基于主成分分析的多元水文时间序列匹配模型构建方法

    公开(公告)号:CN107944146A

    公开(公告)日:2018-04-20

    申请号:CN201711210985.0

    申请日:2017-11-28

    Applicant: 河海大学

    CPC classification number: G06F17/5009 G06F17/30539

    Abstract: 本发明公开了一种基于主成分分析的多元水文时间序列匹配模型构建方法,基于主成分分析(PCA)和动态时间弯曲(DTW)方法进行多元水文时间序列相似性匹配的组合模型构建。首先对原始数据进行同构处理,这里采用Z-score标准化方法。接着对处理后的数据进行分段聚合近似(PAA)处理,对经过PAA处理后的数据进行PCA处理,经过这两次处理,数据在时间维度和变量维度都实现了降维。最后使用加权的DTW方法进行相似性匹配,匹配出与给定时间序列最相似的时间序列。本发明提高了相似性匹配的准确率和时间效率,为水文预报、水文数据分析提供服务,对水利信息化和水利现代化的需求有较高的应用价值。

    一种基于ARIMA-SVR的水文时间序列异常值检测方法

    公开(公告)号:CN107908891A

    公开(公告)日:2018-04-13

    申请号:CN201711210505.0

    申请日:2017-11-28

    Applicant: 河海大学

    Abstract: 本发明公开了一种基于ARIMA-SVR的水文时间序列异常值检测方法,包括以下步骤:首先获取水文时间序列数据,对水文时间序列进行ARIMA拟合,ARIMA模型可以很好的拟合数据的线性部分,但当数据中存在非线性部分时,拟合效果较差;然后得到ARIMA部分的残差,用10折交叉验证的方法寻找出SVR最佳的gamma、cost和核函数的组合;最后将两部分拟合值相加得到最终的预测值,并求出置信度为p的置信区间,将预测值与置信区间比较,在置信区间之外的就判定为异常值。本发明为水利相关从业者提供了一种寻找水文时间序列中异常值的方法,水文时间序列中的异常值检测对于防汛抗旱等工作具有重要的指导意义。

    一种基于ARIMA-SVR的水文时间序列异常值检测方法

    公开(公告)号:CN107908891B

    公开(公告)日:2019-10-18

    申请号:CN201711210505.0

    申请日:2017-11-28

    Applicant: 河海大学

    Abstract: 本发明公开了一种基于ARIMA‑SVR的水文时间序列异常值检测方法,包括以下步骤:首先获取水文时间序列数据,对水文时间序列进行ARIMA拟合,ARIMA模型可以很好的拟合数据的线性部分,但当数据中存在非线性部分时,拟合效果较差;然后得到ARIMA部分的残差,用10折交叉验证的方法寻找出SVR最佳的gamma、cost和核函数的组合;最后将两部分拟合值相加得到最终的预测值,并求出置信度为p的置信区间,将预测值与置信区间比较,在置信区间之外的就判定为异常值。本发明为水利相关从业者提供了一种寻找水文时间序列中异常值的方法,水文时间序列中的异常值检测对于防汛抗旱等工作具有重要的指导意义。

Patent Agency Ranking