一种个性化商品推荐方法
摘要:
本发明涉及一种个性化商品推荐方法,包括:接收用户的商品搜索指令;若用户已被分类,计算用户偏好的多维平均标签信息,用户的推荐模型基于多维平均标签信息计算第一多维属性信息,计算第一多维属性信息与商品类别中每个商品的第二多维属性信息的距离,将距离较小的商品推给用户;否则,基于多个商品的第二多维属性信息,计算第一多维平均属性信息,基于第一多维平均属性信息及各类用户的推荐模型,确定适用于该用户的推荐模型。本发明提供的推荐方法,首先对用户聚类,且利用多维的商品标签信息和商品属性信息,使得推荐准确率高;另外,当用户为新用户时,通过注意力迁移学习,利用已有推荐模型形成新用户的推荐模型,以解决冷启动问题。
公开/授权文献
0/0