part configured to receive customer operations; an input pocket; a media recognizer configured to recognize the medium; a first storage storing the medium; a discharge pocket configured to place the medium delivered from the first storage so that the customer can take the medium out; a first transport path that connect the input pocket, the media recognizer, the first storage, and the discharge pocket to transport the medium; a second storage storing a collected medium that is forgotten to be taken out from the discharge pocket by the customer; and a second transport path connecting the second storage to the first transport path, wherein the second storage is arranged above the first transport paths and on an opposite side of the customer service part.
US11386735B2
Secure handsfree proximity-based access control is provided by a system that includes system devices located near different secured resources. Each system device may broadcast a changing unique identifier to user devices in wireless range of the system device. The system may also include an application that runs on each user device, and that obtains a signal strength measurement in response to receiving or detecting a current identifier advertised from a system device. The application may request access to a secured resource over one or more available wireless networks in response to satisfying the signal strength threshold. The system may include an access control unit that authorizes access to the secured resource based on the earliest arriving request, and further based on an identifier of the request matching to the current identifier, and the current identifier not having been previously used to obtain access to the secured resource.
US11386731B2
An access control system may be deployed at a location in a multi-tenant environment. The access control system may store access control information at one or more of an access control device, an access control bridge device, or an access control server. Tenant-specific access control information may be respectively stored at tenant-specific access control devices to control access to tenant-specific areas of the location. Shared access control information may be stored at shared access control devices to control access to common areas of the location. The access control system may be selectively configured such that an access device, an access control bridge device, or the access control server processes requests for access that are received at the location.
US11386725B2
A vehicle diagnostic apparatus includes a receiver, an electronic controller and a display. The receiver is configured to receive information from a vehicle monitor. The electronic controller is configured to determine a status of the monitor, and output the status in an 8 bit format based on the information received from the vehicle monitor, at least two of the bits in the 8 bit format indicating a predetermined status of the vehicle monitor. The display is configured to display the output.
US11386723B2
Embodiments of the invention include a vehicle telematics system including a telematics device and a remote server system, wherein the telematics device obtains sensor data from at least one sensor installed in a vehicle, calculates peak resultant data based on the sensor data, generates crash score data based on the peak resultant data and a set of crash curve data for the vehicle, and provides the obtained sensor data when the crash score data exceeds a crash threshold to the remote server system and the remote server system obtains vehicle sensor data and vehicle identification data from the vehicle telematics device, calculates resultant change data and absolute speed change data based on the obtained sensor data and/or the vehicle identification data, and generates crash occurred data when the resultant change data exceeds a first threshold value and when the absolute speed change data is below a second threshold value.
US11386722B2
An example operation may include one or more of requesting, by a processor of a device, permissions to provide access to a transport to a diagnostic location from a network of a plurality of diagnostic locations, in response to receiving the permissions from the network of the plurality of the diagnostic locations, authenticating the diagnostic location, by the device, providing a pre-stored one-time access key to the transport to the diagnostic location, and receiving, by the device, diagnostics from the diagnostic location.
US11386719B2
Provided is an electronic device that performs user authentication by using iris recognition, the electronic device including a camera capturing an eye image of a user, a display, a memory storing one or more instructions, and at least one processor configured to execute the one or more instructions stored in the memory, in which the at least one processor is configured to display a guide image on the display, change an attribute of the guide image from a first state to a second state and display the guide image, obtain first iris data from a first eye image of the user corresponding to a guide image having an attribute of the first state, obtain second iris data from a second eye image of the user corresponding to a guide image having an attribute of the second state, and perform user authentication based on the first iris data and the second iris data.
US11386717B2
A fingerprint inputting method used in an electronic device that includes a display screen and an under-screen fingerprint module. The method includes: displaying a setting interface of fingerprint input having a button of adding fingerprint function; in response to detecting an instruction on the fingerprint adding function, obtaining at least one screen image by the under-screen fingerprint module while a user finger is not pressing a fingerprint identification region; displaying a guiding interface of fingerprint input on the display screen and obtaining a plurality of fingerprint images while the user finger is pressing the fingerprint identification region by the under-screen fingerprint module; and generating a fingerprint model according to the at least one screen image and the plurality of fingerprint images.
US11386715B2
A biometric apparatus includes a calculation device that processes first time series data from a first measuring device and second time series data from a second measuring device; a display device that displays the time series data; a trigger signal generator that generates one or more trigger signals; and an input unit, wherein the calculation device determines one or more specific intervals of the first time series data based on the one or more trigger signals; configures a classification reference for classifying time series data in the one or more specific intervals using the time series data in a first specific interval using an input signal as a trigger; classifies the second time series data for the one or more specific intervals using a result of classifying the first time series data based on the classification reference; and displays a classification result of the second time series data.
US11386711B2
The technology disclosed relates to highly functional/highly accurate motion sensory control devices for use in automotive and industrial control systems capable of capturing and providing images to motion capture systems that detect gestures in a three dimensional (3D) sensory space.
US11386703B2
A service robot is capable of communicating with a reception device that assigns at least a reception number. The service robot includes: an image information acquirer that acquires image information including an image of a customer; a reception number acquirer that acquires a reception number from the reception device, in response to a reception operation performed by the customer; and a storage unit that stores the acquired reception number and the acquired image information in association with each other.
US11386697B2
The present disclosure teaches a method of utilizing image “match points” to measure and detect changes in a physical object. In some cases “degradation” or “wear and tear” of the physical object is assessed, while in other applications this disclosure is applicable to measuring intentional changes, such as changes made by additive or subtractive manufacturing processes, which may, for example, involve adding a layer or removing a layer by machining. A system may include a scanner, and a digital fingerprinting process, coupled to an object change computer server. The server is coupled to a datastore that stores class digital fingerprints, selected object digital fingerprints collected over time, match measurements, and deterioration metrics.
US11386691B2
The present disclosure provides an optical device, a module, an apparatus and a system for fingerprint identification. The optical device includes: a first lens array including a plurality of first lenses; a second lens array opposite to the first lens array, including a plurality of second lenses; and a light shielding element between the first lens array and the second lens array, the light shielding element including a plurality of light-transmitting apertures. Image focal planes of the plurality of second lenses, object focal planes of the plurality of first lenses, and the light shielding element are coplanar. The plurality of first lenses are in one-to-one correspondence with the plurality of second lenses and the plurality of light-transmitting apertures, respectively.
US11386690B2
A fingerprint identification module and a driving method therefor, and a display apparatus. The fingerprint identification module includes a base substrate and a plurality of fingerprint identification regions located on the base substrate, each fingerprint identification region includes a plurality of receiving electrodes, a piezoelectric material layer and a plurality of driving electrodes; and the plurality of receiving electrodes, the piezoelectric material layer and the plurality of driving electrodes form a plurality of ultrasonic sensors. Each fingerprint identification region is correspondingly provided with at least one driving chip, the plurality of driving electrodes in each fingerprint identification region is connected to an output terminal of the at least one driving chip; and the at least one driving chip is configured to apply a driving voltage to the plurality of driving electrodes to driving the plurality of ultrasonic sensors in the corresponding fingerprint identification region to perform fingerprint identification.
US11386688B2
Provided is an imaging device including a light source that radiates light in at least two different wavelength bands and an imaging element that acquires signals individually from the light in the two different wavelength bands. The two different wavelength bands include a first wavelength band from 400 to 580 nm for use in dermatoglyphic pattern authentication, and a second wavelength band of 650 nm or more mainly including near-infrared rays for use in vein authentication.
US11386685B2
Techniques are provided for identifying structural elements of a document. One Methodology includes generating a first channel of rasterized content by rasterizing a full page of the document and generating one or more additional channels of rasterized content from the page of the document by rasterizing one or more corresponding content types from the page of the document. Each of the one or more additional channels includes a specific type of content that is different from each of the other one or more additional channels. The methodology further includes inputting the first channel of rasterized content and the one or more additional channels of rasterized content into a machine learning (ML) model. The methodology continues with determining location and classification for each of a plurality of structural elements on the page of the document using the ML model.
