一种基于迁移学习的多尺度智能决策方法
摘要:
本发明涉及机器故障诊断技术领域,公开了一种基于迁移学习的多尺度智能决策方法,包括:获取源域与目标域中的机械故障振动时序长信号,构建源域训练集与目标域训练集;在源域训练集中,对时序分信号进行预处理后,提取时域特征与频域特征,并映射为低维时域特征与低维频域特征;计算特征之间的互相关矩阵,构建互相关损失函数,来训练编码器,获取源域优化时域信号编码器,并迁移至目标域,与初始分类器,组成初始多尺度智能决策模型;对目标域时序分信号进行预测,与其真实标签,构建交叉熵损失函数,训练获取目标多尺度智能决策模型;将实时采集的机械故障振动时序长信号,预处理后分别输入目标多尺度智能决策模型中,获取对应的故障类别。
0/0