基于目标运动模型自学习的低空组网融合结果优化方法
摘要:
本发明公开了一种基于目标运动模型自学习的低空组网融合结果优化方法,提出了一种优化融合计算输出航迹质量的方法,一方面将充分挖掘合作目标回传的GPS位置数据以及雷达上报的相对连续稳定的航迹信息中蕴含的低空飞行目标运动模型,然后利用该模型对融合计算输出融合航迹进行修正,提高输出融合航迹质量;另一方面构建基于长短时循环神经网络的低空飞行目标运动状态预测模型,并实现预测模型训练相关数据集的自动化搜集整理,模型结构自动化调整,模型自动化训练测试、模型数据的自动更新,实现基于LSTM的低空飞行目标运动状态预测模型的持续性优化,进而确保输出较高质量的目标修正融合航迹。
0/0