一种基于自监督学习和Mamba网络的睡眠分期方法及系统
摘要:
本发明涉及一种基于自监督学习和Mamba网络的睡眠分期方法及系统,属于健康信息处理、模式识别技术领域。采用自监督训练网络进行数据处理提取高质量睡眠脑电信号特征,自监督训练网络包括特征增强、特征筛选、掩码预测三分支并行网络;对高质量睡眠脑电信号特征利用可分离卷积模块进行时频特征提取;提取的特征输入基于Mamba网络的特征增强模块再次进行上下文特征提取;利用分类器对提取的特征信息进行睡眠分期分类。本发明整体方法提高了睡眠分期分类的效率、准确性和适应性。
0/0