There is disclosed a method of operating a user equipment in a radio access network. The method includes transmitting acknowledgement signaling according to a HARQ codebook at a second HARQ transmitting occasion, the HARQ codebook indicating first acknowledgement information, the first acknowledgement information pertaining to first data signaling scheduled to be received by the user equipment before a first HARQ transmitting occasion that occurred earlier in time than the second HARQ transmitting occasion. The disclosure also pertains to related devices and methods.
There is provided a communication device comprising: a communication control section configured to calculate a distance measurement value based on time stamp information received from another communication device during distance measurement that is based on wireless communication that is performed between the communication device and the another communication device different from the communication device, and conforms to specified communication standards, wherein, when the time stamp information is an eigenvalue specified in advance, the communication control section does not calculate the distance measurement value.
Methods and systems of managing data transfers in a fixture. One system includes fixtures comprising: a communication interface; and a processor configured to optimize download efficiency by: receiving, from a remote device via the communication interface, a file comprising a plurality of data blocks, wherein each of the plurality of data blocks comprise a unique cyclical redundancy check (CRC) value and a payload; determining, for each of the plurality of data blocks, a check value based on a polynomial division of the respective payload; determining an error in at least one of the plurality of data blocks based on a comparison between each of the respective CRC values and the respective check values; and providing, to the remote device via the communication interface, a request for retransmission of each of the at least one of the plurality of data blocks with the determined error.
A pre-5th-generation (pre-5G) or 5G communication system for supporting higher data rates beyond a 4th-generation (4G) communication system, such as long term evolution (LTE) is provided. A channel encoding method in a communication or broadcasting system includes identifying an input bit size, determining a block size (Z), determining a low density parity check (LDPC) sequence to perform LDPC encoding, and performing the LDPC encoding based on the LDPC sequence and the block size.
A message transmission method and device relating to the field of communications technologies are described that improve an anti-interference capability in message transmission. The method includes generating a scrambling code according to a scrambling code initialization seed, wherein the scrambling code initialization seed meets the following expression: cinit=R·2a7+P·(nf mod k+1)·2b7 and then scrambling a message according to the scrambling code. The method further includes sending the scrambled message to a terminal on a physical downlink shared channel. Because the first time parameter has different values at at least two different moments, scrambling codes determined at the at least two corresponding different moments are different. Therefore, a possibility at which the base station uses a same scrambling code to scramble a same system message repeatedly in a time period is reduced, so that an anti-interference capability in system message transmission is improved.
Methods and apparatuses for mapping processing and de-mapping processing in an optical transport network are provided. A Low Order Optical Channel Data Unit (LO ODU) signal is mapped into a payload area of an Optical Channel Data Tributary (ODTU) signal in units of M bytes. M is equal to the number of time slots of a High Order Optical Channel Payload Unit (HO OPU) that are to be occupied by the ODTU signal, and M is an integer larger than 1. Overhead information is encapsulated to an overhead area of the ODTU signal. Thereafter, the ODTU signal is multiplexed into the HO OPU. According to the application, an efficient and universal mode for mapping the LO ODU to the HO OPU is provided.
A Drone Detection System (DDS) listens passively to the Radio Frequency (RF) spectrum for a monitored area. If a drone-like signal is detected, the system alerts for the existence of a drone in the monitored area. This detection system may consist of multiple interconnected software and/or hardware-modules. Each module is responsible for extracting a certain physical feature (i.e., physical layer features) of the received signal (e.g. duty-cycle, bandwidth, power, center frequency, envelope in the time and frequency domains, type of modulation, frame size, etc.). The modular design of the system makes it easier to expand by adding more modules that can measure more physical features of the received signal. If the detector detects a signal with certain physical features, it may alert the existence of this signal along with its physical features and name of the most similar known signal from the library.
A sonic conduit tracer includes a sonic transmitter, a sonic receiver and a spectrum analyzer. The transmitter may be configured to transmit an audio signal down an interior length of an empty conduit from a proximate end of the conduit for identification purposes. The receiver may be configured to receive an audio return signal. The spectrum analyzer may be configured to analyze the audio return signal to facilitate the determination of a location of a distant end of the conduit. The sonic conduit tracer may use the audio return signal to determine an estimated length of the conduit.
A fail-safe wireless power transmission system having a transmitter, a receiver, a receiver functionality monitor unit, a transmitter functionality monitor unit and at least two sensors. The transmitter has at least one low emission state, and at least one high emission state, the high emission states having higher emissions and more complex safety systems. The transmitter may be precluded from switching from a low emission state to any high emission states upon detection of a receiver control unit malfunction, a transmitter control unit malfunction, a likelihood of human-accessible emission from the system greater than a predetermined level, or an inconsistency between results arising from at least two of the sensors. Two different methods of such preclusion may be used simultaneously or consecutively to improve reliability. A transmitter control unit analyzes data from the sensors, and performs calculations to determine if and what type of preclusion is needed.
An objective of the present invention is to provide an optical communication system and an optical communication method that can reduce even a delay generated in processing of obtaining a transfer function for correcting distortion in digital coherent transmission. In the optical communication system according to the present invention, pilot data for estimating a transfer function for a transmission channel is transmitted through a transmission channel with a short transmission delay time, a transfer function of the transmission channel is estimated before receiving transmission data, and the transfer function is applied to other transmission channels.
Methods, systems, and devices are described for providing dynamic spatial allocation of satellite capacity based on aircraft load forecasting. In embodiments, a satellite communications system provides network access service over a service area via a plurality of satellite user beams, predicts spatial network resource demand for the service area over one or more service periods based at least in part on forecasted travel paths of a plurality of mobile multi-user terminals over the one or more service periods and respective predicted service demands for the plurality of mobile multi-user terminals, determines a satellite capacity resource configuration for the plurality of satellite user beams for the one or more service periods based on the predicted spatial network resource demand, and then adapts at least one characteristic of the plurality of satellite user beams for the one or more service periods based on the determined satellite capacity resource configuration.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for machine learning models for adjusting communication parameters. In some implementations, data for each device in a set of multiple communication devices is obtained. A machine learning model is trained based on the obtained data. The model can be trained to receive an indication of a geographic location and predict a communication setting capable of providing at least a minimum level of efficiency. After training the machine learning model, an indication of a predicted communication setting for a particular communication device is generated. A determination is then made whether to change a current communication setting for the particular communication device based on the predicted communication setting.
The present disclosure provides a beam indication processing method, a user equipment and a network device. The beam indication processing method includes: determining beam indication information to be used currently; determining a beam for reception according to the determined beam indication information; and performing receiving according to the determined beam.
Certain aspects of the present disclosure provide to techniques for radio link monitoring (RLM), detecting beam failure, and beam failure recovery (BFR) using radio link monitoring reference signal (RML-RS) resources and beam failure recovery reference signal (BFR-RS) resources. An exemplary method by a user equipment (UE) may include obtaining a first configuration indicating one or more radio link monitoring reference signal (RLM-RS) resources and one or more beam failure recovery reference signal (BFR-RS) resources, wherein each RLM-RS resource corresponds to at least a first link, and each BFR-RS resource corresponds to at least a second link, obtaining a first indication that a first link quality for the first link is below a first threshold and a second link quality for the second link is above a second threshold, and taking action regarding a radio link failure (RLF) based on the indication.
A receiver system (100) comprising: a plurality of receiver-input-terminals (102), each of which is configured to receive an input-signal from a respective antenna (106), wherein the input-signals comprise: i. one or more undesired-signal-components; and ii. one or more combined-signal-components. The receiver system (100) also includes a spatial-information-processing-block (112; 212) configured to: calculate spatial information (222) of the undesired-signal-components of the plurality of input-signals; calculate spatial information (220) of the combined-signal-components of the plurality of input-signals; calculate weighting-coefficients (226) for each of the input-signals based on the spatial information (220) of the combined-signal-components and the spatial information (222) of the undesired-signal-components; and combine the plurality of input-signals by applying the weighting-coefficients to each of the input-signals to provide a spatial-output-signal (114; 214). The receiver system (100) further includes a signal-combiner (130) configured to combine a plurality of signal-processing-path-output-signals (110) with the spatial-output-signal (114; 214) in order to provide a receiver-output-signal (108).
Multiple channel transmission in mmW Wireless Local Area Network (WLAN) systems may be provided. Multi-channel aggregation and channel bonding may include, for example, multi-channel aggregation for a single transmitter/receiver pair or multi-channel aggregation and bonding for multiple transmitter/receiver pairs with frequency and space based multiple access. Multi-channel beamforming may include, for example, one analog beam across two channels and analog circuits on each channel or a single analog circuit on both channels, one analog beam across two channels and separate digital precoding schemes on each channel, one analog beam across a primary channel and separate digital precoding schemes on each channel or two analog beams on two channels and separate digital precoding on each channel. Preamble signaling may be provided.
In a communication system, a transmitter is configured to change a transmission characteristic used for the communication with a receiver, wherein a receiver is configured to determine a reception quality of a communication link between the transmitter and the receiver and to transmit a feedback information to the transmitter indicating whether a reception quality has changed or in which direction the reception quality has changed, or whether a transmission characteristic should be maintained, wherein the transmitter is configured to further change the transmission characteristic used for the communication with the receiver in dependence on the feedback information received from the receiver.
The present invention relates to a method and apparatus for transceiving data. A method in which a transmitting terminal transmits data to a receiving terminal in a MIMO system according to one embodiment of the present invention comprises the following steps: generating a data field containing the data; generating a signal field containing information on the data field; generating a data frame containing the data field and the signal field; and transmitting the data frame to the receiving terminal. According to the present invention, an end of the frame being transmitted is accurately notified to the receiving terminal in a communication system in which the frame is transmitted using MIMO, thereby decoding the frame in a more efficient manner at the receiving terminal.
The present disclosure relates to electronic device, communication method and storage medium in a wireless communication system. There is provided an electronic device on side of control device, comprising a processing circuitry configured to: select one or more transmitting beams to be used for downlink transmission with a user equipment based on beam information reported by the user equipment; and control to indicate the one or more transmitting beams to the user equipment, wherein, the processing circuitry is configured to perform the selecting of transmitting beams according to a beam reporting mode of the user equipment, and to select a plurality of transmitting beams in case where the user equipment reports the beam information in a group-based beam reporting mode.
An electronic device includes a display and an input device. While in wireless communication with a set of peripherals that includes a first peripheral and a second peripheral, and in accordance with a determination that the first peripheral satisfies charging criteria that require that the first peripheral is coupled with the second peripheral, the electronic device: initiates charging of the first peripheral, by the second peripheral, to a first threshold charge level that is less than a charge limit of the first peripheral; and, in accordance with a determination that charging completion criteria for the first peripheral are met: initiates charging of the first peripheral, by the second peripheral, to the charge limit of the first peripheral.
An example apparatus disclosed herein includes a controller; one or more receiving circuits coupled to the controller, each receiving circuit configured to receive incoming RF signals from a receiver, the receiver transmitting a communication signal that identifies a location of the receiver; a plurality of transmitting circuits coupled to the controller, each transmitting circuit configured to generate outgoing RF signals based upon the incoming RF signals; and a plurality of antenna elements, the plurality of antenna elements including at least some dedicated antenna elements. In some embodiments, the controller is configured to: (i) select a first configuration of at least some of the dedicated antenna elements to be coupled to the receiving circuits, and (ii) select, based on the location, a second configuration of at least some of the plurality of antenna elements to be coupled to the plurality of transmitting circuits to transmit the outgoing RF signals.
A method for operating a first access service depends on the presence of a second access service. The method includes conducting at least one measurement by the first access service and determining based on the at least one measurement whether or not a power spectral density used by the first access service is adjusted.
Apparatus and methods for signal boosters for vehicles are provided. In certain embodiments, a vehicle signal booster system includes an interior unit including a mobile station antenna that receives an RF uplink signal and transmits a boosted RF downlink signal. The vehicle signal booster system further includes a top unit including a base station antenna that receives an RF downlink signal and transmits a boosted RF uplink signal. The vehicle signal booster system further includes booster circuitry that generates the boosted RF downlink signal based on amplifying one or more downlink channels of the RF downlink signal, and that generates the boosted RF uplink signal based on amplifying one or more uplink channels of the RF uplink signal. The booster circuitry is implemented in the top unit or in the top unit and the interior unit.
High-throughput software-defined convolutional interleavers and de-interleavers are provided herein. In some examples, a method for generating convolutionally interleaved samples on a general purpose processor with cache is provided. Memory is represented as a three dimensional array, indexed by block number, row, and column. Input samples may be written to the cache according to an indexing scheme. Output samples may be generated every MN samples by reading out the samples from the cache in a transposed and vectorized order.
Methods, systems, and apparatuses include receiving a codeword stored in a memory device. Energy function values are determined for bits of the codeword based on soft information for the bits of the codeword. A bit of the codeword is flipped when the energy function values for a bit of the codeword satisfies a bit flipping criterion. A corrected codeword that results from the flipping of the bits is returned.
Systems, methods, and circuits provide delay-locked loop (DLL) timing error mitigation. A DLL false-lock detection system can include DLL circuitry configured to receive a reference clock signal having a time period. The system can include shift register circuitry and latched comparison circuitry which can determine a time period of a locked condition of the DLL delay line with respect to the reference clock signal time period. The system can determine whether the system is correctly locked to the base time period or incorrectly locked to a multiple of the base time period. A further system can operate to cause a phase detector circuitry in a DLL to ignore the first edge of a reference clock signal presented to the phase detector circuitry and thereby avoid stuck-lock conditions.
A chiplet system comprises an interposer including interconnect and multiple chiplets arranged on the interposer and interconnected using the interconnect of the interposer. The multiple chiplets include a throttle level bus source chiplet including a throttle level bus drive interface configured to place a throttle level value onto the throttle level bus, and one or more throttle level bus receiver chiplets operatively coupled to the throttle level bus. Each chiplet of the multiple chiplets includes throttling logic circuitry configured to set a throttle level of a chiplet according to the throttle level value.
An automotive vehicle includes an electric machine, a traction battery, and a power converter. The power converter transfers power between the electric machine and traction battery. The power convert includes a switch that defines a portion of a phase leg, a gate driver circuit that provides provide power to a gate of the switch, and a clamping circuit. The clamping circuit includes a clamping switch that, responsive to the gate driver circuit being de-energized and a voltage of the gate exceeding a predetermined threshold value, conducts current from the gate to dissipate the voltage and clamp the gate to an emitter of the switch.
A phase interpolator includes phase interpolator circuitries. The phase interpolator circuitries generate an output clock signal from an output node according to phase control bits and clock signals. Phases of the clock signals are different from each other. Each phase circuitry includes phase buffer circuits. Each phase buffer circuit is turned on according a first bit and a second bit of the phase control bits, in order to generate a signal component in the output clock signal according to a corresponding clock signal of the clock signals. Each phase buffer circuit includes a first resistor and a second resistor, and transmits one of a first voltage and a second voltage to the output node according to the corresponding clock signal, in which the first voltage is transmitted to the output node via the first resistor, and the second voltage is transmitted to the output node via the second resistor.
Provided are various spacecraft propulsion systems, and associated methods of operation. A spacecraft comprises an ion propulsion system and an ion blocker suspended from the spacecraft via one or more electrically insulated tethers. The ion propulsion system is configured to generate a first propulsive force by emitting a charged ion beam in a direction with an ion velocity vector comprising an ion vector component that is perpendicular to a magnetic field of a planet, such as Earth. The magnetic field causes the ion beam to curve toward the ion blocker at a trajectory such that ions within the ion beam are blocked by the ion blocker to generate a second propulsive force on the ion blocker. The ion blocker blocks the ions by contacting or deflecting the ions. The ion blocker is positioned approximately twice the gyroradius of the ion beam trajectory.
An interdigitated RF filter. The interdigitated RF filter includes input fingers connected to an input node and output fingers connected to an output node where at least one input finger is connected the output node or at least one output finger is connected to the input node. The described interdigitated RF filter can be implemented in various configurations such as series, shunt, ladder or a combination thereof.
Described herein is a fully-differential preamplifier comprising an input differential pair, an output current load, and a current source. The current source is coupled between the input differential pair and a low voltage rail and configured to control whether the fully-differential preamplifier is operating in a first mode or a second mode, wherein the preamplifier draws more current when operating in the second mode compared to when operating in the first mode. The input differential pair is coupled between the output current load and the current source. The output current load is coupled between a high voltage rail and the input differential pair. The input differential pair comprise positive and negative inputs of the fully-differential preamplifier. Nodes where the input differential pair and the output current load are coupled to one another comprise positive and negative outputs of the fully-differential preamplifier.
An apparatus includes an amplifier circuit and a protection circuit. The amplifier circuit may be configured to generate an output signal by amplifying an input signal received at an input port. The input signal may be a radio-frequency signal. The protection circuit may be configured to (i) generate a detection signal by detecting when a level of the input signal exceeds a corresponding threshold, where the level is a power level, a voltage level or both, (ii) route the input signal away from the input port of the amplifier circuit and disable the amplifier circuit both in response to the detection signal being continuously active at least a first time duration and (iii) route the input signal to the input port of the amplifier circuit and enable the amplifier circuit both in response to the detection signal being continuously inactive at least a second time duration.
A device includes a substrate, a first electrode and a second electrode. The first electrode is disposed on the substrate, and configured to receive an input signal. The second electrode is disposed on the substrate, and configured to output an output signal based on the input signal. When the input signal is configured to oscillate within a first range between a first voltage value and a second voltage value with a first frequency, the output signal is an inverted version of the input signal, and has the first frequency. When the input signal is configured to oscillate within a second range including the first voltage value without the second voltage value with the first frequency, the output signal has a second frequency which is approximately twice of the first frequency.
In an example, a system includes a BAW resonator. The system also includes a first heater configured to heat the BAW resonator, where the first heater is controlled by a first control loop. The system includes a circuit coupled to the BAW resonator. The system also includes a second heater configured to heat the circuit, where the second heater is controlled by a second control loop.
A solar cell assembly having a flexible circuit is described. The solar cell assembly includes a solar cell having a solar-facing surface and a non-solar-facing surface, the solar cell comprising a cell corner. The solar cell assembly further includes a flexible circuit coupled to the non-solar-facing surface of the solar. The flexible circuit is substantially coextensive with the solar cell. The flexible circuit includes a flexible insulator including a plurality of edges aligned with the solar cell, a flexible corner extending past the cell corner, and a flexible tab extending from an edge of the plurality of edges. The flexible circuit includes a circuit substantially embedded in the flexible insulator. The circuit comprises a first electric contact exposed at a solar-facing side of the flexible corner, and a second electric contact exposed at a solar-facing side of the flexible tab.
A method is for use with a synchronous machine having a stator and a rotor with or without permanent magnets. In operation, electric current of the synchronous machine responsive to the synchronous machine being actuated via clocked terminal voltages is measured. A magnetic flux linkage is determined based on the clocked terminal voltages and the measured electric current. A profile of the magnetic flux linkage as a function of rotation of the rotor, under a boundary condition of an at least two-dimensional electric current vector that is unchanged in coordinates of the stator, is used to detect a position of the rotor. The synchronous machine is controlled according to the rotor position.
In a drive system and method for operating a drive system, in which the drive systems includes an electromagnetically operable brake, an electric motor, e.g., a three-phase motor, and an electronic circuit, the brake has an energizable coil, e.g., a brake coil, the electronic circuit has a rectifier, an upper controllable semiconductor switch, a freewheeling diode, and a varistor, a direct voltage provided by a rectifier is able to be made available by closing or by a pulse-width-modulated actuation of an upper controllable semiconductor switch of the coil, and by opening the upper controllable semiconductor switch, a current driven by the coil in the de-excitation of the coil is freewheeling and/or flowing through the freewheeling diode and the varistor or through a component connected in parallel with the varistor.
A vibration-driven energy harvesting element includes: a pair of fixed electrode portions that have a plurality of fixed comb teeth and are arranged such that the plurality of fixed comb teeth face each other; and a movable electrode portion that is arranged between the pair of fixed electrode portions and has a pair of a plurality of movable comb teeth being inserted between the fixed comb teeth of the respective fixed electrode portions, wherein: the vibration-driven energy harvesting element has a three-terminal structure in which the fixed comb teeth and/or the movable comb teeth are electretized; a gap dimension of a clearance region between the fixed comb teeth and the movable comb teeth is smaller than 20 μm; and an aspect ratio being a ratio of a dimension of the clearance region in a comb tooth height direction to the gap dimension of the clearance region, is 20 or more.
An alternating current to direct current conversion circuit includes N first power converters instead of a boost circuit including a power switch with a high withstand voltage. The N first power converters each have an input end and theses input ends are connected in series, to perform power factor correction. Therefore, the alternating current to direct current conversion circuit includes no power switch with a high withstand voltage, so that the alternating current to direct current conversion circuit has a small volume, low switching loss, less energy loss, and good heat dissipation, thereby increasing power density.
A power conversion system includes: a self-excited power converter to perform power conversion between a first AC system and a DC system; a first transformer having a primary side connected to the first AC system and a secondary side connected to the self-excited power converter; and a first impedance circuit connected between a ground and a neutral point on the secondary side of the first transformer, or between the ground and an AC line connecting the secondary side of the first transformer and the self-excited power converter. The first impedance circuit includes one of a reactor and another transformer.
A synchronous average harmonic current controller for a line connected bidirectional resonant power converter results in a harmonic voltage gain closely related to the commanded bridge duty cycles. A primary bridge has its duty cycle set to achieve controlled line power transfer and voltage regulation of a primary bus energy storage capacitor. A secondary bridge circuit has its duty cycle set to achieve voltage regulation of secondary bus energy storage capacitor. A first embodiment uses the independent energy storage elements to achieve power factor correction and low noise regulation using a single stage. A second embodiment uses feedforward duty cycle control to achieve isolated voltage regulation using the well-defined voltage gain resulting from the synchronous average harmonic current controller.
There is provided a semiconductor device that includes a switch terminal; a ground terminal; an output switch connected between the switch terminal and the ground terminal and configured to be switchable between a first on-resistance value and a second on-resistance value higher than the first on-resistance value; a detection circuit configured to detect a short-circuit abnormality of the switch terminal by monitoring a switch voltage that appears at the switch terminal in a predetermined detection period; and a controller configured to perform a pulse-drive of the output switch by setting the output switch to the second on-resistance value in the detection period, continuously perform the pulse-drive of the output switch by setting the output switch to the first on-resistance value if the short-circuit abnormality of the switch terminal is not detected, and forcibly stop the pulse-drive of the output switch if the short-circuit abnormality of the switch terminal is detected.
A switching regulator includes a first transistor having a control input and the first transistor is coupled to an input voltage terminal. The regulator includes a second transistor having a control input. The second transistor is coupled to the first transistor at a switch terminal and to a ground terminal. The regulator also includes a controller coupled to the control inputs of the first and second transistor. The controller configured is configured to cause both the first and second transistors to be off concurrently during each of multiple switching cycles for an adaptive high impedance state. The length of time of the adaptive high impedance state is inversely related to current output by the switching regulator.
A DC-DC converter may include: a first converter for converting an input voltage to generate a first power supply voltage; a duty ratio controller configured generate a duty ratio control signal for controlling a duty ratio of a switching pulse of the first converter; a switching frequency controller configured to generate a switching frequency control signal for controlling a driving frequency of the first converter corresponding to a switching frequency of the switching pulse; and a current sensor configured to sense current flowing through the first converter. The first converter is driven at a switching frequency of a first frequency in a first mode, based on the switching frequency control signal, and generates the first power supply voltage of a first level, based on the duty ratio control signal. The switching frequency controller determines whether to turn off the current sensor.
An apparatus includes a controller. The controller receives feedback associated with a device powered by a power source. Sampling of the feedback associated with the device is susceptible to noise caused by a power converter in a vicinity of the controller. To achieve more accurate sampling of the feedback, the controller adjusts operation of the power converter during a window of time in which the power source powers the device. The adjusted operation reduces noise caused by the power converter such that, during the window of time in which the operation of the power converter is adjusted, the controller derives one or more accurate sample values from the received feedback.
Each of a plurality of unit converters includes: a main circuit; a control circuit that controls the plurality of switching elements according to a control signal received from the controller; a power supply that lowers a voltage of a first capacitor to generate a power supply voltage and supplies the power supply voltage to the control circuit; and a current-limiting resistance circuit having a variable resistance value and disposed between the main circuit and the power supply. The power supply includes a second capacitor, an overcharge suppression circuit, a power supply circuit, and a controller. The controller includes: an overcharge suppression control circuit that controls the overcharge suppression circuit in accordance with a magnitude of a voltage of the second capacitor; and a resistance switching circuit that changes a resistance value of the current-limiting resistance circuit in accordance with a magnitude of a voltage of the first capacitor.
An electromagnetic coupling device includes an electromagnetic coil, a field core including a recessed portion containing the electromagnetic coil, and a terminal block inserted in a hole passing through the wall of the recessed portion. The terminal block includes a terminal portion projecting outside the field core, a pair of terminals provided at the terminal portion, and a pair of through holes passing through the terminal block via the pair of terminals. The winding start end and winding termination end of the electromagnetic coil pass through the pair of through holes, project from the pair of terminals, and are soldered to the pair of terminals together with a pair of external connection lead wires.
Guide device for shuttles of a planar motor has a first end and a second end and defines a pose course of a shuttle between the first and second end. The first end, which defines an introductory pose of the shuttle, is arrangeable on a first stator of the planar motor so that the introductory pose corresponds to an operationally controllable pose in relation to the first stator. The second end, which defines an exit pose of the shuttle, is arrangeable on the first stator or a second stator of the planar motor so that the exit pose corresponds to an operationally controllable pose with respect to the first or second stator. The pose course includes at least one pose which is an operationally non-controllable pose with respect to stators of the planar motor. The guide device supports and stabilizes the shuttle in the at least one operationally non-controllable pose.
A synchronous machine having a hybrid rotor excitation. The synchronous machine includes a rotor having a plurality of permanent magnets and electromagnets embedded within a rotor body. The permanent magnets produces a constant magnet field having a magnetic axis along a direct axis (D-axis). The electromagnets produces a variable magnetic field along a magnetic axis offset from the D-axis, preferable substantially orthogonal to the D-axis. The plurality of permanent magnets are separated from the electromagnets by a rotor air-gap. The plurality of permanent magnets includes inner pairs and outer pairs of permanent magnets nested in a V-shaped configuration. In another embodiment, the outer pairs of permanent magnets are replaced with outer radius electromagnets.
A method of manufacturing a magnetic pole piece includes molding a magnetic body having an outer wall and an inner wall extending between a first end and a second end, and a trim cap disposed at the first end. The method further includes fixing a non-magnetic isolator to the magnetic body between the outer wall and the inner wall and removing the trim cap.
This disclosure enables an assembly for driving an arm of a windshield wiper of a vehicle. The assembly includes a support structure in a housing that is secured against rotation relative to the housing. The support structure has an opening with a bearing surface, where the opening is configured to receive a boss of a worm wheel such that the bearing surface faces the boss of the worm wheel.
Embodiments of the present invention are directed to a generator for connecting to a predefined load, where the generator is designed and constructed to meet one or more requirements of the predefined load. In specific embodiments the one or more requirements include providing a minimum output voltage while starting the predefined load at or above ambient temperature and providing an output voltage that does not exceed an upper voltage limit while being driven at full speed without any load current at or below ambient temperatures, while maintaining high efficiency under a specified full load running condition and keeping the overall cost and size of the generator low.
A stator of a brushless motor has an iron core, a bobbin, and a winding assembly. The iron core has multiple stator poles mounted on an interior annular surface of a core body and spaced apart from each other. The bobbin is mounted on one of two open ends of the core body and has a substrate, at least one neutral connector mounted on an upper surface of the substrate, and at least one neutral solder pad mounted in the at least one neutral connector. The winding assembly is formed by one wire wound on multiple stator poles and the connectors. The winding assembly is electrically connected to the at least one neutral solder pad.
A magnetic alignment system can include a primary annular magnetic alignment component and a secondary annular magnetic alignment component. The primary alignment component can include an inner annular region having a first magnetic orientation, an outer annular region having a second magnetic orientation opposite to the first magnetic orientation, and a non-magnetized central annular region disposed between the primary inner annular region and the primary outer annular region. The secondary alignment component can have a magnetic orientation with a radial component. Additional features, such as a rotational magnetic alignment component and/or an NFC coil and circuitry can be included.
A power transmission apparatus that transmits power wirelessly to a power receiving apparatus by using power supplied from a power supply apparatus includes a first authentication unit configured to execute device authentication with the power supply apparatus, a second authen-tication unit configured to execute device authentication with the power receiving apparatus, and a control unit that performs negotiation related to transmission power with the power receiving apparatus based on a result of the device authentication by the first authentication unit and a result of the device authentication by the second authentication unit.
A power feed system includes a power feed mat and a computer. The power feed mat includes a plurality of power transmission coils. The power feed mat is configured to feed power to at least one movable body on the power feed mat by using at least one of the plurality of power transmission coils. The computer is configured to determine whether or not to permit power feed to a movable body that requests power feed. In the power feed system, when the computer determines not to permit power feed, the power feed mat does not feed power to the movable body that requests power feed.
A pre-charging circuit is provided, including a first switch, a second switch, a diode, a first current-limiting apparatus, a capacitor, and an inverter unit. One end of the pre-charging circuit is connected to a power grid. After the first current-limiting apparatus, the first switch, and the diode are connected in series, one end of a line formed by the series connection is connected to one terminal of the capacitor, the other end of the line is connected to a first-phase alternating current of the power grid, and the other terminal of the capacitor is connected to a second-phase alternating current of the power grid via the inverter unit and the second switch successively.
A backup battery control module configured to supply electric power from a backup battery to a load when electric power supplied from a main battery to the load is cut off. The backup battery control module is configured to: measure an open circuit voltage of the backup battery in a state in which an ignition switch is off; derive, based on a measured open circuit voltage, an already charged rate of the backup battery; measure an internal resistance of the backup battery in a state in which the ignition switch is off; derive a deterioration degree of the backup battery based on a measured internal resistance; derive a target charging rate based on the deterioration degree; and charge the backup battery until the target charging rate is reached in a case in which it is determined that the already charged rate is smaller than the target charging rate.
This disclosure describes, in part, techniques for reducing pulsating currents of internal power sources, such as batteries. For example, a device may include a power source, a load, and a control device located between the power source and the load. The control device may include a power converter that is configured to maintain a constant input current from the power source and output a pulsating current to the load. While regulating the power, the control device may determine whether an average output power is different than a reference power. If the average output power is equal to the reference power, then the control device may cause the power converter to maintain the constant input current. However, if the average output power is different than the reference power, then the control device may cause the power converter to alter (e.g., decrease/increase) the input current being received from the power source.
A method of discharging a battery assembly used to power at least part of an object includes detecting when power to the object is turned off, detecting, with aid of a timer, an amount of time elapsed since the power to the object is turned off, and initiating a controlled self-discharge of the battery assembly when the amount of time exceeds a threshold length of time. The controlled self-discharge of the battery assembly is performed by a self-discharging circuit electrically coupled to the battery assembly.
