用于目标识别的SAR数据集扩增方法
摘要:
本发明涉及一种用于目标识别的SAR数据集扩增方法,包括:获取包含目标的SAR数据集并进行预处理;通过核心特征提取模块和散射特征提取模块分别提取目标的核心特征信息和散射特征信息;将所述核心特征信息输入第一级生成对抗网络,得到低分辨率图像;将所述低分辨率图像和所述散射特征信息输入第二级生成对抗网络,得到高分辨率图像,对SAR数据集进行扩增。通过实施本发明的上述方案,两级生成对抗网络、核心特征提取模块和散射特征提取模块的结合使用,可以使两级生成对抗网络分级学习图像中目标的粗略核心特征和精细散射特征,降低单级网络的学习难度,同时可以扩增获得质量高、细节更为真实的SAR目标图像切片。
公开/授权文献
0/0