图像分类模型的类脑连续学习方法、图像分类方法和装置
摘要:
本发明涉及人工智能领域,提供一种图像分类模型的类脑连续学习方法、图像分类方法和装置,学习方法包括:获取初始神经网络、样本图像及其对应的图像类别标签;将输入信号输入至初始神经网络,得到各层神经元输出的图像特征;对图像类别标签进行编码,得到样本图像的期望;并将期望分别映射到各层中,得到各层的局部多巴胺浓度;基于局部多巴胺浓度,对各层的初始局部梯度进行调制,得到各层的调制后局部梯度;基于调制后局部梯度,对初始神经网络的突触连接权重进行更新,以完成类脑连续学习,得到图像分类模型。本发明提供的图像分类模型的类脑连续学习方法、图像分类方法和装置,可以最大程度上保留旧任务信息,同时实现对新任
0/0