Systems and methods for supplying power from a multi-cell battery to a single-cell power management integrated circuit. One implementation of the system includes a voltage converter circuit, a control circuit, and a signal buffer circuit. The voltage converter circuit is configured to scale a positive battery terminal voltage signal received from the multi-cell battery to generate a scaled voltage signal. The control circuit is configured to select one of the scaled voltage signal or a cell voltage signal received from the multi-cell battery. The control circuit is also configured to output a high-impedance single-cell power signal including the selected one of the scaled voltage signal or the cell voltage signal. The signal buffer circuit is configured to buffer the high-impedance single-cell power signal to generate a low-impedance single-cell power signal for a voltage sense pin of the single-cell power management integrated circuit.
A battery pack charging and discharging protection system comprises a battery pack and a power input controlling circuit connected with the battery pack. The system has a voltage regulator unit and a charging and discharging protection unit. The protection unit includes a coupling wake-up circuit, a power-off acceleration circuit, an MCU self-locking circuit and a button detection circuit. The coupling wake-up circuit is connected with the power input controlling circuit. The power-off acceleration circuit is connected with the coupling wake-up circuit. Compared to the conventional technology, the present invention adopts single-wire compatible communication and coupled wake-up mode to achieve the autonomous power-off of the battery pack in time, avoiding over-discharge of the battery caused by the long-term self-consumption of the battery pack.
Example implementations include a charging device with a capacitor divider circuit including a plurality of battery state inputs operably coupleable to a plurality of battery devices, and a pulse width modulation (PWM) generator operable to selectively charge the battery devices, a plurality of switching transistors each operatively coupled at a gate terminal thereof to a respective PWM control output of a plurality of PWM control outputs, and a flying capacitor operatively coupled at a first terminal thereof to a first plurality of the switching transistors, operatively coupled at a second terminal thereof to a second plurality of the switching transistors. Example implementations further include a comparator operatively coupled to the capacitor divider circuit and operable to determine whether a difference between voltages associated with the battery devices satisfies a voltage threshold, where the capacitor divider circuit is further operable to, in response to a determination that the difference satisfies the voltage threshold, block charging of one or more of the battery devices.
A battery monitoring system includes a battery pack for a vehicle and a battery monitoring device that monitors a state of a battery cell included in the battery pack. The battery pack includes an acquisition unit configured to acquire battery information of the battery cell, a first storage unit configured to store the acquired battery information, and a first communication unit configured to transmit the battery information stored in the first storage unit to the battery monitoring device. The battery monitoring device includes a second communication unit configured to receive the battery information transmitted from the first communication unit, a second storage unit configured to store the received battery information, and a third storage unit configured to store initial battery information indicating a battery state at the time of manufacture of the battery pack.
A counter-solar power plant may include a controller configured to execute instructions stored in a memory, the instructions including operations to receive data associated with power outputs of a plurality of legacy solar-only resources (LSORs), determine an estimated power output of the plurality of LSORs based on the received data, obtain a target power delivery profile of the plurality of LSORs, the target power delivery profile including a plurality of target power outputs, determine an output of a CSPP renewable energy system (RES) and a charge/discharge of a CSPP energy storage system (ESS) such that a combined output of the CSPP and the estimated power output of the plurality of LSORs satisfies at least one of the plurality of target power outputs of the target power delivery profile, and control the CSPP RES and CSPP ESS according to the determined CSPP RES output and CSPP ESS charge/discharge.
Various implementations are directed to a method for detecting, by a device, an increase in temperature at certain parts of an electrical system, and taking appropriate responsive action. The method may include measuring temperatures at certain locations within the system and estimating temperatures at other locations based on the measurements. Some embodiments include an integrated cable combining electrical conduction and heat-detection capabilities, or an integrated cable or connector combining electrical conduction with a thermal fuse.
An electrical power generating system for providing auxiliary or backup power to a load bus. The system may be used indoors, and generally includes a fuel cell unit comprising a first DC output, an electrical storage unit comprising a DC input coupled to the first DC output of the fuel cell, the electrical storage unit further comprising a second DC output. An inverter coupled to the second DC output receives power, the inverter comprising a first AC output. The system includes a contactor connected between the first AC output and an AC load bus. The AC load bus comprises an AC voltage, and a controller comprising inputs is adapted to sense a phase, a frequency, and a magnitude of the first AC output and the AC voltage and close the contactor when they substantially match.
A system and method for controlling microgrids composed of inverter-based distributed generation (IBDG) units. This includes a method using multiple IBDGs to inject impedance-modulated harmonic currents during fault conditions, with each IBDG injecting a unique, differentiable harmonic (i.e., non-fundamental) order from neighboring IBDGs. The method also involves using an inverse time-harmonic-current characteristic to detect faults by locally measuring the harmonic currents injected by IBDGs. A harmonic directional overcurrent relay is also used for fault detection.
The present invention provides for an electronic isolator device for application in intrinsically safe environments having isolation and safety functionality and comprising: an isolator module (101), a safety module (100), and wherein the isolator module is arranged for removable physical/electrical connection to the safety module in at least two orientations/configurations (DO, Dl, Al, AO) relative to the safety module, wherein the electrical connection to the safety module in each of the at least two orientations/configurations serves to configure the electrical functionality of the safety module (100).
A bus bar assembly comprises a first bus bar having a first body part, a plurality of first installation parts and a first output part, and a second bus bar having a second body part, a plurality of second installation parts and a second output part. A first connection terminal is fixedly connected to the first output part, and a second connection terminal is fixedly connected to the second output part. The first body part is arranged over and parallel to the second body part, and the first output part and the second output part are arranged adjacent one another.
An electrical assembly may include a contactor, a bus bar connected to the contactor, a bracket connected to the bus bar, and/or a cooling member. The cooling member may be connected to the bracket such that the contactor is indirectly connected to the cooling member via the bus bar and the bracket. A method of assembling an electrical assembly may include providing a bracket and one or more contactors, inserting the one or more contactors into the bracket, disposing a flexible circuit at least partially on and/or in the bracket, electrically connecting the flexible circuit with the one or more contactors, connecting a bus bar assembly with the one or more contactors, connecting the bus bar assembly with the bracket, disposing a cooling member on or about the bracket, and/or connecting the cooling member with the bracket.
A VCSEL includes an active region between a top distributed Bragg reflector (DBR) and a bottom DBR each having alternating GaAs and AlGaAs layers. The active region includes quantum wells (QW) confined between top and bottom GaAs-containing current-spreading layers (CSL), an aperture layer having an optical aperture and a tunnel junction layer above the QW. A GaAs intermediate layer configured to have an open top air gap is disposed over a boundary layer of the active region and the top DBR. The air gap is made wider than the optical aperture and has a height equal to one quarter of VCSEL's emission wavelength in air. The top DBR is attached to the intermediate layer by applying wafer bonding techniques. VCSEL output, the air gap, and the optical aperture are aligned on the same optical axis. The bottom DBR is epitaxially grown on a silicon or a GaAs substrate.
A light emission device includes: a plurality of semiconductor light-emitting elements; an optical element configured to collimate light emitted from each of the plurality of semiconductor light-emitting elements and output a plurality of collimated beams; a converging portion having a surface of a hyperboloid or a paraboloid configured to converge the plurality of collimated beams; and a wavelength-converting portion including a transmissive region, and a reflective region that surrounds the transmissive region, the transmissive region including a light-incident surface at which the plurality of collimated beams that have been converged by the converging portion enter, wherein the transmissive region includes a phosphor adapted to be excited by the plurality of collimated beams that have been converged by the converging portion.
A swept light source of the present invention keeps a coherence length of an output beam long over an entire sweep wavelength range. A gain of a gain medium is changed with time in response to a wavelength sweep and the coherence length is kept maximum. The gain of the gain medium is kept close to a lasing threshold and an unsaturated gain range of the gain medium is narrowed over the entire sweep wavelength range. An SOA current waveform data acquiring method of driving while keeping the coherence length long, a novel coherence length measuring method, and an optical deflector suitable for the swept light source are also disclosed.
Systems, methods, devices, and connectors are described herein for a modular patient monitoring medical device. A new generation of physiological measurement devices, such as Intelligent Patient Front End Devices (IPFE) can provide updated algorithms, features, and software updates for parameter measurement devices without corresponding releases of a new version of host monitor software. IPFEs, together with patient sensors, comprise a complete physiological patient parameter measurement delivery system. A number and a type of parameter measurement devices can be configured to meet varied and changing clinical needs. Remote access to versions, logs, self-tests, settings, history, and/or measurements via the Internet to one or more parameter measurement devices can provide a unified service approach. The connector is configured to electrically connect any two or more devices and provides an electrical connection that can be simply physically or tactually confirmed.
A push-pull coaxial connector includes: an external conductor configured to internally receive the matching external conductor of a mating connector, with concave parts or through holes on the inner surface of the side wall of the external conductor; a sleeve surrounding the external conductor, where the sleeve is able to slide between the front position and rear position along the external conductor and is able to rotate around the circumference of the external conductor. When the sleeve is at the front position, one or more protrusions are staggered away from one or more notches and abutted on the rear surface of the sleeve to prevent the sleeve from moving backward. When the sleeve is at the rear position, one or more protrusions are received in one or more corresponding notches.
Provided are embodiments for an electrical connector system. Embodiments include an electrical connector and a support ring where the support ring includes a baseplate having a first side and a second side, a recessed portion on a first side of a baseplate for a primary O-ring, and a sidewall extending from the second base plate. Embodiments also include a housing coupled to the support ring, wherein the sidewall extends into the housing, wherein the support ring is coupled to the electrical connector on the first side, and the support ring is coupled to the housing on the second side. Also provided are embodiments for the support ring and assembling the electrical connector system.
A wire harness includes: a wire bundle that bundles electric wires, the wire bundle including a branch portion; and a protector attached to the wire bundle so as to accommodate the branch portion of the wire bundle. The wire bundle includes: branch lines extending from the branch portion in routing directions; and a relay line drawn out from the branch portion, the relay line being provided with a connector at a tip end. The protector includes: accommodating portions that accommodate the branch lines, respectively; and connector holding portions provided in at least two of the accommodating portions, respectively, the connector holding portions being provided within a range where the relay line reaches from the branch portion. The relay line is accommodated in the protector in a state in which the connector is selectively held in one of the connector holding portions.
The invention generally provides a connector recording system or platform that includes a recording system designed to interact with a connector system to read an indicia and then transfer, store, and display information associated with the positioning of the connector system in the installed component or device. The connector system includes a male housing assembly, a female housing assembly coupled to the male housing assembly in a connected state, and a connector position assurance assembly with the indicia and a locking member that is movable between locked and unlocked positions. In the locked position, the locking member secures the male housing assembly to the female housing assembly and the indicia can be read by the scanner to signal that the connector position assurance assembly is in the locked position. In the unlocked position, the indicia is in a state that does not allow the scanner to obtain information from the indicia.
A spring-actuated electrical connector assembly for electrically and mechanically connecting a device to a power source in high-power, high-voltage applications is disclosed. The connector assembly includes a first connector with an internal receiver, a plurality of side walls, and at least one contact beam. The contact beam integrally extends to an outer surface of the side wall and includes a free end that extends inward of the outer surface of the side wall. An internal spring member is dimensioned to reside within the receiver of the first connector. This assembly also includes a second electrically conductive connector with a receptacle dimensioned to receive both the first connector and the spring member to define a connected position during operation of the device. In the connected position, at least one spring arm of the spring member exerts an outwardly directed force on the contact beam of the first connector to outwardly displace the contact beam into engagement with the second connector.
Providing a terminal material for connectors provided with a base material in which at least a surface layer is made of copper or copper alloy, a nickel-plating layer made of nickel or nickel alloy coating a surface of the base material, and a silver-nickel alloy plating layer formed on at least a part of the nickel-plating layer, the silver-nickel alloy plating layer having a film thickness of 0.5 μm to 20 μm inclusive, a nickel content of 0.03 at % to 1.20 at % inclusive, and an average crystal grain size of 10 nm to 150 nm inclusive, to improve abrasion resistance and heat resistance.
Systems and methods are provided for a digital beamformed phased array feed. The system may include a radome configured to allow electromagnetic waves to propagate; a multi-band software defined antenna array tile; a power and clock management subsystem configured to manage power and time of operation; a thermal management subsystem configured to dissipate heat generated by the multi-band software defined antenna array tile; and an enclosure assembly. The multi-band software defined antenna array tile may include a plurality of coupled dipole array antenna elements; a plurality of frequency converters; and a plurality of digital beamformers.
A laminated glazing panel includes an outer pane of glass and an inner pane of glass, the inner pane of glass being laminated to the outer pane of glass by a thermoplastic interlayer. The panel further has an antenna structure including: (a) a feeding structure comprising at least one ground conductor and a signal conductor, the least one ground conductor being electrically isolated from the signal conductor by a gap, and (b) a radiator, fed by the feeding structure and electrically connected to the signal conductor. The panel also has a connector, to power the antenna structure, that includes a further conductor connected to the signal conductor, and at least one conductor connected to the at least one ground conductor. The radiator, the signal conductor and the extremity of the further conductor are provided on at least one of the surfaces of the inner faces of the glass panes.
The present invention is preferably directed to a polylactam ceramic coating for a microporous battery separator for a lithium ion secondary battery and a method of making this formulation and application of this formulation to make a coated microporous battery separator. The preferred inventive coating has excellent thermal and chemical stability, excellent adhesion to microporous base substrate, membrane, and/or electrode, improved binding properties to ceramic particles and/or has improved or excellent resistance to thermal shrinkage, dimensional integrity, and/or oxidation stability when used in a rechargeable lithium ion battery.
The present disclosure relates to a battery pack comprising: a module assembly comprising two or more battery modules, wherein each of the battery modules comprises a battery core and an end plate, a plurality of battery cores are arranged side by side along a length direction of the battery pack, the end plate is located on at least one side of the plurality of battery cores in the length direction, and the two or more battery modules are arranged side by side along a width direction of the battery pack; and a limiting plate disposed on at least one side of the module assembly in the length direction and correspondingly to the end plate, wherein the limiting plate comprises an inner side surface towards the end plate.
The invention relates to a cuboid-shaped housing (1) for receiving a plurality of cuboid-shaped batteries (2) which are intended as an energy source for the traction drive of motor vehicles, in particular automobiles, the housing (1) having a bottom wall (3), first and second side walls (4, 5) peripherally connected to said bottom wall, and a top (6) connected detachably to the free ends of the side walls (4, 5), wherein: the housing (1) is a sheet metal component folded from a sheet metal panel; the side walls (4, 5) are folded in the same orientation at right angles to the bottom wall (3), the free ends of which are folded outwardly at right angles oriented away from the housing interior, and a narrow edge region is turned in the opposite direction such that a double layer (7) is formed; the exposed upper edge region (8) of the double layer (7) is connected in a sealed manner to the top (6); and the cut edge (10) of the edge region lies within the sealed housing region.
A top cover assembly for a battery, a battery, and an energy storage device are provided in the disclosure. The top cover assembly includes an insulating cover plate, a top cover plate, an insulating member, and a current collector stacked in sequence. A surface of the first flange close to the insulating member, an inner circumferential wall of the mounting hole, and a surface of the top cover plate close to the first flange and extending beyond the inner circumferential wall of the mounting hole define a sealing cavity. An inner circumferential wall of the through hole and an outer circumferential wall of the main body define a gap therebetween, the gap communicates with the sealing cavity, and a sealing member is received in the sealing cavity.
The disclosure provides a vehicle battery cooling device including, in a vehicle equipped with a battery for driving, a battery accommodation part, an outside air introduction passage introducing air outside the vehicle, a heat exchanger cooling air introduced into the outside air introduction passage, a first air conditioning passage, a second air conditioning passage, a first discharge passage, and a second discharge passage. The first air conditioning passage is communicated to the heat exchanger and the vehicle room to supply air cooled by the heat exchanger to the vehicle room. The second air conditioning passage is communicated to the heat exchanger and the battery accommodation part to supply air cooled by the heat exchanger to the battery accommodation part. The first discharge passage discharges air in the vehicle room to outside the vehicle. The second discharge passage discharges air in the battery accommodation part to outside the vehicle.
A method for diagnosis of a temperature control means (30) of a battery pack (10) that comprises a plurality of battery cells (20) and a plurality of temperature sensors for measuring temperatures of the individual battery cells (20), the battery cells (20) being arranged side by side in the battery pack (10), in a longitudinal direction (12) of the battery pack (10), and mechanically connected to each another, and the battery cells (20) being arranged on the temperature control means (30) and mechanically and thermally connected to it. A battery management system, and/or a battery pack (10) may be configured to execute the method. A vehicle may be fitted with a battery pack that carries out the method.
Various embodiments of a technique to estimate and monitor a self-discharge rate for use as a measure of battery health are described herein. In some embodiments, the technique includes a system including a processor and a memory coupled with the processor. The memory is configured to provide the processor with instructions that when executed cause the processor to receive a plurality of snapshots obtained by monitoring a battery system in a quiescent state at a plurality of times. Each snapshot includes a plurality of cell state values at one of the plurality of times. The memory is further configured to provide the processor with instructions that when executed cause the processor to estimate a self-discharge indicator using at least one snapshot in the plurality of snapshots, compare the self-discharge indicator to a threshold, and recommend a remedy for the battery system in response to the self-discharge indicator exceeding the threshold.
Disclosed herein are battery management systems and methods for activating battery override logic for a battery management system to provide a power path to a battery pack. A method of activating battery override logic for a battery management system may comprise detecting a predetermined key toggle sequence performed in a predetermined amount of time or detecting an override message received from a CAN bus. The method may further comprise determining if the last override turn-on sequence was requested more than a predetermined amount of time ago, confirming that the override is configured for the contactor, and turning on the contactor to provide a power path to the battery pack for a limited predetermined amount of time. An exemplary predetermined toggle sequence may comprise on-off-on-off-on performed within 10 seconds. An exemplary override message from the CAN bus may be initiated by a user having a key, code, or access card.
A vehicle battery charger and a vehicle battery charging system are described and illustrated, and can include a controller enabling a user to enter a time of day at which the vehicle battery charger or system begins and/or ends charging of the vehicle battery. The vehicle battery charger can be separate from the vehicle, can be at least partially integrated into the vehicle, can include a transmitter and/or a receiver capable of communication with a controller that is remote from the vehicle and vehicle charger, and can be controlled by a user or another party (e.g., a power utility) to control battery charging based upon a time of day, cost of power, or other factors.
A device for electropolishing an energy storage device having at least one lithium-ion cell comprises at least one actuatable first switch which is connected in series to a capacitor and an electrical resistor for current limitation parallel to at least one lithium ion cell, wherein an apparatus for discharging the capacitor is connected in parallel at least to the capacitor (C). The invention further relates to a charger and to a method for operating the charger.
According to the present disclosure, it is possible to appropriately prevent a shortage of a nonaqueous electrolyte solution in an electrode body and keep battery performance of a nonaqueous electrolyte secondary battery at a favorable state. A nonaqueous electrolyte secondary battery disclosed herein includes an electrode body and a nonaqueous electrolyte solution. The electrode body includes an electrolyte solution passage that is a flow passage through which the nonaqueous electrolyte solution flows between the inside and the outside of the electrode body. When a region of a negative-electrode composite material layer that is in contact with the electrolyte solution passage is referred to as a damming portion and a region that is located on the center side relative to the damming portion is referred to as a liquid retaining portion, the damming portion contains a negative electrode active material of which an electrical potential relative to a positive electrode active material is high and a ratio of expansion or contraction due to an increase or decrease in SOC is high, when compared to a negative electrode active material contained in the liquid retaining portion. With this configuration, the electrolyte solution passage can be closed by the damming portion in a charge state where the damming portion expands, and therefore leakage of the nonaqueous electrolyte solution can be suppressed.
The present invention relates to a lithium secondary battery comprising: a negative electrode comprising a negative electrode active material containing Si or Sn, a positive electrode comprising a positive electrode active material, and a non-aqueous electrolyte. The non-aqueous electrolyte comprises: a non-aqueous organic solvent; a lithium salt; fluoroethylene carbonate; a first additive containing at least one compound among compounds resented by chemical formulas 1 to 4; and a second additive containing at least one compound among compounds represented by chemical formula 5 or 6.
Provided are a sodium ion-conductive crystal-containing solid electrolyte sheet capable of giving excellent battery characteristics even when reduced in thickness, and an all-solid-state battery using the same. The solid electrolyte sheet contains at least one type of sodium ion-conductive crystal selected from β″-alumina and NASICON crystal and has a thickness of 500 μm or less and a flatness of 200 μm or less.
A solid electrolyte material according to an aspect of the present disclosure is represented by the following Compositional Formula (1):
Li6-3zYzX6
where, 0
Metal-ion battery cells are provided that take advantage of the disclosed “doping” process. The cells may be fabricated from anode and cathode electrodes, a separator, and an electrolyte. A metal-ion additive may be incorporated into (i) one or more of the electrodes, (ii) the separator, or (iii) the electrolyte. The metal-ion additive provides additional donor ions corresponding to the metal ions stored and released by anode and cathode active material particles. An activation potential may then be applied to the anode and cathode electrodes to release the additional donor ions into the battery cell.
Provided is a method of controlling a fuel cell system having a fuel cell stack, a reformer configured to reform a raw fuel and supply the reformed raw fuel to the fuel cell stack, a fuel flow rate control unit configured to control a flow rate of the raw fuel supplied to the reformer, an air supply pipe configured to supply oxygen to the raw fuel, and a combustor configured to mix a cathode discharged gas and an anode discharged gas discharged from the fuel cell stack and combust the mixed gas. The method of controlling the fuel cell system includes detecting at least one of a current value generated from the fuel cell stack and an oxygen supply amount supplied from the air supply pipe; estimating a composition of the anode discharged gas on the basis of at least one of the current value and the oxygen supply amount; and controlling a temperature of the combustor by adjusting the flow rate of the raw fuel using the fuel flow rate control unit on the basis of the estimated composition of the anode discharged gas.
A fuel cell system for air vehicles, wherein the fuel cell system comprises: a fuel cell, a fuel gas system for supplying fuel gas to the fuel cell, a potential sensor, and a controller; wherein the fuel gas system comprises a fuel gas supplier; wherein the controller determines whether or not a potential of the fuel cell measured by the potential sensor, is a reversal potential; and wherein, when the controller determines that the potential of the fuel cell is a reversal potential, the controller increases a fuel gas supply from the fuel gas supplier to the fuel cell.
A fuel cell system includes a fuel cell in which cells are stacked, a voltage sensor that detects a voltage in unit of one or more of the cells, a control unit that determines an operating point of the fuel cell and causes the fuel cell to operate. The control unit causes the fuel cell to operate at a low efficiency operating point having a lower efficiency than an efficiency of a reference operating point in a warm-up operation. In the warm-up operation, the control unit calculates a total number of the cells in which the voltage detected by the voltage sensor is equal to or less than a predetermined first reference voltage and calculates an exhaust hydrogen concentration based on the total number or the cells.
A fuel cell system component ink includes a fuel cell system component powder, a solvent including propylene carbonate (PC), and a binder including polypropylene carbonate (PPC).
The present application relates to the electrochemical field, and in particular, to a negative electrode plate and a secondary battery including the electrode plate. The present application provides a negative electrode plate. The negative electrode plate includes a negative electrode current collector, a first negative electrode active substance layer disposed on at least one surface of the negative electrode current collector, and a second negative electrode active substance layer disposed on the first negative electrode active substance layer. The first negative electrode active substance layer includes a first negative electrode active substance, and the second negative electrode active substance layer includes a second negative electrode active substance. The first negative electrode active substance satisfies 1 GPa≤Young's modulus≤10 GPa, and the second negative electrode active substance satisfies 11 GPa≤Young's modulus≤30 GPa.
Additives for energy storage devices comprising compounds containing one or more silicate and/or organosilicon moieties are disclosed. The energy storage device comprises a first electrode and a second electrode, where at least one of the first electrode and the second electrode is a Si-based electrode, a separator between the first electrode and the second electrode, and an electrolyte composition. Compounds containing silicate and/or organosilicon moieties may serve as additives to the first electrode, the second electrode and/or the electrolyte.
Provided is a nickel-based active material precursor for a lithium secondary battery, including: a secondary particle including a plurality of particulate structures, wherein each of the particulate structures includes a porous core portion and a shell portion including primary particles radially arranged on the porous core portion, and in 50% or more of the primary particles constituting a surface of the secondary particle, a major axis of each of the primary particles is aligned along a normal direction of the surface of the secondary particle. When the nickel-based active material precursor for a lithium secondary battery is used, it is possible to obtain a nickel-based active material which intercalates and deintercalates lithium and has a short diffusion distance of lithium ions.
The present invention is a solid-state battery formed of a plurality of repeatedly stacked solid-state battery cells each including a positive electrode layer, a negative electrode layer, a solid-state electrolyte layer, and a pair of current collector layers sandwiching said layers. One surface of each of the current collector layers is in contact with the positive electrode layer or the negative electrode layer. The other surface of the current collector layer is in contact with the current collector layer of the neighboring solid-state battery cell. The coefficient of friction on the other surface of the current collector layer is higher than the coefficient of friction on the one surface of the current collector layer. This can provide a solid-state battery that does not suffer displacement or rotation when stacking.
A negative electrode for a nonaqueous electrolyte secondary battery comprises a negative electrode core body and a negative electrode mixture layer provided. When the range of 40% of the thickness of the negative electrode mixture layer from the surface of the negative electrode mixture layer is defined as a first region and the range of 40% of the thickness of the negative electrode mixture layer from the surface of the negative electrode core body is defined as a second region, the BET specific surface area of the graphite included in the first region is smaller than that of the graphite included in the second region. The first region includes the multiwalled fibrous carbon more than the single wall fibrous carbon in terms of mass and the second region includes the single wall fibrous carbon more than the multiwalled fibrous carbon in terms of mass.
A method according to embodiments of the invention includes providing a wafer of semiconductor devices grown on a growth substrate. The wafer of semiconductor devices has a first surface and a second surface opposite the first surface. The second surface is a surface of the growth substrate. The method further includes bonding the first surface to a first wafer and bonding the second surface to a second wafer. In some embodiments, the first and second wafer each have a different coefficient of thermal expansion than the growth substrate. In some embodiments, the second wafer may compensate for stress introduced to the wafer of semiconductor devices by the first wafer.
Micro light-emitting diode displays having color correction films applied thereto and methods of applying color correction films to a display are described. In an example, a method of fabricating a micro light emitting diode display includes applying a color correction film to a flexible transparent backing film. The method also includes placing the flexible transparent backing film over a display with the color correction film facing the display. The method also includes applying a laser to a portion of the flexible transparent backing film to eject a patch of the color correction film onto the display.
A mass transfer apparatus, a mass transfer system, and a control method for mass transfer are provided. The mass transfer apparatus includes a beam emission assembly, a rotating lens, and a rotating lens adjusting assembly. The rotating lens is configured to receive the beam emitted from the beam emission assembly. The rotating lens adjusting assembly is connected with the rotating lens. The rotating lens adjusting assembly is configured to control the rotating lens to perform peripheral rotation. The rotating lens adjusting assembly is also configured to adjust a rotation radius of the rotating lens.
Various embodiments of the present disclosure are directed towards an image sensor having a photodetector disposed in a semiconductor substrate. The photodetector comprises a first doped region comprising a dopant having a first doping type. A deep well region is disposed within the semiconductor substrate, where the deep well region extends from a back-side surface of the semiconductor substrate to a top surface of the first doped region. A second doped region is disposed within the semiconductor substrate and abuts the first doped region. The second doped region and the deep well region comprise a second dopant having a second doping type opposite the first doping type, where the second dopant comprises gallium.
A transistor includes a gate electrode, an active layer facing the gate electrode, and a source electrode and a drain electrode connected to the active layer. The active layer includes a lower active layer including an oxide-based semiconductor material, and an upper active layer including the oxide-based semiconductor material and an oxygen-gettering material.
An enhancement mode Group III nitride-based transistor device includes a body having a first surface and a Group III nitride barrier layer arranged on a Group III nitride channel layer and forming a heterojunction therebetween. A first cell field includes transistor cells and an edge region. Each transistor cell includes source, gate and drain fingers extending substantially parallel to one another on the first surface in a longitudinal direction. The gate finger, arranged laterally between the source and drain fingers, includes a p-doped Group III nitride finger arranged between a metallic gate finger and the first surface. The edge region surrounds the transistor cells and includes an edge termination structure having an isolation ring and a p-doped Group III nitride runner. The isolation ring locally interrupts the heterojunction. The runner, extending transversely to the longitudinal direction, is located laterally between the isolation ring and an end of the drain finger.
A method for making a three-dimensional semiconductor structure includes: providing a substrate, forming a first insulating layer on the substrate, and defining at least one channel hole in the first insulating layer; forming a first epitaxial layer in each channel hole and forming a second epitaxial layer stacked on the first epitaxial layer; forming a sacrificial layer on the first insulating layer and exposing the second epitaxial layer relative to the sacrificial layer, forming another first epitaxial layer on the second epitaxial layer; forming a second insulating layer on the sacrificial layer, and forming another second epitaxial layer stacking on the another first epitaxial layer; repeating to form a plurality of sacrificial layers and a plurality of second insulating layers alternately stacked on the first insulating layer, and repeating to form a plurality of first epitaxial layers and a plurality of second epitaxial layers alternately stacked on the substrate.
Semiconductor devices including non-volatile memory transistors and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the memory transistor comprises an oxide-nitride-oxide (ONO) stack on a surface of a semiconductor substrate, and a high work function gate electrode formed over a surface of the ONO stack. Preferably, the gate electrode comprises a doped polysilicon layer, and the ONO stack comprises multi-layer charge storing layer including at least a substantially trap free bottom oxynitride layer and a charge trapping top oxynitride layer. More preferably, the device also includes a metal oxide semiconductor (MOS) logic transistor formed on the same substrate, the logic transistor including a gate oxide and a high work function gate electrode. In certain embodiments, the dopant is a P+ dopant and the memory transistor comprises N-type (NMOS) silicon-oxide-nitride-oxide-silicon (SONOS) transistor while the logic transistor a P-type (PMOS) transistor. Other embodiments are also disclosed.
Quantum dot devices, and related systems and methods, are disclosed herein. In some embodiments, a quantum dot device may include a quantum well stack; a plurality of first gate lines above the quantum well stack; a plurality of second gate lines above the quantum well stack, wherein the second gate lines are perpendicular to the first gate lines; and an array of regularly spaced magnet lines.
Structures for a bipolar junction transistor and methods of forming a structure for a bipolar junction transistor. The structure includes a collector having a raised portion, an emitter having a raised portion, and a base laterally arranged between the raised portion of the emitter and the raised portion of the collector. The base includes an intrinsic base layer and an extrinsic base layer stacked with the intrinsic base layer. The structure further includes a stress liner positioned to overlap with the raised portion of the collector, the raised portion of the emitter, and the extrinsic base layer.
There is provided a display device. The display device includes a plurality of semiconductor elements disposed on a substrate; a plurality of LEDs disposed on the plurality of semiconductor elements and electrically connected to the plurality of semiconductor elements, respectively; and a plurality of reflectors disposed above the semiconductor elements and each located between every two of the LEDs. The plurality of LEDs may include a plurality of respective light-emitting layers disposed on the plurality of semiconductor elements, and a common electrode disposed on the plurality of light-emitting layers. The reflectors are disposed between the LEDs, so that light emitted from LEDs does not travel toward the side portions of the LEDs but toward the above of the substrate, thereby improving the light extraction efficiency and suppressing color mixture.
