基于纹理特征和SLIC的SAR图像分割方法

    公开(公告)号:CN115131373B

    公开(公告)日:2023-10-27

    申请号:CN202210854382.9

    申请日:2022-07-14

    Abstract: 本发明提出了一种基于纹理特征和SLIC的SAR图像分割方法,解决了SAR噪声和复杂纹理导致的分割精度低的技术问题。实现步骤为:将SAR图像分为K个超像素块;获得更新后的聚类中心C'i;获得SAR图像的边缘图像;获得搜索区域;计算搜索区域的纹理特征;基于SLIC算法对SAR图像进行分割。本发明对序列#imgabs0#三值化,降低噪声影响和计算量;通过三值化序列Hk的平均频谱AMP的收敛性获得搜索区域Ω,计算区域Ω的纹理特征;通过SLIC算法获得SAR图像的分割结果,用于SAR图像分割。

    一种基于编码-解码结构的TCN-GRU船舶轨迹预测方法、系统、设备及介质

    公开(公告)号:CN116342657A

    公开(公告)日:2023-06-27

    申请号:CN202310321705.2

    申请日:2023-03-29

    Abstract: 一种基于编码‑解码结构的TCN‑GRU船舶轨迹预测方法、系统、设备及介质,方法为:对船舶AIS历史轨迹数据进行预处理;构建基于TCN和双向GRU循环神经网络的轨迹预测模型;构建损失函数MSE;设置网络训练参数;训练网络模型;轨迹递归预测;系统、设备及介质用于实现一种基于编码‑解码结构的TCN‑GRU船舶轨迹预测方法;本发明利用异常数据过滤、数据压缩和三次样条插值技术对船舶AIS历史轨迹数据进行处理,在基于TCN网络构建的编码器中,利用TCN的短期特征提取能力对输入的船舶AIS历史轨迹数据进行编码,并利用基于GRU网络的解码器对船舶AIS历史轨迹数据进行长期时序特征提取,预测误差较少,满足实时性预测的要求,能够应用于进出港口的船舶轨迹的实时监控。

    基于ORB-SLAM的高精度车辆定位方法

    公开(公告)号:CN109631855B

    公开(公告)日:2020-12-08

    申请号:CN201910075818.2

    申请日:2019-01-25

    Abstract: 本发明公开了一种基于ORB‑SLAM的高精度车辆定位方法,主要解决当前ORB‑SLAM经典定位算法定位结果精度不高的问题。其实现步骤为:选取标定板对双目相机进行标定,并对摄取到的图像进行立体校正;检测校正图像中的ORB特征点并完成特征点提取;利用双目稀疏特征匹配方法将提取到的特征点进行匹配,再利用相邻帧特征跟踪的方法获取当前相机位姿信息,构建局部地图;对建立的局部地图进行闭环检测与全局优化,以完成视觉地图的建立,并保存视觉地图;根据图像中匹配特征点数量选择车辆定位方案,并通过读取视觉地图确定出目标车辆的最终位置。本发明提高了车辆定位精度和鲁棒性,可用于无人驾驶汽车人工智能管理及安全处置。

    基于自适应滑动窗口滤波和FCM的SAR图像分割方法

    公开(公告)号:CN111080647A

    公开(公告)日:2020-04-28

    申请号:CN201911169291.6

    申请日:2019-11-26

    Abstract: 本发明提出了一种基于自适应滑动窗口滤波和FCM的SAR图像分割方法,用于提高SAR图像分割精度。实现步骤为:确定SAR图像I像素的类别;获取标记SAR图像I';基于自适应滑动窗口对标记SAR图像I'进行滤波;获取SAR图像I”模糊聚类类别的隶属度值集合U和聚类中心集合V;获取SAR图像I”模糊聚类类别的初始隶属度值集合U0和初始聚类中心集合V0;基于模糊聚类对SAR图像I”进行分割。本发明采用自适应滑动窗口对SAR图像滤波,消除FCM对噪声的敏感性,并通过FCM对滤波后的SAR图像I”进行聚类,以获取SAR图像的分割结果,保留了SAR图像的细节信息,提高了SAR图像的分割精度。