US11386683B1
Technologies are provided for the detection and recognition of overlaid content within video content. Some embodiments include a computing system that can receive data defining a sequence of frames corresponding to video content. The sequence of frames spans a defined time interval. The computing system can determine image changes between contiguous images defined by contiguous frames in the sequence of frames. A subset of the image changes can indicate static content within the video content, and another subset of the image changes can indicate non-static content. The computing system can then generate a composite image using at least the image changes, where the composite image includes an area representing the static content. Using the composite image, the computing system can classify the area as a defined visual element. Examples of the defined visual element include a logo and text.
US11386681B2
An information processing apparatus according to an embodiment of the present technology includes: an acquisition unit; and a generation control unit. The acquisition unit acquires an importance level relating to at least one part of an object. The generation control unit controls, on the basis of the acquired importance level, generation of a model of the object displayed in a virtual space.
US11386679B2
The embodiments of the present disclosure disclose a driving state analysis method. The driving state analysis method includes: performing fatigue state detection and distraction state detection for a driver on a driver image to obtain a fatigue state detection result and a distraction state detection result; in response to one of the fatigue state detection result and the distraction state detection result satisfying a predetermined alarm condition, outputting alarm information of a corresponding detection result that satisfies the predetermined alarm condition; and/or, in response to both the fatigue state detection result and the distraction state detection result satisfying the predetermined alarm condition, outputting alarm information of the fatigue state detection result that satisfies the predetermined alarm condition.
US11386678B2
A method and system are disclosed and include, in response to a user being located within a vehicle associated with the vehicle-sharing request, obtaining, using a processor configured to execute instructions stored in a nontransitory computer-readable medium, image data corresponding to the user from a camera. The method also includes determining, using the processor, whether the image data corresponds to an image associated with a vehicle-sharing account of the user. The method also includes in response to determining the image data corresponds to the image, enabling, using the processor, the user to activate the vehicle.
US11386675B2
A vehicle may include a camera for capturing a region around the vehicle, a positioning sensor for measuring a position of the vehicle, a database for storing a precise map, and a learning data generating apparatus for generating data for learning based on the captured region, the position of the vehicle, and the precise map.
US11386671B2
Depth estimates for an object made by one or more sensors of a vehicle may be refined using locations of environmental attributes that are proximate the object. An image captured of the object proximate an environmental attribute may be analyzed to determine where the object is positioned relative to the environmental attribute. A machine-learned model may be used to detect the environmental attribute, and a location of the environmental attribute may be determined from map data. A probability of a location of the object may be determined based on the known location of the environmental attribute. The location probability of the object may be used to refine depth estimates generated by other means, such as a monocular depth estimation from an image using computer vision.
US11386666B2
A sequence layer in a machine-learning engine configured to learn from the observations of a computer vision engine. In one embodiment, the machine-learning engine uses the voting experts to segment adaptive resonance theory (ART) network label sequences for different objects observed in a scene. The sequence layer may be configured to observe the ART label sequences and incrementally build, update, and trim, and reorganize an ngram trie for those label sequences. The sequence layer computes the entropies for the nodes in the ngram trie and determines a sliding window length and vote count parameters. Once determined, the sequence layer may segment newly observed sequences to estimate the primitive events observed in the scene as well as issue alerts for inter-sequence and intra-sequence anomalies.
US11386658B2
An information processing apparatus includes a feature extraction unit that analyzes a video to extract a feature element, a discriminating unit that, based on a difference in the feature element for each of multiple portions of the video, performs discrimination that discriminates between an explaining scene and an explained scene, the explaining scene being a scene providing explanation, the explained scene being a captured scene of what is explained in the explaining scene, and a categorizing unit that categorizes each portion of the video based on a result of the discrimination.
US11386657B2
Methods and systems for performing sequence level prediction of a video scene are described. Video information in a video scene is represented as a sequence of features depicted each frame. One or more scene affective labels are provided at the end of the sequence. Each label pertains to the entire sequence of frames of data. An action is taken with an agent controlled by a machine learning algorithm for a current frame of the sequence at a current time step. An output of the action represents affective label prediction for the frame at the current time step. A pool of actions taken up until the current time step including the action taken with the agent is transformed into a predicted affective history for a subsequent time step. A reward is generated on predicted actions up to the current time step by comparing the predicted actions against corresponding annotated scene affective labels.
US11386652B2
There are provided systems and methods for tagging objects in augmented reality to track object data. A user may capture visual data utilizing a device at a location, where the visual data includes one or more objects that the user may wish to associate with a purchase or sell offer. A device may perform object recognition to identify the object and an identifying characteristic of the object. A service provider may then receive offer details and may generate a graphical object or other virtual data that can be displayed with the object in an augmented reality experience. Later, when the object is identified in another augmented reality experience on a different device, the virtual graphic may be displayed, which may show the offer for the object. Further, the augmented reality may be used to process a transaction for the object and track the object.
US11386649B2
Technology is provided for identifying concrete and/or asphalt (or other materials) in a multispectral satellite image that has multiple bands including a first set of bands from a first sensor and a second set of bands from a second sensor. The second sensor is at a different position on a focal plane as compared to the first sensor so that a single location depicted in the multispectral image will have been sensed at different times by the first sensor and the second sensor. The system identifies moving vehicles in the multispectral image and subsequently identifies sample pixels in the multispectral image that are near the moving vehicles. These pixels are high confidence samples of roads made of concrete and/or asphalt. Additional pixels are identified in the multispectral image having spectral characteristics that are within a threshold of spectral characteristics of the sample pixels. These additional pixels also depict concrete and/or asphalt.
US11386646B2
This document describes multi-modal platforms that receive multi-modal inputs and generates interactive experiences based on the inputs. In one aspect, a method includes receiving input data comprising one or more images of an area of a sports venue. A person is detected in the one or more images. Apparel information including at least one of a team identifier or player identifier on athletic apparel of the person is identifier in the one or more images. An interactive experience that includes a particular sports-related character is selected based at least on the apparel information. The interactive experience is initiated on an interactive display. The interactive experience includes video of the particular sports-related character delivering a message to the person.
US11386641B2
A platform for design of a lighting installation generally includes an automated search engine for retrieving and storing a plurality of lighting objects in a lighting object library and a lighting design environment providing a visual representation of a lighting space containing lighting space objects and lighting objects. The visual representation is based on properties of the lighting space objects and lighting objects obtained from the lighting object library. A plurality of aesthetic filters is configured to permit a designer in a design environment to adjust parameters of the plurality of lighting objects handled in the design environment to provide a desired collective lighting effect using the plurality of lighting objects.
US11386638B2
The image data obtained by imaging the component in the component recognition when the component mounter mounts the component on the board is stored in the storage, and the luminance related condition is optimized based on this image data. Therefore, a proper luminance related condition corresponding to the component to be actually mounted can be obtained.
US11386637B2
An object detection method includes setting a first window region and a second window region larger than the first window region that correspond to partial regions of different sizes in an input image, downsampling the second window region to generate a resized second window region, detecting a first object candidate from the first window region and a second object candidate from the resized second window region, and detecting an object included in the input image based on one or both of the first object candidate and the second object candidate.
US11386630B2
In one embodiment, the system may receive a serialized data stream generated by serializing data chunks including data from a video stream and contextual data streams associated with the video stream. The contextual data streams may include a first computed data stream and a sensor data stream. The system may extract the video data stream and one or more contextual data streams from the serialized data stream. The system may generate a second computed data stream based on the sensor data stream in the extracted contextual data streams. The system may compare the second computed data stream to the first computed data stream extracted from the serialized data stream to select a computed data stream based on one or more pre-determined criteria. The system may render an artificial reality effect for display with the extracted video data stream based at least in part on the selected computed data stream.
US11386629B2
An augmented reality viewing system is described. A local coordinate frame of local content is transformed to a world coordinate frame. A further transformation is made to a head coordinate frame and a further transformation is made to a camera coordinate frame that includes all pupil positions of an eye. One or more users may interact in separate sessions with a viewing system. If a canonical map is available, the earlier map is downloaded onto a viewing device of a user. The viewing device then generates another map and localizes the subsequent map to the canonical map.