Light trapping pixels, devices incorporating such pixels, and various associated methods are provided. In one aspect, for example, a light trapping pixel device can include a light sensitive pixel having a light incident surface, a backside surface opposite the light incident surface, and a peripheral sidewall disposed into at least a portion of the pixel and extending at least substantially around the pixel periphery. The pixel can also include a backside light trapping material substantially covering the backside surface and a peripheral light trapping material substantially covering the peripheral sidewall. The light contacting the backside light trapping material or the peripheral light trapping material is thus reflected back toward the pixel.
A camera module and a molded circuit board assembly thereof, a semi-finished product of the molded circuit board assembly, and an array camera module and a molded circuit board assembly thereof, as well as a manufacturing method and an electronic device, wherein the camera module comprises at least one optical lens, at least one back surface molded portion, at least one photosensitive element and a circuit board. The circuit board comprises at least one substrate and at least one electronic component that is conductively connected to the substrate; a part of the non-photosensitive area of the photosensitive element is attached to the substrate back surface of the substrate, and the photosensitive area and another part of the non-photosensitive area of the photosensitive element correspond to a substrate channel of the substrate; the back surface molded portion is integrally bonded to at least one part of the area of the substrate back surface of the substrate; and the optical lens is held in the photosensitive path of the photosensitive element.
A display device includes pixels disposed in a display area and including first and second pixels that are adjacent to each other in a first direction, and a first integrated bank pattern disposed between the first and second pixels. Each of the pixels includes a first electrode and a second electrode that are spaced apart from each other along the first direction in a light emitting area and extend in a second direction, a first bank pattern portion overlapping the first electrode, and a second bank pattern portion overlapping the second electrode. The first integrated bank pattern includes a second bank pattern portion disposed at the first pixel, a first bank pattern portion disposed at the second pixel, and a protrusion extending in the second direction in a boundary area between the first pixel and the second pixel.
A display device that is suitable for increasing its size is provided.
The display device includes first to third wirings, a first transistor, first to third conductive layers, and a first pixel electrode; the first wiring extends in a first direction and intersects with the second and the third wirings; the second and the third wirings each extend in a second direction intersecting with the first direction; a gate of the first transistor is electrically connected to the first wiring; one of a source and a drain of the first transistor is electrically connected to the second wiring through the first to the third conductive layers; the second conductive layer includes a region overlapping with the third wiring; the first conductive layer, the third conductive layer, and the first pixel electrode contain the same material; the first wiring and the second conductive layer contain the same material; the first wiring is supplied with a selection signal; and the second and the third wirings are supplied with different signals.
A semiconductor device includes a substrate. The semiconductor device includes a dielectric fin that is formed over the substrate and extends along a first direction. The semiconductor device includes a gate isolation structure vertically disposed above the dielectric fin. The semiconductor device includes a gate structure extending along a second direction perpendicular to the first direction. The gate structure includes a first portion and a second portion separated by the gate isolation structure and the dielectric fin. The first portion of the gate structure presents a first beak profile and the second portion of the gate structure presents a second beak profile. The first and second beak profiles point toward each other.
A semiconductor device including fin field-effect transistors, includes a first gate structure extending in a first direction, a second gate structure extending the first direction and aligned with the first gate structure in the first direction, a third gate structure extending in the first direction and arranged in parallel with the first gate structure in a second direction crossing the first direction, a fourth gate structure extending the first direction, aligned with the third gate structure and arranged in parallel with the second gate structure, an interlayer dielectric layer disposed between the first to fourth gate electrodes, and a separation wall made of different material than the interlayer dielectric layer and disposed between the first and third gate structures and the second and fourth gate structures.
A method for producing a semiconductor device, the method includes, forming, on a substrate made from a semiconductor substance, at least one bipolar junction (BJ) transistor including a first terminal connected to a first well, the first well formed in the substrate and includes a first dopant having a first dopant concentration. At least one non-BJ transistor is formed on the substrate, the non-BJ transistor includes a second terminal connected to a second well, and the second well formed in the substrate and includes a second dopant having a same polarity as the first dopant. The first dopant concentration of the BJ transistor is higher than the second dopant concentration of the non-BJ transistor.
An apparatus and configuring scheme where a ferroelectric capacitive input circuit can be programmed to perform different logic functions by adjusting the switching threshold of the ferroelectric capacitive input circuit. Digital inputs are received by respective capacitors on first terminals of those capacitors. The second terminals of the capacitors are connected to a summing node. A pull-up and pull-down device are coupled to the summing node. The pull-up and pull-down devices are controlled separately. During a reset phase, the pull-up and pull-down devices are turned on in a sequence, and inputs to the capacitors are set to condition the voltage on node n1. As such, a threshold for the capacitive input circuit is set. After the reset phase, an evaluation phase follows. In the evaluation phase, the output of the capacitive input circuit is determined based on the inputs and the logic function configured during the reset phase.
The present application relates to electrostatic protection circuit, integrated circuit and electrostatic discharge method. The electrostatic protection circuit includes: pulse detection unit configured to detect an electrostatic pulse, with first terminal connected to first pad, second terminal connected to second pad, and output terminal outputting a detection result signal; discharge transistor with gate connected to the pulse detection unit, drain connected to the first pad, and source connected to the second pad, configured to conduct the source and the drain when static electricity occurs in the first pad or the second pad, to discharge electrostatic charges; and processing unit connected to the pulse detection unit and the discharge transistor, configured to control ON and OFF of the discharge transistor based on the detection result signal, the processing unit including: a feedback delay circuit configured to extend an ON period of the discharge transistor during the discharge of the electrostatic charges.
A memory system includes a memory stack including a number of memory dies interconnected via copper bonding, a logic die coupled to the memory stack via a copper bonding. The memory system further includes a buffer die extended to provide the copper bonding between the logic die and the memory stack and a silicon carrier layer bonded to the memory stack and the logic die.
Disclosed is a micro LED display having a multi-color pixel array and a method of fabricating the same based on integration with a driving circuit thereof. According to various embodiments, the display may be fabricated by providing an IC device in which a driving circuit has been wired, forming, in one surface of the IC device, a plurality of pixels on which a plurality of partial pixels for emitting different color lights has been stacked, and electrically connecting the partial pixels to the driving circuit using connection members.
A Micro-LED array device based on III-nitride semiconductors and a method for fabricating the same are provided. The Micro-LED array device includes arrayed sector mesa structures that are formed by etching to penetrate through a p-type GaN layer and a quantum-well active layer and deep into an n-type GaN layer, a p-type electrode array deposited by evaporation on the p-type GaN layer of sector arrays, and an n-type electrode array deposited by evaporation on the n-type GaN layer. The n-type electrode array forms blocking walls to isolate the sector mesas from one another. The blocking walls, and each of the blocking walls and the annular structure surrounding the sector mesa are connected to each other.
Provided is a semiconductor package including a semiconductor stack including a first lower chip, a second lower chip, a gap filler disposed between the first lower chip and the second lower chip, and a first upper chip disposed on an upper surface of the first lower chip, an upper surface of the second lower chip, and an upper surface of the gap filler, the first lower chip includes first upper surface pads and a first upper surface dielectric layer, the second lower chip includes second upper surface pads and a second upper surface dielectric layer, the first upper chip includes lower surface pads and a lower surface dielectric layer, and an area of an upper surface of each of the second upper surface pads is greater than an area of a lower surface of each of the lower surface pads.
A package structure is provided. The package structure includes a semiconductor die and a molding compound layer surrounding the semiconductor die. The package structure also includes a conductive bump over the molding compound layer and a first polymer-containing layer surrounding and in contact with the conductive bump. The package structure further includes a second polymer-containing layer disposed over the first polymer-containing layer. A bottom surface of the conductive bump is below a bottom surface of the second polymer-containing layer.
A wafer level chip scale package (WLCSP) with portions that have different thicknesses. A first passive surface of a die in the WLSCP includes a plurality of surfaces. The plurality of surfaces may include inclined surfaces or flat surfaces. Thicker portions of die, with more semiconductor material remaining are non-critical portions that increase a WLCSP's strength for further processing and handling after formation, and the thinner portions are critical portions that reduce a Coefficient of Thermal Expansion (CTE) mismatch between a WLCSP and a PCB.
A package comprising a substrate and an integrated device coupled to the substrate through a plurality of pillar interconnects and a plurality of solder interconnects. The plurality of pillar interconnects includes a first pillar interconnect comprising a first cavity. The plurality of solder interconnects comprises a first solder interconnect located in the first cavity of the first pillar interconnect. A planar cross section that extends through the first cavity of the first pillar interconnect may comprise an O shape. The first pillar interconnect comprises a first pillar interconnect portion comprising a first width; and a second pillar interconnect portion comprising a second width that is different than the first width.
A memory device includes a memory chip including a memory cell array connected to first word lines and first bit lines, first word line bonding pads respectively connected to the first word lines, and first bit line bonding pads respectively connected to the first bit lines, and a peripheral circuit chip, wherein the peripheral circuit chip includes a test cell array connected to second word lines and second bit lines, second word line bonding pads respectively connected to the first word line bonding pads, second bit line bonding pads respectively connected to the first bit line bonding pads, and a peripheral circuit connected to the second word line bonding pads and the second word lines or the second bit line bonding pads and the second bit lines.
Embodiments include semiconductor packages and method of forming the semiconductor packages. A semiconductor package includes first waveguides over a package substrate. The first waveguides include first angled conductive layers, first transmission lines, and first cavities. The semiconductor package also includes a first dielectric over the first waveguides and package substrate, second waveguides over the first dielectric and first waveguides, and a second dielectric over the second waveguides and first dielectric. The second waveguides include second angled conductive layers, second transmission lines, and second cavities. The first angled conductive layers are positioned over the first transmission lines and package substrate having a first pattern of first triangular structures. The second angled conductive layers are positioned over the second transmission lines and first dielectric having a second pattern of second triangular structures, where the second pattern is shaped as a coaxial interconnects enclosed with second triangular structures and portions of first dielectric.
Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a die having a front side and a back side, the die comprising a first material and conductive contacts at the front side; and a thermal layer attached to the back side of the die, the thermal layer comprising a second material and a conductive pathway, wherein the conductive pathway extends from a front side of the thermal layer to a back side of the thermal layer.
A semiconductor package device includes a wiring structure, a semiconductor chip and an encapsulant. The semiconductor chip is electrically connected to the wiring structure. The encapsulant is disposed on the wiring structure and covers the semiconductor chip. A roughness (Ra) of a surface of the encapsulant is about 5 nm to about 50 nm.
Multi-component modules (MCMs) including configurable electromagnetic interference (EMI) shield structures, and related methods are disclosed. An EMI shield enclosing an IC or another electrical component in an MCM can protect other components within the MCM from EMI generated by the enclosed component. The EMI shield also protects the enclosed component from the EMI generated by other electrical components. An EMI shield with side-wall structures, in which vertical conductors supported by a wall medium electrically couple a lid of the EMI shield to a ground layer in a substrate, provides configurable EMI protection in an MCM. The EMI shield may also be employed to increase heat dissipation. The side-wall structures of the EMI shield are disposed on one or more sides of an electrical component and are configurable to provide a desired level of EMI isolation.
Structures including stacked field-effect transistors and methods of forming a structure including stacked field-effect transistors. The structure includes a field-effect transistor having a first active gate, a second active gate, and a drain region that is positioned in a horizontal direction between the first and second active gates. The structure further includes a back-end-of-line stack having a first metal level and a second metal level over the field-effect transistor. The first metal level includes a first interconnect, a second interconnect, and a third interconnect, and the second metal level includes a fourth interconnect. The third interconnect is connected to the drain region. The third interconnect is positioned in a vertical direction between the fourth interconnect and the drain region, and the third interconnect is positioned in the horizontal direction between the first and second interconnects.
An electronic assembly including: a wafer defining at least one cavity; a chip disposed in the cavity; and a metal heat spreader disposed in the cavity, the chip being embedded in the metal heat spreader; wherein the metal heat spreader has at least one elongate microstructure separated from a remainder of the metal heat spreader by at least one channel; wherein the metal heat spreader occupies an area within the cavity that is not occupied by the chip; and wherein the at least one elongate microstructure is configured and arranged in the cavity so as to improve thermal management of the chip by reducing stress across the chip as compared with a configuration and arrangement in which a heat spreader made of the metal and occupying the area within the cavity is a solid without channels. Also, a method for forming the electronic assembly.
A semiconductor package includes a chip package disposed on a substrate, a plurality of electronic components disposed aside the chip package on the substrate and a stiffener structure disposed on the substrate. The stiffener structure includes a stiffener ring surrounding the chip package and the plurality of electronic components, a stiffener rib between the chip package and the plurality of electronic components, wherein the stiffener rib includes a first portion and a second portion on the first portion, and a width of the second portion is greater than a width of the first portion. The semiconductor package further includes a lid attached to the stiffener structure, the chip package and the plurality of electronic components. A method of forming the semiconductor package is also provided.
A semiconductor package includes a substrate, a plurality of semiconductor devices stacked on the substrate, a plurality of underfill fillets disposed between the plurality of semiconductor devices and between the substrate and the plurality of semiconductor devices, and molding resin surrounding the plurality of semiconductor devices. At least one of the underfill fillets is exposed from side surfaces of the molding resin.
A method for fabricating a hermetic electronic package includes providing a package body; hermetically coupling a package base plate to the package body; thermally coupling a substrate to the base plate; thermally mounting a semiconductor device to the substrate; bonding at least one high-current input/output (I/O) terminal to the first metalized region of the substrate by a strap terminal that is an integral high current heatsink terminal. A ceramic seal surrounding the at least one high-current I/O terminal is hermetically bonded to an outer surface of the package body. A metal hermetic seal washer surrounding the at least one high-current I/O terminal is hermetically bonded to the ceramic seal and to a portion of the at least one high-current I/O terminal. A lid is seam welded onto the package body.
A semiconductor device and a method for detecting a defect in a semiconductor device are provided. The semiconductor device includes a packaging structure. The packaging structure includes a redistribution layer and a detecting component disposed in the redistribution layer. The semiconductor device further includes a cooling plate over the packaging structure and a fixing component penetrating through the packaging structure and the cooling plate. The packaging structure and the cooling plate are fixed by the fixing component. The detecting component is in a chain configuration having a ring shaped structure circling around the fixing component.
The present disclosure describes a method of forming a semiconductor device having epitaxial structures with optimized dimensions. The method includes forming first and second fin structures on a substrate, forming a spacer layer on the first and second fin structures, forming a first spacer structure adjacent to the first fin structure, and forming a first epitaxial structure adjacent to the first spacer structure. The first and second fin structures are separated by an isolation layer. The first spacer structure has a first height above the isolation layer. The method further includes forming a second spacer structure adjacent to the second fin structure and forming a second epitaxial structure adjacent to the second spacer structure. The second spacer structure has a second height above the isolation layer greater than the first height. The second epitaxial structure includes a type of dopant different from the first epitaxial structure.
A transistor structure includes a source region and a drain region disposed in a substrate, extending along a first direction. A polysilicon layer is disposed over the substrate, extending along a second direction perpendicular to the first direction, wherein the polysilicon layer includes a first edge region, a channel region and a second edge region formed as a gate region between the source region and the drain region. The polysilicon layer has at least a first opening pattern at the first edge region having a first portion overlapping the gate region; and at least a second opening pattern at the second edge region having a second portion overlapping the gate region.
Embodiments disclosed herein include semiconductor devices and methods of forming such devices. In an embodiment a semiconductor device comprises a first interlayer dielectric (ILD), a plurality of source/drain (S/D) contacts in the first ILD, a plurality of gate contacts in the first ILD, wherein the gate contacts and the S/D contacts are arranged in an alternating pattern, and wherein top surfaces of the gate contacts are below top surfaces of the S/D contacts so that a channel defined by sidewall surfaces of the first ILD is positioned over each of the gate contacts, mask layer partially filling a first channel over a first gate contact, and a fill metal filling a second channel over a second gate contact that is adjacent to the first gate contact.
A method of manufacturing a semiconductor package may include forming a first substrate including a redistribution layer, providing a second substrate including a semiconductor chip and an interconnection layer on the first substrate to connect the semiconductor chip to the redistribution layer, forming a first encapsulation layer covering the second substrate, and forming a via structure penetrating the first encapsulation layer. The forming the via structure may include forming a first via hole in the first encapsulation layer, forming a photosensitive material layer in the first via hole, exposing and developing the photosensitive material layer in the first via hole to form a second encapsulation layer having a second via hole, and filling the second via hole with a conductive material. A surface roughness of a sidewall of the first encapsulation layer may be greater than a surface roughness of a sidewall of the second encapsulation layer.
A manufacturing method of semiconductor device includes providing a substrate, forming a sacrificial layer on the substrate, forming a resin layer on the sacrificial layer, disposing first chips on the sacrificial layer, and forming a first dielectric layer having trenches and surrounding the first chips, wherein an upper surface of the first dielectric layer and an upper surface of the resin layer are at a same plane.
A semiconductor device and method for forming the semiconductor device is provided. The semiconductor device includes an integrated circuit having through vias adjacent to the integrated circuit die, wherein a molding compound is interposed between the integrated circuit die and the through vias. The through vias have a projection extending through a patterned layer, and the through vias may be offset from a surface of the patterned layer. The recess may be formed by selectively removing a seed layer used to form the through vias.
Methods for evaluating synergy of modification and removal operations for a wide variety of materials to determine process conditions for self-limiting etching by atomic layer etching are provided herein. Methods include determining the surface binding energy of the material, selecting a modification gas for the material where process conditions for modifying a surface of the material generate energy less than the modification energy and greater than the desorption energy, selecting a removal gas where process conditions for removing the modified surface generate energy greater than the desorption energy to remove the modified surface but less than the surface binding energy of the material to prevent sputtering, and calculating synergy to maximize the process window for atomic layer etching.
Apparatus, systems, and methods for processing workpieces are provided. An arc lamp can include a tube. The arc lamp can include one or more inlets configured to receive water to be circulated through the arc lamp during operation as a water wall, the water wall configured to cool the arc lamp. The arc lamp can include a plurality of electrodes configured to generate a plasma in a forming gas introduced into the arc lamp via the one or more inlets. The forming gas can be or can include a mixture of a hydrogen gas and an inert gas, the hydrogen gas in the mixture having a concentration less than 4% by volume. The hydrogen gas can be introduced into the arc lamp prior to generating the plasma. The arc lamp may be used for processing workpieces.
A device for controlling trapped ions includes a first substrate. A second substrate is disposed over the first substrate. One or a plurality of first level ion traps is configured to trap ions in a space between the first substrate and the second substrate. One or a plurality of second level ion traps is configured to trap ions in a space above the second substrate. An opening in the second substrate is provided through which ions can be transferred between a first level ion trap and a second level ion trap.
A single type quadrupole mass spectrometer equipped with an ion source by the ESI method, which is a small device including a vacuum pump having a relatively small evacuation speed. The internal diameter of a desolvation tube for introducing ions from an ionization chamber into a first intermediate vacuum chamber is set to 0.4 mm φ, which is large for a small mass spectrometer. The evacuation speed of a rotary pump is determined so that the product of the cross-sectional opening area of the desolvation tube and the pressure in the first intermediate vacuum chamber falls within a range of 15 to 40 mm2·Pa. This can ensure high detection sensitivity and reduce clogging of the desolvation tube due to droplets. Since the pressure in the first intermediate vacuum chamber does not need to be increased more than necessary, a small rotary pump having a small evacuation speed can be used.
A bonding structure for bonding a first conductive member and a second conductive member forming a processing container having therein a processing region for processing a substrate is provided. The processing region is isolated from an outside region. In the bonding structure, a bonding interface is formed between the first conductive member and the second conductive member, an endless first sealing groove and an endless second sealing groove face the bonding interface while being separated from each other, a first sealing member is fitted in the first sealing groove and a second sealing member is fitted in the second sealing groove, and gaps formed by surface irregularities of the bonding interface between the first sealing groove and the second sealing groove communicate with the outside region.
There is provided a plasma processing apparatus including: a processing container; a first electrode provided inside the processing container and connected to a high-frequency power supply; a second electrode provided inside the processing container to face the first electrode, the second electrode being grounded; and a film thickness calculator connected to at least one of the first electrode and the second electrode and configured to calculate a thickness of a film deposited on the at least one of the first electrode and the second electrode.
Methods and apparatus for plasma processing substrate are provided herein. The method comprises supplying from an RF power source RF power, measuring at the RF power source a reflected power at the first power level, comparing the measured reflected power to a first threshold, transmitting a result of the comparison to a controller, setting at least one variable capacitor to a first position based on the comparison of the measured reflected power at the first power level to the first threshold, supplying from the RF power source the RF power at a second power level for plasma processing the substrate, measuring at the RF power source the reflected power at the second power level, comparing the measured reflected power at the second power level to a second threshold different from the first threshold, transmitting a result of the comparison, setting at the matching network the at least one variable capacitor to a second position.
Embodiments are described herein for power generation systems and methods that use quadrature splitters and combiners to facilitate plasma stability and control. For one embodiment, a quadrature splitter receives an input signal and generates a first and second signals as outputs with the second signal being ninety degrees out of phase with respect to the first signal. Two amplifiers then generate a first and second amplified signals. A quadrature combiner receives the first and second amplified signals and generates a combined amplified signal that represents re-aligned versions of the first and second amplified signals. The power amplifiers can be combined into a system to generate a high power output to a processing chamber. Further, detectors can generate measurements used to monitor and control power generation. The power amplifiers, system, and methods provide significant advantages for high-power generation delivered to process chambers for plasma generation during plasma processing.
The present disclosure proposes a crossover-forming deflector array of an electro-optical system for directing a plurality of electron beams onto an electron detection device. The crossover-forming deflector array includes a plurality of crossover-forming deflectors positioned at or at least near an image plane of a set of one or more electro-optical lenses of the electro-optical system, wherein each crossover-forming deflector is aligned with a corresponding electron beam of the plurality of electron beams.
A fuse assembly includes a fuse element and a terminal vent channel. The fuse element is located between a first terminal and a second terminal. The fuse element breaks in response to an overcurrent event. The terminal vent channel is located in the first terminal and provides a path for the outgassing of debris during the overcurrent event.
An easy-to-assemble fuse has a fusible body, a socket, and a cover. The fusible body is engaged with the socket. The cover is covered on the socket and the fusible body and is engaged with the socket. By the engagement between the fusible body and the socket and the engagement between the socket and the cover, the fuse achieves the purpose of fast alignment and positioning. The fuse can be quickly assembled during the manufacturing process, thereby simplifying the manufacturing process, and reducing the production cost.
Ground-fault circuit interrupter positioned between energy controlled supply circuit and load circuit which includes fault detection circuit that senses ground path current leakage to the load circuit, fault processing circuit that detects presence of fault and generates fault output signal when fault detected, and control circuit switch connected to fault processing signal output, wherein control circuit switch is opened by presence of fault output signal, thus isolating load circuit from supply circuit. Preferably fault processing circuit and control circuit are optically linked, such that when fault is detected, control circuit switch is opened by optical fault output signal, thus isolating load circuit from the supply circuit. Circuit interrupter may couple another circuit interrupter via power distribution control unit, optionally manageable remotely via automated control interface.
A keyswitch assembly includes a switch module, a support mechanism, and a blocking mechanism. The switch module includes a substrate, a signal generator, and a signal sensor. The signal generator provides a sensing signal. The signal sensor receives the sensing signal to obtain a sensing intensity. The support mechanism is disposed on the substrate. A top portion of the support mechanism moves in response to a pressing force. The blocking mechanism includes a pivoting portion rotatably disposed on the substrate, a connecting piece extending from the pivoting portion and movably connected to the support mechanism to be driven by the top portion to swivel relative to the substrate, and a blocking piece extending from the pivoting portion and driven by the connecting piece to be inserted into or escape from the gap between the signal generator and the signal sensor to change the magnitude of the sensing intensity.
A supercapacitor apparatus within a sealed housing to provide a high-voltage EDLC energy storage unit includes cells stacked on one another, with each cell having a set of supercapacitors that are interconnected within the apparatus in a parallel-series configuration to provide an internally balanced energy storage unit that is capable of stand-off voltages of 10 volts or higher. The energy storage unit does not require balancing resistors or more complicated external balancing circuitry. The electrodes of the supercapacitors are comprised of carbon nanotubes and graphene nanoplatelets.
An object of the present invention is to provide a solid electrolytic capacitor separator configured such that thickness non-uniformity is reduced, internal short-circuit is less likely to occur, an impedance is not too high, and a high heat resistance is exhibited. In a solid electrolytic capacitor separator including non-woven fabric, the non-woven fabric contains fibrillated heat-resistant fibers and synthetic short fibers as essential components, the fiber length of the fibrillated heat-resistant fiber is 0.30 to 0.75 mm, and the percentage of fibrillated heat-resistant fibers with a fiber width of 12 to 40 μm is equal to or higher than 55% and lower than 75%.
A multilayer ceramic capacitor includes: a multilayer structure having a parallelepiped shape in which each of a plurality of dielectric layers and each of a plurality of internal electrode layers are alternately stacked and are alternately exposed to two edge faces of the multilayer structure, a main component of the plurality of dielectric layers being a ceramic; and a first cover layer and a second cover layer that sandwich the multilayer structure in a stacking direction of the multilayer structure, a main component of the first cover layer and the second cover layer being the same as that of the dielectric layers, wherein the first cover layer includes a first region spaced from the multilayer structure by at least 50 μm, is thicker than the second cover layer, and has a thickness more than 50 μm.
An electronic component includes: a body; first and second external electrodes including first and second head portions disposed on opposite end surfaces of the body; and first and second metal frames, the first metal frame including a first support portion bonded to the first head portion, and a first mounted portion extending from the first support portion, and the second metal frame including a second support portion bonded to the second head portion, and a second mounted portion extending from the second support portion. 0.2A≤B≤0.8A, in which an area of each of the first and second head portions is A, and an area of each of a region in which the first head portion and the first support portion are bonded to each other, and a region in which the second head portion and the second support portion are bonded to each other is B.
A shielded transformer winding assembly includes a first winding formed on a circuit board. The circuit board includes at least two first board alignment elements formed therein and a casing including an inner portion and one or more tabs that extend outwardly from the inner portion the tabs arranged to form a notch between them. The assembly also includes a lower winding spacer disposed in one of the tabs that includes a stepped mounting member including first and second mounting member portions. The second mounting member portion has a smaller outer perimeter than and extends from the first mounting member portion. The first winding is disposed within the casing and on the lower winding spacer such that the second mounting member portion extends through one of the at least two first board alignment elements and wherein the first printed circuit board is supported by the first mounting member portion.
A coil component used for two-phase transformer coupling includes: a first coil and a second coil; and a magnetic core at which the first coil and the second coil are provided. The magnetic core includes: a first magnetic leg at which the first coil is provided; a second magnetic leg at which the second coil is provided; a central leg portion interposed between the first magnetic leg and the second magnetic leg; a pair of connection portions connecting the first magnetic leg, the central leg portion, and the second magnetic leg in parallel; a main gap interposed in the central leg portion; a first gap interposed in the first magnetic leg; and a second gap interposed in the second magnetic leg. A coupling coefficient between the first coil and the second coil is not less than 0.7.
A coil component includes a support substrate; a coil portion disposed on the support substrate; a body embedding the support substrate and the coil portion therein, and having a first surface and a second surface opposing each other, a third surface and a fourth surface opposing each other and respectively connecting the first and second surfaces; lead-out portions extending from the coil portion and respectively exposed from the third and fourth surfaces of the body; a surface-insulating layer disposed on the third and fourth surfaces of the body and having openings respectively exposing the lead-out portions; and external electrodes arranged on the surface-insulating layer and respectively connected to the lead-out portions respectively exposed through the openings, wherein a width of each of the external electrodes is narrower than a width of the body.
A method for preparing a metal powder includes preparing a mixture by mixing a fluoride of a group 1 element, a fluoride of a group 2 element or a transition metal fluoride, with neodymium oxide, boron, iron, and a reducing agent; and heating the mixture at a temperature of 800° C. to 1100° C.
Systems for disconnecting a surge arrester. One embodiment provides a surge arrester comprising a housing, a connecting interface configured to connect to an electrical power grid, and a disconnector device coupled to the connecting interface. A metal oxide varistor stack is coupled to the disconnector device, and a ground side connection is coupled to the metal oxide varistor stack, the ground side connection configured to connect to a system ground. The disconnector device is configured to disconnect the connecting interface from the system ground based on a predetermined disconnection condition.
A waste material depositing system for depositing waste material into a sub-seabed sediment of an ocean floor. There is a penetrator including a first disposal stage and a second disposal stage. The first disposal stage having an outer shell disposed about a cavity, the cavity being shaped and sized to receive a waste disposal canister. The second disposal stage being removably coupled to a top end of the first disposal stage by an automatic disengagement device, and having: an outer cylinder, a plurality of second disposal fins disposed along a length of the outer cylinder, and an arrestor system coupled to a top portion of the outer cylinder.
A replacement thermal sleeve with a flange for a reactor vessel closure head penetration adapter housing. By altering a diameter of the flange, a replacement thermal sleeve can be installed through the narrow diameter of the penetration adapter housing opening from under the reactor vessel head. The flange can be compressible or expandable or the tubular wall of the thermal sleeve can be inserted in longitudinal sections, one at a time, into an opening in the underside of the penetration head adapter and reformed within the opening when fully inserted.
Computer based methods, systems, and computer readable media for intelligently accessing various types of pharmaceutical information in a content repository and ranking drugs at the variant level, gene level, and pathway level. In some cases, drugs that target the same gene, gene variant, or biological pathway may be ranked based upon in vitro, pre-clinical, clinical, or post-clinical evidence. To determine ranking of a plurality of drugs, information pertaining to drug administration is analyzed for the drugs. For a plurality of drugs, attributes corresponding to the drug are determined, wherein the attributes include a variant or a gene targeted by the drug, and a biological pathway comprising the targeted variant or gene. The plurality of drugs are ranked according to a drug effectiveness score based on one or more of a determined efficacy, potency, or toxicity.
A system (SY) for determining a relative importance of each of a plurality of image features (Fn) of a vascular medical image impacting an overall diagnostic metric computed for the image from an automatically-generated diagnostic rule. A medical kin image database (MIDB) includes a plurality of vascular medical images (M1 . . . k). A rule generating unit (RGU) analyzes the plurality of C vascular medical images and automatically generates at least one diagnostic rule corresponding to a common diagnosis of a subset of the plurality of vascular medical images based on a plurality of image features common to the subset of vascular medical images. An image providing unit (IPU) provides a current vascular medical image (CVMI) including the plurality of image features. A diagnostic metric computation unit (DMCU) computes an overall diagnostic metric for the current vascular medical image by applying the at least one automatically-generated diagnostic rule to the current vascular medical image. A decision propagation unit (DPU) identifies, in the current vascular medical image, the relative importance of each of the plurality of image features on the computed overall diagnostic metric.
A method of generating a digital twin and of using the digital twin to predict activity of an animate subject. The digital twin is generated from at least system model data and movement data. The digital twin can be activated to simulate a specified activity that the subject is performing or will perform. If desired, the subject can be instructed to perform the same activity while wearing at least one wearable sensor, which is applied to the digital twin. Using artificial intelligence techniques, the activity simulation predicts one or more physical outcomes from the activity.