    基于变分水平集的SAR图像超像素分割方法

    公开(公告)号:CN110533669A

    公开(公告)日:2019-12-03

    申请号:CN201910722019.X

    申请日:2019-08-06

    Abstract: 本发明公开了一种基于变分水平集的SAR图像超像素分割方法,主要解决现有技术受SAR图像相干斑噪声影响以及纹理信息缺失导致的对SAR图像超像素分割精度低,超像素块区域边界贴合度不高的问题。其实现步骤是:输入SAR图像,并将其粗略分割为K个超像素块区域;分别设计基于SAR图像相干斑噪声与图像纹理信息的能量泛函;将设计出的能量泛函分别插入到边缘演化迭代方程以得到新的迭代方程;利用新的迭代方程对各超像素块区域边界进行边缘演化;当超像素块区域边缘演化停止后完成超像素分割。本发明有效提高了对SAR图像超像素分割的精度,并解决了超像素块区域边界贴合度不高的问题,可用于机场跑道,农田分布和地质勘探的图像处理。

    一种高阶新三维混沌模型及其电路

    公开(公告)号:CN108075732A

    公开(公告)日:2018-05-25

    申请号:CN201711085805.0

    申请日:2017-11-07

    Abstract: 本发明属于混沌系统技术领域,公开了一种高阶新三维混沌模型及其电路,所述高阶新三维混沌模型的电路包括三个通道电路;所述高阶新三维混沌模型的电路由39个元件组成,包括9个3554BM运算放大器、6个乘法器、3个电容和21个电阻。本发明的高阶新三维混沌电路具有多个平衡点,具有高阶非线性项,其动力学行为更加复杂而丰富,不仅能够应用于非线性电路课程实验,而且能够克服现有混沌系统信息加密易被破译的弊端,为混沌系统的应用提供了依据。

    一种基于CoordConv和YOLOv5的遥感小目标识别方法、系统、设备及介质

    公开(公告)号:CN117152625B

    公开(公告)日:2024-10-22

    申请号:CN202310983129.8

    申请日:2023-08-07

    Abstract: 一种基于CoordConv和YOLOv5的遥感小目标识别方法、系统、设备及介质,方法包括:将获取的遥感数据集进行预处理,得到训练集、验证集和测试集,使用K‑means聚类算法对训练集进行聚类,得到最优锚框尺寸;构建基于CoordConv和YOLOv5的遥感小目标识别网络;根据设置的网络训练参数,使用训练集和训练集的最优锚框尺寸对构建的基于CoordConv和YOLOv5的遥感小目标识别网络进行训练,每一轮训练结束后,得到一个训练权重文件;通过验证集对训练权重文件进行验证,选取最优权重文件;将测试集和最优权重文件输入到步骤四训练好的网络进行目标识别,得到目标识别结果;系统、设备及介质,用于实现该方法;本发明能够提高遥感密集小目标的识别精度,具有目标识别精度高和算法鲁棒性高的优点。

    基于深度可分离卷积和跳跃连接的遥感影像水体提取方法

    公开(公告)号:CN115131680B

    公开(公告)日:2024-08-20

    申请号:CN202210790355.X

    申请日:2022-07-05

    Abstract: 本发明公开了一种基于深度可分离卷积和跳跃连接的遥感影像水体提取方法,解决了水体样本标注效率低,河流支流或小水体提取困难的技术难题。实现步骤包括,获取原始遥感图像并预处理;用最大似然分类法得到水体标签;裁剪并筛选组成数据集;图像增强;构建基于FASPP的卷积网络DUPnet;建立图像输入网络的特征提取流程;构建混合损失函数TCELosss和设置训练参数;得到水体提取结果。本发明构建DUPnet网络,网络编码器使用深度可分离卷积减少特征信息丢失;网络的跳跃连接使用FASPP弥补采样过程造成的特征损失;构建TCELoss改善数据集中正负样本不平衡的问题。本发明用于从遥感影像中高质量提取水体,提高了制作遥感影像水体样本效率和水体分割精度。

    一种基于变分水平集的超像素分割方法

    公开(公告)号:CN110969628B

    公开(公告)日:2023-03-31

    申请号:CN201811139130.8

    申请日:2018-09-28

    Abstract: 本发明公开了一种基于变分水平集的超像素分割方法,包括以下步骤:S1、选取多个种子点,并对所述种子点进行标记;S2、判断标记的种子点满足预定条件时,对所述标记的种子点进行演化;S3、初始化演化时刻,对所述种子点进行变分水平集演化;S4、更新所述变分水平集,并进行下一次变分水平集演化;S5、判断演化结果是否满足终止条件,若是,则停止演化,若否则返回执行步骤S4;S6、将所述演化结果作为超像素的边界。本发明的方法可以有效利用SAR图像的多种属性特征信息,克服相干斑噪声的影响,提高SAR图像的超像素分割准确度。

Patent Agency Ranking