US11386615B2
A series of captured images of a user is received. Using a processor, the images are processed to identify a portion of each of the images corresponding to the user. Parameters of a predetermined three-dimensional human model are modified to fit a modified version of the predetermined three-dimensional human model across the identified portions of the images to determine a set of specific parameters representing a body profile of the user.
US11386611B2
An augmented reality system for viewing a static physical object includes a movable unit receiving signals from, a static tracking base station for obtaining the six-dimensional absolute position of the movable unit. The relative position of the movable unit relatively to the static physical object is calculated from the absolute positions of the movable unit and the static physical object. The relative unit-object position is then used for rendering and displaying an augmented image or projecting a virtual object on the static physical object.
US11386606B2
The present disclosure describes a medical imaging and/or visualization system and method that provide a user interface enabling a user to visualize (e.g., via a volume rendering) a three dimensional (3D) dataset, manipulate the rendered volume to select a slice plane, and generate a diagnostic image at the selected slice plane, which is enhanced by depth colorized background information. The depth colorization of the background image is produced by blending, preferably based on the depth of structures in the volume, two differently colorized volume renderings, and then fusing the background image with a foreground diagnostic image to produce the enhanced diagnostic image.
US11386603B2
A method comprises: accessing animation graphics files and a mask graphics file; generating first binary sequences corresponding to the animation graphics files, and generating a second binary sequence corresponding to the mask graphics file; and outputting the first binary sequences and the second binary sequence to hardware controlling an array of electrical components.
US11386601B2
A technique for combining first and second images respectively depicting first and second subject matter to facilitate virtual presentation. The first image is processed to identify portions or regions of the first subject matter and determine an estimated depth location of each portion or region. A composite image is generated that depicts the second subject matter overlayed, inserted or otherwise combined with the first subject matter. One or more of the portions or regions of the first subject matter are added, removed, enhanced or modified in the composite image in order to generate a realistic appearance of the first subject matter combined with the second subject matter. The composite image is caused to be displayed as a virtual presentation.
US11386599B2
A method for developing visual data using source data, target data, and a hierarchical algorithm. According to a first aspect, there is provided a method for developing visual data from source data, target data and using a hierarchical algorithm, the method comprising the steps of: determining an alignment between the target data and the source data; and producing the visual data by transferring one or more features of the source data onto one or more features of the target data; wherein, the visual data is produced after the step of determining the alignment between the target data and the source data; and wherein the visual data is produced using the hierarchical algorithm.
US11386598B2
A method and system for the recognition of sensor data, like an accelerometer and a gyroscope. The method includes data/feature enrichment before a learning process. Thus, the learning process can benefit from better data, which includes both raw sensor data and enriched data/features. As a consequence, classification models may become less complex without harming accuracy and, therefore, can be more easily deployed to mobile devices, consuming less processing power and battery.
US11386593B2
The present invention relates to a method and system for automatically setting a scan range. The method comprises: receiving an RGB image and a depth image of an object positioned on a scan table, respectively, by an RGB image prediction model and a depth image prediction model; generating an RGB prediction result based on the RGB image and a depth prediction result based on the depth image with respect to predetermined key points of the object, respectively, by the RGB image prediction model and the depth image prediction model; selecting a prediction result for setting the scan range from the RGB prediction result and the depth prediction result; and automatically setting the scan range based on the selected prediction result.
US11386592B2
Example methods and systems for tomographic data analysis are provided. One example method may comprise: obtaining first three-dimensional (3D) feature volume data and processing the first 3D feature volume data using an AI engine that includes multiple first processing layers, an interposing forward-projection module and multiple second processing layers. Example processing using the AI engine may involve: generating second 3D feature volume data by processing the first 3D feature volume data using the multiple first processing layers, transforming the second 3D volume data into 2D feature data using the forward-projection module and generating analysis output data by processing the 2D feature data using the multiple second processing layers.
US11386590B1
Methods and systems disclosed relate to color controls for visual accessibility within applications. Within a content editor of an application, a user may choose one or more colors for a content element. Upon choosing the color for the content element, a color control generates a contrast ratio between the chosen color of the content element and a background color upon which the content element may be seen. If a contrast ratio is not met or exceeded, an indicator is provided to a user. In some embodiments, the color control may further recommend an accessible color to the user in place of the chosen color, such that the contrast ratio between the accessible color and the background color meets or exceeds the threshold.
US11386589B2
A method for image generation and colorization includes displaying a drawing board interface; obtaining semantic labels of an image to be generated based on user input on the drawing board interface, each semantic label indicating a content of a region in the image to be generated; obtaining a color feature of the image to be generated; and automatically generating the image using a generative adversarial network (GAN) model according to the semantic labels and the color feature. The color feature is a latent vector input to the GAN model.
US11386587B2
A line drawing automatic coloring method according to the present disclosure includes: acquiring line drawing data of a target to be colored; receiving at least one local style designation for applying a selected local style to at least one place of the acquired line drawing data; and performing coloring processing reflecting the local style designation on the line drawing data based on a learned model for coloring in which it is learned in advance using the line drawing data and the local style designation as inputs.
US11386583B2
Embodiments of this disclosure provide an image coding apparatus, a probability model generating apparatus and an image decoding apparatus. A processor is to perform feature extraction on an input image to obtain first feature maps of N channels; to perform feature extraction on the input image with a size of the input image being adjusted K times, to respectively obtain second feature maps of N channels; and to concatenate the first feature maps of the K×N channels with the second feature maps of K×N channels to output a concatenated feature maps of channels. Hence, features of images may be accurately extracted and more competitive latent representations may be obtained.
US11386580B1
A system, device, and a method for guiding a user to comply with one or more application-specific requirements by using sequentially two or more neural networks run on one more video frame of a scene to detect at least one requirement of the one or more application-specific requirements. Upon the detection result, the application guides a user to adjust the scene based on the detection until the scene is adjusted to meet the application-specific requirements.
US11386579B2
Disclosed is a context-aware real-time spatial intelligence provision system that estimates the locations of persons or things captured in a video by extracting objects representative of the persons and the things from the video captured by viewing a real space and placing the extracted objects in a virtual space to which a digital twin technique is applied. The disclosed context-aware real-time spatial intelligence provision system allows people to keep the distance between each other indoors, thereby preventing the spread of an infectious disease such as COVID-19.
US11386573B2
In accordance with an embodiment, an article recognition apparatus includes a first interface, a second interface, and a processor. The processor determines an article region from an image obtained by the first interface and determines a tilt of the article present in the determined article region on the basis of a distance obtained by the second interface. Further, the processor determines on the basis of the determined tilt of the article that the article is placed in the placement region in a state in which the article leans against another object.
US11386567B2
System, methods, and other embodiments described herein relate to semi-supervised training of a depth model for monocular depth estimation. In one embodiment, a method includes training the depth model according to a first stage that is self-supervised and that includes using first training data that comprises pairs of training images. Respective ones of the pairs including separate frames depicting a scene of a monocular video. The method includes training the depth model according to a second stage that is weakly supervised and that includes using second training data to produce depth maps according to the depth model. The second training data comprising individual images with corresponding sparse depth data. The second training data providing for updating the depth model according to second stage loss values that are based, at least in part, on the depth maps and the depth data.
US11386562B2
A computing device generates a user interface that includes a viewing window and a toolbar including a selection tool. The computing device displays a live video depicting one or more individuals in the viewing window of the user interface and generates a segmentation mask for each individual depicted in the live video, where each segmentation mask comprises facial feature vectors of a facial region of each individual. The computing device obtains selection of an individual depicted in the live video and compares facial feature vectors of each of the individuals depicted in the live video with the facial feature vector of the selected individual. The computing device converts the segmentation masks of individuals with corresponding facial feature vectors that do not match the selected facial feature vector to a filter mask and composites the filter mask with a background content of the live video.
US11386560B2
The present disclosure pertains to the analysis of the cardiac region in CT images. Provided herein are a method, a computer system and a computer program product for the segmentation of the cardiac region in CT images.
US11386558B2
An oxygen saturation calculating unit calculates, based on an observation image, an oxygen saturation included in the observation target. A reliability calculating unit calculates, based on the observation image, reliability regarding the biological information. A reference value processing unit sets, for a measurement value indicative of the biological information of a measurement target in the observation target, a reference value serving as a reference for the biological information by using the reliability. A difference image generating unit calculates a difference value between the measurement value and the reference value and generates, based on the difference value, a difference image.