A medication inventory system may include a medication tray that includes compartments for storing respective medications. The medication tray may have a tray identifier associated therewith. The system may also include a mobile wireless communications device configured to obtain at least one image of the medication tray, and apply a Hough line detection algorithm to the at least one image to determine a boundary outline of the medication tray. The mobile wireless communications device may also be configured to generate a current medication stocking list of the medication tray based upon the boundary outline and the tray identifier from the at least one image.
Glitch detection in microelectronic devices, and related methods, devices, and systems, are described herein. A device may detect and compare a number of pulses of a signal to a timing aperture to determine if any of the number of pulses is a glitch. The timing aperture, which may be based on a timing signal and/or one or more pulse width thresholds, may define an acceptable pulse versus a problematic glitch.
Devices and techniques are disclosed herein for more efficiently exchanging large amounts of data between a host and a flash storage system. In an example, read commands or write commands can optionally include a file-type indicator. The file-type indicator can allow for exchange of data between the host and the flash storage system using a single record of a Flash Translation Layer (FTL) table or logical-to-physical (L2P) table, and where the amount of data can be much larger than the atomic unit associated with the flash storage system.
Methods, systems, and devices for compensating for kickback noise are described. A regulator may include an input circuit, a bias circuit, and an enable circuit. The regulator may be configured so that the enable circuit is positioned between the input circuit and the bias circuit. A balance resistor may be included in a path between an input of the regulator and a gate of a bias transistor included in the bias transistor. A size of the balance resistor may be based on an amount of charge drawn by the bias transistor during an activation event. Dimensions of the bias transistor may be modified based on an amount of charge drawn by the bias transistor during an activation event.
A processing device of a memory sub-system is configured to determine a current refresh frequency associated with the memory device, the current refresh frequency specifying a rate of performing refresh operations on data stored at the memory device; compute an updated refresh frequency by updating the current refresh frequency based on a criterion reflecting a result of comparing one or more operating parameters of the memory device to their respective threshold values; and perform a refresh operation on data stored at the memory device according to the updated refresh frequency.
A radiographic image processing apparatus includes a hardware processor and an image processor. The hardware processor obtains moving image data captured by a radiographic imaging apparatus, causes a display to display a moving image based on the moving image data, and specifies a part of the moving image data that is to be output to an external device. The image processor performs image processing on the part of the moving image data. The hardware processor outputs, to the external device, the part of the moving image data on which the image processing has been performed by the image processor.
A video may include visual content having a progress length. A user may interact with a mobile device to set framings of the visual content at moments within the progress length. The framings of the visual content may be provided to a video editing application. The video editing application may utilize the framings set via the mobile device to provide preliminary framings of the visual content at the moments within the progress length.
A device for calculating cardiovascular heartbeat information is configured to receive an electronic audio signal with information representative of a human voice signal in the time-domain, the human voice signal comprising a vowel audio sound of a certain duration and a fundamental frequency; generate a power spectral profile of a section of the electronic audio signal, and detect the fundamental frequency (F0) in the generated power spectral profile; filter the received audio signal within a band around at least the detected fundamental frequency (F0) and thereby generating a denoised audio signal; generate a time-domain intermediate signal that captures frequency, amplitude and/or phase of the denoised audio signal; detect and calculate heartbeat information within a human cardiac band in the intermediate signal.
A non-transitory computer-readable recording medium having stored therein a program that causes a computer to execute a procedure, the procedure includes detecting a plurality of voice sections from an input sound that includes voices of a plurality of speakers, calculating a feature amount of each of the plurality of voice sections, determining a plurality of emotions, corresponding to the plurality of voice sections respectively, of a speaker of the plurality of speakers for each of the plurality of voice sections, and clustering a plurality of feature amounts, based on a change vector from the feature amount of the voice section determined as a first emotion of the plurality of emotions of the speaker to the feature amount of the voice section determined as a second emotion of the plurality of emotions different from the first emotion.
Encoding/decoding an audio signal having one or more audio components, wherein each audio component is associated with a spatial location. A first audio signal presentation (z) of the audio components, a first set of transform parameters (w(f)), and signal level data (β2) are encoded and transmitted to the decoder. The decoder uses the first set of transform parameters (w(f)) to form a reconstructed simulation input signal intended for an acoustic environment simulation, and applies a signal level modification (α) to the reconstructed simulation input signal. The signal level modification is based on the signal level data (β2) and data (p2) related to the acoustic environment simulation. The attenuated reconstructed simulation input signal is then processed in an acoustic environment simulator. With this process, the decoder does not need to determine the signal level of the simulation input signal, thereby reducing processing load.
Messaging with a virtual assistant by: receiving a first request (e.g., spoken by a user to a virtual assistant device hosting the virtual assistant) to check for messages received by an electronic device and transmitting the first request to a backend server for processing. The backend server requests data associated with the messages from the electronic device and, upon receiving the data, generates a response to the first request based on the received data. The backend server then transmits the response to the virtual assistant and the virtual assistant communicates the response (e.g., using audio produced by the virtual assistant device). The virtual assistant receives a reply from the user to the message. The reply is transmitted to the backend server for processing. The backend server transmits the reply to the electronic device which automatically transmits the reply to a recipient of the reply (e.g., a sender of the message).
A method and apparatus for controlling a device according to an embodiment of the present disclosure may be based on a speech feature of a user reflecting the Lombard effect so as to operate a device located far away from the user, among a plurality of electronic devices. As such, even when the user calls a device located far away from the user without any separate context information, speech recognition neural networks and weight calculation neural networks may be selected and used to operate the device located far away from the user, and reception of a speech signal of the user calling a device located far away from the user may be performed in an Internet of Things (IoT) environment using a 5G network.
Noise cancellation systems and methods are provided that generate an anti-noise signal configured to destructively interfere with noise in a cancellation zone. The systems and methods receive a signal representative of the noise in the cancellation zone. The signal is analyzed to identify a frequency to be reduced in the cancellation zone, and the signal is down converted to place the identified frequency at baseband. A baseband anti-noise signal is generated based upon the down converted signal. The baseband anti-noise signal is up converted to the identified frequency to produce an anti-noise signal having components at the identified frequency, and the anti-noise signal is provided to be transduced into an acoustic signal.
A self-locking tuner is used to tune the strings of a musical instrument. The self-locking tuner is disposed in a headstock of the stringed musical instrument. The self-locking tuner has an inner string post, outer string post disposed over the inner string post, locking pin extending above the inner string post and through the outer string post to the opening, and insert disposed around the outer string post. Alternatively, a cast housing is disposed around the outer string post with a stop to unlock a string. The string extends through an opening in the outer string post. The insert or cast housing has a stop to unlock the string. The outer string post has a rotational stop which contacts the stop to unlock the string. The insert is disposed in a headstock with the tab disposed in a slot formed in a surface of the headstock.
Methods and systems are provided for enabling the creation, game play, and third party view of a head-to-head challenge game played synchronously or asynchronously by a first and second player. In one embodiment, a method includes operations for receiving a request to view the challenge game for obtaining a first and second video associated with a predefined segment of a single player game as played by the first and second player. The method further includes operations for executing the challenge game that plays the first video alongside the second video in a spectator interface, for accessing and processing telemetry data of the game play of the predefined segment to generate modified game play metrics, and for replacing game states that were produced when the predefined segment of the game was played with the modified game play metrics. The modified game play metrics are rendered to the spectator interface.
There are provided methods for driving an electro-optic display A method for driving an electro-optic display having a plurality of display pixels, the method comprises receiving an input image, processing the input image to create color separation cumulate, and using a threshold array to process the color separation cumulate to generate colors for the electro-optic display.
Provided are a display substrate and a display apparatus. The display substrate includes a display region and a non-display region surrounding the display region. The display region includes at least an arc-shaped display boundary; the display region includes multiple sub-pixels, multiple data lines extending along a first direction and multiple gate lines extending along a second direction; each sub-pixel includes a pixel circuit and a light emitting element connected to the pixel circuit, the pixel circuit in each sub-pixel is electrically connected to a gate line and a data line respectively; at least part of sub-pixels near the arc-shaped display boundary are disposed in a terraced manner. The non-display region includes multiple cascaded drive circuits which provide drive signals to the multiple gate lines, at least part of drive circuits near the arc-shaped display boundary are disposed in a terraced manner, the first direction intersects with the second direction.
A light emitting display apparatus comprises a gate driver including stages connected with gate lines provided in a display area and a dummy stage connected with dummy gate lines provided in a non-display area, a sensing unit connected with the dummy stage connected with at least two dummy gate lines provided in the non-display area, and a controller connected with the sensing unit, wherein the dummy stage sequentially outputs at least two gate pulses, the sensing unit senses a voltage of a Q node to which a Q node signal for allowing the gate pulses to be output from the dummy stage is supplied, and the controller supplies a compensation signal based on the voltage to the stages.
Provided are a display panel and a display device. The display panel includes a driving circuit. The driving circuit includes N stages of cascaded shift registers. Each shift register includes a first control unit, a second control unit, and a third control unit. The first control unit is configured to receive a third voltage signal and control a signal of a fourth node in response to a frequency control signal. The second control unit is configured to receive a fourth voltage signal and control a signal of a fifth node in response to the frequency control signal. The third control unit is configured to receive a fifth voltage signal and generate an output signal in response to a signal of the fourth node; or the third control unit is configured to receive a sixth voltage signal and generate an output signal in response to a signal of the fifth node.
A display driving integrated circuit (DDIC) driving a display device and including; a host interface configured to receive image data from a host device, an interface monitor configured to generate a mode signal indicating a still image mode or a video mode by detecting whether the image data from the host device is transferred through the host interface, a processing circuit configured to generate processed data by processing the image data, a conversion circuit configured to perform data conversion on the processed data to generate display data driving a display panel, and a path controller configured to store the processed data in a frame buffer and transfer the processed data stored in the frame buffer to the conversion circuit in the still image mode, and further configured to transfer the processed data to the conversion circuit without storing the processed data in the frame buffer in the video mode.
A gate driver includes first and second stages. Each of the first and second stages includes an output circuit which outputs a scan signal, a carry signal and an inverted carry signal based on voltages of first and second nodes, a first input terminal, a second input terminal, a third input terminal, a first output terminal, and a second output terminal. The first stage further includes a first input circuit which controls the voltages of the first and second nodes thereof based on a start pulse and a signal supplied to the second input terminal. The second stage further includes a second input circuit which controls the voltages of the first and second nodes thereof based on a first carry signal and a first inverted carry signal, and a signal supplied to the second input terminal. The second stage is dependently connected to the first stage.
A display driving device configured to drive a plurality of display panels includes an external illuminance calculation unit configured to calculate external illuminance using measured illuminance input from an illuminance measurement device, and accumulate and store the external illuminance according to a time zone, a weight determination unit configured to determine a weight according to the calculated external illuminance, an image processing unit configured to apply the weight to first output data to generate second output data, and a target panel determination unit configured to determine target panels that are display panels for displaying an image, among the plurality of display panels, using the second output data.
The invention relates to a visual comfort device comprising at least one inertial sensor, a processing unit and at least one screen. The screen is intended to be positioned laterally in a peripheral field of vision of a user. The processing unit is coupled to the inertial sensor and to the screen. The device is configured to display, on the screen, an inertial matrix representative of an inertial information item, the displayed inertial matrix comprising a maximum of sixteen points and/or line crossings.
A method includes generating first demura data comprising first correction amounts for pixels in a first region of a display panel. The first region has a first pixel density. The method further includes generating second demura data comprising second correction amounts for pixels in a second region of the display panel. The second region has a second pixel density different from the first pixel density. The method further includes generating modified second demura data by modifying the second correction amounts by a first factor. The method further comprises compressing the first demura data and the modified second demura data to generate compressed demura data. The method further includes providing the compressed demura data and factor information indicative of the first factor to a display driver.
A trim element having a display area defined by a display device, and an edge piece that includes a peripheral area extending around at least part of the display area, the peripheral area being at least partly translucent, the display area and the peripheral area forming at least a part of an outer surface of the trim element. The trim element further includes an illumination device arranged to illuminate the display device to display images on the display area. The illumination device has a luminous sheet extending at least facing the display area and the peripheral area of the edge piece.
The present disclosure relates a display device, including a flexible display panel with a bendable region and a flexible support attached to a back side of the flexible display panel, the flexible support includes a flexible support body, and a first part of the flexible support body corresponding to the bendable region is provided with a concave structure.
A surgical simulator for surgical training is provided. The simulator includes a frame defining an enclosure and a simulated tissue model located inside an enclosure. The simulated tissue model is adapted for practicing hysterectomies and includes at least a simulated uterus and a simulated vagina. The simulated tissue model is suspending inside the enclosure with two planar sheets of silicone such that the tissue model is located between the two sheets each of which form a fold and are in turn connected to the frame. The frame may be shaped like a cylinder and located inside a cavity of a larger laparoscopic trainer having a penetrable simulated abdominal wall. The tissue model is interchangeable and accessible laterally through an aperture provided in a support leg of the trainer.
A method and system for modeling aerodynamic interactions in complex eVTOL configurations for realtime flight simulations and hardware testing which includes decomposing the aircraft into aerodynamic subcomponents, wherein the interactions between these components are handled by flow simulations of the surrounding fluid, which may be Euler flow CFD simulations. The system may be used as a flight simulator for pilot training in a realtime environment. The system may be used to support component testing using an interface to those components, such as flight electronics and actuators, to test the components in high fidelity simulations of actual flight demands on those components. The system may also be used to support design analysis in non-realtime to run numerous simulations on different designs and to provide comparative output.
A method of simulating a quadcopter includes recording camera output for one or more video cameras under constant conditions and subtracting a constant signal from the recorded camera output to obtain a camera noise recording. Simulated camera noise is generated from the camera noise recording and is added to a plurality of simulated camera outputs of a quadcopter simulator to generate noise-added simulated camera outputs. The noise-added simulated camera outputs are sent to an Artificial Intelligence (AI) controller coupled to the quadcopter simulator for the AI controller to use to pilot a simulated quadcopter of the quadcopter simulator.
Techniques are disclosed for sharing sensor information between multiple vehicles. A system for sharing sensor information between multiple vehicles, can include an aerial vehicle including a first computing device and first scanning sensor, and a ground vehicle including a second computing device and second scanning. The aerial vehicle can use the first scanning sensor to obtain first scanning data and transmit the first scanning data to the second computing device. The ground vehicle can receive the first scanning data from the first computing device, obtain second scanning data from the second scanning sensor, identify an overlapping portion of the first scanning data and the second scanning data based on at least one reference object in the scanning data, and execute a navigation control command based on one or more roadway objects identified in the overlapping portion of the first scanning data and the second scanning data.
Methods and systems are provided for engaging a vertical navigational descent (VNAV/DES) mode of a flight management system (FMS) for an aircraft. The method comprises retrieving a preset vertical navigation (VNAV) profile for a descent path of the aircraft that is stored in the FMS. The current flight path angle (FPA) and vertical speed (VS) of the aircraft is determined and intercept parameters are calculated to intercept the preset VNAV profile with the VNAV/DES mode of the FMS. The intercept parameters are calculated based on the current FPA and VS and displayed to an aircrew member of the aircraft on a visual display device. The aircrew member is allowed to accept the intercept parameters with the VNAV/DES mode of the FMS.
A system to remotely detect and identify an airborne drone presenting a flight risk to piloted aircraft. A warning of the hazardous drone is presented to the piloted aircraft. An airborne drone is observed by any of several means, to include receipt of drone location or identification data broadcast by the drone or broadcast by a ground-based system, or through a piloted aircraft airborne sensor. The safety warning and real-time observation of a hazardous drone may be shared among other piloted aircraft, in particular to other subscribing aircraft approaching the airspace of the hazardous drone.
A method for determining space allocation and signal timing of an isolated signalized intersection consists of at least one remote server and a processing module that is communicably coupled with the at least one remote server. A plurality of traffic-related data, wherein the plurality of traffic-related data reflects activity at the isolated signalized intersection, is received through the processing module. A space determination process is performed on the plurality of traffic-related data through the processing module. Next, a timing determination process is performed on the plurality of traffic-related data through the processing module in order to minimize the average intersection delay at the isolated signalized intersection. Based upon the results from the space determination process and the timing determination process a cycle length is determined for the isolated signalized intersection.
A programmable security system and method for protecting an item of merchandise includes a programming station, a programmable key and a security system. The programming station generates a security code and communicates the security code to a memory of the programmable key. The programmable key initially communicates the security code to a memory of the security device and subsequently operates the security device upon a matching of the security code in the memory of the security device with the security code in the memory of the programmable key. The programmable key may also transfer power via electrical contacts or inductive transfer from an internal battery to the security device to operate a lock mechanism. The security code may be communicated by wireless infrared (IR) systems, electrical contacts or inductive transfer. A timer inactivates the programmable key and/or the security device after a predetermined period of time. A counter inactivates the programmable key after a predetermined maximum number of activations.
A system and method for providing prescriptive analytics in an industrial process wherein a machine tap collects raw performance data from a machine, a machine user interface collects context data on operation of the machine, a server aggregates the performance data and context data, and an analytics engine analyzes the performance data and context data and generates analytics data. An alert engine compares the performance data, context data, and analytics data against a trigger definition, creates an alert if the trigger definition is satisfied, and sends the alert to a remote device to provide prescriptive guidance for improving process performance.
An indoor positioning system, for detecting a position of a target object located in a containing body, includes a tracking label, a plurality of positioning label groups, and a scanning device. The tracking label is disposed on the target object. Each positioning label groups is disposed on the containing body and has a plurality of label units. Each label unit defines a positioning interface, which forms a plurality of areas of the containing body. The scanning device senses and reads the tracking label and each label unit of each positioning label group. The scanning device obtains the positioning interface in which the tracking label is located through an analysis computation according to a signal relationship between the tracking label and each label unit, thereby identifying the positioning interface to obtain one of the areas of the target object in the containing body.
Systems and methods for detecting, monitoring or measuring chemical concentrations in products intended for consumption or the environment of products intended for consumption throughout the supply chain, beginning with producers, processors, packagers, transporters, distributors and ending with retailers and consumers.
A system for managing bets comprises a memory and a processor. The memory stores one or more first type of bets and one or more second types of bets. Each first type of bet is associated with a bet amount and comprises a bet that a participant selected from a set of participants in an event will finish in a predetermined subset of finishing positions associated with the event. Each second type of bet is associated with a bet amount and comprises a bet that the selected participant will not finish in the predetermined subset of finishing positions associated with the event. The processor adds the bet amounts associated with the first type of bets with the bet amounts associated with the second type of bets to form a betting pool. The processor determines an amount of a payout based at least in part on the betting pool.
An electronic gaming machine includes a housing defining an internal cavity. The housing includes an exterior surface at least partially defining an opening extending through the housing and connecting with the cavity. The gaming machine also includes a main display coupled to the housing and configured to display a wagering game. A button deck assembly is removably coupled to the housing and includes a frame sized to extend at least partially through the opening and into the cavity when the button deck assembly is coupled to the housing. A connection assembly extends between the frame and the housing and includes a latch fixably mounted to one of the frame and the housing. The latch is configured to removably engage the other of the frame and the housing when the button deck assembly is coupled to the housing to secure the button deck assembly to the housing.
Disclosed is a first dispenser module with a product holder for holding a plurality of beverage cans and a dispensing mechanism for dispensing one beverage can of the plurality of beverage cans at a time in a dispensing direction from the product holder, wherein the product holder is arranged for holding the plurality of beverage cans with their central axes parallel to said product orientation direction. The dispensing mechanism has a retaining cam that is movable with at least a vector component in the production orientation direction between a retaining position for retaining the plurality of beverage cans and a release position for releasing the beverage cans from the product holder, wherein the retaining cam, in the retaining position, is arranged to be in the path of the top rim or the bottom rim of one of the beverage cans in the dispensing direction.
A coin payout apparatus 100 is provided. The coin payout apparatus 100 includes a coin canister 101. The coin canister 101 includes a tube 102 for storing coins. The coin canister 101 also includes a coin ejector 202 operable to eject a coin from the tube 102. The coin canister 101 further includes a hopping disc 318 operable to rotate and engage the coin ejector 202 to eject the coin from the tube 102 when the tube 102 is moved into position with the hopping disc 318.
The present application concerns the visual identification of materials or documents for tracking or authentication purposes. It describes methods to automatically authenticate an object by comparing some object images with reference images, the object images being characterized by the fact that visual elements used for comparison are non-disturbing for the naked eye. In some described approaches it provides the operator with visible features to locate the area to be imaged. It also proposes ways for real-time implementation enabling user friendly detection using mobile devices like smart phones.
This disclosure is generally directed to systems and methods for eliminating false activation of components of a vehicle when the vehicle is parked in a garage. Example components can be a door lock, a door latch, a door activation servomotor, or a light. In an example method, a vehicle entry authorization system of a vehicle operates a sensor system to obtain dimensional information of an interior portion of the garage. The vehicle entry authorization system may then detect a presence of a mobile device (such as a phone-as-a-key or a vehicle key fob) and determines the location of the mobile device based on the dimensional information. If the mobile device is located outside the garage, the vehicle entry authorization system refrains from activating a component of the vehicle. However, if the mobile device is located inside the garage, the vehicle entry authorization system activates the component.
A vehicle movement identification method and device, and a vehicle alert system. The method comprises: after a vehicle shuts off, collecting real-time state data of the vehicle by means of a sensor (74) provided for the vehicle (S202); comparing the real-time state data with the pre-stored post-shutdown stationary state data of the vehicle (S204); and determining, according to the comparison result, whether the vehicle is moved by a tow truck (S206).
A device for displaying information and for capture of prints of a plurality of skin areas of human autopodia by means of reflection, comprising: a placement surface for applying the autopodia, a touch-sensitive layer, an LC unit with pixels arranged which are individually controllable by a control unit, an illumination unit with a transparent light-guide-layer body, first and second illumination means, and an optical sensor layer with sensors below the light-guide-layer body. The first illumination means emits diffuse light in a first wavelength range, and the second emits directed light in a predefined angular range and in a second wavelength range. The sensor elements are sensitive to light of the second wavelength range. The pixels are switchable between a state which is transparent to the diffuse light and directed light and a state which is opaque to the diffuse light, and are illuminated by the diffuse light for displaying information.
A fingerprint sensor for a display device including: a substrate having first and second surfaces; a light transmission layer including a first layer disposed on the first surface of the substrate and having first openings in at least one first conductive layer, and a second layer disposed on the first surface of the substrate and having second openings in at least one second conductive layer; a light emitting element layer disposed on the first layer and the second layer and having at least one light emitting element; and a sensor layer disposed on the second surface of the substrate and having light sensors. At least a portion of the first openings and at least a portion of the second openings at least partially overlap and have different sizes.
A mobile terminal is provided. The mobile terminal includes a display screen; a flexible circuit board below the display screen and being provided with a first light source; an optical fingerprint module below the display screen, wherein a fingerprint recognition area is disposed on a surface of the optical fingerprint module facing the display screen, and the flexible circuit board is located outside the optical fingerprint module; a light guide part disposed at the periphery of the fingerprint recognition area and capable of receiving light emitted by the first light source.
A fingerprinting solution that uses neural network (NN) based trained Machine Learning (ML) modules in combination with traditional image processing for contactless fingerprint capture, liveness detection to rule out fake fingers, and fingerprint matching using a portable handheld device with integrated camera, thereby eliminating the need for a special device dedicated for fingerprinting. The trained NN modules detect the size and direction of fingers in the captured image, check if fingers are reversed in the image (thereby making nails visible), check if the thumb of the correct hand is captured, and generate fixed-length fingerprint templates for subsequent matching of fingerprints. Three dimensional (3D) depth map of a finger is used to bring the fingerprint resolution to 500 dpi and eliminate distortion caused by the curvature of the finger shape to improve accuracy while scaling and flattening a fingerprint image. The solution facilitates contactless-to-contactless as well as contactless-to-contact based fingerprint matching.
Disclosed herein are embodiments of an optical character recognition pre-processing software system, which is integrated into a language translation system to provide automated cleaning and correction of noisy and degraded document images to enable seamless and efficient optical character recognition processing and machine translation of information within the document images.
Device, system, and method of generating a reduced-size volumetric dataset. A method includes receiving a plurality of three-dimensional volumetric datasets that correspond to a particular object; and generating, from that plurality of three-dimensional volumetric datasets, a single uniform mesh dataset that corresponds to that particular object. The size of that single uniform mesh dataset is less than ¼ of the aggregate size of the plurality of three-dimensional volumetric datasets. The resulting uniform mesh is temporally coherent, and can be used for animating that object, as well as for introducing modifications to that object or to clothing or garments worn by that object.
The invention relates to a computer implemented method for associating objects in a video comprising subsequent frames, the method comprising obtaining first object proposal region information of a previous frame, determining second object proposal region information of a current frame, wherein the first and second object proposal region information are at least indicative of an appearance measure, a spatial location and a detection probability of each object proposal region of the respective frame, associating objects in the video by at least associating a first set of object proposal regions of the previous frame to a second set of object proposal regions of the current frame, wherein the object proposal regions are associated using distance measures calculated based on the appearance measures, the spatial locations and the detection probabilities.
A monitoring system can be configured to monitor activities or actions occurring in clinical settings, such as hospitals. The monitoring system can improve patient safety. The system can use visual and/or other tracking methods. The system can detect and/or identify people in a clinical setting. The system can also track activities of the people, for example, to improve adherence to hygiene protocols.
A concept for a video data stream extraction is presented which is more efficient namely which is, for example, able to more efficiently deal with video content of a type unknown to the recipient with videos of different type differing, for instance, in view-port-to-picture-plane projection, etc., or which lessens the extraction process complexity. Further, a concept is described using which a juxtaposition of different versions of a video scene, the versions differing in scene resolution, may be provided more efficiently to a recipient.
In one embodiment, a method includes, by a client system, receiving, by an assistant xbot of the client system, a request from a first user for a summary of user content from a first content source, retrieving, from the first content source, a plurality of content items corresponding to the request, generating a personalized summary of the retrieved content items, wherein the personalization of the summary is based on a user profile of the first user, and presenting, by the assistant xbot, the personalized summary responsive to the request within a separate communication interface between the assistant xbot and the first user, wherein the personalized summary is interactable by the first user to react to one or more of the plurality of content items.
An image processing system includes a memory storing a training image set and a reference image set, and a processor including hardware. The processor is configured to: generate an augmented image set by applying data augmentation to images included in the training image set; and determine an augmentation parameter based on a similarity between an augmentation feature statistic and a reference feature statistic, the augmentation feature statistic being a statistic of a feature of a recognition target calculated based on the augmented image set, the reference feature statistic being a statistic of a feature of the recognition target calculated based on the reference image set.
The system generates real-time augmented reality video for TV broadcast, cinema or video games. The system includes a monoscopic video camera including a body, a stereoscopic video camera, and a processor. The system includes sensors, including multiple non-optical sensors, which provide real-time positioning data defining the 3D position and 3D orientation of the monoscopic video camera, or enable the 3D position and 3D orientation of the monoscopic video camera to be calculated. The processor is configured to use the real-time positioning data automatically to create, recall, render or modify computer generated 3D objects. The processor is configured to determine the 3D position and orientation of the monoscopic video camera with reference to a 3D map of the real-world generated whilst the camera is being used to capture video. The processor is configured to track the scene without a requirement for an initial or prior survey of the scene.
This disclosure contains methods and systems that allow filmmakers to port filmmaking and editing skills to produce content to be used in other environments, such as video game environments, and augmented reality, virtual reality, mixed reality, and non-linear storytelling environments.
Apparatus and method for programmable ray tracing with hardware acceleration on a graphics processor. For example, one embodiment of a graphics processor comprises shader execution circuitry to execute a plurality of programmable ray tracing shaders. The shader execution circuitry includes a plurality of single instruction multiple data (SIMD) execution units. Sorting circuitry regroups data associated with one or more of the programmable ray tracing shaders to increase occupancy for SIMD operations performed by the SIMD execution units; and fixed-function intersection circuitry coupled to the shader execution circuitry detects intersections between rays and bounding volume hierarchies (BVHs) and/or objects contained therein and to provide results indicating the intersections to the sorting circuitry.
An image analysis system including an image gathering unit that gathers a high-altitude image having multiple channels, an image analysis unit that segments the high-altitude image into a plurality of equally size tiles and determines an index value based on at least one channel of the image where the image analysis unit identifies areas containing anomalies in each image.
The present invention provides an information processing apparatus comprising: an obtainer configured to, in a process of supplying a curable composition onto a substrate or a mold and forming a film of the curable composition in a space between the substrate and the mold, obtain the captured image of the curable composition; a generator configured to generate a predicted image representing a prediction result of a behavior of the curable composition on the substrate in the process; and a display controller configured to display, on a display unit, the captured image and the predicted image to be comparable to each other.
An electronic apparatus includes a memory configured to store a plurality of images; and a processor configured to identify qualities of the plurality of images, process the plurality of images using at least one artificial intelligence model corresponding to the identified qualities, and obtain a graphic image including the processed plurality of images, and the at least one artificial intelligence model is trained to increase a quality of an input image.
A method includes capturing, by a camera disposed behind a display panel of an electronic device, an original image through a semi-transparent pixel region of the display panel, and determining a depth position with respect to at least one object identified within the original image. The method further includes accessing, based on the depth position, a plurality of point spread functions (PSFs) corresponding to a plurality of lateral positions at the depth position, and generating a set of image patches based on the plurality of PSFs. Each image patch of the set of image patches is generated based on a different one of the plurality of PSFs. The method concludes with generating a reconstructed image corresponding to the original image based on the set of image patches.
An artificial intelligence (AI) decoding apparatus includes a memory storing one or more instructions, and a processor configured to execute the stored one or more instructions to obtain image data corresponding to a first image that is downscaled from an original image by using first parameters of a first filter kernel included in a first deep neural network (DNN), reconstruct a second image corresponding to the first image, based on the obtained image data, and obtain a third image that is upscaled from the reconstructed second image, by performing an operation between the reconstructed second image and second parameters of a second filter kernel included in a second DNN corresponding to the first DNN. Each of the second parameters is represented by a product of a scale factor and one among integer values, and each of the integer values is 0 or ±2n, where n is an integer.
A system and method for providing real estate spatial analysis through a user interface which allows the user to visualize the analysis through maps. A businesses are identified within each of a number of incremental areas of an overall map area. Corresponding land use types are identified for the incremental areas. A predominant land use type is identified for each incremental area. A land use map is generated with colors the respective incremental area using a predetermined color assigned to the predominant land use type for the respective incremental area.
Computerized system and method of obtaining and analyzing data on how large numbers of real estate visitors view and interact with real estate property. The system, which optimally will operate during real-world real estate tours, may utilize data from either property associated sensors or user mobile device sensors (e.g., smartphone sensors) to obtain and aggregate visitor position and/or orientation data with respect to various designated locations of interest on the property. This can be used to produce statistics on visitor positions and/or orientations with respect to such locations. The resulting data can be used for statistical A/B testing and multivariate analysis, as well as provide information about various real estate features associated with below or above average visitor interest or approval. Various methods to encourage use, such as self-guided real-world tours, virtual staging, virtual goods and services, are also discussed.
