一种基于深度学习的红外全息噪声抑制方法
摘要:
本发明公开了一种基于深度学习的红外全息噪声抑制方法,本发明所述方法为:采集作为训练样本的红外全息图像,将红外全息图的相位图与强度图作为样本,根据强度图样本的参数设定作为神经网络的训练参数,提取其相应的噪声特征,对其噪声特征利用卷积神经网络进行噪声抑制建立模型,再将神经卷积网络模型所得到的图像进行傅里叶变换(1‑FFT)重建,得到经过深度学习降噪后的红外全息图,该方法应用到红外全息光路可以有效的实时抑制红外全息图的噪声,通过深度学习能够有效地,智能化地实时得到较好的降噪效果红外全息图像。
0/0