US11386553B2
Medical image data is received at a data processing system, which is an artificial intelligence-based system. An identification process is performed at the data processing system to identify a subset of the medical image data representing a region of interest including one or more target tendons. A determination process is performed at the data processing system to determine one or more characteristics relating to one or more abnormalities of the one or more target tendons. Abnormality data is output, the abnormality data relating to the one or more abnormalities and being based on the one or more characteristics.
US11386551B2
A blood sample processor for imaging a centrifuged blood sample is provided including a transparent container with the centrifuged blood sample therein. An illumination source is positioned to illuminate the centrifuged blood sample at a non-right angle to the transparent container. A digital camera disposed opposite the transparent container images the centrifuged blood sample and the image is processed to determine the relative locations of component layers of the centrifuged blood sample.
US11386530B2
Various techniques are provided for removing turbulent gases from thermal images of high temperature scenes and for detecting gas leaks. In one example, a method includes receiving a plurality of thermal images captured of a scene comprising a furnace tube and combustion gas exhibiting higher temperatures than the furnace tube. Each thermal image comprises a plurality of pixels each having an associated pixel value. The method also includes applying a digital filter to the thermal images to generate a processed thermal image. Each pixel of the processed thermal image has an associated minimum pixel value determined from corresponding pixels of the thermal images to remove the higher temperature combustion gas from the processed thermal image. Additional methods and systems are also provided.
US11386525B2
An image stitching apparatus and an operation method thereof are provided. The image stitching apparatus includes a stitching distance determining circuit and a stitching circuit. The stitching distance determining circuit dynamically determines the stitching distance according to the reference information related to the plurality of original images. The stitching circuit is coupled to the stitching distance determining circuit to receive the stitching distance. The stitching circuit image stitches the original images using a stitching distance to generate a stitched image.
US11386524B2
A system comprises an encoder configured to compress attribute information and/or spatial for a point cloud and/or a decoder configured to decompress compressed attribute and/or spatial information for the point cloud. The encoder is configured to convert a point cloud into an image based representation. The encoder packs patch images into an image frame and fills empty spaces in the image frame with a padding, wherein pixel values for the padding are determined based on neighboring pixels values such that the padding is smoothed in the image frame. Also, the decoder is configured to generate a decompressed point cloud based on an image based representation of a point cloud.
US11386517B2
Digital watermarking is adapted for the variable data printing. A reference signal serves as a proxy for optimizing the embedding a watermark in a host image to be printed. Using the reference signal, embedding parameters are generated, which are a function of constraints such as visual quality and robustness of the machine readable data. Adjustments needed to embed a unique payload in each printed piece are generated using the embedding parameters. These adjustments are stored in a manner that enables them to be efficiently obtained and applied within the raster image processor or press during operation of the press. Various other methods, system configurations and applications are also detailed.
US11386505B1
A computer-implemented method for generating explanations for a tax calculation or operation performed by tax preparation software is disclosed. A computing device executes a tax calculation engine in connection with the tax preparation software and operates on a tax calculation graph to perform a tax calculation. The tax calculation graph semantically describes data dependent tax operations comprising functional nodes connected to input nodes by one of a plurality of functions, wherein each tax operation is associated with one or more explanations. An explanation engine is executed to generate a narrative explanation from the one or more explanations associated with one of the tax operations and is presented to the user on the computing device.
US11386503B2
Systems and methods provide for an automated system for analyzing damage and processing claims associated with an insured item, such as a vehicle. An enhanced claims processing server may analyze damage associated with the insured item using photos/video transmitted to the server from a user device (e.g., a mobile device). The mobile device may receive feedback from the server regarding the acceptability of submitted photos/video, and if the server determines that any of the submitted photos/video is unacceptable, the mobile device may capture additional photos/video until all of the data are deemed acceptable. To aid in damage analysis, the server may also interface with various internal and external databases storing reference images of undamaged items and cost estimate information for repairing previously analyzed damages to similar items. Further still, the server may generate a payment for compensating a claimant for repair of the insured item.
US11386499B2
Disclosed are a car damage picture angle correction method, an electronic device, and a readable storage medium. The method includes: after receiving a car damage picture to be classified and identified, identifying a rotation category corresponding to the received car damage picture by using a pre-trained picture rotation category identification model; determining a rotation control parameter corresponding to the identified rotation category according to a pre-determined mapping relation between rotation categories and rotation control parameters, the rotation control parameter including a rotation angle and a rotation direction; and rotating the received car damage picture according to the determined rotation control parameter, so as to generate an angle-normal car damage picture. The disclosure can perform car damage picture angle correction more comprehensively and more effectively with no need to artificially perform angle identification on a car damage picture and to manually rotate the picture, thereby achieving a higher efficiency and accuracy.
US11386498B1
Systems and methods are disclosed with respect to using a blockchain for managing the subrogation claim process related to a vehicle accident, in particular, utilizing historical data related to a vehicle or vehicle collisions as part of the subrogation process. An exemplary embodiment may include receiving historical sensor data, such as image, audio, telematics, and/or autonomous vehicle data, associated with a past vehicle collision; inputting the historical sensor data into a machine learning program to determine data relevant to a past vehicle collision; receiving current sensor data associated with a current vehicle collision; inputting the current sensor data into the machine learning program to determine data relevant to the current vehicle collision; and determining a percentage of fault of the vehicle collision for one or more autonomous vehicles, autonomous vehicle systems, and/or drivers based upon, at least in part, analysis of the historical sensor data and the current sensor data.
US11386495B2
Information may be dynamically disseminated to network devices. In some embodiments, a data structure may be populated with first-type values and second-type values, a first delay time may be assigned to a first value of the first-type values based on the first value being associated with a first priority and a second delay time may be assigned to a second value of the first-type values based on the second value being associated with a second priority, and data structure information may be obtained from the data structure. The data structure information may be delivered such that the delivery of the data structure information to a first network device associated with the first value reflects the first delay time and the delivery of the data structure information to a second network device associated with the second value reflects the second delay time.
US11386491B2
Systems and apparatus for processing a trade order include a computer configured for receiving market data for a financial asset, receiving pricing parameters and receiving proposed order quantity and price data. The computer is further configured for constructing proposed trades based on the proposed order quantity and price data, and for calculating a theoretical price for the financial asset based on the market data, pricing parameters as well as the proposed order price data. In addition, the computer is configured for comparing the constructed trades with the theoretical price, and displaying market data indicators relative to the theoretical price indicators based on the comparison.
US11386487B2
Disclosed is a system for scoring customers of a financial institution based on financial data. The system includes a central database that stores a plurality of modules, a central server that processes the plurality of modules and a display unit that displays the processed plurality of modules. The plurality of modules includes a criteria configuration module, a data module, and a computation module. The criteria configuration module includes a metric module to receive the input parameters required to evaluate the score, and a measurement module for defining transformation criteria to be applied on the data corresponding to the input parameters. The computation module includes a metric evaluation module to compute and applies the transformation criteria to the values of the input parameters, and a scoring module coupled to the metric evaluation module to automatically compute and display the score of the customers based on the values retrieved from the metric evaluation module.
US11386485B2
Disclosed are embodiments for electronic commerce user interfaces. In some embodiments, a device is used to create an account on an electronic commerce system or create a listing for an item for sale on the ecommerce system. A first identifier of the device is stored by the ecommerce system. When a listing is generated by the account, an image representing an item for sale is included as part of the listing. The disclosed embodiments compare a second device identifier of a device used to capture the image with the first device identifier. If the two identifiers identify the same device, this provides an indication of confidence that the seller is in possession of the item represented by the image. This indication of confidence is then displayed when the listing is displayed to prospective buyers.
US11386483B2
A server may execute a first shipping process for shipping a first consumable article for a printer and store first identification information in a memory. The server may receive consumable article information from an external device, determine whether a notification condition is satisfied and determine whether the first identification information matches second identification information included in the consumable article information. In a case where it is determined that the notification condition is satisfied and the first identification information matches the second identification information, the server may send a first notification to external. In a case where it is determined that the notification condition is not satisfied, the first notification is not sent, and in a case where it is determined that the first identification information does not match the second identification information, the first notification is not sent.
