基于IL的闭源电力工控系统恶意行为识别方法及系统
摘要:
基于IL的闭源电力工控系统恶意行为识别方法,包括如下步骤:获取闭源电力工控系统底层多域数据并对数据进行预处理,形成样本集;对样本集进行类别标注,并设定比例将图像随机划分为训练集和测试集;构建恶意行为分类模型并对其进行训练,得到经过训练的恶意行为分类模型;基于训练后的恶意行为分类模型对待分类恶意行为进行分类;当闭源电力工控系统出现新数据流时,结合新数据流基于增量学习动态调整恶意行为分类模型;基于调整后的恶意行为分类模型对待分类恶意行为进行分类。本发明能够在闭源电力工控系统中有新的数据流出现时,对分类模型进行动态调整从而确保其使用时的准确性,并通过调整样本集数量减小了模型动态更新的开销。
0/0