基于多模态MRI心脏图像的多阶段分割方法
摘要:
本发明公开了一种基于多模态MRI心脏图像的多阶段分割方法,主要解决现有技术不适用于多模态以及无法有效融合跨模态之间特征的问题。包括:1)根据原始MRI数据生成心脏轮廓标注数据集,并进行归一化;2)构建心脏MRI轮廓分割模型,并利用归一化后数据集训练得到融合三种模态数据的深度学习模型,获取一阶段分割结果;3)将原始数据与一阶段分割结果矩阵相乘,进行通道堆叠后生成二阶段数据集;4)搭建心室‑心肌分割模型并利用二阶段数据集进行训练;5)通过前向模型推理得到二阶段分割结果,即最终分割结果。本发明能够有效利用多模态优势,提高分割精度,且在一定程度上解决了深度学习黑箱在医学领域可解释性差的窘境。
0/0