一种短期风电功率区段概率预测方法
摘要:
本发明涉及电力系统运行与规划技术领域,具体涉及一种短期风电功率区段概率预测方法,利用深度学习挖掘数据中的隐含信息以及风电序列中的非线性特征,并产生预测概率区间,同时选择一种非线性权重方法提高粒子群算法的优化性能,即IPSO算法解决传统算法存在的部分问题,提高收敛速度,再混合人工智能算法选择CNN‑LSTM混合算法构建基于结合SVM与分位数回归的IPSO‑CNN‑LSTM算法预测模型,通过训练后完成短期风电功率概率预测,其中CNN网络能过够通过使用卷积核从样本数据中提取出其潜在的特征,而长短期记忆网络LSTM能够捕捉到长期的成分,避免现有部分算法存在梯度消失、爆炸的现象,提高了风电功率概率预测的效率。
0/0