一种基于NCA-融合回归树模型的光伏功率预测方法
Abstract:
本发明公开一种基于NCA‑融合回归树模型的光伏功率预测方法,预测方法如下:从光伏电站获取光伏输出功率信息和气象信息,并对采集到的原始数据进行数据预处理;对NCA模型进行参数优化,通过优化后的NCA模型计算处理后的气象数据相对于发电功率的权重;将计算所得的权重大于阈值的特征提取出来,形成新的数据集,通过bag方式利用新的数据集训练集成树,并对集成的树模型进行参数寻优。本发明预测方法通过对原始数据进行预处理,解决不良数据对模型影响,消除了不同特征数量级的差距对目标函数的影响,从而能够更有效的挖掘高相关性特征,通过优化后的NCA模型对特征进行分析,计算每个特征的重要度,提取重要度高的特征作为训练集,降低模型复杂度。
Public/Granted literature
Patent Agency Ranking
0/0