Systems and methods are disclosed to facilitate payment of a restaurant bill via text message. For example, a text message having a restaurant bill code may be sent from a customer device to an MPS phone number. A restaurant network address may be extracted for a restaurant computing system. A query may be sent to the restaurant computing system using the restaurant network address with the restaurant bill code. In response, the restaurant computing system may send restaurant bill data that includes least one restaurant menu item, a price for the at least one restaurant menu item, and a total bill amount. A unique URL may be created that when entered into a web browser presents a webpage that includes at least the restaurant bill data. The unique URL may be used by the customer to pay the restaurant bill.
Infrastructure and methods to implement a platform for a horticultural operation are disclosed. Sensor data is received from one or more sensors configured to capture data for plants within a plant growth operation. Accumulated data associated with other plants in other plant growth operations is access. The data is analyzed to determine conditions of the plants within the plant growth operation. Plant grower actions to improve plant growth are determined. Instructions are transmitted to a controller device associated with the plant growth operation. Agricultural products or services associated with the plant grower actions are determined. An agricultural exchange service processes electronic commerce information from servicers of the products or services. Bids from the servicers are received, and selection and fulfillment of the bids are facilitated.
Systems and methods for distributing transaction files among accounts corresponding to a physical card. The method includes receiving a transaction file from a transaction processing entity. The transaction file is associated with a physical card. The method also includes identifying at least one purse segment in the transaction file. Each purse segment corresponds to a transaction associated with the physical card. The method further includes, for each of the at least one purse segments, identifying a purse ID corresponding to at least one account associated with the physical card and extracting transaction data from the transaction file corresponding to the purse ID. The method also includes, for each of the at least one purse segments, storing the transaction data corresponding to the purse ID into a distribution file and transmitting the distribution file to an account processing system.
Techniques for cooperative document generation include methods, one of the methods includes receiving, from a mobile device, a request to start an insurance claim, the mobile device including an application configured to guide the user through the claim process. The method includes establishing a session between a computer and the mobile device. The method includes displaying images of the user interface of the mobile device. The method includes receiving information concerning the insurance claim from the mobile device, the information provided by the user in response to prompts provided on the mobile device. The method includes displaying the information on the computer. The method includes enabling the customer service representative to alter the information or request additional information be provided. The method includes adding the information to a data record regarding the insurance claim in response to an indication that the customer service representative has verified the information.
A data processing system for recommending insurance plans implements obtaining an electronic copy of demographic information associated with a user; analyzing the demographic information with a first machine learning model to recommend a bundle of insurance policies based on the demographic information, wherein the first machine learning model is configured to group insured people having similar demographics into clusters and to generate the bundle of insurance policies based on predicted medical insurance consumption associated with a respective group into which the model predicts that the first user falls; customizing the recommended bundle of insurance policies based on the demographic information associated with the user to generate a customized bundle of insurance policies; generating an insurance recommendation report that presents the customized bundle of insurance policies to the user; and causing a user interface of a display of a computing device associated with the user to present the insurance recommendation report.
Disclosed embodiments include systems, vehicles, and methods for ensuring an insurance policy is in place to cover use of a vehicle by an authorized user. In various embodiments, a computing device associated with the vehicle executes computer-executable instructions to determine an identity of a user seeking to operate the vehicle and whether an insurance policy associated with the vehicle covers operation of the vehicle by the user. Responsive to a determination that the user is not associated with the insurance policy covering the use of the vehicle, operation of the vehicle by the user is enabled in response to a further determination that the user is covered by an existing insurance policy associated with the user that provides coverage for the operation of the vehicle by the user and an on-demand insurance policy secured by the user that provides coverage for the operation of the vehicle by the user.
A system and method for managing and processing Market-On-Close orders for financial instruments by dynamically employing trading strategies according to settlement rules for financial instruments is provided. Techniques disclosed can include the use of an execution model that allows a trader to submit a MOC order using a trading system. The trading system can be configured to store settlement and validation rules corresponding to a given trading instrument and/or exchange and can be configured to execute the order according to the rules specified by an exchange. The model disclosed herein can rely on exchange mandated settlement rules and settlement times, can accept the order prior to the settlement time, and can manage the order according to parameters and details of the execution model and the settlement rules specified by an exchange for a given instrument.
Systems and methods relating to determining an address of a user by device location prior to sending a replacement card, the method being performed by a card management computing system associated with a card management entity. The method includes determining a location of a mobile device associated with a user via geolocation monitoring of the mobile device. The method further includes determining that a card associated with the user needs to be replaced. Upon determining that the card needs to be replaced, the method further includes determining an address for the user based on the geolocation monitoring. The method further includes sending instructions indicating a replacement card should be mailed to the determined address.
The present disclosure relates to an intelligent quote-to-cash software agent (“the Agent”) that enables users to efficiently interface with a quote-to-cash system from external messaging applications. The Agent is able to communicate with users using natural language and to identify quote-to-cash system action requests and associated parameters from natural language communications. The user may communicate with the Agent from one of plurality of messaging applications that are not associated with the quote-to-cash system. In response to identifying a quote-to-cash action request and associated parameters in a communication session with a user, the Agent calls the quote-to-cash system and obtains the applicable quote-to-cash output requested by the user. The Agent forwards the quote-to-cash system output to the user via the external messaging application selected by the user. The Agent may initiate communications with the user to inform the user of an opportunity in the quote-to-cash process.
This specification relates to methods and systems for providing intuitive navigation of a set of entities. One of the methods includes determining n-dimensional embeddings representing entities; reducing the n-dimensional embeddings representing entities into a 2-dimensional representation of the entities; forwarding, for display on a user's computing device, the 2-dimensional representation of the entities; receiving an input from the user's computing device; responsive to the input, determining an additional 2-dimensional entity representation; and forwarding, for display on the user's computing device, the additional 2-dimensional entity representation.
The present disclosure guides a vehicle to an appropriate parking position in a parking lot. An information processing apparatus according to one aspect of the present disclosure includes a controller, the controller being configured to execute, acquiring vehicle data of a vehicle that is parked in a predetermined parking lot, the vehicle data including information about a parking position in the parking lot, and calculating a parking fee corresponding to the vehicle based on the vehicle data.
One or more computing devices, systems, and/or methods for isolated budget utilization are provided. A first budget pacing component is assigned to control bidding by a first content serving component for a set of content items. A second budget pacing component is assigned to control bidding by a second content serving component for the set of content items. The first budget pacing component controls the bidding by the first content serving component according to a first portion of a content item budget based upon a traffic share of the first content serving component. The second budget pacing component controls the bidding by the second content serving component according to a second portion of the content item budget based upon a traffic share of the second content serving component.
Systems and methods for allowing a subscriber to opt-out of targeted digital advertisements are provided. In one implementation, a mobile network operator operations support system server receives an input from a subscriber, the input comprising an account number and a stable network-level identifier. The server then causes a message to be sent to the mobile device along with a URL based on the input from the subscriber. The server receives a beacon that is generated when the subscriber visits the website, and sends a message to a mobile analytics platform server indicating a preference on whether the subscriber wants to receive targeted digital advertisements.
A data processing device system may be configured by a program at least to determine particular content associated with a first indication of observable presentation of the visual indicator received from a first device system; store in response to determining that the particular content is associated with the received first indication, a recorded-presentation indication indicating that the particular content or information associated therewith has been device-presented; determine that the particular content is associated with a second indication of a user interaction with the visual indicator received from a second device system; and store in response to determining that the particular content is associated with the received second indication, an indication that the particular content has been interacted with by a user.
Methods, systems, and computer programs are presented for the determination of optimal communication scheduling. One method includes an operation for training a machine-learning program to generate a frequency model that determines a frequency for sending communications to users. The training utilizes training data defined by features related to user information and responses of users to previous communications to the users. The method further includes determining, by the frequency model and based on information about a first user, a first frequency for the first user. The first frequency identifies the number of communications to transmit to the first user per period of time. Further, the method includes operations for receiving a communication request to send one or more communications to the first user and determining send times for the one or more communications to the first user based on the first frequency. The communications are sent at the determined send times.
External notifications of events that take place within a virtual space may be provided to users. External notifications may be sent, for example, via email, text message, instant message (external from the virtual space), push notification and/or through other external communication media. These external notifications may be generated based on parameters, such as user parameters, event parameters, and/or other parameters. The parameters may include one or more parameters that are dynamic and/or one or more parameters that are static. The notifications may include incentive offers. The incentive offers may include offers of virtual items within the virtual space. The incentive offers may require a response to the notification for redemption. The incentive offers may enhance engagement with the virtual space by users.
This application relates to apparatus and methods for automatically determining and providing prices for items for sale in stores or online such as to clear inventor of the items. In some examples, a computing device employs artificial intelligence, such as machine learning models, to determine the pricing of the items. For example, the computing device may employ a forecasting model that determines a forecasted demand for an item based on store inventory and experimental sales of the item. The computing device may also employ an item pricing optimization model that determines a clearance price for the item based at least on the forecasted demand as well as historical data indicating previous price adjustments and sales of the item. In some examples, the item pricing optimization model determines a time period to apply the clearance price to the item. The item may then be placed on sale for the clearance price.
A behavioral load shaping (BLS) system can be implemented to encourage consumer reductions in resource consumption. To accomplish this, consumption reports detailing resource consumption can be generated and transmitted to consumers to encourage resource consumption. A series of resource consumption reports can be generated and transmitted to consumers at regular time intervals throughout a calendar year informing the consumer of the rates the consumer is being charged for peak hour and non-peak hour resource consumption. To encourage the consumer to reduce their resource consumption, especially during peak hours, the resource consumption report can include information or insights as to how the consumer can reduce his/her resource consumption especially during peak hours. The resource reports can also include information regarding changes in the peak hours and non-peak hours. The resource reports can also inform the consumer that the consumer is about to exceed a high resource bill threshold.
A method may include receiving a registration request at a server of a consent management platform from a content-presentation device, and using an authentication certificate in the request to establish a secure communicative connection. The server may generate: a global ID (GID) from information received over the secure connection; a device-based device record for the device, and including the GID and a unique address indicator; and a cryptographically-signed token. The GID, device record, and token may be transmitted to the device. The unique address indicator may be associated with consent packages having features of a media distribution system that require user consent to associated agreements for activation on the device. The server may generate a server-based device record duplicating the device-based device record, and including the consent packages and indicators of consent agreement status initialized to undeclared. The server may store the server-based device record in a flat database.
The application is directed to a computer-implemented apparatus for facilitating transactions. The apparatus includes a non-transitory memory having instructions stored thereon for performing an evaluation of user performance prior to proceeding with a transaction. The apparatus also includes a processor, operably coupled to the non-transitory memory. The processor is configured to perform the instructions of displaying, on a graphical user interface (GUI), an input box requesting a user to input information associated with the transaction. The processor is also configured to receive, via the GUI, information from the user associated with the transaction. The processor is also configured to perform the instruction of evaluating the received information associated with the transaction based upon decision criteria.
Systems and methods are disclosed for detecting a suspicious and/or a non-suspicious activity during an electronic transaction performed by a user device. One method comprises identifying, by a monitoring and detection component, a starting check point in the electronic transaction. The monitoring and detection component may then receive contextual data from one or more sensors of the user device. Based on the contextual data and a machine learning model, the monitoring and detection component may determine whether an expected behavior occurred. Entry of user credentials may be enabled in response to determining that the expected behavior occurred, whereas the electronic transaction may be terminated in response to determining that the expected behavior did not occur.
System and methods perform identity freezing. A user input requesting halting of operations related to a plurality of accounts or profiles of the user at different local systems is received. In response, a token mapping database is accessed to identify a personally identifiable information (PII) token for the user. A freeze message with the PII token is transmitted to the different local systems to halt operations associated with the plurality of accounts or profiles of the user. Thereafter, at the different local systems, the operations associated with the plurality of accounts or profiles of the user are halted to freeze an identity of the user. More efficient communication and operations to freeze the user accounts and profiles thereby result.
A system and method configured for conducting a transaction between two parties using a mobile device, or a plurality of mobile devices. In various embodiments, a system for conducting a transaction can comprise an accessory device having an accessory device module and a hardware component, where the accessory device can have various accessory device capabilities. The system can further comprise a mobile device SDK incorporated into the client application and in communication with the accessory device, where the mobile device SDK includes an accessory conversion module in communication with the accessory device module and where the mobile device SDK provides data to the client application. The client application can request accessory device information and receive accessory device capabilities, and the transaction data for the transaction can be provided in a defined structure between the accessory device and the client application via the mobile device SDK.
This disclosure relates to an intelligent smart glasses that may be worn by a customer. The smart glasses may sense cash information on automated teller machine (“ATM”). The smart glasses may accordingly split up a cash transaction across various ATM units in close to proximity to the customer. The smart glasses may split a requested cash transactions among various ATMs so that if the desired amount/denomination of cash is not available at an ATM to the customer, the customer is seamlessly directed to one or more other ATMs that are capable of dispensing the desired amount of cash.
An example kiosk for accepting a portable electronic device from a client in exchange for payment, associated method and systems are described. The kiosk may include at least one display, an imaging chamber that includes at least one camera and one or more mirrors fixedly-arranged to capture images of a portable electronic device, at least one communication connection to a remote server and/or operator, and at least one computer. The computer may be configured to, in conjunction with the remote server and/or operator, capture one or more images of the portable electronic device in the imaging chamber while said at least one camera and said mirrors remain in unchanged positions. The computer may also transmit the captured images to the remote server and/or operator, receive an acceptance of the offered payment amount based upon an offered payment amount for the portable electronic device received from the remote server and/or operator, and provide for secure deposit of the portable device in the kiosk.
Described is an Automated Teller Machine (ATM), and related systems (and methods), that allows for applications (or “Apps”) to be accessed on the ATM. The system allows for a third-party application to be verified and installed on ATMs to provide users with additional services. The application may access peripherals of the ATM via an Application Programming Interface (API) provided as part of a Software Development Kit (SDK). Accordingly, the system may provide a secure mechanism for ATM providers to provide users with the benefits of accessing third-party applications. Moreover, these applications may leverage specialized ATM peripherals and provide functionality that may not otherwise be available on other types of devices.
The invention relates to a method for carrying out a payment transaction on a bank terminal using an electronic payment device, where the device contains at least two payment applications. The method includes a step of data communication from the device to the terminal during a transaction, which data contains at least information of a first type identifying each payment application of the device; and a step of configuring the device so that the data provides information of a first type relative to at least one disabled payment application. The invention likewise relates to the corresponding system.
In an embodiment, a computing system receives a first electronic remittance corresponding to a first electronic payment to a payee. The system determines that the first remittance is in a first, unrecognized format, and responsively presents, to the payee, a user interface for matching electronic remittances to electronic payments. The system receives, via the user interface, field-mapping information between the first format and a second, recognized format. The system receives a second electronic remittance corresponding to a second electronic payment directed to the payee, determines that the second remittance is in the first format, and responsively uses the field-mapping information to convert the second remittance to the second format. The system matches the converted remittance to the second payment, and provides, to the payee, a payment file that indicates a match between the second remittance and the second payment.
A method implemented in a computer based smartphone in communication with one or more appliances via one or more networks. The method comprises monitoring health data concerning an appliance or an appliance part and adjusting the health data based on weather data. Determining that the appliance or appliance part exhibits a maintenance issue based upon the adjusted health data. Accessing a remote computer system via the computer based smartphone over an Internet. Receiving one or more suggestions on where to order, purchase, or seek repair for the appliance or appliance part from the remote computer system.
Various embodiments provide a method of connecting an employer with a candidate, comprising: receiving criteria data from the employer regarding a job opening; receiving background data from the candidate; recording data of the candidate in a video interview; analyzing the data of the candidate with speech-to-text analysis to identify candidate data, comparing real-time connection attributes to the candidate data; if a threshold amount of real-time connection attributes are satisfied by the candidate data, then sending, a first offer to the employer for a real-time connection with the candidate; receiving an employer acceptance of the first offer for a real-time connection with the candidate; sending a second offer to the candidate for a real-time connection with the employer; receiving a candidate acceptance; and connecting the candidate and the employer in real time by establishing a live audio connection or a live audio and video connection.
Various methods, apparatuses/systems, and media for automatically generating and/or updating corporate action swift (society for worldwide interbank financial telecommunication) messages are provided. A processor accesses a database that stores a plurality of static data sheets each including different type of static data; accesses a plurality of corporate action swift generator sheets each configured to link to the plurality of static data sheets from the database and generate a certain type of swift in an MT56x family of swift; implements a template that is linked to the plurality of corporate action swift generator sheets to access a desired static data sheet; automatically generates a corporate action MT56x family of swift message based on the template and the desired static data sheet; and automatically creates an MT56x swift file as output for the generated corporate action MT56x family of swift message in either a text file format or an excel file format.
In a computer-implemented method, a computer program product, and a system, at least one processor obtains and decides a signal of decodable indicia to obtain information identifying an object made up of items. The processor obtains data comprising descriptive text characterizing the portion of the object, including quantitative inventory data related to the portion of the object. The processor displays the visual representation as a three dimensional image and the descriptive text, via an AR/VR device, generating a virtual projection in three dimensional space in a range of view of a user utilizing the device. The processor obtains a designation of a region in the visual representation and executes an action that changes a quantitative or a qualitative element of the descriptive text for an item represented by the region. The processor updates the descriptive text in the visual representation, to reflect the change.
The invention relates to a computer implemented system and method for identification of comparables. The method may comprise: receiving input data from a plurality of data sources for a comparable, generating labeled training data for a function classifier by labeling historical search results for comparables, generating probabilistic training data for the primary product and service classifiers, training the primary product and service classifiers using the labeled training data and the probabilistic training data, determining the functions, products, services, and risks of the comparable using the corresponding classifiers, receiving attributes of a tested party, applying a scoring algorithm to calculate a similarity score for the comparable, generating a recommendation to accept the comparable, reject the comparable, or give additional scrutiny to determine acceptability, and automatically providing a written justification for the decision to accept or to reject the comparable.
An interactive and collaborative, planning, designing and facilitating tool that connects users with organized information and relevant data, providers and facilitators to resolve technical issues in conceptualizing, designing and implementing a custom project.
Methods, systems, and computer-readable media are provided for recreating a state of a clinical computing system for indicating that a specific activity corresponding to a patient increased prior to an event. Sets of data elements for a patient are extracted from the clinical computing system. State changes for each data element are identified. The state of the clinical computing system is recreated prior to the event by concatenating the sets of data elements based on the state changes for each respective data element.
The system and methods of the disclosed subject matter provide an experimentation framework to allow a user to perform machine learning experiments on tenant data within a multi-tenant database system. The system may provide an experimental interface to allow modification of machine learning algorithms, machine learning parameters, and tenant data fields. The user may be prohibited from viewing any of the tenant data or may be permitted to view only a portion of the tenant data. Upon generating an experimental model using the experimental interface, the user may view results comparing the performance of the experimental model with a current production model.
Techniques are described for providing a machine learning (ML) data analytics application including guided ML workflows that facilitate the end-to-end training and use of various types of ML models, where such guided workflows may also be referred to as ML “experiments.” One such model is an outlier detection model to assist in the monitoring of computer network traffic and computer performance. For example, the ML data analytics application may generate an outlier detection model using user-identified data from a data source and parameter information. The generates outlier detection model can include distribution functions of distribution types selected from a plurality of distribution types by a distribution fitting algorithm.
Methods and system for recommending components to a user. Implementations are directed to receiving, from a user, a user query for a design recommendation, the user query comprising a plurality of terms; determining, from the plurality of terms, a user intent including at least one query-derived design function and not including a named component for the design recommendation; receiving additional contextual information for the design recommendation, wherein the additional contextual information comprises a plurality of action attributes for the at least one query-derived design function; determining, from a database, a plurality of design recommendations, wherein each design recommendation comprises a respective recommended component and a plurality of recommended component actions; selecting, from the plurality of design recommendations, a subset of design recommendations; and providing, to the user, the subset of design recommendations.
Systems and methods are disclosed. The system is configured to determine a weight distribution of a vehicle and determine a trajectory associated with the vehicle. The system is further configured to generate a vehicle recommendation based on the weight distribution of the vehicle and the trajectory associated with the vehicle.
A computer-implemented infrastructure providing a consistent graphical user interface that supports user-controlled organizing, storing, accessing and sharing of heterogeneous personal information of a specific user uses computer processes executed by a server system. The computer processes include receiving a set of items of information from a computing device operated on behalf of the specific user; for each item of information in the received set of items, obtaining, as a result of parsing the received set of items, new information; feeding to an artificial intelligence engine the new information, and other user information stored in association with an internal account of the specific user, in order to produce derived information; and storing the new information and the derived information, in a storage system in communication with the server system, in an encrypted format, and associating such stored item of information with an internal account of the specific user; wherein the stored items of information are made accessible only in accordance with permissions controlled by the specific user.
A system for disparity estimation includes one or more feature extractor modules configured to extract one or more feature maps from one or more input images; and one or more semantic information modules connected at one or more outputs of the one or more feature extractor modules, wherein the one or more semantic information modules are configured to generate one or more foreground semantic information to be provided to the one or more feature extractor modules for disparity estimation at a next training epoch.
An electronic transaction card communicates with an add-on slot of an intelligent electronic device. The add-on slot may be a memory card slot. The intelligent electronic device may be a mobile phone or other device with or without network connectivity. The electronic transaction card may have magnetic field producing circuitry compatible with magnetic card readers, smartcard circuitry, other point-of-sale interfaces, or any combination thereof.
Techniques to improve detection and security of images, including formation and detection of matrix-based images. A histogram may be used to determine a most prevalent plurality of colors associated with an environment. A related plurality of colors may be determined based on the most prevalent plurality of colors. A matrix barcode may be generated based on the most prevalent colors, the related plurality of colors, an infrared layer, and an ultraviolet layer.
An image forming apparatus on which a replaceable container storing a recording material is mounted includes an image forming unit configured to form an image using the recording material, a determination unit configured to determine whether the container satisfies a predetermined condition, an acquisition unit configured to acquire an amount of the recording material used for image formation in a predetermined period and stored in the container determined as a container that satisfies the predetermined condition, a memory configured to accumulate information indicating the amount of the recording material acquired by the acquisition unit, and a prediction unit configured to predict a number of days about replacement of the container, based on the information indicating the amount of the recording material and accumulated in the memory.
A method for configuring a raster image processor (RIP) for a digital printing system includes receiving a file for a print job; receiving or determining job characteristics of the print job or the file for the print job; receiving or determining hardware characteristics of hardware upon which the RIP is operating; inputting the job characteristics and the hardware characteristics into a trained artificial intelligence (AI) module; and selecting, using the trained AI module, a configuration or settings for the RIP for processing of the file based on the plurality of job characteristics and the plurality of hardware characteristics.
A non-transitory computer-readable medium stores computer-readable instructions executable by a hardware processor communicably connected with a printing device and a user interface. The instructions are configured to, when executed by the hardware processor, cause the hardware processor to perform one or more printing processes. Each printing process includes, after obtaining a data selection instruction via the user interface, obtaining a print instruction corresponding to the data selection instruction via the user interface. Each printing process further includes starting generating the print data using target image data selected based on the data selection instruction, after obtaining the data selection instruction and before obtaining the print instruction. Each printing process further includes, even after the print data has been generated, not starting providing the print data until obtaining the print instruction, but starting providing the print data to the printing device after obtaining the print instruction.
A baggage keeping system includes a passenger tag, a first baggage tag, a second baggage tag, a reader and a management device. The three tags have RFID, which wirelessly transmits information about the passenger or baggage. The passenger tag is given to the passenger, the first baggage tag is stored in the baggage inaccessibly by a third party and the second baggage tag is attached to the outside of the baggage. The reader reads information about the passenger or baggage from three tags at boarding the departure-side airport and at arriving the arrival-side airport. The management device registers the information about the passenger and baggage, wirelessly received from the reader, compares the wirelessly received the information, determines whether the information about the passenger and baggage matches each other or not, and when they match, are the genuine baggage and the genuine owner.
A source content routing system is described for distributing source content received from clients such as documents, to translators for performing translation services on the source content. The routing system extracts source content features, which may be represented as vectors. The vectors may be assembled into an input matrix, which may be processed using an artificial neural network, classifier, perceptron, CRF model, and/or the like, to select a translator such as a machine translation system and/or human. The translator provides translation services translation from a source language to a target language, post translation editing, proof reading, quality analysis of a machine, quality analysis of human translation, and/or the like and returns the product to the content routing system or clients.
An image processing apparatus is described comprising a processor configured to receive a video and digital ink annotated on the video. For at least a first frame of the video, the processor is configured to compute a model describing pixels of a bounding region of the ink. For a frame of the video, the processor is configured to compute a second region corresponding to the bounding region. The processor is configured to compute a comparison between the second region and the model and update the ink using the comparison.
Using a flat shell for an accelerator card includes reading a flat shell from one or more computer readable storage media using computer hardware, wherein the flat shell is a synthesized, unplaced, and unrouted top-level circuit design specifying platform circuitry. A kernel specifying user circuitry is synthesized using the computer hardware. The kernel is obtained from the one or more computer readable storage media. The synthesized kernel is linked, using the computer hardware, to the flat shell forming a unified circuit design. The unified circuit design is placed and routed, using the computer hardware, to generate a placed and routed circuit design specifying the platform circuitry and the user circuitry for implementation in an integrated circuit.
A method for agricultural land parcel valuation includes: accessing data for parcels within a prescribed region, the data comprising management practices, historical weather conditions, locations and topography, remote sense images, soil types, and crop types; assessing and ranking the management practices for each of the parcels; generating simulation inputs for the each of the parcels, where the simulation inputs comprise highest ranked management practices, the historical weather conditions, the locations and topography, the soil types, and the crop types; simulating crop growth for the each of the parcels over a prescribed number of previous years, where the simulating employs the simulation inputs provided by the generating; and employing selected outputs from the simulating to calculate agricultural metrics and a valuation corresponding to the each of the parcels, where the agricultural metrics include a sustainability metric.
A method of processing data includes at least one processor accessing a data storage unit, the data storage unit providing at least one input data object and at least one transmutation command to be performed on the at least one input data object. The at least one transmutation command operates in a forward mode on the at least one input data object to produce at least one output data object to be stored in a data storage unit.
A computer device performs operations for managing registry access, including monitoring a user process on the computer device. The computing device can determine a set of registry access rules relevant to the user process. The computing device can perform an evaluation of a registry operation requested by the user process using the set of registry access rules. The computing device can determine an action based on the evaluation. The action can include one of blocking the registry operation in relation to a particular key in a registry of the operating system, and enabling access to a particular key in the registry of the operating system to perform the requested registry operation.
Systems, methods, and computer-readable storage media for generating and providing synthetic user profiles are provided herein. The system comprising a processing circuit. The processing circuit including a processor coupled to machine readable storage media having instructions stored therein that, when executed by the processor, cause the processor to perform operations comprising receiving user data including authentic user identification data and authentic user demographic data. The operations further comprising storing the user data as an authentic user profile. The operations further comprising receiving a request for a user profile from a third party. The operations comprising determining required data fields. The operations further comprising generating a synthetic user profile based on the authentic user profile and the required data fields. The operations comprising storing the synthetic user profile in a user profile database. The operations further comprising populating the required data fields with the synthetic user data.
A conference management system (“system”) facilitates data compliance in recording conversations between users. A host user can send an electronic invitation for a meeting to participants. Upon accessing the invitation, the participants can be presented with two options to join the conference—a first option using which a participant can join the meeting by providing consent to recording the meeting and a second option using which the participant can join the meeting by opting-out of recording of the meeting. When a participant opts-out of the recording of the meeting, the conference management system ensures that the recording is performed in compliance with a data compliance policy applicable to the participant who opted out of recording.
Systems and methods for securely deploying a collective workspace across multiple local management agents are described. In some embodiments, an Information Handling System (IHS) may include a processor and a memory coupled to the processor, the memory having program instructions stored thereon that, upon execution, cause the IHS to: receive, at a workspace orchestration service from a first local management agent, first context information and a first split key; receive, at the workspace orchestration service from a second local management agent, second context information and a second split key; determining, by the workspace orchestration service, that the first and second context information match a collaborative workspace policy; in response to the determination, authenticate the first and second split keys; and in response to the authentication, transmit a collaborative workspace definition to the first and second local management agents.
The invention relates to systems and methods that implement an interactive contractor dashboard. An embodiment of the present invention is directed to aggregating contingent labor data (firm-wide and globally) into a single consolidated infrastructure from multiple data feeds and systems. Once the data is aggregated, an embodiment of the present invention may apply entitlements, reduce the dataset accordingly and dynamically provide a customized interactive interface where the user may generate reports and access analytics for one or more contractors associated with the user.
Embodiments of the present disclosure advantageously provide a secure boot integrity verification system that is protected against future quantum attacks without relying on correctly functioning hardware security modules (HSMs) for the expected lifetime of the computer system or embedded device.
Methods and systems are described for implementing automated controls assessment through an application programming interface (“API”) driven software development kit. For example, the system may receive a response from an API-based agent to an automated controls assessment audit. The system may process the response, using a library of reusable features for controls assessment audits for a plurality of computer domains, to generate a result of the automated controls assessment audit. The system may then generate an outcome of the first automated controls assessment audit.
System and method for protecting a computing device of a target system against ransomware attacks employs a file system having a data structure used by an operating system of the computing device for managing files. A software or a hardware installed agent in the computing device performs one or more actions autonomously on behalf of the target system. The agent autonomously creates one or more trap files in the data structure of the filing system. A trap file is a file access to which indicates a probability of ransomware attack. The agent monitors access to the one or more trap files. Upon detecting access to a trap file, remedial action is performed by the target system against the probability of ransomware attack.
The present disclosure relates to a method for integrity verification of a software stack or part of a software stack resident on a host machine. A management entity generates a measurement log for a disk image associated with the software stack or the part of a software stack. A verifier entity retrieves the generated measurement log and compares the generated measurement log with a reference measurement of a verification profile previously assigned by the verifier entity to the software stack or the part of a software stack to verify the software stack or the part of a software stack.
In some examples, an analyzer manager configured to select one of a program code analyzer, a static data analyzer, and an unused memory location analyzer for malware detection within memory of a system. The program code analyzer can be executed to evaluate instruction data for executing a computer program at a first set of memory locations within the memory for malware in response to being selected by the analyzer manager. The static data analyzer can be executed to evaluate static data for use by the computer program at a second set of memory locations within the memory for the malware in response to being selected by the analyzer manager. The unused memory location analyzer can be executed to evaluate null data indicative of unused memory locations at a third set of memory locations within the memory for the malware in response to being selected by the analyzer manager.
A system and method for accelerated anomaly detection and replacement of an anomaly-experiencing machine learning-based ensemble includes identifying a machine learning-based digital threat scoring ensemble having an anomalous drift behavior in digital threat score inferences computed by the machine learning-based digital threat scoring ensemble for a target period; executing a tiered anomaly evaluation for the machine learning-based digital threat scoring ensemble that includes identifying at least one errant machine learning-based model of the machine learning-based digital threat scoring ensemble contributing to the anomalous drift behavior, and identifying at least one errant feature variable of the at least one machine learning-based model contributing to the anomalous drift behavior; generating a successor machine learning-based digital threat scoring ensemble to the machine learning-based digital threat scoring ensemble based on the tiered anomaly evaluation; and replacing the machine learning-based digital threat scoring ensemble with the successor machine learning-based digital threat scoring ensemble.