US11386475B2
A mail-order system has a server apparatus and a moving object. The server apparatus includes a purchase likelihood information acquisition unit configured to acquire at least information regarding a commodity considered to be purchased by a user and information regarding a desired delivery destination of the commodity, and a moving object management unit configured to give an instruction relating to at least movement to the moving object. The moving object is able to load commodities. The moving object includes a movement controller configured to make the moving object move in an autonomous moving mode. At least one of the server apparatus and the moving object includes a positional information acquisition unit configured to acquire positional information of the moving object, and an inventory management unit configured to manage an inventory of commodities loaded in the moving object.
US11386474B2
System and methods for generating a product recommendation based on reactions such as bio-feedback of a subject during a virtual try-on session are described herein. A recommendation engine captures bio-feedback and determines whether the subject has a positive or negative attitude towards a certain feature of a product that is being virtually “tried on” with the subject. The recommendation engine can then provide a product recommendation based on the actual sentiment of the subject towards a product feature.
US11386471B2
To facilitate legal research, companies, such as Thomson West provide subscription-based (pay-for-access) online information-retrieval systems. Seeking to improve these and related systems, the present inventors recognized researchers often need to access open web content that is outside their subscription-based system. Accordingly, the present inventors devised systems, methods, and software that automatically search for and identify open web documents in response to queries within the subscription-based system and/or automatically search for and identify pay-for-access content in response to receiving open web queries.
US11386468B2
A system for providing dialogue monitoring and communications is disclosed. The system may comprise a data access interface, a processor, and an output interface. The data access interface may receive data associated with a customer-initiated event from a data source. The processor may identify a category type and a stage associated with the customer-initiated event. The processor may also calculate a metric using an artificial intelligence (AI) based technique. The processor may also generate a recommendation based on the calculated metric, wherein the recommendation, which when acted upon, improves a customer journey and experience. The output interface may transmit, to a user device, at least one of the customer-initiated event, the category type, the stage, the metric, and the recommendation in a dashboard.
US11386466B2
Selection of content selection criteria based on entities related by relationship dimensions. In one aspect, a method receives a selection of a seed entity described in entity relation data, the entity relation data defining instances of entities, and for each entity one or more relationship dimensions; generating a set of selected entities; iteratively updating the set of selected entities, each iteration comprising: determining a set of relationship dimensions from the entities in the set of selected entities, each relationship dimension in the set being selected from the one or more relationship dimensions of the entities in the set of selected entities, receiving a selection of one of the relationship dimensions and in response: determining a set of candidate entities from the relationship dimensions and in response to receiving a selection of one or more candidate entities, updating the set of selected entities to include the one or more candidate entities.
US11386465B1
A method, apparatus, and computer program product are disclosed to provide improved use and generation of promotion vouchers. The method may include receiving an indication of redemption for a particular promotion voucher, determining a promotion type associated with the particular promotion voucher, and presenting an e-commerce interface for redemption of the promotion voucher for at least one promotion, wherein the at least one promotion is of the determined promotion type. Apparatuses and computer readable media are also provided.
US11386464B2
To more appropriately acquire information in Generic Attribute Profile (GATT) data, a control method includes acquiring, upon establishment of a second connection between a communication apparatus and an information processing apparatus through Bluetooth® Low Energy, at least a part of information indicating a structure of GATT data included in the communication apparatus until an area in which a predetermined type of information is stored in the GATT data included in the communication apparatus becomes identifiable, and acquiring the predetermined type of information based on at least a part of the information indicating the structure of the GATT data included in the communication apparatus.
US11386461B2
Systems, methods and computer readable media for providing a point-of-sale system that can be configured to facilitate the sale of products and transmit transaction data to a cloud based system are provided herein. The cloud based system can be maintained by a promotional party and be configured to generate deal offers and/or provide other services based on the transaction data received. In some embodiments, a fee may be charged for some or all of the services offered and/or the transactional data provided to the promotional system may be governed by an agreement between the promotional party and the merchant.
US11386452B1
In one embodiment, a system for predicting imputed revenue of inquiries includes: one or more computing devices comprising computer hardware and configured to: obtain data relating to a plurality of inquiries. Each of the plurality of inquiries is (a) indicative of a request for information about one or more programs providing a service, and (b) received from a particular channel of a plurality of online channels for presenting the one or more programs. The plurality of inquiries are represented using one or more data structures in one or more data sources. The computing devices are further configured to determine a model for predicting enrollment rates of the plurality of inquiries based at least in part on historical enrollment data of at least one program of the one or more programs, the model specifying a predicted enrollment rate value for one or more characteristics associated with the plurality of inquiries. The computing devices are further configured to: using the model, determine a predicted enrollment rate for respective inquiry of the plurality of inquiries; determine an imputed revenue of the respective inquiry based at least in part on the predicted enrollment rate for the respective inquiry, the imputed revenue indicative of a potential revenue that can be generated from the respective inquiry; and adjust an allocation of presentation of the one or more programs among the plurality of online channels, the adjusting based at least in part on the determined imputed revenue of the respective inquiry.
US11386449B2
A method and apparatus for managing and integrating lead sources for a marketing/advertisement campaign on a platform that allocates and optimizes lead source budgets and provides a customer service and payment processing function. The present technology as disclosed and claimed herein provides a platform that is a customer retention and customer management system that is automated to provide lead estimations and optimizations to allocate and optimize lead source budgets where the system has a learning function that improves over time.
US11386448B1
A business reward program integration system providing a digital currency supported by a reserve fund protects consumer members from reward program expiration and eliminates reward program liability for reward program providers.
US11386440B2
A shared vehicle management device manages shared vehicles located in an area where a user is present. The area includes multiple zones differing from one another, and each of the zones includes one or more parking lots. The shared vehicle management device includes a controller configured to prompt the user to select a zone including a parking lot where the user will start use of a shared vehicle or return the shared vehicle, a use history acquisition unit, a demand calculator, a supply calculator, and a zone setting unit configured to determine the parking lots included in each zone so as to minimize a value obtained by adding differences between the demand for shared vehicles and the supply of shared vehicles in each zone included in the area.
US11386435B2
An identification and assessment system that flags business entities that are current or future Third Party Intermediaries and provides compliance risk ratings In at least one embodiment, the system is configured for TPI identification to enable companies to optimize compliance efforts, for example, effective anti-bribery and anti-corruption compliance. The system is configured to identify TPI likelihood and General Compliance Risk Rating to enable businesses to setup anti-bribery and anti-corruption (ABAC) strategies to focus on those high-risk TPIs, perform due diligence, and mitigate compliance risk.
US11386434B2
Some embodiments comprise integrating information from a social network into a multi-tenant database system. A plurality of information from the social network is retrieved, using a processor and a network interface of a server computer in the multi-tenant database system, wherein the plurality of information is associated with a message transmitted using the social network. Metadata related to the transmitted message is generated, using the processor. A conversation object is generated, using the processor, based on the plurality of information associated with the transmitted message and the metadata related to the transmitted message. The conversation object is then stored in an entity in the multi-tenant database system, using the processor of the server computer.
US11386425B2
Examples relate to multiple microprocessor architecture for cold storage of digital currency. A hardware wallet may include a first microprocessor configured to establish a secure connection with a mobile device connected to a network having access to a blockchain and a second microprocessor configured to generate a private key and a public key for communication of transaction data onto the blockchain. The second microprocessor may initially use a hash function and the private key to encrypt the transaction data and produce a digital signature independent from the first microprocessor and subsequently provide the digital signature and the public key to the first microprocessor for communication onto the blockchain via the secure wireless connection with the mobile device. The second microprocessor may also encrypt and store the private key securely within the wallet's memory such that the private key is readable only by the second microprocessor.
