基于生成对抗学习的货车轴承故障识别方法
摘要:
本发明涉及轴承故障识别技术领域,涉及一种基于生成对抗学习的货车轴承故障识别方法,包括:1、建立轮对振动试验台,设计并制作不同故障类别的滚动轴承,进行测试,获取振动信号;2、数据处理;3、建立一维信号的卷积神经网络模型,将源域数据输入到模型中进行参数预训练;4、通过生成对抗网络模型进行训练;5、利用训练后的生成对抗网络模型合成大量目标域数据,利用合成的数据对卷积神经网络进行二次训练;6、使用所述卷积神经网络对未知数据进行测试。本发明能够利用生成对抗网络模型解决了训练数据量不足的问题,能够结合深度学习方法对各类故障类型的数据进行分类。
公开/授权文献
0/0