Systems, apparatuses, and methods to identify an electronic control unit transmitting a message on a communication bus, such as an in-vehicle network bus, are provided. ECUs transmit messages by manipulating voltage on conductive lines of the bus. Observation circuitry can observe voltage signals associated with the transmission at a point on the in-vehicle network bus. A distribution can be generated from densities of the voltage signals. ECUs can be identified and/or fingerprinted based on the distributions.
A processor-implemented method of performing authentication includes obtaining a first biometric information of a user according to a first modality; calculating a first score based on the first biometric information; filtering the first score; determining whether the filtered first score satisfies a second condition; and selectively, based on a result of the determining, authenticating the user based on the first score and a first condition corresponding to the first modality. The second condition is different from the first condition.
In various embodiments, an electronic device, at least a part of which is bendable, may include: at least one input device including a fingerprint sensor disposed therein, a memory, and a processor operatively connected to the at least one input device and the memory. The processor may be configured to: detect a user input through the at least one input device based on the fingerprint sensor being in an inactive state, identify at least one particular function stored in the memory in response to the detected user input, activate the fingerprint sensor based on the identified at least one particular function being a function requiring user authentication, perform user authentication corresponding to the user input using the activated fingerprint sensor, and control the electronic device to perform the at least one particular function corresponding to the user input upon successful user authentication.
Described are various embodiments of a digital user authentication device, the device comprising: a user authentication interface operable to receive as input unique user identification data required to execute a digital user authentication process; a distinct physiological sensor operable to interface with the user to acquire a physiological signal from the user to automatically confirm a live user presence during said authentication process; and a digital data processor and computer-readable memory operable to execute computer-readable instructions to invoke said user authentication process based on said unique user identification data while confirming said live user presence based on said physiological signal such that a successful user authentication is only concluded upon confirmation of said live user presence during said authentication process. Various authentication, access authorization and revocation systems and processes are also described.
Various embodiments support or provide for a software environment in which one or more software components (e.g., APIs) can be relationally composed together by logic (e.g., as defined using a computer language) to form an operation that abstracts details of the composition, such as details relating to the multiple API calls being made in the composition, to implement the logic of the operation. Depending on the embodiment, a particular software component environment can comprise one or more of the following: a data connector to an external software service; stored authentication information to establish access to the external software service; an operation having defined logic for using at least one data connector or another operation (e.g., from operation repository); or an endpoint for deploying the operation for access.
A deep learning machine includes a classification unit having a labeling criterion and configured to label input data according to the labeling criterion, a conversion unit configured to integerize input data labeled as a first type requiring integerization among the input data labeled by the classification unit, a first learning data unit configured to receive the input data of the first type integerized through the conversion unit and to infer output data, and a second learning data unit configured to receive input data labeled as a second type requiring no integerization and to infer the output data.
The novel use of separate programs to control a parallel execution of a plurality of large scale linear program solvers executing sequentially on separate cores is disclosed. An embodiment detailing the system's use in optimizing a utility company's assets is also disclosed. As upgrades or better programs become available, in some embodiments each program in the system can be replaced without affecting the structure of the other programs. In some embodiments, the use of cloud based architecture allows for improved data collection and system execution as all that is needed to process data at a faster speed is to “rent” the additional physical or virtual cores from the provider.
Systems, methods and computer-readable media are provided for facilitating patient health care by providing discovery, validation, and quality assurance of nomenclatural linkages between pairs of terms or combinations of terms in databases extant on multiple different health information systems that do not share a set of unified codesets, nomenclatures, or ontologies, or that may in part rely upon unstructured free-text narrative content instead of codes or standardized tags. Embodiments discover semantic structures existing naturally in documents and records, including relationships of synonymy and polysemy between terms arising from disparate processes, and maintained by different information systems. In some embodiments, this process is facilitated by applying Latent Semantic Analysis in concert with decision-tree induction and similarity metrics. In some embodiments, data is re-mined and regression testing is applied to new mappings against an existing mapping base, thereby permitting these embodiments to “learn” ontology mappings as clinical, operational, or financial patterns evolve.
Embodiments of the present disclosure provide a method and system for visual data object dependency tracing. In an embodiment of the disclosure, a method for visual data object dependency tracing includes issuing display instructions to display a visualization of a relational database table in a display in communication with the data processing hardware, the relational database table representing a data model for data of a database, the visualization of the relational database table including a network of nodes coupled, each node coupled to at least one other node by a connector and each node representing a corresponding object of the data model, each connector representing a corresponding correlation between objects.
A system is disclosed to build and store a data model and queries for a graph database. In various embodiments, data defining one or more aspects of a data model associated with a graph database is received. A set of data that represents the data model is stored as a graph that includes one or more nodes to represent each of the following: data model metadata, one or more node labels comprising the graph database, one or more relationship types of the graph database, and one or more property definitions each associated with a property of at least one of a node label and a relationship type of the graph database.
A method includes logging first user interactions associated with a playlist of content items and generating first metrics based on the logged first user interactions with the playlist. The first metrics include a first metric indicating a first duration of playback of a first content item of the playlist during playback of the playlist. The first duration of playback of the first content item during the playback of the playlist is greater than a first default duration of playback. The method further includes reporting at least the first metric to a creator or curator of the playlist, logging second user interactions associated with the playlist, and generating second metrics based on the logged second user interactions with the playlist. The logged first user interactions correspond to more deviations from a default playback sequence of the playlist than the logged second user interactions.
A method includes: obtaining, at a server, an observation record describing a condition at a facility; determining, from the observation record, a set of selection criteria corresponding to the condition; retrieving, from a repository connected to the server, a set of data objects according to the selection criteria; generating, from the retrieved data objects, a contextual dataset associated with the condition; and presenting the contextual dataset to a client computing device.
Data processing apparatuses, methods and computer programs are disclosed. A range definition register is arranged to store a range specifier and filtering operations are performed with respect to a specified transaction by reference to the range definition register. The range definition register stores the range specifier in a format comprising a significand and an exponent, wherein a range of data identifiers is at least partially defined by the range specifier. When the specified transaction is with respect to a data identifier within the range of data identifiers, the filtering operations performed are dependent on attribute data associated with the range of data identifiers.
The present invention provides a method and system for the automated generation or editing of educational or training materials whose content is based on predetermined parameters. The method and system extract information from pre-existing sources, divide the information into blocks based on the predetermined parameters, summarize the blocks' information, generate keywords, key phrases and/or confidence scores for each block of information, retrieve content from pre-existing sources using the keywords, key phrases and/or confidence scores, and assemble the retrieved content to create the educational or training materials.
Methods and systems are described for preventing a message from being sent to an unintended recipient. A first context data structure is generated for a first conversation, a second context data structure is created for a second conversation, and then a message input is received as intended for the first conversation. The message is correlated with each of the first context data structures and the second context data structure to determine a relevance score corresponding to each of the first and second conversation. The relevance scores are compared and if the relevance score for the first conversation is greater than the relevance score for the second conversation, the message is sent; however, if the relevance score for the second conversation is greater than the relevance score for the first conversation, the message is not sent and the message is prevented from being sent to, for example, an unintended recipient.
Generating textual entailment pair by a natural language processing (NLP) system. The NLP system receives two input texts, such as a question and a candidate answer. The NLP system queries a database and retrieves passages likely to include text that support the candidate answer. The NLP system generates parse trees and performs term matching on the passages and scores them according to the matching. The NLP system detects anchor pairs in the question and in the passage and aligns subgraphs (within the parse trees) of one to the other based on matching. The NLP system identifies aligned terms in the question and the passage that are not in the aligned subgraphs. The NLP system identifies text fragments, for the question and the passage, within the non-aligned segments of their respective parse trees, that connect the aligned term to the aligned portion of the subgraph.
Creating an object is disclosed. An instance of a sharable type is created. An instance of a lightweight type is created. The sharable type is designated as a parent of the lightweight type. The instance of the sharable type is designated as a parent of the instance of the lightweight type. The instance of the sharable type is shareable by one or more other instances of the lightweight type.
Aspects of the present disclosure provide techniques for displaying reduced data sets based on pre-classification of a larger data set. Embodiments include receiving a plurality of activity records describing a plurality of activities associated with the user. Embodiments further include grouping the plurality of activities into one or more pre-classified data sets based on the plurality of activity records. Embodiments further include providing the user with a summary of a pre-classified data set of the one or more pre-classified data sets via a user interface. Embodiments further include providing the user, via the user interface, with a user interface element that allows the user to provide input related to the pre-classified data set based on the summary. Embodiments further include receiving input from the user via the user interface, the input relating to the pre-classified data set.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for clustering and visualizing textual data. A data clustering and visualization system clusters large volumes of semi-structured and unstructured textual data into categories. Each category can include a group of similar alerts and incidents. The categories are then graphically presented.
Proposed are concepts for transforming a spreadsheet (or set of spreadsheets) into a knowledge base for analysis. Such a concept may convert a spreadsheet into a structured OLAP model that facilitates detailed analysis. For instance, by turning the semi-structured cell-based data representation into a structured OLAP model, it may be possible to perform analysis that would otherwise not be possible with the existing tools.
Systems, methods, and other embodiments associated with distributed primary identifier management in a multi-master database system are described. One embodiment includes adding a new master node to a system with a plurality of master nodes. Assigning a master node number to the new master node in relation to the plurality of master nodes. The master node number is converted into a binary value and a reverse bit order of the master node number is generated. The new master node is configured to assign primary identifiers within an address space to data objects, wherein the primary identifiers include the reverse bit order of the master node number to reduce collisions between the data objects.
Various aspects of the subject technology relate to systems, methods, and machine-readable media for visualizing performance data of infrastructure components. The method includes receiving a query through an application for a metric for an infrastructure component, the metric comprising metric time series (MTS) data. The method also includes identifying sources for the metric. The method also includes querying the identified sources for the metric. The method also includes selecting from the identified sources best available data for the metric based on a selection algorithm. The method also includes enriching the best available data comprising linking dimensions and properties from the identified sources to the best available data. The method also includes causing display of the enriched best available data through a user interface of the application.
Embodiments described herein transforms a complex and usually unstructured table to a relational table based on the header pattern. Specifically, the original complex table is expanded into a single dimensional relational database format, in which each cell corresponds to one or more corresponding categories or subcategories from the original header. The transformed one-dimensional relational table is then populated with the corresponding cell values from the original table. In this way, data from the original complex and unstructured data table can be stored at a relational database.
A method for providing contextual analytics of target information by using similarity mapping is disclosed. The method includes retrieving, via a communication interface, raw data from several sources based on a predetermined characteristic of the raw data, the raw data including natural language data; receiving, via a graphical user interface, a target document; converting, by using a natural language processing technique, the raw data into structured data based on a predetermined parameter; refining the target document to generate a target data set; generating a structured data set from the structured data by using a dimensionality reduction technique; and displaying, via the graphical user interface, a graphical element, the graphical element including a similarity plot of the structured data set and the target data set.
In connection with processing asynchronous streams of aircraft telemetry data, data processing logic is developed to run on multiple aircraft, even if the aircraft use different avionics equipment. An electronic data inventory system tracks data available on a set of aircraft. A set of “global” data elements applicable to aircraft in a fleet is defined and tracked in the electronic inventory system, along with the relationship to the underlying native data elements and specific aircraft. The global units are derived as appropriate, for each specific aircraft's avionics and/or sensor environment. An interface enables definition of data processing logic that is integrated with the electronic inventory system and ensures the general validity of the defined logic. The data processing logic may be deployed to one or more aircraft in a function integrated with the electronic inventory system, to ensure the validity of the data processing logic for each aircraft specified as a deployment target.
A cloud-based, query management and education system enables provider organizations to query and educate clinicians on how to clarify clinical documentation, resulting in more accurate reimbursement, public reporting, research and policy decisions. Query authors create compliant queries from stored templates which may be supplemented by attaching and/or annotating selected documentation from the patient record. Clinician responses to such queries automatically generate addenda in the relevant patient record. All events around a query are tracked and reportable through a graphical performance scorecards and reporting dashboards.
A method includes identifying a search term and obtaining historical data indicative of a number of times a game was selected from search results corresponding to search queries using the search term and indicative of a number of times the selected game was played by one or more users for at least a threshold amount of time. The method further includes generating a score based on the historical data. The score is associated with the search term and the selected game.
The present disclosure relates to a large-scale and low-latency data retrieval and storage system for a multi-tenant, cloud-based application, such as a Quote-to-Cash application. Conventionally, such applications rely heavily on SQL databases, which have difficultly providing service and performance at scale. The system of the present disclosure uses a distributed blob storage for data records, wherein each tenant has their own partition within the blob storage. Blob storage is able to provide service and performance at scale. Blob storage alone, however, cannot solve the needs of a multi-tenant, cloud-based application in which customer inputs complex data queries to retrieve data records. The present disclosure describes a system that converts basic blob storage into a data store can manage complex data queries in an efficient and scalable way for multiple tenants. This includes storing queryable data in data structures in a persistent distributed cache and executing queries on the data structures to identify the record IDs that satisfy the query. The records are then retrieved from blob storage using parallel fetch operations.
Methods, systems and computer program products are provided for transaction log validation in a database transaction log service. A transaction log service may perform egress validation to confirm transaction logs match previously served transaction logs and are free of corruption. A transaction log service may determine whether a transaction log (e.g., in the form of a log block) was previously served based on transaction log (e.g., log block) identity indicating a position in a logical stream of transaction logs (e.g., log blocks). Egress validation may improve log service reliability by providing an added layer of defense against corruption of a transaction log payload.
A machine data validation system can track and validate the integrity of machine data generated by machines. The system can generate hashes for the items and batch hashes that can be validated using an immutable data store, such as a blockchain. The system can implement a tiered blockchain structure to efficiently store and reference the hashes to validate the machine data at different times or upon request from an end-user.
Systems, devices, and methods are provided for implementing shadow data lakes. In at least one embodiment, a deletion workflow obtains a deletion request from a delete request cache service, gets attestation details from an attestation service, submits a job to scan one or more records from a source table of a data lake and publish the one or more records to a deleted records table of a shadow data lake, and cause deletion of the one or more records from the data lake.
A method and system for processing signals from a plurality of groups of sensors are described. Each group includes a first sensor and at least one additional sensor. A first sensor identifier and first sensor data are received from the first sensor. At least one additional sensor identifier and additional sensor data are also received from the additional sensor(s). The first sensor and the additional sensor(s) of each group are co-located. The first sensor identifier is associated with the additional sensor identifier(s) for each group. Calibration information for the first sensor is obtained based on the first sensor identifier and the additional sensor identifier(s). The calibration information is specific to the first sensor having the first sensor identifier. Corrected first sensor data for each of the groups is provided based on the first sensor data, the additional sensor data and the calibration information.
Methods and systems are disclosed for remote code execution between computing environments having various dissimilarities. Client requests at a source environment lead to calls of various types lacking immediate support within the source environment. Calls are delegated to the target environment, where function schemas, data schemas, or copies of source-side schemas are variously used to reconcile called source-side entities with their target-side counterparts. Inconsistencies between name and data representations and datatypes are also addressed. Serially communicated (JSON) parameters are resolved into required target-side multi-level parameter structures, and vice versa. Expedited bulk data access to/from a database layer is supported. A use case is described for phased migration of a software application. Generic and extensible remote code execution allows rapid migration, adaptation, or deployment of software applications across diverse computing environments.
Apparatus and associated methods relate to generating energy blocks on a blockchain corresponding to generation, transmission, and consumption of predetermined quanta of energy represented by corresponding records in an associated Merkle trie. In an illustrative example, individual energy data records may be hashed. Each hash may be stored in a leaf node of a Merkle trie. The individual energy data records may be aggregated to correspond to represent a predetermined quantum of energy. The individual energy data records may include energy generation records. The energy blocks may be associated with scheduling, delivery, and consumption data for the energy quantum. Various embodiments may advantageously provide secure, verifiable, and immutable tracking and processing of energy generation, transmission, and consumption of physical energy quanta across one or more distributed energy networks.
An apparatus includes components, a distributed timebase circuit, an interface and a Time Synchronization Circuit (TSC). The timebase circuit is configured to provide local timebases in physical proximity to the components, and synchronize the local timebases to a global timebase so as to provide a consistent time measurement. The interface is configured to be coupled to one or more devices. Transmissions on the interface are logically divided into a plurality of frames. Time on the interface is defined based on a frame number identifying a particular frame. The TSC is configured to capture a first timestamp based on the frame number corresponding to a point in time on the interface, and to concurrently capture a second timestamp based on a local timebase corresponding to the point in time, wherein the first timestamp and the second timestamp correlate time on the interface to the consistent time measurement.
An apparatus comprises a processing device configured to generate connectivity information associated with at least one of a first device coupled to a first cable connector at a first end of a cable and a second device coupled to a second cable connector at a second end of the cable opposite the first end of the cable. The processing device is also configured to provision, via an integrated sideband interface of the cable, the generated connectivity information for display on at least one of a first cable display proximate the first cable connector at the first end of the cable and a second cable display proximate the second cable connector at the second end of the cable.
In a method for the emergency shutdown of a bus system, and a bus system, having a master module and bus subscribers disposed in series, the master module and the bus subscribers sending data packets to one another with the aid of a data line, the method has the temporally consecutive method steps: in a first method step, a bus subscriber and/or the master module detect(s) an error status, in a second method step, the bus subscriber and/or the master module send(s) an emergency signal to all bus subscribers and to the master module, in a third method step, a further bus subscriber receives the emergency signal, immediately forwards it to an adjacent bus subscriber and simultaneously evaluates it, and in a fourth method step, the further bus subscriber shuts itself down automatically.
Some aspects of this disclosure relate to implementing a thread device that can associate with a thread network. The thread device includes a network processor, a first memory, and a host processor communicatively coupled to the network processor and the first memory. The first memory can be a nonvolatile memory with a first level security protection, and configured to store a first dataset including thread network parameters for the network processor to manage network functions for the thread device associated with the thread network. The network processor can be coupled to a second memory to store a second dataset having a same content as the first dataset. The network processor is configured to manage the network functions based on the second dataset. The second memory can be a volatile memory with a second level security protection that is less than the first level security protection.
Technologies for secure authentication and programming of an accelerator device are described. In one example, a computing is disclosed comprising an accelerator device to: provide a unique device identifier to an accelerator services enclave (ASE) of a processor of the computing device; authenticate with the ASE by: performing a secure key exchange with the ASE to establish a shared secret tunnel key; verifying an enclave certificate of the ASE; and providing an attestation response to the ASE indicative of an accelerator device configuration; establish a secure channel with the ASE protected by the shared secret tunnel key; receive bitstream image key and bitstream data key from the ASE via the secure channel; program the accelerator device via the secure channel using the bitstream image key; and exchange data with a tenant enclave of the processor, the data protected by the bitstream data key.
Methods, systems, and devices for codeword rotation for zone grouping of media codewords are described. A value of a first pointer may be configured to correspond to a first memory address within a region of memory and a value of a second pointer may be configured to correspond to a second memory address within the region of memory. The method may include monitoring access commands for performing access operations within the region of memory, where the plurality of access command may be associated with requested addresses within the region of memory. The method may include updating the value of the second pointer bases on a quantity of the commands that are monitored satisfying a threshold and executing the plurality of commands on locations within the region of memory. The locations may be based on the requested address, the value of the first pointer, and the value of the second pointer.
The described technology is generally directed towards garbage collecting content selection graphs and related data from in an in-memory content selection graph data store. When a set of content selection graphs expire, a more current content selection graph set becomes active, and the storage space (e.g., in a Redis cache) used by the expired content selection graphs is reclaimed via garbage collection. Some graphs can be replaced before use, referred to as orphaned graphs, and the storage space for any such orphaned graphs is also reclaimed during garbage collection. Also garbage collected is storage space including related data structures used to generate and validate graphs.
The present disclosure provides a memory data access apparatus and method thereof. The memory data access apparatus includes a cache memory and a processing unit. The processing unit is configured to: execute a memory read instruction, wherein the memory read instruction includes a memory address; determine that access of the memory address in the cache memory is missed; determine that the memory address is within a memory address range, wherein the memory address range corresponds to a data access amount; and read data blocks corresponding to the data access amount from the memory address of a memory.
Methods, apparatuses, systems, computing devices, computing entities, and/or the like are provided. An example method may include receiving a requirement request data object, generating at least one of a predicted complexity attribute or a predicted work track attribute corresponding to the requirement request data object, generating at least one predicted defect description attribute or at least one predicted test case description attribute corresponding to the requirement request data object, and transmitting a prediction data object that includes at least one of the predicted complexity attribute, the predicted work track attribute, the at least one predicted defect description attribute, or the at least one predicted test case description attribute. In some examples, the client device is configured to perform one or more software testing operations corresponding to the software testing task based at least in part on the prediction data object.
System and method for testing a device under test (DUT) that includes a multiprocessor array (MPA) executing application software at operational speed. The application software may be configured for deployment on first hardware resources of the MPA and may be analyzed. Testing code for configuring hardware resources on the MPA to duplicate data generated in the application software for testing purposes may be created. The application software may be deployed on the first hardware resources. Input data may be provided to stimulate the DUT. The testing code may be executed to provide at least a subset of first data to a pin at an edge of the MPA for analyzing the DUT using a hardware resource of the MPA not used in executing the application software. The first data may be generated in response to a send statement executed by the application software based on the input data.
Described herein are systems, methods, and software to enhance the management and deployment of data processing clusters in a computing environment. In one example, a management system may monitor data processing efficiency information for a cluster and determine when the efficiency meets efficiency criteria. When the efficiency criteria are met, the management system may identify a new configuration for the cluster and initiate an operation to implement the new configuration for the cluster.
A method may include performing, at multiple data partitions, a point-in-time recovery to a specified time by applying transactions that have committed at each data partition up to the specified time. Open transactions that have not been committed at each data partition at the specified time may be identified. A corresponding transaction coordinator may be queried for an outcome of the open transactions. Open transactions that affect a single data partition may be aborted. The point-in-time recovery may be performed at the transaction coordinator partitions by determining the outcome of the open transactions. The transaction coordinator partitions may abort any transaction that remains open subsequent to the point-in-time recovery. If the specified time may be greater than a safety threshold, data up to an earlier point-in-time than specified may be recovered depending on whether there are missing portions of transaction logs at the data partitions or the transaction coordinator partitions.
Various embodiments include a parallel processing computer system that detects memory errors as a memory client loads data from memory and disables the memory client from storing data to memory, thereby reducing the likelihood that the memory error propagates to other memory clients. The memory client initiates a stall sequence, while other memory clients continue to execute instructions and the memory continues to service memory load and store operations. When a memory error is detected, a specific bit pattern is stored in conjunction with the data associated with the memory error. When the data is copied from one memory to another memory, the specific bit pattern is also copied, in order to identify the data as having a memory error.
An error notification system includes a plurality of data production systems in communication with a monitoring server. Each data production system has a data processor configured to receive input data from a first set of data production systems, process the input data to produce output data, and make the output data accessible to a second set of data production systems. The monitoring server is configured to monitor data transmissions between the data production systems and to identify, for each data transmission, originating and receiving systems. The monitoring server is further configured to map data flow from each originating source system to identify all downstream data production systems. Upon identification of a data error in the originating source system, the monitoring server obtains data error information, assembles a data error notification, and transmits the data error notification to data production systems meeting system notification criteria.
A system, method and product for client-side automated application programming interface (API) mapping of a computerized system. The method comprises creating a mapping by: detecting, by a client-side agent that is operated on a client device executing a frontend of the computerized system, an invocation by a first application of the API function of a second application, wherein the API function is defined by a function prototype comprising a domain of potential values for an input or output parameter of the API function; and based on information gathered by the client-side agent, automatically determining a logical schema of the API function, wherein the logical schema defining a logical function prototype comprising a sub-domain of the domain of potential values, wherein the sub-domain restricting at least one value of the domain.
The disclosed technology teaches initializing an application instance using a SaaS model in a project implemented on a cloud-based computing service, including running a configuration engine that links a service provider for SaaS application to set configuration parameters for the project and initializing the project in which an application instance will be built, then removing the authorization of the configuration engine to access the project and removing access to set the parameters. The technology also includes running a SaaS application infrastructure builder autonomously, without the service provider having access to the builder, to build the instance, and then delivering the application as a SaaS service.
An information processing apparatus that is able to execute an extended application, and a method of controlling the information processing apparatus are provided. The information processing apparatus holds, in a launched state, a virtual machine (VM) for executing the extended application, determines, in a case that the extended application is launched, whether or not the extended application can reuse the VM. In a case that it is determined that the extended application can reuse the VM, the information processing apparatus determines whether or not a VM that can be reused by the extended application is held, and in a case that it is determined that the VM which can be reused by the extended application is held, execute the extended application using the held VM.
An image of a virtualization software and firmware in a plurality of hosts are upgraded by performing the steps of: validating a desired image of the virtualization software by extracting dependencies and conflicts defined in metadata of all payloads of the desired image of the virtualization software, and confirming there are no violations of the extracted dependencies and conflicts; performing a pre-check of the desired image of the virtualization software against a current image of the virtualization software and a pre-check of the desired version of the firmware against a current version of the firmware; and upon determining from results of the pre-check that the virtualization software can be upgraded to the desired image and the firmware can be upgraded to the desired version, upgrading the current image of the virtualization software to the desired image and upgrading the current version of the firmware to the desired version.
A method is provided in a data processing system having second level address translation (SLAT) controlled by a hypervisor. In the method, hashes of all memory pages accessible by a guest OS are stored (set S). Also, hashes of all memory pages previously accessed by the guest OS are stored (set T). When the guest OS attempts an access to a memory page having executable code for which it does not have permission, an exception is generated. A hash of the memory page is compared with the hashes of set T and set S. If there is not a match within set T, then the guest OS has never attempted the requested operation before and suspicious behavior is reported. If there is not a match within set S, the requested operation is reported as illegal. In another embodiment, the memory page may be encrypted to prevent the guest OS from reading the memory page.
A system receives, from a first augmented reality device, a first image of a web application that shows a first element of the web application. The system receives eye tracking information that indicates eye movements of a user looking at different elements of web application. The system determines that the user is looking at the first element and that the first element is actuated. The system receives a second image of the web application that shows an error message. The system determines that the first element is faulty, records user events that led to the error message, and updates an augmented reality message for the first element by indicating that the first element is faulty. If it is determined that a second user wearing a second augmented reality device is looking at the first element, the system communicates the updated augmented reality message to the second augmented reality device.
Described herein are systems and methods to facilitate task-specific workspaces for a collaboration work management platform. Task-specific workspaces for individual ones of the users for individual ones of the tasks may be facilitated. Presentation of the first task and/or the first task-specific workspace for the first task for the first user may be effectuated. Information characterizing interactions of the first user with the first set of applications within the first task-specific workspace at or near a first time may be obtained and/or stored responsive to a pause and/or completion of the first task at the first time. The one or more windows corresponding to the first set of applications for the first task may be minimized and/or closed. Responsive to a re-start of the first task, the first set of applications may be restored based on the environment state information.
Adding electronic content by a user within the prior art requires the user formats every item or uses a template that predetermines the position and type of content added. However, it would be beneficial to provide users with templates which provide rules which are applied to the content as it is added based upon aspects of the template and/or data associated with the content. It would be beneficial if such templates automatically associated format elements, icons, other display elements, sourced additional content etc. based upon aspects such as the region of the template the content is added or data associated with the content being added. Further, where rendering is based upon data associated with the content if the user modifies the rendered content then these changes should be beneficially reflected in the data associated with the content such that a subsequent rendering reflects the user adjustments, etc.
A method performed in a processor, includes: receiving, in the processor, a branch instruction in the processing; determining, by the processor, an address of an instruction after the branch instruction as a candidate for speculative execution, the address including an object identification and an offset; and determining, by the processor, whether or not to perform speculative execution of the instruction after the branch instruction based on the object identification of the address.
Devices and techniques are disclosed herein for more efficiently exchanging large amounts of data between a host and a storage system. In an example, a read command can optionally include a read-type indicator. The read-type indicator can allow for exchange of a large amount of data between the host and the storage system using a single read command.
A software update apparatus includes a communication unit that sends a request for downloading update data to a center, a storage unit that stores the downloaded update data, and a control unit that executes, based on the update data, a control for installing, or installing and activating update software on one or more target electronic control units from among a plurality of electronic control units connected to each other via an in-vehicle network. The control unit acquires software versions of the electronic control units, determines whether there is a consistency in a combination of the acquired software versions, and executes, upon determining that there is an inconsistency in the combination of the acquired software versions, a process for attaining the consistency in the combination of the software versions.
A method includes determining whether a code update for the service is available at a central repository of the computing environment and, in response to determining that the code update is available, retrieving the code update from the central repository. The method further includes performing a modification of the service in view of the code update.
A particular method includes storing a manifest file and a parameters file at a data store. The manifest file and the parameters file are associated with a software deployment package. An application associated with the software deployment package is published to a first remote computing device and to a second remote computing device. The method includes receiving first parameter values from the first remote computing device and receiving second parameter values from the second remote computing device. The first parameter values are stored in a first region of the data store that is specific to the first computing device. The second parameter values are stored in a second region of the data store that is specific to the second computing device.
Implementations set forth herein relate to an automated assistant that can provide a selectable action intent suggestion when a user is accessing a third party application that is controllable via the automated assistant. The action intent can be initialized by the user without explicitly invoking the automated assistant using, for example, an invocation phrase (e.g., “Assistant . . . ”). Rather, the user can initialize performance of the corresponding action by identifying one or more action parameters. In some implementations, the selectable suggestion can indicate that a microphone is active for the user to provide a spoken utterance that identifies a parameter(s). When the action intent is initialized in response to the spoken utterance from the user, the automated assistant can control the third party application according to the action intent and any identified parameter(s).
Example techniques described herein relate to a software application that is configured to operate as an add-on software component to audio-playback software on a playback device of a media playback system. An example implementation may involve adding the multiple audio tracks to the playback queue, and before playing back a first audio track, enabling a first add-on component to audio-playback software. The first add-on component corresponds to a first remote source and enabling this component causes a first modification to an equalization of the playback device. The example implementation may also involve before playing back a second audio track, enabling a second add-on component to the audio-playback software. The second add-on component corresponds to the second remote source and enabling this component causes a second modification to the equalization. Enabling the second add-on component disables the first add-on component if enabled.
A non-transitory computer readable information recording medium stores a program therein. The program when executed by one or more processors causes an operation terminal to perform determining, based on information that the operation terminal obtains from the outside in response to an operation performed on the operation terminal, an electronic apparatus from among a plurality of electronic apparatuses connected to the operation terminal, the electronic apparatus being one which is to output electronic data stored in an information storage apparatus connected to the operation terminal; obtaining, from the information storage apparatus, electronic data from among a plurality of sets of electronic data stored in the information storage apparatus in a format that the determined electronic apparatus is capable of outputting; and transmitting the obtained electronic data to the determined electronic apparatus.
A computer program product and corresponding computer-implemented method cause the performance of various operations to upgrade a network storage device having first and second storage controllers operating in an active-passive mode and disk media shared by the storage controllers. The first storage controller operating as a passive storage controller is caused to enter a new IQN for each virtual disk into a first iSCSI target configuration file and maintain a corresponding old IQN. The first storage controller is then caused to begin operating as the active storage controller so that the second storage controller, while operating as the passive storage controller, is caused to enter the new IQN for each virtual disk into a second iSCSI target configuration file and maintain the corresponding old IQN. Accordingly, the first and second iSCSI target configuration files map both the old and new IQNs to the virtual disks.
