基于样本和特征双加权的特征约简中智C-均值聚类方法
摘要:
本发明涉及一种基于样本和特征双加权的特征约简中智C‑均值聚类方法。所述方法包括:使用单通道Affymetrix芯片技术获取癌症基因表达数据集进行预处理得到第一数据集;构建特征约简中智C‑均值聚类算法模型输入第一数据集,通过所述特征约简中智C‑均值聚类算法模型对各个样本权重、特征权重进行控制迭代,并进一步特征约简实现无监督聚类,得到第二数据集;根据质量评价指标将第二数据集作为最优聚类数据集。特征约简中智C‑均值聚类算法模型不仅能很好地表征数据的不精确性和不确定性,而且能根据样本和特征的重要程度,自动赋予样本成员和样本特征不同的权重,丢弃小权重特征实现对高维数据的自适应降维,表现出更佳的聚类效果。
0/0