US11386421B2
Embodiments of the invention are directed to systems and methods for pushing tokenized payments to resource providers for goods or services, after the goods or services are received. A user may make a transaction request including a credential and a resource provider ID (e.g., a resource provider location) via a server computer. The server computer may generate a token corresponding to the credential and transmit it to the resource provider using the resource provider ID. Upon receiving the token, the resource provider may enter a transaction amount and send it with the token in an authorization request message. The transaction can then be processed according to standard transaction processing methods, as if the resource provider had initiated the transaction request.
US11386414B2
A white label merchant stored value account peer linking/funding system includes a payment service provider database storing associations between different merchants and respective groups of white label merchant stored value accounts. A payment service provider links, in the database, a first user identifier received from a first user device with a first white label merchant stored value account that is included in a first group of white label merchant stored value accounts that are associated with a first merchant in the database. The payment service provider device then receives second user identifiers from the first user device, and links each of the second user identifiers with the first white label merchant stored value account in the database. The payment service provider device then receives respective second user account information from the second user devices and funds the first white label merchant stored value account with respective first funding amounts.
US11386412B1
An approach for establishing and managing authentication circles is disclosed. The circles may be used to facilitate management of accounts, goals, or resources of one or more entities, or to provide an integrated view of the circumstances of, for example, family members or other interrelated persons. A person receiving assistance with the management of one or more accounts need not disclose authentication credentials to persons helping manage the accounts, enhancing security. Members may view members and access accounts administered by separate computing systems without needing credentials for each member, account, and/or computing system. The multiple accounts (which may be held at multiple institutions) need not be accessed individually by each member of the authentication circle, saving time and computing resources of users.
US11386398B2
In non-limiting examples of the present disclosure, systems, methods and devices for assigning conference rooms are presented. A meeting request may be received by an electronic meeting service. Meeting fit scores may be calculated for the meeting request and one or more conference rooms. The meeting fit scores may be based on location, capacity, and/or audio-visual capabilities. The meeting request may be assigned to a conference room with a highest meeting fit score. A meeting request may be re-assigned to a different conference room based on a conference room becoming available that has a higher meeting fit score. A meeting request may be re-assigned to a different conference room based on characteristics of the meeting request being modified (e.g., fewer invitees, more invitees, different location specified), and thus, the meeting fit scores for conference rooms changing based on those modifications.
US11386396B2
Method, apparatus and computer program product for generating a channel calendar in a group-based communication system are described herein. The apparatus is configured to at least generate a channel calendar identifier associated with a group-based communication channel in the group-based communication system, receive a calendar sharing request associated with the channel calendar identifier from a client device, retrieve the calendar object and calendar object metadata set based on the channel calendar identifier, and cause rendering of the calendar object for display via a user interface of the client device.
US11386392B2
Methods and systems for generating episodes of activity, such as episodes of care. One method includes generating, by a processor, a graphical user interface for display to a user. The method also includes receiving, by a processor, (1) a first selection of a trigger event for an episode of care from the user through the graphical user interface, (2) a second selection of at least one time period for the episode of care from the user through the graphical user interface, and (3) a third selection of at least one claim category for the episode of care from the user through the graphical user interface. The method further includes creating, by the processor, parameters for the episode of care based on the first, second, and third selections, wherein the parameters are applied to a plurality of medical claims to group at least two of the plurality of medical claims.
US11386391B1
Disclosed are techniques for processing and completing food orders placed by consumers using food ordering services. A method can include providing menu items to user devices for display to consumers, receiving orders from user devices before delivery of the orders, processing each order to generate a delivery address and an ordered menu item, assigning a kitchen to prepare an ordered menu item based on kitchen proximity to the delivery address of, determining if an ingredient of an ordered menu item is understocked in the kitchen, ordering, with a purveyor, understocked ingredients, forwarding instructions to prepare an ordered menu item to a device of the kitchen, grouping the ordered menu items into cohorts based on proximity of the addresses relative to each other, assigning the cohorts to delivery workers, and providing delivery routes for the cohorts to delivery worker devices. The method can be performed within seconds and for many kitchens.
US11386387B2
Systems for data measurement and collection are provided. A data collection system may comprise a database configured to store data about objects to be tracked, and optical codes corresponding to specific database entries may be generated, printed, and provided in physical proximity to the object to be tracked. When a user scans the optical code with a mobile electronic device, the mobile electronic device may automatically upload geographic information to the database and may prompt the user to enter measurement information to additionally be uploaded to the database. Sets of optical codes may be configured to collect user-specified types of data, and the optical codes may be provided in printable sheets; virtual visual representations of the sheets may be displayed on an electronic interface, and the virtual visual representations may indicate which of the codes have or have not been registered with the system.
US11386385B2
According to various embodiments, system, methods and computer program products are configured for providing at least one customized communication to a recipient of one or more packages shipped by a consignor via a common carrier. One or more computer processors are configured to: receive at least a portion of customized content; retrieve at least a portion of consignee data, the portion comprising one or more parameters established by the recipient; compare the one or more components of the customized content with the one or more parameters established by the recipient so as to identify one or more correlations there-between; in response to identifying at least one correlation, generate at least one customized communication for provision to the recipient, the at least one customized communication containing at least a portion of the customized content; and in response to identifying no correlations, generate at least one standard communication containing no customized content.
US11386384B2
Methods and systems for recipient-assisted recharging during delivery by an unmanned aerial vehicle (UAV) are disclosed herein. During a UAV transport task, a UAV determines that the UAV has arrived at a delivery location specified by a first flight leg of the transport task. The UAV responsively initiates a notification process indicating that a recipient-assisted recharging process should be initiated at or near the delivery location. When the UAV determines that the recipient-assisted recharging process has recharged a battery of the UAV to a target level, and also determines that a non-returnable portion of the payload has been removed from the UAV while a returnable portion of the payload is coupled to or held by the UAV, the UAV initiates a second flight segment of the transport task.
US11386375B2
An electronic resource tracking and storage computer system communicates with computing systems operated by different participants. Computing systems store copies of a blockchain and have associated computing devices with sensors. A programmed rule set includes conditions to be met when cooperating to complete, in connection with a resource tracked via the blockchain, a modeled process including modeled tasks. A transceiver receives, from the computing devices, signed electronic data messages including identifiers and values from their respective sensors. Blockchain transactions including identifiers and value(s) in the respective messages are generated. Generated blockchain transactions are published for inclusion in blockchain's copies. Value(s) in the respective electronic data messages are validated against the set of programmed rules. Based on the validations' results, events are emitted to an event bus monitored by a management system. These events selectively trigger the management system to automatically implement modeled tasks in dependence on the validations' results.
US11386374B2
A device may communicate with a client device to provide, via a user interface of the client device, a set of prompts regarding an entity. The device may detect one or more user interactions with the user interface associated with indicating a set of responses to the set of prompts. The device may process data identifying the set of responses to the set of prompts to generate a set of scores for a set of recommendations based on processing the data identifying the set of responses to the set of prompts. The device may determine a ranking of the set of recommendations based on the set of scores. The device may select one or the set of recommendations based on the ranking. The device may communicate with the client device to provide information associated with the set of recommendations based on selecting the set of recommendations.
US11386371B2
Systems, methods and apparatus, including computer program products, are disclosed for regulating access of consumers (e.g., applications, containers, or VMs) to resources and services (e.g., storage). In one embodiment, this regulation occurs through the movement of consumers between different providers of a resource or service, such as a cloud service provider. Moving consumers includes, for example, determining the cost of moving the consumer from a first provider to a second provider. According to various embodiments, the cost of moving the consumer is compared to performance criteria associated with moving the consumer from the first provider to the second provider.
US11386357B1
Systems and methods for training a machine learning (ML) model for predicting probabilities for binary outcomes to automatically generate positive class predictions close to an ideal one probability and negative class predictions close to an ideal zero probability are disclosed. The method includes generating a predictive probability (PP) curve based on a ML algorithm and transforming the PP curve into a curve with probabilities spread close to ideal one probability for positive class predictions (PCP) indicating successful prediction and close to ideal zero probability for negative class predictions (NCP) indicating failed prediction, thereby introducing a valley in the transformed probability curve separating PCP from NCP. The PP curve is transformed by one of (1) minimizing distance between: (a) ideal one probability and PP value of PCP; and (b) ideal zero probability and PP value of NCP, and (2) maximizing distance of PP values from center of PP curve.