A method is performed by a first server on a chip (SoC) node that is one instance of a plurality of nodes within a cluster of nodes. An operation is performed for determine if a second one of the SoC nodes in the cluster has data stored thereon corresponding to a data identifier in response to receiving a data retrieval request including the data identifier. An operation is performed for determining if a remote memory access channel exists between the SoC node and the second one of the SoC nodes. An operation is performed for access the data from the second one of the SoC nodes using the remote memory access channel after determine that the second one of the SoC nodes has the data stored thereon and that the remote memory access channel exists between the SoC node and the second one of the SoC nodes.
A file reading method includes following operations: determining, by a processor, whether a file in a SIM card is stored in a non-volatile memory; performing, by the processor, a reading process to read the file from the SIM card if the file is not stored in the non-volatile memory; and storing, by the processor, the file into the non-volatile memory.
An example virtualized computing system includes a cluster of hosts having a virtualization layer executing thereon and configured to manage virtual machines (VMs); a local storage device in a first host of the cluster, the local storage device configured as direct-attach storage; and an orchestration control plane, integrated with the virtualization layer, the orchestration control plane including a master server managing state of the orchestration control plane, the state including objects representing the hosts and the VMs, the orchestration control plane deploying a persistent application executing on a first VM of the VMs, the persistent application storing persistent data on the direct-attach storage.
Systems and methods for managing computer block storage for a computer application include calculating an optimal required block storage capacity based on the storage needs of the application; provisioning block storage of the optimal capacity; receiving at least one block storage usage metric of the application; using a machine learning based model, trained on historic data of at least one application, to identify at least one future time at which a block storage capacity adjustment is required; and adjusting the block storage capacity within a time of the future time at which the block storage capacity adjustment is required.
A method for maintaining fault tolerance in a storage cluster is provided. Embodiments include receiving, by a management component associated with a distributed data store on a cluster of host machines, a request to place a first host machine of the cluster of host machines in a maintenance mode, wherein the first host machine stores given data of the distributed data store. Embodiments include determining whether a second host machine that does not currently store any data of the distributed data store exists in the cluster of host machines. Embodiments include determining, based on whether the second host machine exists in the cluster of host machines, whether to transfer the given data of the distributed data store from the first host machine to the second host machine. Embodiments include initiating the maintenance mode on the first host machine.
Methods, systems, and devices for transferring memory system data to a host system are described. A system may be configured for transferring information between a memory system and a host system in response to transitions between various operating modes, such as operating modes associated with different operating power levels. For example, before entering a reduced power mode, the memory system may identify information stored in a volatile memory array and transmit the identified information to the host system. Such information transmitted to the host system may be returned to the memory system to support memory system operation after exiting the reduced power mode. In some examples, such information exchanged between the memory system and the host system may be associated with a processing capability of the memory system, and the described operations may be referred to as suspending memory system processing information to a host system.
Bandwidth consumption and/or an I/O transmission rate on an I/O path between a port of a storage system and a physical host port may be managed, including determining when multiple virtual host ports correspond to (i.e., are mapped to) a same physical host port. This virtual host port mapping information may be used to more accurately determine bandwidth consumption and I/O transmission rates on I/O connections along an I/O path including the physical host port, and to adjust the bandwidth consumption and/or I/O transmission rate on one more of these I/O connections according to bandwidth thresholds and I/O count thresholds defined for the I/O path (e.g., for the Physical host port of the I/O path).
A method includes obtaining an array of sorted identifiers to be stored in a designated portion of a memory of a given computing system, determining a segment size for splitting elements of the array into a plurality of segments, splitting the array into the plurality of segments based at least in part on the determined segment size, and compressing the plurality of segments to create a plurality of compressed segments. The method also includes generating a balanced binary search tree comprising a plurality of nodes each identifying a range of elements of the array corresponding to a given one of the segments and comprising a pointer to a given compressed segment corresponding to the given segment. The method further includes maintaining the balanced binary search tree and the compressed segments in the designated portion of the memory, and processing queries to the array utilizing the balanced binary search tree.
A foldable display device includes: a foldable display panel including a folding line, a first display area, and a second display area which displays a virtual keyboard including virtual keys in a keyboard mode; a touch panel including touch electrodes for receiving a touch input; a data driver which outputs a data voltage to the foldable display panel; a driving controller which controls the data driver; and a touch data generator which generates touch data based on the touch input, determines at least two input key values of the input key values as a typographical error when the at least two input key values are simultaneously input, and outputs the touch data including the at least two input key values determined as the typographical error to the driving controller. The driving controller activates a typographical error notification function and a typographical error correction function based on the touch data.
A computing device enhances digital content on a display based on a distance to an individual from the computing device. The computing device detects an individual in the environment around the computing device and determines a distance from the computing device to the individual. The computing device enhances the information included in the digital content when the distance is within a first threshold distance from the computing device. Similarly, the computing device removes information included in the digital content when the distance is outside of a second threshold distance from the computing device.
A terminal device and a program that can reduce the operation load at a construction site, are provided. The terminal device is configured to capture an image of a construction status of a device installed at a plurality of locations, the terminal device including an imaging unit configured to capture the image of an imaging target; an imaging instruction acquiring unit configured to acquire an imaging instruction given by a user to the imaging unit; a display unit configured to display candidates of each of a plurality of kinds of construction target information to be associated with the image that the user is to capture; and a selecting unit configured to select, according to the user's instruction, a candidate from among the candidates of each of the plurality of kinds of the construction target information displayed on the display unit, wherein when the candidate is selected at the selecting unit, a candidate linked to the selected candidate is displayed on the display unit.
Embodiments of the present disclosure relate to a vehicle user interface. The vehicle user interface may receive user input from an input system. It may present user selectable options or prompt user action via an output system. The vehicle user interface may transmit, via a communication interface, to a computing system a series of user inputs received from at least the first input system, wherein the computing system is configured to extract at least one feature from the series of user inputs and generate a prediction model based on the at least one feature. At least one predicted option may be identified based on the prediction model. The vehicle user interface may instruct the first output system to present the at least one predicted option.
A computerized method for transforming an interactive graphical user interface according to machine learning includes selecting a persona, loading a data structure associated with the selected persona, and generating the interactive graphical user interface. The method includes, in response to a user selecting a first selectable element, inputting a first set of explanatory variables to a first trained machine learning model to generate a first metric, and transforming the user interface according to the selected persona and the first metric. The method includes, in response to the user selecting a second selectable element, inputting a second set of explanatory variables to a second trained machine learning model to generate a second metric, and transforming the user interface according to the selected persona and the second metric. In various implementations, first metric is a first probability of the persona being approved for a first prior authorization prescription.
Disclosed herein are system, method, and computer program product embodiments for storing files in a storage location that is associated with an image object that is displayed in a real-time view on a mobile device. Examples of an image object include physical objects and augmented objects. Display of the real-time view includes the image object as well as interfaces for interacting with the image object including creating a storage location associated with the image object. Moreover, security features may be based on using information associated with the image object to securely store the file, either locally on the mobile device or over a network (e.g., at a cloud-based location) using the mobile device.
A wearable display system can automatically recognize a physical remote or a device that the remote serves using computer vision techniques. The wearable system can generate a virtual remote with a virtual control panel viewable and interactable by user of the wearable system. The virtual remote can emulate the functionality of the physical remote. The user can select a virtual remote for interaction, for example, by looking or pointing at the parent device or its remote control, or by selecting from a menu of known devices. The virtual remote may include a virtual button, which is associated with a volume in the physical space. The wearable system can detect that a virtual button is actuated by determining whether a portion of the user's body (e.g., the user's finger) has penetrated the volume associated with the virtual button.
A method, computer system, and computer program product for implementing three-dimensional text input in an augmented reality system are provided. The embodiment may include capturing a first user hand position along a first axis of a three-dimensional virtual space. The embodiment may also include identifying a first character along the first axis corresponding to the first user hand position. The embodiment may further include capturing a second user hand position along a second axis of the three-dimensional virtual space. The embodiment may also include identifying a second character along the second axis corresponding to the second user hand position. The embodiment may further include identifying one or more proposed words beginning, consecutively, with the identified first character and the identified second character using a dictionary database. The embodiment may also include displaying the one or more identified proposed words on a third axis of the three-dimensional virtual space.
A method of enhancing user interaction with content displayed on a display of a touch screen device is provided. The method includes displaying at least one enhanced cursor within a viewable area of the display, the at least one enhanced cursor having a predefined action associated therewith, and receiving a selection of the at least one enhanced cursor. The method also includes detecting movement of the selected at least one enhance cursor onto displayed content, and executing the predefined action on the content. The method may further include detecting a subject matter of content being displayed on a display of a device coupled to the processor. Furthermore, a non-transitory computer-readable medium storing instructions for execution by a processor that cause the processor to perform the provided method may also be provided.
The present embodiment relates to a touch sensing circuit configured to control a driving signal transferred to a power circuit and, more specifically, to a touch sensing circuit and a method for operating a touch sensing circuit, the touch sensing circuit including: a readout circuit configured to output a driving signal for driving a touch electrode included in a panel; a power circuit configured to supply driving power to the readout circuit; and a touch control circuit communicating with the power circuit to control the amplitude of a driving signal.
A display apparatus includes a substrate including a display region and a non-display region, a display element layer, a pad group, a touch electrode layer, and a touch insulating layer. The display element layer includes display elements provided in the display region in a plan view. The pad group may include output pads provided on substrate and provided in the non-display region in the plan view. The touch electrode layer is provided on the display element layer. The touch insulating layer is provided on the display element layer and contacts the touch electrode layer. An intaglio pattern is provided in the touch insulating layer overlapped with the non-display region, and the intaglio pattern is not overlapped with the pad group.
A pressure detection apparatus includes a substrate, a light conducting layer, a light absorbing layer, and a photosensitive layer that are arranged in order, and further includes a light source. The light source is capable of emitting light of a first frequency, and an emergent surface of the light source faces toward the light conducting layer. The light conducting layer disperses the light of the first frequency. The light absorbing layer includes a container forming a closed space and an absorption liquid filling the container, where the absorption liquid absorbs at least a part of the light of the first frequency, and at least one side surface of the container is an elastic surface. A photosensitive surface of the photosensitive layer faces toward the light absorbing layer, and the photosensitive layer is used to detect the light of the first frequency that passes through the light absorbing layer.
A timing controller according to one aspect of the present disclosure that is capable of operating in a low-power mode for a touch sensor driving period includes a receiver which receives a timing synchronization signal and video image data from an external source, a data processor which generates a gate control signal and a data control signal on the basis of the timing synchronization signal and arranges the video image data as pixel data for a display panel, and a transmitter which operates in a normal mode to output the pixel data, the gate control signal, and the data control signal for a display driving period and operates in a low-power mode for at least some time of a touch sensor driving period.
A display device includes: a display panel including: a display layer; and a sensor layer on the display layer, and including first, second, and third areas; a first driver electrically connected with the sensor layer through a first pad area; and a second driver electrically connected with the sensor layer through a second pad area. The sensor layer includes: a plurality of electrodes at the first, second, and third areas; a plurality of first intersecting electrodes at the first area, and electrically connected with the first driver; a plurality of second intersecting electrodes at the second area, and electrically connected with the first driver and the second driver; and a plurality of third intersecting electrodes at the third area, and electrically connected with the second driver. Each of the first pad area and the second pad area is spaced from the second area in a first direction.
The disclosure provides an electronic device, including a display region, a non-display region and a control unit. The display region includes a screen. The non-display region includes a touch sensor, configured to continuously detect a swipe gesture to generate a first detection signal and a second detection signal. A sliding trajectory corresponding to the first detection signal has a first distance, and a sliding trajectory corresponding to the second detection signal has a second distance. The control unit has a first preset value and a second preset value, and is configured to: receive a setting instruction to make the touch sensor correspond to a touch signal on the screen; and generate the touch signal when determining that the first distance is greater than the first preset value, and a sum of the first distance and the second distance is greater than the second preset value.
A display panel and a display apparatus are provided in the present disclosure. The display panel includes a substrate, a display device disposed on the substrate, and a touch control device, disposed on a side of the display device away from the substrate. The touch control device includes a bridge layer, an insulation layer, and a touch control electrode layer; the bridge layer includes a plurality of bridge electrodes; and the touch control electrode layer includes touch control electrodes. A touch control electrode includes a touch control electrode portion, where along a direction perpendicular to a plane of the display panel, the touch control electrode portion at least partially overlaps a bridge electrode. The touch control electrode portion includes a plurality of touch control metal portions formed in a metal grid shape and electrically connected with each other; and the bridge electrode includes a plurality of bridge metal portions.
A display device includes: a first substrate including a display area and a non-display area; a second substrate facing the first substrate; a sealing member disposed in the non-display area and coupling the first substrate to the second substrate; a sensing contact area disposed at an inner side of the sealing member; a sensing signal line disposed in the sensing contact area; a sensing contact pattern disposed in the sensing contact area and electrically connected to the sensing signal line; a control signal line disposed between the first substrate and the sensing signal line; and a shielding pattern disposed between the control signal line and the sensing signal line, the shielding pattern overlapping the control signal line or the sensing signal line.
An active pen is provided that transmits, through coupling capacitance, a signal to a sensor electrode connected to a sensor controller. The active pen includes a pen tip electrode provided on a leading end in a pen axis direction of the active pen; a peripheral electrode provided behind in the pen axis direction as viewed from the pen tip electrode; and a signal processor that transmits a downlink signal from the pen tip electrode and that transmits a reverse-phase signal of the downlink signal from the peripheral electrode at the same time.
A touchpad assembly includes a baseplate, a support, and a balance bar. The baseplate includes a first plate body and a second plate body. The first plate body is higher than the second plate body in a thickness direction of the touchpad assembly, and the first plate body is configured to accommodate a battery of the electronic device. The support is disposed on a side of the baseplate, the balance bar is supported between the support and the baseplate, and is capable of rotating around a set fulcrum of the baseplate. The balance bar includes a main body portion and supporting portions. At least part of each of the supporting portions is located on the first plate body. An end of each of the supporting portions that extends away from the main body portion does not extend past a bottom surface of the first plate body in the thickness direction.
Method for determining a correct reproduction of a movement of a target based on a plurality of orientations thereof at different time instants at least including first and second time instants, the second time instant being posterior to the first time instant, the movement being defined by at least a first predetermined constraint, the first predetermined constraint being defined for first and second orientations of the plurality of orientations and defined by a start angle, an end angle and a first plane definition, comprising: providing a first plane and a second plane, each defined by the first plane definition, corresponding to the first and second time instants, respectively; providing a first pair of vectors by projecting the first orientation and the second orientation, corresponding to the first time instant, onto the first plane; providing a second pair of vectors by projecting the first orientation and the second orientation, corresponding to the second time instant, onto the second plane; computing first and second angles between the pair of vectors of the first and second pairs of vectors, respectively; and determining the correct reproduction of the movement if: the first angle is equal to or less than the start angle, and the second angle is equal to or greater than the end angle.
The disclosed system may include (1) a processor that generates an artificial environment that includes a virtual object, (2) a display that presents the artificial environment, (3) an input subsystem that detects tracks positioning of a body, and (4) a plurality of haptic actuators that are arranged to apply haptic feedback to a first plurality of locations on the body, where the processor (a) determines, based on the positioning of the body, a virtual contact of one of a second plurality of locations on the body with the virtual object, where the second plurality of locations is different from the first plurality of locations, and (b) activates, in response to the virtual contact, at least one of the plurality of haptic actuators based on a mapping of the second plurality of locations to the plurality of haptic actuators. Various other systems and methods are also disclosed.
An interaction method and system based on virtual reality equipment are disclosed. The method comprises: rendering a user avatar of each virtual reality equipment in the virtual reality scene of each virtual reality equipment according to user data of multiple virtual reality equipments; acquiring in real time position-posture tracking data of multiple users collected by multiple virtual reality equipments, wherein the position-posture tracking data carries user IDs; merging the position-posture tracking data of multiple users based on the user IDs carried by the position-posture tracking data, to obtain position-posture merging data of each user, wherein the position-posture merging data carries user ID; and updating position-posture status of user avatars having a same user ID in the virtual reality scene of each virtual reality equipment by using the position-posture merging data and its carried user IDs, to realize interaction among different user avatars in the virtual reality scene.
Embodiments of systems and methods for platform framework arbitration are described. In some embodiments, an Information Handling System (IHS) may include a processor and a memory coupled to the processor, the memory having program instructions stored thereon that, upon execution, cause the IHS to: provide, from a platform framework to an arbitration object via an Application Programming Interface (API), a plurality of runtime objects; receive, by the platform framework from the arbitration object via the API, an indication of an arbitration result with respect to the plurality of objects; and convey, from the platform framework to a participant via the API, the indication of the arbitration result.
An IHS (Information Handling System) may transition to a low-power state when the IHS is not in use. Upon detecting a wake event, such as a button being pressed, the IHS exits the low-powers state and resumes a full-power operating state. When a wake event is inadvertently triggered, the IHS may reverted to full-power operations without the user's knowledge. In order to detect false wake events, embodiments determine contextual information about the current status of the IHS, such as power status, operational status and user status, at the time of the wake event detection. If a valid wake event is detected, the operating system is notified of the wake event. If the wake event is determined to be inadvertent based on the context of the IHS, such as the IHS being in transport and/or the user not being present in proximity to the IHS, the wake event may be disregarded.
A system contains a machine learning application specific integrated circuit (ASIC) and a power supply unit. The power supply unit and the ASIC are configured to be in data communication through dedicated pins on the ASIC and the power supply unit. The power supply unit detects a present power consumption of the ASIC. Upon determining that a threshold condition has been met, the power supply unit, responsive to the condition sends a digital signal to the ASIC. The ASIC contains a synchronizer which synchronizes the digital signal to be consistent with the ASICs internal clock frequency. A chip manager the synchronized signal and other signals to generate a throttling mask. The throttling mask is sent to a sequencer of the ASIC, which then limits the instruction flow into the processing units of the ASIC based on the mask. This in turn limits the power being consumed by the ASIC.
A universal serial bus (USB) dock includes USB ports, each configured to connect to a respective USB element. The USB dock includes a circuit communicatively coupled to the USB ports and configured to determine a first temperature measurement in the USB dock, determine a power demand for each USB element connected to the USB ports, determine an allocation of power for the USB elements, and, based on the first allocation of power, provide less than the power demand for one or more of the USB elements based upon a total power demand by the USB elements and the first temperature measurement.
A foldable electronic apparatus with an adjusting bracket includes a first body having a rail and steps disposed along the rail, a second body pivotally connected to the first body to pivot and be unfolded and folded relative thereto, a first supporting member having first and second ends opposite to each other, and a second supporting member having third end and fourth ends opposite to each other. The first end is pivotally connected to the first body. The second end is pivotally connected to the second supporting member and located between the third and fourth ends. The third end is movably coupled to the rail. The first and second supporting members and the second body form a linkage mechanism, so the first and second supporting members pivot relative to the first body. The steps limit the third end to generate a unique moving path on the rail.
A portable electronic device having a rollable display structure is proposed. When the rollable display panel is unrolled from the display drum inside the housing and drawn out of the housing, a self-standing guide unit guides the rollable display panel to be curved in an arc shape so that the rollable display panel stands upright on its own, whereby the rollable display panel may be maintained in an unrolled state without an additional structure. In this way, the size and weight of a product may be reduced, so that portability of the portable electronic device may be improved.
An adhesive member is between an electronic component and an electronic panel that are connected to each other through the adhesive member. The adhesive member has a second surface and a first surface. The adhesive member includes a first recess pattern recessed from the first surface and a second recess pattern recessed from the first surface. The second recess pattern is spaced apart in a first direction from the first recess pattern. A sum of a planar area of the first recess pattern and a planar area of the second recess pattern ranges from about 20 percent (%) to about 70% of a planar area of the first surface.
A sheet for a display panel according to the present invention comprises: a base substrate which includes a protective member on one surface thereof, is visually transparent, and has a flat shape; a print layer which covers a part of one surface of the base substrate, has a predetermined thickness, and blocks light transmission therethrough; a filling layer which covers both the print layer and the base substrate, has a flat-shaped outer surface, and has visual transparency; and an adhesive member which is visually transparent, covers the outer surface of the filling layer, has an adhesive function, and is adhered to a transparent member forming the appearance of a display panel.
Disclosed is a data processing device including: at least one processor that executes a program stored in at least one memory; and a timer that repeatedly and continuously counts a setting time. The processor acquires data indicating a battery state, judges occurrence of an event, executes processing based on data acquired in the setting time when judging that the event has not occurred between start and end of counting for one setting time, and executes at least one of a first operation of performing the processing based on data from the counting start to a stop timing based on the event occurrence and a second operation of performing the processing based on data from a start timing based on an event occurrence timing to end of counting for one setting time when judging that the event has occurred between the start and the end of the counting.
Provided is a method for delaying signals. The method includes: determining a total quantity of delay phases by which a drive signal is to be delayed; determining, based on a clock period of each level of delay clock signals of a plurality of levels of delay clock signals, a quantity of clock periods of each level of delay clock signals that are required for delaying by the total quantity of delay phases, wherein the clock periods of the levels of delay clock signals decrease sequentially from a first level to a last level; and delaying the drive signal by the quantities of clock periods of the levels of delay clock signals sequentially in descending order, and outputting the drive signal after delay.
A voltage regulation circuit is provided. The voltage regulation circuit includes an error amplifier, an output transistor, a noise extraction circuit, and a stabilization circuit. The error amplifier provides a control signal in response to changes in a feedback voltage. The output transistor receives an input voltage signal, and adjusts an output voltage signal at an output terminal of the voltage regulation circuit in response to the control signal and the input voltage signal. The noise extraction circuit extracts a noise of the input voltage signal to provide a noise current signal. The stabilization circuit converts the noise current signal into a stable signal. In a high operating frequency range, the stabilization circuit provides the stable signal to a control terminal of the output transistor to cancel interference caused by the noise of the input voltage signal.
A voltage generation circuit includes an amplifier configured to detect a difference between a reference voltage and a feedback voltage according to a control signal and a bias current, and configured to generate a driving signal. The voltage generation circuit also includes a driver configured to generate an internal voltage by driving an external voltage according to the driving signal. The amount of the bias current may be forcibly adjusted by the control signal.
A yaw control system for a helicopter having an airframe that includes a tailboom includes one or more tail rotors rotatably coupled to the tailboom and a flight control computer implementing an airframe protection module. The airframe protection module includes an airframe protection monitoring module configured to monitor one or more flight parameters of the helicopter and an airframe protection command module configured to modify one or more operating parameters of the one or more tail rotors based on the one or more flight parameters of the helicopter, thereby protecting the airframe of the helicopter.
A path planning method of mobile robots based on image processing is provided and includes: S1, preprocessing a map image: calculating a safety distance between a mobile robot and a surrounding obstacle during a movement of the mobile robot based on external geometric features of the mobile robot, forming a circular range on the map image with a expansion point as a center and the safety distance as an expansion radius to set a safety range, and marking the safety range; performing skeleton feature extraction on the map image after the marking to obtain a reference path map; S2, obtaining an initial path; and S3, optimizing the initial path. The path planning method improves the flexibility of the algorithm and has high robustness and operational efficiency, and the optimal path obtained can ensure the moving safety of the mobile robot.
A user control device for a transporter. The user control device can communicate with the transporter via electrical interface(s) that can facilitate communication and data processing among the user interface device and controllers that can control the movement of the transporter. The user control device can perform automated actions based on the environment in which the transporter operates and the user's desired movement of the transporter. External applications can enable monitoring and control of the transporter.
A self-propelled device is disclosed to recognize objects, possess objects, and transport objects to a new location. A method is disclosed to use the device to transport objects in environments dangerous to humans. Other example embodiments are described and claimed.
A scalable solution to robot behavioral navigation following natural language instructions is presented. An example of the solution includes: receiving, by a pre-trained sequential prediction model, a navigation graph of the task environment, instructions in natural language and an initial location of the robot in the navigation graph, wherein the navigation graph comprises nodes indicating locations in the task environment, coordinates of the nodes, and edges indicating connectivity between the locations; and predicting sequentially, by the pre-trained sequential prediction model, a sequence of single-step behaviors executable by the robot to navigate the robot from the initial location to a destination.
Aspects of the disclosure relate to parking behaviors and maneuvering a vehicle in an autonomous driving mode accordingly. For instance, a pullover location for the vehicle to stop and wait for a passenger may be identified. The vehicle may be maneuvered in the autonomous driving mode in order to pull over by pulling forward into the pullover location. Whether to maneuver the vehicle in reverse in the pullover location before or after the passenger enters the vehicle may be determined based on context for the pull over with respect to the passenger. The vehicle may be maneuvered in the autonomous driving mode in reverse based on the determination of whether to maneuver the vehicle in reverse in the pullover location before or after the passenger enters the vehicle.
Aspects of the present disclosure relate generally to limiting the use of an autonomous or semi-autonomous vehicle by particular occupants based on permission data. More specifically, permission data may include destinations, routes, and/or other information that is predefined or set by a third party. The vehicle may then access the permission data in order to transport the particular occupant to the predefined destination, for example, without deviation from the predefined route. The vehicle may drop the particular occupant off at the destination and may wait until the passenger is ready to move to another predefined destination. The permission data may be used to limit the ability of the particular occupant to change the route of the vehicle completely or by some maximum deviation value. For example, the vehicle may be able to deviate from the route up to a particular distance from or along the route.
Systems and processes are described for establishing and using a secure channel. A shared secret may be used for authentication of session initiation messages as well as for generation of a private/public key pair for the session. A number of ways of agreeing on the shared secret are described and include pre-sharing the keys, reliance on a key management system, or via a token mechanism that uses a third entity such as a hub to manage authentication, for example. In some instances, the third party may also perform endpoint selection (e.g., load balancing) by providing a particular endpoint along with the token.
A machining-process generation device includes: a process-instance storage section to store therein a process instance that is an instance of a machining process indicating machining details of each machining-operation unit; a process generation section to generate a machining process on a basis of the process instance and a generation condition for the machining process, and to generate background information indicating a background to generation of the machining process, the background information including information of the process instance used to generate the machining process; and a display section capable of displaying the background information on a display device.
Logic mechanisms operate to define the position of at least one mechanical output based on the position of at least one mechanical input. Some mechanisms are configured to determine, based on the input position(s), whether a path to transmit motion to an output exists or does not exist. Some mechanisms are configured to determine, based on the input position(s), whether or not motion of a driven element can be accommodated without moving an output. Some mechanisms are configured to determine, based on the input position(s), whether or not one or more elements are constrained to transmit motion to an output.
Provided is a method for the computer-assisted control of a technical system, in particular in a plant for generating energy, to achieve a predetermined technical behavior of the technical system, wherein an operating data set for controlling the system is provided. A system model for describing the mode of operation of the technical system is provided, wherein on the basis of the operating data set and on the basis of the system model, an optimization data set is determined by an optimization method. Based on the optimization data set, relevant parameters of the technical system that allow a more advantageous control of the technical system than other parameters of the technical system are selected using a selection method, wherein with the selected relevant parameters, a control method for the technical system is determined, wherein the technical system is controlled with the aid of the control method.
The current disclosure is directed towards system and method for controlling industrial process. In one example, a method comprising deploying a forecast model for controlling an industrial process with training configurations that can be used as a single point of truth for guiding training and retraining versions of the forecast model using a model training algorithm without human input. The retraining and redeployment of the forecast model may be triggered when the performance of the forecast model degrades.
A method for handling a simultaneous failure of all channels of a multi-channel engine controller configured to control operation of a gas turbine engine is provided. The method includes obtaining, by a first processor associated with a first channel of the engine controller, data indicative of the simultaneous failure of all channels of the engine controller. The method further includes providing, by the first processor, one or more control signals associated with resetting at least a second processor associated with a second channel of the multi-channel engine controller based, at least in part, on the data. Furthermore, the method includes controlling, by the first processor, operation of the gas turbine engine while at least the second processor is resetting.
The present description concerns a converter comprising: a circuit (C1) supplying a first pulse (P1) determined by an interval between an active edge of a first signal (S1) and an active edge of a second signal (S2); a circuit (INT) which, at each first pulse (P1), integrates the first pulse (P1), a second pulse (P2) starting after the first pulse (P1) in synchronism with a clock signal (clk), and a third pulse (P3) starting after the third pulse (P3) in synchronism with the clock signal (clk); a circuit (C3) sampling over one bit (OUT1) an output signal (RES1) of the integrator circuit (INT) at the beginning of each third pulse (P3); and two circuits (C2, C4) generating, for each first pulse (P1), respectively the corresponding second pulse and the third corresponding pulse based on the first bit (OUT1).
A developing cartridge includes: a developing roller rotatable about an axis extending in a first direction; a casing; a first cam and a first gear rotatable together relative to the casing about a first axis extending in the first direction; and a second cam and a second gear rotatable together relative to the casing about a second axis extending in the first direction. The second gear contacts the first gear. When the developing cartridge is attached to a drum cartridge including a photosensitive drum: at a first position of the first cam, the second cam is at a third position and the developing roller and the photosensitive drum contact each other; and at a second position of the first cam, the second cam is at a fourth position and contacts a part of the drum cartridge to move the developing cartridge to separate the developing roller from the photosensitive drum.
An image forming apparatus includes a casing having a front end and a rear end, a first tray, a first print engine, a second tray, a second print engine and a controller. The controller configured to perform: receiving first image data representing the first image and second image data representing the second image; executing a first process including a first conveying process and a first recording process; executing a second process including a second conveying process and a second recording process; determining whether an error has occurred in the second process; and in a case where the error has occurred in the second process, stopping the second process while continuing the first process.
A process tool for processing production substrates, the process tool including: a movable stage configured to perform long-stroke movements in an X-Y plane; an imaging device mounted to a fixed part of the tool and having an optical axis substantially parallel to the X-Y plane; and a mirror mounted on the movable stage and oriented at a predetermined angle of inclination to the X-Y plane so that by moving the movable stage to a predetermined position a part of a component to be inspected can be imaged by the imaging device.
Combined electron beam overlay and scatterometry overlay targets include first and second periodic structures with gratings. Gratings in the second periodic structure can be positioned under the gratings of the first periodic structure or can be positioned between the gratings of the first periodic structure. These overlay targets can be used in semiconductor manufacturing.
An extreme ultraviolet (EUV) light generating apparatus includes a vessel including a first end and a second end opposite to each other and providing an internal space extending from the first end to the second end, a concave mirror adjacent to the first end of the vessel, a droplet generator supplying a droplet to the internal space of the vessel, a laser light source irradiating a laser beam to cause the droplet to emit EUV light, and a gas jet receiving a flow control gas and spraying the received flow control gas into the internal space of the vessel. The gas jet includes a ring-shaped main body including nozzles spaced apart from one another in a circumferential direction. The nozzles spray the received flow control gas in a downward direction.
Ligand-capped inorganic particles, films composed of the ligand-capped inorganic particles, and methods of patterning the films are provided. Also provided are electronic, photonic, and optoelectronic devices that incorporate the films. The ligands that are bound to the inorganic particles are composed of a cation/anion pair. The anion of the pair is bound to the surface of the particle and at least one of the anion and the cation is photosensitive.
