一种基于ARIMA-SVR的水文时间序列异常值检测方法
Abstract:
本发明公开了一种基于ARIMA‑SVR的水文时间序列异常值检测方法,包括以下步骤:首先获取水文时间序列数据,对水文时间序列进行ARIMA拟合,ARIMA模型可以很好的拟合数据的线性部分,但当数据中存在非线性部分时,拟合效果较差;然后得到ARIMA部分的残差,用10折交叉验证的方法寻找出SVR最佳的gamma、cost和核函数的组合;最后将两部分拟合值相加得到最终的预测值,并求出置信度为p的置信区间,将预测值与置信区间比较,在置信区间之外的就判定为异常值。本发明为水利相关从业者提供了一种寻找水文时间序列中异常值的方法,水文时间序列中的异常值检测对于防汛抗旱等工作具有重要的指导意义。
Public/Granted literature
Patent Agency Ranking
0/0