US11386353B2
This application discloses a method and an apparatus for training a classification model. The method includes obtaining a training sample, the training sample including a training parameter and a true classification corresponding to the training parameter and preforming classification training on an initial classification model by using the training parameter, to obtain a predicted classification. The method also includes determining a residual between the true classification and the predicted classification according to a gradient loss function of the initial classification model, the gradient loss function comprising a distance factor representing a distance between a first category and a second category, the first category being a category to which the predicted classification belongs, and the second category being a category to which the true classification belongs. The method further includes modifying the initial classification model according to the residual to obtain a final classification model.
US11386351B2
A machine learning service implements programmatic interfaces for a variety of operations on several entity types, such as data sources, statistics, feature processing recipes, models, and aliases. A first request to perform an operation on an instance of a particular entity type is received, and a first job corresponding to the requested operation is inserted in a job queue. Prior to the completion of the first job, a second request to perform another operation is received, where the second operation depends on a result of the operation represented by the first job. A second job, indicating a dependency on the first job, is stored in the job queue. The second job is initiated when the first job completes.
US11386331B2
A device may receive time series data from one or more data sources. The device may pre-process the time series data to generate a respective time series chart for multiple classifications included in the time series data. The device may randomly select a pair of respective time series charts and a correlation detection technique after pre-processing the time series data. The device may determine a correlation for the pair of respective time series charts based on using the correlation detection technique. The device may determine a score for the pair of respective time series charts based on the correlation of the pair of respective time series charts. The score may indicate an extent to which the pair of respective time series charts is correlated with each other. The device may perform one or more actions after determining the score for the pair of respective time series charts.
US11386329B2
A method of processing image data in a connectionist network includes: determining, a plurality of offsets, each offset representing an individual location shift of an underlying one of the plurality of output picture elements, determining, from the plurality of offsets, a grid for sampling from the plurality of input picture elements, wherein the grid comprises a plurality of sampling locations, each sampling location being defined by means of a respective pair of one of the plurality of offsets and the underlying one of the plurality of output picture elements, sampling from the plurality of input picture elements in accordance with the grid, and transmitting, as output data for at least a subsequent one of the plurality of units of the connectionist network, a plurality of sampled picture elements resulting from the sampling, wherein the plurality of sampled picture elements form the plurality of output picture elements.
US11386315B2
The present invention relates to the field of data identification, and in particular to a two-dimensional code technology. The present invention provides a two-dimensional code drawing method for rapid and accurate identification. The two-dimensional code drawing method comprises cryptographically generating binary input data; determining a layout of a two-dimensional code according to the input data; drawing a positioning point lattice of the two-dimensional code under a designated background; drawing the binary input data into a data area; and cryptographically generating and drawing basic information binary data on a basic data area. The present invention solves the technical problems of low positioning reliability, long identification time consumption low security and difficult mass storage of the two-dimensional code in the prior art, and has accurate positioning, high identification efficiency and strong expansibility.
US11386311B2
A recording device includes a head including a first nozzle row that discharges a plurality of drawing inks; and a second nozzle row that discharges an overcoat ink posterior to the drawing inks, and also includes a dot-data generating unit that performs dot-data generating processing including halftone processing using a dither mask. When generating dot data used to perform recording in accordance with a first recording mode in which no nozzle that discharges the overcoat ink is assigned to part of pixels in a recording target region of the recording medium, the first recording mode being a recording mode using the second nozzle row, the dot-data generating unit generates the dot data by using a first overcoat dither mask having a threshold value set so as not to form a dot with the overcoat ink on the part of pixels.
US11386308B2
An artefact is received and parsed into a plurality of observations. A first subset of the observations are inputted into a machine learning model trained using historical data to classify the artefact. In addition, a second subset of the observations are inputted into a xenospace centroid configured to classify the artefact. Thereafter, the artefact is classified based on a combination of an output of the machine learning model and an output of xenospace centroid. Related apparatus, systems, techniques and articles are also described.
US11386304B2
An electronic device is provided. The electronic device includes a memory configured to store a computer executable instructions; and a processor configured to execute the executable instructions to: determine a text corresponding to a received command, provide response information on the command based on a first artificial intelligence model classifying the text as a text corresponding to one of a plurality of pre-stored texts, and provide error information on the command based on the first artificial intelligence model classifying the text as an error, wherein the first artificial intelligence model is configured to classify the text as the error based on the text corresponding to the command being a similar text having one of an entity and an intent different from at least one of the plurality of pre-stored texts.
US11386289B2
Disclosed herein are embodiments related to robot-aided product inspection. For example, an inspection apparatus may include a processing device to communicatively couple to a robotic apparatus, to a display device, and to a user input device. The processing device may: receive an image of an item, wherein the image was captured by the robotic apparatus; generate a proposed classification for the image, wherein the classification indicates an attribute of the item based on the image; cause the image to be displayed on the display device along with the proposed classification; and receive an indication from the user input device of a final classification of the image.
US11386287B2
The method may include processing, by using a neural network, input feature maps of an image to obtain output feature maps of the image. The neural network may include a convolution part and/or a pooling part, and an aggregation part. The convolution part may include at least one parallel unit each of which contains two parallel paths, each path of the two parallel paths contains two cascaded convolution layers. The kernel sizes are 1 dimension and are different in different units. The pooling part includes at least one parallel unit each of which contains two parallel paths, each path of the two parallel paths contains two cascaded pooling layers. The size of filters of pooling is 1 dimension and is different in different units. The aggregation part is configured to concatenate results of the convolution part and/or the pooling part to obtain the output feature maps of the image.
US11386284B2
A method and system for processing images for a search is provided, including: receiving a plurality of images selected from search results; for each image in the plurality of images, retrieving a feature vector associated with the image; selecting a subset of the feature vectors based on similarity of feature vectors associated with the images in the plurality of images; and performing a search for feature vectors in a database similar to the feature vectors in the subset of feature vectors.
US11386282B2
In an optical information reader which optically reads an information code, a first polarizing unit arranged on the light-exit side of a lighting unit is configured to polarize illumination light therefrom in a predetermined polarization direction. In addition, a second polarizing unit arranged on the light-reception side of a light receiving sensor is configured as a switchable polarization unit, in which the switchable polarization unit is capable of performing a switchover between a polarized state in which light reflected from the information code is polarized in a direction different from the predetermined polarization direction and a passing state where the reflected light passes therethrough without being polarized.
US11386281B2
Signal detection and recognition employees coordinated illumination and capture of images under to facilitate extraction of a signal of interest. Pulsed illumination of different colors facilitates extraction of signals from color channels, as well as improved signal to noise ratio by combining signals of different color channels. The successive pulsing of different color illumination appears white to the user, yet facilitates signal detection, even for lower cost monochrome sensors, as in barcode scanning and other automatic identification equipment.
US11386266B2
The present disclosure generally relates to text correction and generating text correction models. In an example process for text correction, text input is received. In response to receiving the text input, a text string corresponding to the text input is displayed. The text string is represented by a token sequence. The process determines whether an end of the token sequence corresponds to a text boundary. In accordance with a determination that the end of the token sequence corresponds to a text boundary, the process determines, based on a context state of the token sequence, one or more textual errors at one or more tokens of the token sequence. An error indication for a portion of the text string corresponding to the one or more tokens is displayed.
US11386265B2
Aspects of the invention include identifying each solution component of a plurality of solution components described in a text of a solution template of a plurality of solution templates, wherein the solution template includes a first combination of solution components. Identifying each solution component of a plurality of solution component described by an object in the solution template of a plurality of solution templates. Detecting a respective number of instances of each solution component in the solution template and a respective number of instances of each solution component in each other solution template of the plurality of solution templates. Generating analytics for a source company based on the respective number of instances of each solution component in the solution template and the respective number of instances of each solution component in each other solution template of the plurality of solution templates.
US11386260B2
Systems, methods, and devices including smart interfaces with facilitated input and mistake recovery are described. For example, a smart interface system can identify one or more portions of user input as alterable decisions, and, for each of the one or more alterable decisions, store, in a memory, information about one or more alternative options for the alterable decision. The system can also identify one of the alterable decisions as the currently alterable decision, and upon receiving an input indicative of an actuation of the alteration key, alter the currently alterable decision to another of the one or more alternative options based on the stored information.