In a projection optical system for projecting an optical image from a first image plane on a reduction side onto a second image plane on a magnification side, the system includes an achromatic lens including a positive lens and a negative lens separately arranged in this order from the reduction side toward the magnification side, and the negative lens having a refractive index of 1.7 or higher and an Abbe's number of 55 or less satisfies the following expression:
3.5≤|R|/|f| (1),
where the radius of curvature of a light incident surface is R and the focal length of an entire projection optical system is f.
An accessory configured to be detachably mountable to an image pickup apparatus including a first mount portion including first bayonet claw portions, and first terminals, the accessory including a second mount portion including second bayonet claw portions configured to enable engagement with the first bayonet claw portions, and second terminals configured to enable contact with the first terminals, in which the second terminals are provided at positions that are different from positions of the second bayonet claw portions, and wherein, a half line that extends from a central axis of the second mount portion and passes through a second terminal that determines whether an optical apparatus is mounted on the image pickup apparatus or not, passes through a predetermined second bayonet claw portion.
A camera mount is provided for photographing vehicles in photo booths or circular domed structures where an automated process captures a series of vehicle images, and uploads the captured images to a web template for display and recordation. The mount has an adjustable base that supports a camera and provides a range of camera angles, positions, and tilts as needed. The base is attached to an enclosure box of the mount, and the enclosure box attaches to a frame that affixes to an exterior portion of a wall of the photo booth and keeps the camera plumb and square. The mount allows for quick camera replacement without having to aim the camera. A single backup unit may be installed into any camera position no matter what tilt or angle the camera is set at. The mount has an automated shutter flap that hides the camera when not in use.
The utility model discloses a foldable soft box umbrella tray, which comprises a first tray body provided with a first abutting end surface, a second tray body provided with a second abutting end surface, first cross arms and second cross arms which are movably connected with the first tray body and the second tray body respectively, and a connecting shaft which passes through the first cross arms and the second cross arms and is rotationally connected therewith. When the first tray body and the second tray body are unfolded, the first abutting end surface and the second abutting end surface are attached; and the first cross arms and the second cross arms are hidden. A soft box of the utility model can be folded into a flat shape, so that storage space is reduced, which is convenient for transportation and carrying.
The present invention provides a display panel and an electrical apparatus. The display panel includes: at least one displaying region, the displaying region including a plurality of pixel points; at least one light transmission region, the light transmission region disposed alternately with the displaying region, and the light transmission region including light transmission thin films laminated. The light transmission region further includes a light transmittance adjustment layer located between any adjacent two of the light transmission thin films.
In an electro-optical device, a first light shielding wall and a second light shielding wall pass through sides of a semiconductor layer of a transistor respectively, and reach a scan line on a lower layer side. In a second interlayer insulating layer, a first contact hole and a second contact hole that reach a first source drain region and a second source drain region of the semiconductor layer respectively are provided. Respective widths of the first source drain region and the second source drain region are equal to or less than respective widths of the first contact hole and the second contact hole. Accordingly, the first light shielding wall and the second light shielding wall extend to sides of the first contact hole and the second contact hole respectively.
A non-mechanical liquid crystal tunable filter (LCTF) assembly capable of switching between a multi-conjugate filter mode and a conformal filter mode is described. The non-mechanical LCTF architecture can include a plurality of LCTF components that each comprises a first optical filter comprising a first optical axis, a second optical filter comprising a second optical axis, wherein the second optical axis is rotated 90° relative to the first optical axis, and a first twisted nematic cell positioned between the first optical filter and the second optical filter, the first twisted nematic cell configured to polarize received light by 90° when a voltage is not applied and not polarize the received light when the voltage is applied. The non-mechanical LCTF assembly is configured to switch between a conformal filter mode and a multi-conjugate filter mode based on whether the voltage is applied to each of the plurality of LCTF components.
A display may have a pixel array such as a liquid crystal pixel array. The pixel array may be illuminated with backlight illumination from a direct-lit backlight unit. The backlight unit may include an array of light-emitting diodes (LEDs) on a printed circuit board. The display may have a notch to accommodate an input-output component. Reflective layers may be included in the notch. The backlight may include a color conversion layer with a property that varies as a function of position. The light-emitting diodes may be covered by a slab of encapsulant with recesses in an upper surface.
A light reflecting structure, a backlight module, and a display device are provided. The light reflecting structure is configured to reflect light emitted from plural light emitting units. The light reflecting structure includes a bottom portion and plural sidewall portions. The sidewall portions are erected on the bottom portion. The sidewall portions respectively and correspondingly surround the light-emitting units, and the light emitted from each of the light-emitting units can be directed to a light reflecting surface corresponding to each of the sidewall portions to be reflected outward. A distance P is defined between any two adjacent sidewall portions, and each of the sidewall portions has a height H1. The distance P and the height H1 satisfy a first inequality, and the first inequality is H1
A light-emitting module includes a light-guiding plate having an upper surface with a first hole and having a rectangular shape in a top view, and a light-emitting element opposite to the first hole and disposed opposite to the upper surface. The first hole includes a first portion and a second portion between the first portion and the upper surface. The first portion is provided with a first opening at a boundary between the first portion and the second portion and a first lateral surface inclined with respect to the upper surface. A shape of the first opening in the top view is defined by a first axis parallel to a short side of the rectangular shape of the light-guiding plate and a second axis parallel to a long side of the rectangular shape and shorter than the first axis in a plan view.
A time required to manufacture a self-luminous body for a display apparatus is shortened. A self-luminous body for a display apparatus includes a backplane and a plurality of stacks. The plurality of stacks are arranged on a backplane. Each stack includes a plurality of integrated self-luminous elements. The plurality of self-luminous elements in each stack include at least two self-luminous elements that are arranged at a first pitch and emit light of the same color. The plurality of stacks include a first stack and a second stack adjacent to each other. The self-luminous element of the first stack and the self-luminous element of the second stack that emits light of the same color as a color of light emitted by the self-luminous element of the first stack are arranged at a second pitch larger than the first pitch.
An apparatus may include a touch sensor where the touch sensor has a first set of electrodes and a second set of electrodes that are electrically isolated from the first set of electrodes, a shield layer positioned adjacent to the touch sensor where the shield layer has a first section and a second section where the first section of the shield layer has a different electrical characteristic than the second section of the shield layer, and a ground feature incorporated into the touch sensor.
A display module is provided that includes a curved back panel including a bottom board and a side frame disposed on the bottom board; a display assembly located in an accommodation space enclosed by the side frame and the bottom board; a cover board located on a side, away from the bottom board, of the display assembly and supported by the side frame; and a bonding layer including a first bonding portion and a second bonding portion, which are located between the cover board and the side frame. Both the first bonding portion and the second bonding portion are configured to bond the cover board to the side frame to enable the cover board to be curved. The second bonding portion has a smaller elasticity modulus than the first bonding portion. A method for manufacturing the display module, and a display apparatus are further provided.
Examples include a device including a fluid lens having a membrane, a substrate, and a fluid at least partially enclosed between the membrane and the substrate. The membrane may have a spatial variation in at least one membrane parameter along a particular direction, that may compensate for gravity sag in the membrane of the fluid lens when the device is worn by a user. Examples also include related methods and systems.
Provided is a polarization spectral filter, including: a first reflector and a second reflector disposed to face each other in a first direction; and a grating layer disposed between the first reflector and the second reflector. The grating layer includes a plurality of first grating elements and a plurality of second grating elements, the plurality of first grating elements and the plurality of second grating elements being alternately arranged in a second direction perpendicular to the first direction. The plurality of first grating elements include a first dielectric material having a first refractive index. The plurality of second grating elements include a second dielectric material having a second refractive index different from the first refractive index.
An apparatus includes a display element, and an optical system configured to guide to an exit pupil the display light and external light. The optical system includes a first polarization separating element, a first optical unit, and a second optical unit that includes a half-transmissive reflective surface, a phase plate, and a second polarization separating element. The external light transmits through the first polarization separating element and the second optical unit toward the exit pupil. The display light transmits through the first polarization separating element, is reflected by the first optical unit and the first polarization separating element, is twice reflected by the second optical unit, and travels to the exit pupil. The display light forms an intermediate image in an optical path from the first optical unit to the second optical unit.
A head-mounted display may include a display system and an optical system that are supported by a housing. The optical system may be a catadioptric optical system having one or more lens elements. In one example, the optical system includes a single lens element and a retarder that is coated on a curved surface of the lens element. The retarder may be coated on an aspheric concave surface of the lens element. In another example the retarder may be coated on an aspheric convex surface of the lens element. One or more components of the optical system may be formed using a direct printing technique. This may allow for one or more adhesive layers and one or more hard coatings to be omitted from the optical system. A lens element may be directly printed on the display system to improve alignment between the optical system and the display system.
A processor-implemented method with crosstalk correction includes: determining a region in which a crosstalk is to occur based on a three-dimensional (3D) position relationship between a position of eyes of a user and a position of a virtual image of a virtual content object; generating a concealer image for correcting the region in which the crosstalk is to occur based on the determined region and the virtual content object; and correcting the crosstalk by combining the virtual content object and the generated concealer image.
Disclosed are optical trains for imaging systems. More particularly described are imaging systems configured to limit optical aberrations. Also disclosed are methods of limiting optical aberrations in imaging systems.
The present disclosure provides a rapid three-dimensional imaging system based on a multi-angle 4Pi microscope. The system includes: an illumination module, configured to obtain a parallel light of which a size covering a projection surface of a spatial light modulator; a wavefront modulation module, configured to place the LCOS device on a Fourier plane of an illumination end; a two-dimensional scanning module, configured to control a light beam to realize a two-dimensional scanning on an object plane; an illumination interference module, configured to generate point spread function PSFs of a 4Pi through an illumination interference to irradiate a fluorescent sample; an imaging module, configured to acquire interference images of two fluorescent signals; and a controller, configured to control the wavefront modulation module to adjust a polarization direction of the light to generate PSFs of the 4Pi with different inclination angles.
Provided are an imaging unit 104 that uses a light emitted from a second beam splitter 202 of a microscope 2 that can use an exciting light and an observation light, which is a light including a wavelength other than that of the exciting light, as a light source by switching there between and is provided with the second beam splitter 202 to image images of the same observation region of the microscope 2 in situations where the exciting light and the observation light are used as the light source and an output unit 106 that overlaps, synthesizes, and outputs the images imaged by the imaging unit 104 respectively using the exciting light and the observation light as the light source.
The present disclosure discloses an optical imaging system including, sequentially from an object side to an image side along an optical axis, a first lens having refractive power with a convex object-side surface; a second lens having positive refractive power; a third lens having refractive power; a fourth lens having refractive power; a fifth lens having refractive power; a sixth lens having positive refractive power with a convex image-side surface; and a seventh lens having negative refractive power. An effective focal length f of the optical imaging system and a maximum field-of-view FOV of the optical imaging system satisfy f*tan(FOV/2)>4.0 mm. The effective focal length f of the optical imaging system and a radius of curvature R9 of an object-side surface of the fifth lens satisfy 0
The present disclosure discloses an optical imaging system including, sequentially from an object side to an image side along an optical axis, a first lens having a negative refractive power, and an image-side surface thereof being concave; a second lens having a refractive power; a third lens having a positive refractive power, and an object-side surface thereof being convex and an image-side surface thereof being convex; a fourth lens having a negative refractive power; a fifth lens having a refractive power, and an image-side surface thereof being convex; and a sixth lens having a refractive power, wherein half of a maximum field-of-view Semi-FOV of the optical imaging system satisfies Semi-FOV>60°; and a maximum effective radius DT12 of the image-side surface of the first lens and a maximum effective radius DT62 of an image-side surface of the sixth lens satisfy 0.5
An imaging optical lens assembly includes seven lens elements which are, in order from an object side to an image side along an optical path: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. The third lens element with positive refractive power has an image-side surface being convex in a paraxial region thereof. The fourth lens element has negative refractive power. The fifth lens element has an object-side surface being concave in a paraxial region thereof. The sixth lens element with negative refractive power has an object-side surface being convex in a paraxial region thereof and an image-side surface being concave in a paraxial region thereof, and the image-side surface of the sixth lens element has at least one critical point in an off-axis region thereof.
Optical arrangements for small size wide angle auto focus imaging lens for high resolution sensors are disclosed herein. An example optical assembly includes a first lens holder, a second lens holder, a first lens group, a biasing element, and a variable focus optical element. The first lens holder includes a collar having an internal flange forming a spring seat and the first lens group is disposed within the first lens holder. The second lens holder includes a collar defining a chamber and is coupled to the collar of the first lens holder. The variable focus optical element is disposed within the chamber of the second lens holder and the biasing element is disposed within the chamber of the second lens holder between the spring seat and the variable focus optical element and configured to apply a threshold force to the variable focus optical element.
A system comprises a first mechanism configured to hold a first block including a plurality of lenses located on or near a first surface of the first block. The plurality of lenses are configured to receive light to generate a plurality of light spots at or near a second surface of the first block opposite the first surface. The system includes a second mechanism configured to hold a second block including a plurality of waveguides, and to move the second block to bring the plurality of waveguides in alignment with the plurality of lenses using the plurality of light spots as alignment marks.
A high-density networking system includes first networking device(s) coupled to a second networking device. The second networking device has a port row including first ports and a first subset of third ports, and second ports and a second subset of third ports that are each moveable relative to the first ports and the first subset of third ports, with the third ports coupled to the first networking device(s). The second networking device includes a switch device coupling the third ports to its processing system. The switch device in second networking device routes data from the processing system through a network via the first subset of third ports/first networking device(s), determines that data received from the processing system cannot reach the network via the first subset of third ports and, in response, routes data received from the processing system through the network via the second subset of third ports/first networking device(s).
Passive optical couplers having passive optical activity indicators and methods of operating the same are disclosed. An example passive optical coupler for passively coupling first and second optical fibers includes a housing including: a first port configured to receive an end of a first optical fiber, and a second port configured to receive an end of a second optical fiber; and a passive optical activity indicator positioned at least partially within the housing, wherein a first portion of the passive optical activity indicator is exposed through the housing, and wherein the passive optical activity indicator is configured to passively illuminate in response to (i) first light propagating in the first optical fiber when the end of the first optical fiber is received in the first port, and (ii) second light propagating in the second optical fiber when the end of the second optical fiber is received in the second port.
A polarization volume grating, an optical waveguide system and an electronic device are disclosed. Parameters of the polarization volume grating satisfy with those derived by performing a multivariable optimization algorithm on a merit function of ƒk(d1,ϕ1,d2,ϕ2, . . . , dm,ϕm,d)=[1−n1(θ,ψ)]2, wherein the parameters include d1,ϕ1,d2,ϕ2, . . . , dm,ϕm, where m=1,2,3, . . . , and d, m is the number of layers of the polarization volume grating, dm is a thickness of mth layer, ϕm is a twist angle in mth layer, and d is a period of the polarization volume grating, k represents a central wavelength on which the multivariable optimization algorithm is performed, θ represents a polar angle of an incident light, ψ represents an azimuth angle of the incident light, and n1(θ,ψ) represents a first-order diffraction efficiency of the polarization. volume grating.
A device includes three elements fabricated on a common substrate. The first element includes an active waveguide structure having at least three sub-layers supporting a first optical mode. The second element has a passive waveguide structure supporting a second optical mode, and the third element, butt-coupled to the first element, has an intermediate waveguide structure supporting intermediate optical modes. One sub-layer in the active waveguide structure includes an n-contact layer, another sub-layer includes a p-contact layer, and a third sub-layer includes an active region. A tapered waveguide structure in at least one of the second and third elements facilitates efficient adiabatic transformation between the second optical mode and an intermediate optical mode. No adiabatic transformation occurs between that intermediate optical mode and the first optical mode. Mutual alignments of the three elements are defined using lithographic alignment marks that facilitate precise alignment between layers formed fabrication of the elements.
According to one aspect of the invention, a method of manufacturing an electronic device includes the steps of: providing a display panel; providing a polarizer including a polarizer layer at an outermost layer thereof on the display panel; irradiating a laser beam onto a portion of the polarizer layer; and providing a substantially neutral solution having a temperature from about 5° C. to about 40° C. onto the portion of the polarizer layer irradiated with the laser beam.
A polarizer includes a buffer member and linear metal patterns. The buffer member includes protrusions. Each protrusion has downwardly-increasing width. The buffer member is formed of polymer. The linear metal patterns, spaced apart from each other, are extended in a first direction. Each linear metal pattern covers a respective protrusion.
A system for reducing haze in a display comprises a first substrate having a first surface and a second surface; a masking layer disposed on the first surface of the first substrate; an optically clear adhesive; at least one of a display element and an imager; a first linear polarizer disposed between the display element and the optically clear adhesive; and a second linear polarizer. The masking layer comprises at least one opening in optical communication with at least one of the display element and the imager. The second linear polarizer may have a transmission angle generally aligned to the transmission angle of the first linear polarizer.
Diffractive optical element includes two resin layers stacked on first substrate. One of the two resin layers is cured article of first resin containing thiol group and sulfide group, the cured article having diffraction grating shape. The other is cured article of second resin, the cured article having diffraction grating shape. When measurement is performed by laser Raman spectroscopy, α<β, where α is the ratio of the intensity of peak corresponding to the sulfide group to the intensity of peak corresponding to the thiol group in first region containing no interface between the cured articles of the first and second resins, and β is the ratio of the intensity of peak corresponding to the sulfide group to the intensity of peak corresponding to the thiol group in second region containing the interface.
Disclosed are systems for directing energy according to holographic projection. Configurations of waveguide arrays are disclosed for improved efficiency and resolution of propagated energy through tessellation of shaped energy waveguides.
Various embodiments of the present technology generally relate to reflection suppressors. More specifically, some embodiments use elastomeric materials doped with optical absorbers for temporary suppression of Fresnel reflections for multiple substrates spanning wide spectral and angular bandwidth. The refractive index of the elastomer can be tuned to match a substrate and thereby minimize reflection. Some embodiments can use the addition of different absorptive dopants to allow for either broadband or wavelength-selective reflection suppression. As performance is limited only by index mismatch, both spectral and angular performance significantly exceed that of anti-reflection coatings. After use, these light traps may be removed and reused without damaging the substrate. These films have uses in spectroscopic ellipsometry, holography, and lithography.
A method performed by at least one apparatus is inter alia disclosed, said method comprising: obtaining weather model data indicative of location-specific weather information for a first set of locations (26) on a first grid (28); obtaining an area of interest (30) associated to at least one user (32); obtaining and/or determining a second set of locations (34) based on a second grid (36) within said area of interest (30); obtaining measurement data on location-specific weather information of a measurement device associated to said at least one user located at a measurement location (38) within and/or proximate to said area of interest (30); and determining, based on at least said obtained weather model data and said obtained measurement data, location-specific weather information for said second set of locations (34) based on said second grid (36).
A reanalysis ensemble service includes a plurality of conversion utilities, each conversion utility configured to convert a specific one of a plurality of disparate climate reanalysis datasets from different sources to common format files that are temporally and spatially registered, a data analytics platform for storing and operating on the different sourced common format files, a service interface for mapping service requests to analytic operations performed on the different sourced common format files by the data analytics platform, and a services library that dynamically creates data objects from one or more of the different sourced common format files in response to the analytic operations, and delivers the data objects to the service interface.
In one embodiment, a method includes facilitating a real-time display of drilling-performance data for a current well. The method further includes receiving new channel data for the current well from a wellsite computer system. The method also retrieving input data including historical drilling-performance data for an offset well relative to the current well. In addition, the method includes computing calculated data for the current well based on the channel data and the input data. Moreover, the method includes updating the real-time display with the calculated data.
One aspect provides a method, including: obtaining sensor data from a ground penetrating radar (GPR) unit; analyzing, using a processor, the sensor data to detect a first object and a second object, the second object being associated with the first object based on location; identifying, with the processor, an underground pipe feature based on the analyzing; associating a position of the underground pipe feature with a location in a pipe network; selecting a subset of the pipe network including a pipe segment associated with the position of the underground pipe feature; and providing the subset of the pipe network as displayable data to a display device. Other aspects are described and claimed.
A method includes using an electromagnetic (EM) tracking system to track a tangible object, detecting a presence of interference with a magnetic field generated by the EM tracking system, and compensating for the interference. A system includes an EM tracking transmitter, an EM tracking receiver, and a processor based apparatus in communication with the EM tracking transmitter and the EM tracking receiver. The processor based apparatus is configured to execute steps including using the EM tracking transmitter and the EM tracking receiver to implement an EM tracking system. A storage medium storing one or more computer programs is also provided.
A system for controlling and/or monitoring and/or visualizing construction sites, including a detection device for detecting the position of a construction unit at the construction site, wherein the detection device includes a signal transmitter to be mounted on the construction unit for providing an identification signal identifying the construction unit, and a signal evaluation device for receiving and evaluating the identification signal in order to determine the position of the construction unit at the construction site. The signal evaluation device includes at least one loop antenna that is laid at the construction site for receiving the identification signal of the signal transmitter and for determining the position of the signal transmitter.
A method of correcting clock drift in at least one slave clock in a seismic node. The method comprises obtaining a number of clock drift measurements of the at least one slave clock in the at least one seismic node. A clock drift correction function as a function of time is calculated by curve fitting the number of clock drift measurements to a 2nd order polynomial. A time of reference of the recorded seismic sensor data is corrected by the 2nd order polynomial clock drift correction function.
An object detection device includes: a transmission unit configured to transmit a transmission wave; a reception unit configured to receive a reception wave, which is the transmission wave reflected by and returned from an object, until a predetermined measurement time elapses after the transmission wave is transmitted; a detection unit configured to detect the object based on distance information based on the reception wave received by the reception unit; and a reception control unit configured to set the measurement time after the detection of the object to be shorter than the measurement time after a non-detection of the object.
A method for using Synthetic Aperture Radar (SAR) to perform a maneuver in a land vehicle is provided. The method includes: receiving digitized radar return data from a radar transmission from a SAR onboard the vehicle; accumulating a plurality of frames of the digitized radar return data; applying a RADON transform to the accumulated plurality of frames of the digitized radar return data and odometry data from the vehicle to generate transformed frames of data for each three-dimensional point, wherein the RADON transform is configured to perform coherent integration for each three-dimensional point, project a radar trajectory onto each three-dimensional point, and project Doppler information onto each three-dimensional point; generating a two-dimensional map of an area covered by the radar transmission from the SAR based on the transformed frames of data for each three-dimensional point; and performing a maneuver with the land vehicle by applying the generated two-dimensional map.
A radar method is described. According to one exemplary embodiment, the method includes generating a first RF oscillator signal in a first chip and supplying the first RF oscillator signal to a transmission (TX) channel of the first chip and transmitting the first RF oscillator signal from the TX channel of the first chip to the second chip via a transmission line.
A method (e.g., a method for measuring a separation distance to a target object) includes transmitting an electromagnetic first transmitted signal from a transmitting antenna toward a target object that is a separated from the transmitting antenna by a separation distance. The first transmitted signal includes a first transmit pattern representative of a first sequence of digital bits. The method also includes receiving a first echo of the first transmitted signal that is reflected off the target object, converting the first echo into a first digitized echo signal, and comparing a first receive pattern representative of a second sequence of digital bits to the first digitized echo signal to determine a time of flight of the first transmitted signal and the echo.
Described is an machine-readable storage media having instruction stored thereon, that when executed, cause one or more processors to perform an operation comprising: sequentially transmit, in a first mode, at least two first probe request messages in at least two beam steering directions, respectively, towards a device; and receive, from the device, at least two first probe response messages in response to transmitting the at least two first probe request messages.
An adaptive reconstruction of MR data, including acquired MR data of a core region having core segments and simulated MR data of a peripheral region. The method includes ascertaining a peripheral signal based on the MR data of the peripheral region, determining a scaling factor for each core segment by taking into account the peripheral signal and a mean signal intensity of the MR data for the respective core segment, scaling the MR data of the core region by taking into account the MR data of each core segment and that of the scaling factor corresponding to the respective core segment, generating filtered MR data by combining the scaled MR data of the core region with the MR data of the peripheral region, and reconstructing image data from the filtered MR data.
A flexible radiofrequency receiving coil array. The flexible radiofrequency receiving coil array is provided on a flexible panel and comprises several rows of coil units. Adjacent two rows of coil units in the several rows of coil units are alternately arranged. Preamplifiers are provided in the coil units. In the flexible radiofrequency receiving coil array, two preamplifiers in adjacent two coil units are provided on a same preamplifier mounting plate on the flexible panel, where multiple preamplifier mounting plates are provided on the flexible panel, and the preamplifier mounting plates of different columns and rows are linearly arranged. The flexible radiofrequency receiving coil array effectively reduces the distribution density of the preamplifiers, ensures the flexibility and maximum degree of distension of the coil array, and improves the fit of the coil array to the human body, thus increasing image signal-to-noise ration and image quality.
A magnetic distribution detection method includes the steps of providing a magnetic sensor and a sample, selecting a multiple of measuring points on the sample, sensing the measuring points by the magnetic sensor, obtaining a multiple of sense data and a series of the heights of the magnetic sensor from each measuring point, using a signal decomposition algorithm to convert these sense data into data groups, and selecting one of the data groups as the magnetic distribution data of the sample.
A probe fitting structure includes a connector to be inspected and a probe capable of being fitted to the connector. The connector includes a plurality of connection electrodes. The probe includes a flange having a through hole and used for attaching the probe to a device, a coaxial cable extending through the through hole and including a leading end portion to which a probe pin is attached, a plunger including a leading end through which the probe pin is exposed, and a spring housing the coaxial cable between the flange and the plunger and including a first end portion fixed to the flange and a second end portion fixed to the plunger. The plunger includes a plunger-side fitting portion in a leading end portion of the plunger. The connector includes a connector-side fitting portion (opening portion) capable of being fitted to the plunger-side fitting portion.
A fault identification apparatus includes a detector and a plug interface connected with the detector, where the plug interface includes a first measuring terminal and a second measuring terminal; when fault identification is performed for a PSU in a communication apparatus under test, the first measuring terminal is connected with a first end of the PSU, and the second measuring terminal is connected with a second end of the PSU; and the detector obtains a voltage value between the first measuring terminal and the second measuring terminal to determines whether a failure occurs to the PSU based on the voltage value.
A telematics device having a voltage drop detector and a switchable voltage monitor is provided. The voltage drop detector detects a drop in the battery voltage characteristic of cranking and notifies a controller. In response, the controller switches on the switchable voltage monitor for obtaining the battery voltage. The telematics device may be used in vehicles or other equipment powered by engines.
Systems, devices, and methods including: a relay, the relay including: at least one contact; a reflector attached to at least one contact; a sensor, the sensor including: an emitter configured to emit a pulse; a detector configured to receive a portion of the emitted pulse; where the reflector may be configured to reflect at least a portion of the emitted pulse to be received by the detector when the at least one contact may be in at least one of: an open position and a closed position.
A method for testing a lifetime of a surface state carrier of a semiconductor, including the following steps, 1) a narrow pulse light source is used to emit a light pulse, and coupled to an interior of a near-field optical probe, and the near-field optical probe produces a photon-generated carrier on a surface of a semiconductor material under test through excitation. 2) The excited photon-generated carrier is concentrated on the surface of the semiconductor material, and recombination is conducted continuously with a surface state as a recombination center. 3) A change in a lattice constant is produced due to an electronic volume effect, a stress wave is produced, and a signal of the stress wave is detected in a high-frequency broadband ultrasonic testing mode. 4) Fitting calculation is conducted on the signal of the stress wave to obtain the lifetime of the surface state carrier τc.
A sensing arrangement for detection of electrical discharges in an electrical apparatus is described. The sensing arrangement includes an acoustic sensor and a signal enhancing structure with a funnel region. The acoustic sensor is positioned outside the funnel region on an apex side of the funnel region. An electrical switchgear is described. The electrical switchgear includes a sensing arrangement for detection of electrical discharges in an electrical apparatus. The sensing arrangement includes an acoustic sensor and a signal enhancing structure with a funnel region.
A method for fault location and isolation in a power distribution network, where the network includes a plurality of switching devices provided along a feeder, and at least one of the switching devices does not have voltage sensing capabilities. The method includes detecting an overcurrent event in the network from the fault and interrupting the overcurrent event by opening and then immediately locking out or subsequently reclosing and testing the fault. A count value is increased in each switching device that detected the overcurrent event. A message is sent from each of the switching devices that detected the overcurrent event and then detected the loss of voltage upstream to an upstream neighbor switching device. Current measurements in the messages, measured current by the devices and the counts values in the devices determine what devices are opened to isolate the fault.
A sectioned field effect transistor (“FET”) for implementing a rapidly changing sense range ratio dynamically in response to changing load and main supply conditions. The sectioned FET may have multiple main FET sections, and multiple sense FET sections. These sections can be dynamically connected and disconnected from the sectioned FET. The sections may also be connected by a common gate. There may also be common drain or source connections for the main FET sections, and also common drain or source connections for the sense FET sections. The sectioned FET allows for the sense range to be extended by a multiple of k+1, where k is the size ratio or factor of the additional sense FET sections. This allows the current sense range ratio to be extended to (m+n)/n*(k+1).
Cell deposition and staining apparatuses and methods are disclosed herein. In particular, the deposition and staining apparatuses disclosed herein provide low-volume, automated bench top systems for depositing and staining cellular samples on a cytological slide. An example deposition and staining apparatus includes a housing having an access door; a substrate processing holder located within the housing configured to hold one or more substrates and/or one or more substrate cartridges, wherein the substrate processing holder is accessible when the access door is in an open configuration; at least one opening located at least partially above at least a portion of the substrate processing holder; a spray nozzle configured to dispense a gaseous substance into the substrate processing area; a user interface configured receive an input from a user, and in response to receiving the input, cause execution of a pre-programmed protocol; and a waste and/or reagent holder element.
The present disclosure relates to assays and methods for the detection of renal inflammation by measuring the level of P2Y14 and/or UDP-glucose in a sample from a subject, such as a urine sample. The present disclosure also relates to methods for the treatment of renal inflammation by administering a P2Y14 inhibitor.
Two or more upconverting particles are attached to each unit of one or more units of a chemical component in a sample, to form, for each unit of the chemical component, a multi-particle complex including the unit of the chemical component and two or more corresponding upconverting particles. The sample is illuminated by input light having a first wavelength. Light is received at an imaging sensor, the received light including output light generated by at least a portion of the upconverting particles attached to the units of the chemical component, the output light having a second wavelength that is shorter than the first wavelength. One or more images of the sample are captured from the received light. Based on the captured one or more images, a presence or a level of the chemical component in the sample is determined.
A cancer detection method characterised in that a nematode is bred in the presence of bio-related material originating from a test subject, or a processed product of same, and cancer is detected using the chemotaxis due to the sense of smell of the nematode as an indicator.
The present invention relates to an immunoassay method for the detection of Chromogranin A (or fragment(s) thereof) comprising the steps of contacting a sample suspected of comprising Chromogranin A with a first antibody or an antigen-binding fragment or derivative thereof specific for Chromogranin A and a second antibody or an antigen-binding fragment or derivative thereof specific for Chromogranin A under conditions allowing for the formation of a ternary complex between Chromogranin A and the two antibodies or antigen-binding fragments or derivates thereof, and detecting the binding of the two antibodies or antigen-binding fragments or derivates thereof to Chromogranin A. Also provided are antibodies directed against amino acid residues 124 to 144 and 280 to 301 of Chromogranin A and their use in the immunoassay method.