基于核主元分析与神经网络的GIS局部放电模式识别方法及系统
摘要:
本发明公开了一种基于核主元分析与神经网络的GIS局部放电模式识别方法,其包括步骤:(1)采用特高频传感器采集GIS设备内部的典型缺陷的局部放电信号;(2)对局部放电信号的幅值进行归一化处理后,绘制局部放电信号的三维PRPS图谱;(3)对三维PRPS图谱进行Gabor变换,得变换子图,提取变换子图的纹理特征向量和形状特征向量,以构成原始特征向量;(4)采用核主元分析法对原始特征向量进行降维处理,获得特征向量训练集;(5)构建多层BP神经网络,使用特征向量训练集训练多层BP神经网络;(6)采用训练好的多层BP神经网络对特高频传感器采集实际检测到的GIS局部放电信号进行识别,输出识别结果。此外,本发明还公开了一种GIS局部放电模式识别系统。
0/0