US11386251B2
A logic simulation verification system designates a change timing designation unit configured to designate a reference signal and a change timing and calculate a first time for which there is a possibility that a first signal to be assigned to a variable described in a library, a circuit description, and a test bench is changed in accordance with the reference signal. The system calculates a second time for which there is a possibility that a second signal assigned a variable described in the library, the circuit description, and the test bench will be checked in accordance the reference signal and then determines whether different circuits for which first signals are the same have first times that match. The system also determines whether a first time and a second time match with each other when a first signal of one circuit and a second signal of another circuit are the same.
US11386250B2
A method of detecting a timing violation between a first sequential element and a second sequential element in a circuit design being emulated in a hardware emulation system includes, in part, determining a timing relationship between first and second clocks applied respectively to the first sequential element and the second sequential element, reconfiguring a combinational logic disposed between the first sequential element and the second sequential element as one or more buffers, setting a delay across the one or more buffers to one or more clock cycles of the hardware emulation system based on the timing relationship, reprogramming the first and second clocks in accordance with the delay, and detecting a timing violation if a change in an output of the first flip-flop is not stored in the second flip-flop within the delay.
US11386241B2
A host system and a method for unlocking an electronic lock are provided. The host system includes a chassis, an electronic lock and a system circuit board. The chassis has a side door. The electronic lock is arranged on the side door for locking the side door on the chassis. The system circuit board is configured in the chassis, coupled to the electronic lock, and the system board has a plurality of universal serial bus ports. When the system board is not activated and a trigger voltage is received, the system circuit board detects an input sequence in which the USB ports are being inserted, and when the input sequence is equal to a predetermined sequence, the system circuit board outputs an unlock signal to the electronic lock so as to unlock the electronic lock device.
US11386239B2
A method for the transition is provided from a Boolean masking of a value to be kept secret to an additive masking of the value to be kept secret. The value to be kept secret is present in the Boolean masking as a representation masked with a first Boolean mask and a second Boolean mask. A first additive mask and a second additive mask are determined for the value to be kept secret. A first masking transition is executed in which the first Boolean mask is converted into the first additive mask. A second masking transition is executed in which the obfuscation value is converted into an additive correction value, and a third masking transition is executed in which the second Boolean mask is converted into the second additive mask.
US11386235B1
Disclosed is a checksum generation and validation system and associated methods for dynamically generating and validating checksums with customizable levels of integrity verification. The system receives a file with data points defined with positional values and non-positional values, and differentiates a first set of the data points from a second set of the data points. The system generates a checksum based on a combination of two or more values from the positional values and the non-positional values of each data point from the first set of data points, and further based on exclusion of the positional values and the non-positional values of the second set of data points from the checksum. The system may use the checksum to verify the integrity of the data associated with the first set of data points.
US11386229B2
As vehicles collect more data in autonomous or semi-autonomous operation, the collected data such as video, navigation and telemetry data, can containing personally identifiable information (PII). The PII may be governed by specific handling requirements or privacy policies. In order to comply with these requirements and policies a method, system and computer readable memory are provided for determining a location of a vehicle to enable determination of an enforcement policy associated with the location of the vehicle. The enforcement policy defines one or more PII objects that are to be filtered from the vehicle data. The PII objects contained within the vehicle data can then be filtered such that the PII objects are not identifiable. The filtered data can then be stored or transmitted to a remote location.
US11386224B2
A method for managing personal digital identifiers of a user in data elements stored in a computerized system may include receiving personal digital identifiers for identifying a user. The data elements may be searched for the personal digital identifiers and data elements may be identified as having the personal digital identifiers of the user. One or more candidate personal digital identifiers in the identified data elements may be assigned as one or more common words appearing in the identified data elements when a word count for each of the one or more common words exceeds a predefined threshold. The user may validate the candidate personal digital identifiers, which may be added to the personal digital identifiers of the user. A personal digital footprint of the user including a location in the computerized system for each of the personal digital identifiers in the identified data elements may be stored.
US11386199B2
Limiting access to native device capabilities. A method includes, at a container application installed at the computing device, the container application configured to execute hosted script based applications, identifying a hosted application to execute. The method further includes, at the container application, obtaining information identifying a limited set of capabilities from among the native device capabilities indicating which of the native device capabilities the hosted application has been granted access to. The method further includes, at the container application, executing the hosted application and enforcing limits on the hosted application such that the hosted application is only able to access the native device capabilities identified in the limited set of capabilities.
US11386198B1
The disclosed computer-implemented method for detecting malicious in-application transactions may include identifying an application running on a computing device, wherein the application is granted access to a payment system, monitoring data between the application and the payment system, determining at least one characteristic associated with the application, determining the at least one characteristic is associated with a malicious transaction on the payment system, and performing at least one action to prevent the malicious transaction. Various other methods, systems, and computer-readable media are also disclosed.
US11386192B2
In accordance with a first aspect of the present disclosure, an authentication token is provided, comprising: a communication unit for contactless communication between the token and an external device; an energy storage unit for storing energy; a biometric capturing unit for capturing at least one biometric sample; a processing unit for processing the biometric sample captured by the biometric capturing unit; wherein the token further comprises a synchronization unit configured to: determine a communication status of the communication unit; determine a power supply capability of the energy storage unit; adjust a processing speed of the processing unit in dependence on said communication status and said power supply capability. In accordance with a second aspect of the present disclosure, a corresponding method of operating an authentication token is conceived. In accordance with a third aspect of the present disclosure, a corresponding computer program is provided.
US11386190B2
Determining a level of congruence between modality-event characteristics is disclosed. Information can be collected from an event input source via one or more information collection modalities. Modality-event characteristics can be determined from this information. A level of congruence between the modality-event characteristics can be determined to enable initiating a response based on the level of congruence. The level of congruence can be based on satisfying a rule related to congruence between modality-event characteristics, user profile information, etc. The level of congruence can be related to a probability that the several inputs collected for an event, collected by a plurality of modalities, embody characteristics that are associated with the event occurring according to determined notions embodied in the rule and profile. Determining the level of congruence can support assertions that each input, across differing modes of capturing said input, accords with the expected inputs for an event.
US11386177B2
Systems and methods are described for extracting data from digital documents, indexing the data, and providing a user interface for filtering the data and generating a document based on the filtered data. In one implementation, a method includes extracting data from one or more digital documents, the extracted data including elements of a first type, the elements of the first type including key-value pairs; indexing the extracted data; hosting a web-based application instance, the web-based application instance including a user interface for searching the indexed data and filtering elements of the first type based on rules defined by a user of the user interface; receiving rules for filtering the elements of the first type; and filtering the elements of the first type based on the received rules.
US11386167B2
In general, the subject matter described in this specification can be embodied in methods, systems, and programs for providing location-based information. A geographical location of a mobile computing device is received at a server system. A request for content is received at the server system and from the mobile computing device. A search area that corresponds to the geographical location is selected by the sever system. The search area is selected from among a collection of search areas that correspond to the geographical location. At least one of the search areas in the collection is geographically nested within at least one other of the search areas. A search result that is most-relevantly ranked for the selected search area is determined by the server system. Content that represents the determined search result is provided by the server system and for receipt by the mobile computing device.
US11386166B2
Data storage and calling methods and devices are provided. One of the methods includes: receiving first motion data and business data; establishing an association relationship between the first motion data and the business data and storing the association relationship; receiving second motion data; and determining first motion data that matches the second motion data, and returning, to a sender of the second motion data, business data associated with the matched first motion data.
US11386152B1
Techniques for generating highlight clips of an event are described herein. For example, unstructured data associated with an event may be received. Audio data and video data for the event may be obtained. Structured data may be extracted from the unstructured data using one or more feature extractors. In embodiments, a duration for a highlight clip of the event may be determined based at least in part on a model that uses the structured data, the audio data and the video data of the event. Metadata that identifies the duration for the highlight clip of the event may be generated based at least in part on the model. The highlight clip of the event may be stored based at least in part on the metadata.