一种基于机器学习的PC12细胞状态识别的方法
摘要:
本发明公开一种基于机器学习的细胞状态识别的方法,通过收集PC12细胞共聚焦图片数据集;使用ZEN和image J软件对细胞特征数据集进行形貌特征提取,得到细胞形貌的特征集;使用机器学习特征选择方法对细胞特征集进行筛选,得到筛选特征集;基于机器学习算法将筛选数据集输入到机器学习模型进行训练,并调整机器学习随机森林的参数使其达到精度要求,得到细胞状态分类的机器学习模型;对测试集细胞数据进行分类,输出细胞状态类别。本发明快速、有效的对PC12细胞进行状态判断,为原位快速识别PC12细胞状态提供了技术基础。
公开/授权文献
0/0